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The Impact of Frame Transformations on 
Power System EMT Simulation 

 
Jiahang Li, Student Member, IEEE, Yitong Li, Member, IEEE, Yunjie Gu, Senior Member, IEEE

Abstract— This article investigates the impact of frame 
transformations on the accuracy of numerical discretization 
in power system transient and stability studies. As analysed, 
frame transformations influence the convergence of the 
numerical discretization. Specifically, for an explicit discre-
tization method (e.g., forward Euler method), the stability 
of the original system is best preserved in the frame where 
the system eigenvalue is closer to the origin of the complex 
plane, e.g., in the stationary frame for inductors and 
capacitors, and in the synchronous frame for dq-frame 
controllers of inverters. Simulation results are given to vali-
date the theoretical analysis. 
 

Index Terms— Power system stability, electromagnetic 
transients, frame transformation, numerical simulation  

I. INTRODUCTION 
Numerical simulation is an important tool for power system 

transient stability analysis. With the increasing penetration of 
inverter-based resources (IBRs), electromagnetic transients 
(EMTs) are becoming increasingly prominent and ubiquitous in 
stability problems [1]-[7]. The resulted largescale (very high 
dimensional) and stiff (multiple timescales) model poses a 
challenge to numerical simulation. This challenge has been 
recognised by system operators and simulation software 
suppliers. For example, National Grid, the major transmission 
system operator-owner in the UK, is collaborating with PSCAD 
to develop a UK-wide EMT simulation tool [8]. 

There are two streams of numerical method for transient 
simulation: variable-step method, and fix-step method. The 
variable-step method is more suitable for stiff systems because 
this method adjusts the time step adaptively according to the 
minimum timescale in the system dynamics [9]-[11]. Fix-step 
method, on the other hand, uses a single time step for the entire 
simulation, and may be non-converging when the time step is 
not sufficiently small compared to the timescale of the system 
dynamics. That said, the fix-step method ensures fixed compu-
tation time and therefore is the unique method that can be used 
for real-time simulation [9]-[14].  

A common technique to improve the convergence of fix-step 
method for stiff systems is to use implicit discretization, the  
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most well-known example of which is the trapezoidal method 
[9] [13] [15] [16]. In the implicit discretization, an algebraic 
function must be solved at each simulation step, which is known 
as the algebraic loop [9] [11] [17]. The algebraic loop can be 
easily solved for a linear system via matrix inversion. For a 
linear time-invariant system, the solution of the algebraic loop 
can be done one-off at the beginning of the simulation and does 
not to be repeated each step [13] [15]. For non-linear systems, 
solving an algebraic loop can be rather time consuming and 
therefore may substantially increase the simulation time [9] 
[11] [18]. For such non-linear systems, it is often necessary to 
insert extra delays to break the algebraic loop, but the extra 
delay may compromise convergence [13] [18] [19]. 

While the ongoing efforts of EMT software suppliers (e.g. 
PSCAD, DigSILENT, Simulink, and OPAL-RT) are largely 
focused on developing new discretization method for stiff 
systems [13] [18]-[25], this paper takes a different perspective 
by investigating the effects of the reference frames on the con-
vergence of numerical discretization. We illustrate that, by 
performing discretization in a proper reference frame (sta-
tionary or synchronous), an explicit (e.g. forward Euler) method 
can have comparable convergence to implicit methods for some 
EMT studies. This may resolve the dilemma between conver-
gence and algebraic loops and provide a new way for EMT 
simulation of stiff inverter-based power systems. 

This article is organized as follows: Section II presents a 
quantitative model for the discretization in the synchronous and 
stationary frames. Section III evaluates the convergence of the 
discretization in different frames. Case studies are shown in 
Section IV and Section V concludes the article. 

 

II. DISCRETIZATION WITH FRAME TRANSFORMATION 
For power system modelling, three-phase current or voltage 

is normally transformed from ac variables in natural stationary 
frame (also known as 𝛼𝛽 frame for two-axis analysis or abc 
frame for three-axis analysis) into dc variables in synchronous 
frame (also known as dq frame or rotating frame). There are 
two discretization choices in different frames, as follows: 
• Method 1 - discretization in synchronous frame: The 

system variables are transformed from original stationary 
frame to synchronous frame first, and the discretization 
performed in the synchronous frame, as shown in Fig. 1 (a). 
This method is normally adopted in conventional 
numerical simulation. 

• Method 2 - discretization in stationary frame: The system 
is discretized in stationary frame first, and the discrete 
variables are transformed into the synchronous frame for 
consistent frame comparison, as shown in Fig. 1 (b). 
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(a) 

 

 
(b) 

 
Fig. 1. The sequence of frame transformation and discretization. (a) 
method 1: discretization in synchronous frame. (b) method 2: 
discretization in stationary frame. We use x(t) and x[n] to denote 
continuous and discretised variables. The subscripts 𝛼𝛽 and 𝑑𝑞 donate 
the reference frames of the variables, and the subscripts 1 and 2 denote 
the discretization method. 

A. Discretization and Frame Transformation 
The dynamic behaviour of a power system is described by a 

set of ordinary differential equations [2]  
!"
!#
= 𝑓(𝑥, 𝑢)                                (1)   

where x is the state variable and u is the input. At the core of 
numerical simulation is to discretize the ordinary differential 
equations into difference equations. There are various discre-
tization methods available and we focus on the forward Euler 
method in this paper [9] [26]. The time-derivative of the state 
variable x is estimated by the difference between two simple 
points 

"[%&'])"[%]
*

= 𝑓(𝑥[𝑛], 𝑢[𝑛])                     (2)  
where T denotes the sample period (time step) of simulation. 
Forward Euler is an explicit method since the next step x[n+1] 
is an explicit function of the previous step x[n] and u[n]. For a 
linear system, the forward Euler method can be represented in 
the frequency domain as  

𝑧 = 𝑠𝑇 + 1                                   (3) 
where z and s are the operators in Z and Laplace transforms. 

 

 
Fig. 2. Frame transformation diagram. 

 
The frame transformations between the stationary (𝛼𝛽) and 

synchronous (𝑑𝑞) are defined by the Park transformation. The 
orthogonal coordinates in both the 𝛼𝛽  and 𝑑𝑞  frame can be 
represented as a complex number 

𝑥+, = 𝑥+ + 𝑗𝑥, 
𝑥!- = 𝑥! + 𝑗𝑥-                                  (4)     

where j is the imaginary unit. The Park transformation becomes 
a rather simple expression in complex numbers 

𝑥+, = 𝑒./𝑥!- 
𝑥!- = 𝑒)./	𝑥+,                                 (5)            

where 𝜃 is the angle difference between 𝑑𝑞 and 𝛼𝛽 frames, as 
shown in Fig. 2, and 𝜃	 = 𝜔1𝑡 for a constant angular speed 𝜔1. 

B. Eigenvalue Mapping 
Eigenvalue analysis is a useful method to evaluate the 

convergence of a numerical method. Indeed, eigenvalue is only 
available for linear systems, but such evaluation provides a 
good estimation for the convergence of the discretization 
method for generic systems [27] [16]. For non-linear systems, 
the eigenvalues can be calculated from the linearised systems 
along the dynamic trajectory [28]. 

Based on (3), the eigenvalue mapping from s domain to z 
domain for the forward Euler method is 

𝜆2 = 1 + 𝜆3𝑇                                 (6) 
where 𝜆3 and 𝜆2 are the eigenvalues of the differential equation 
and difference equation respectively. The natural mapping 
between s and z domain is given by Laplace transformation 

𝑧 = 𝑒3*                                      (7) 
from which yields the natural eigenvalue mappings 

𝜆2 = 𝑒4!5                                      (8) 
𝜆3 = (ln 𝜆2)/𝑇.                              (9) 

The natural mapping provides an authentic (stability preserving) 
relationship between the z and s domains, and it is clear that 
forward Euler method is essentially a first-order Taylor 
approximation of the natural mapping.  

Now we identify the effect of frame transformations on 
system eigenvalues. 

1) Frame transformation on differential equations 

    For a linearised differential equation in synchronous frame 
!𝒙"#
!#

=	𝐴𝑥!- + 𝐵𝑢!-                            (10) 
the corresponding stationary frame equation is 

!"$%
!#

= (𝐴 + 𝑗𝜔1)𝑥+, + 𝐵𝑢+,	               (11) 
where we make use of the fact that 

!""#
!#

= 𝑒).7&# 	!"$%
!#

− 𝑗𝜔1𝑒).7&#	𝑥+,	 .           (12) 
The eigenvalue of (9) and (12) is defined by 

A𝜆3,!-𝐼 − 𝐴A = 0 
A𝜆3,+,𝐼 − (𝐴 + 𝑗𝜔1𝐼)A = 0.                     (13) 

where 𝜆3,!-  and 𝜆3,+,  denotes the eigenvalues of different 
frame in s domain. It follows that the eigenvalue relationship in 
s domain between the stationary and synchronous frames is  

 𝜆3,!- = 𝜆3,+, − 𝑗𝜔1                           (14) 
 

2) Frame transformation on difference equations  

For method 2, we have the forward Euler difference equation 
in synchronous frame as  

"[%&']"#)"[%]"#
*

= 𝐴𝑥[𝑛]!- + 𝐵𝑢[𝑛]!-.            (15)  
It can be transformed to stationary frame as 

9'()&*"[%&']$%)"[%]$%
*

= 𝐴𝑥[𝑛]+, + 𝐵𝑢[𝑛]+,.    (16) 

𝜔1 	

𝑎	

𝑏	

𝑐	

𝑑	

𝑞	

𝛼	

𝛽	

𝜃	
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Taking Z-transform on (15) in synchronous frame and (16) in 
stationary frame, the characteristic equations defining the 
corresponding eigenvalues are 

A(𝑧!- − 1)𝐼/𝑇 − 𝐴A = 0                        (17) 
A(𝑒).7&*𝑧+, − 1)𝐼/𝑇 − 𝐴A = 0                  (18) 

from which follow the eigenvalue relationship between 𝑑𝑞 and 
𝛼𝛽 frames in z domain  

𝜆2,!- 	= 𝑒).7&*	𝜆2,+,                          (19) 
where	𝜆2,!-	 and 𝜆2,+, denotes the eigenvalues of synchronous 
and stationary frames in z domain.  

An s-domain system is stable if all its eigenvalues are in the 
left-half plane, i.e., Re(𝜆𝑠) ≤ 0. A z-domain system is stable if 
all its eigenvalues (modes) are located inside the unit circle, i.e., 
|𝜆𝑧| ≤ 1 . It is clear from (14) and (19) that the frame 
transformations on the differential and difference equations do 
not change their stability by themselves. That said, the 
transformations do have impacts on the convergence of discre-
tization, to follow.  

III. CONVERGENCE EVALUATION 
Now we have all the ingredients ready to evaluate the 

convergence of discretization in a synchronous frame (method 
1) and discretization in a stationary frame (method 2). The chain 
of eigenvalue mapping for the two methods are illustrated in 
Fig. 3 and summarised in Table I.   

 
TABLE I 

EIGENVALUE MAPPING OF DISCRETIZATION IN SYNCHRONOUS FRAME 
(METHOD 1) AND DISCRETIZATION IN STATIONARY FRAME (METHOD 2)   

Method 
1 

Frame Transform Discretization 

𝜆#,%&' = 𝜆#,() − 𝑗𝜔* 𝜆+,%&' = 1 + 𝜆#,%&'𝑇 

Method 
2 

Discretization Frame Transform 

𝜆+,(), = 1 + 𝜆#,()𝑇 𝜆+,%&, = 𝑒-./!0𝜆+,(), 

 

A. Analysis in z Domain 
Based on Table I and Fig. 3, the relationship between z-

domain eigenvalue and original s-domain eigenvalue can be 
found as 

𝜆2,!-' = 𝜆2,+, − 𝑗𝜔1𝑇 
𝜆2,!-: = 𝑒).7&*𝜆2,+,                           (20) 

where 𝜆2,+,  is the z-domain eigenvalue obtained from the 
original s-domain eigenvalue 𝜆3,+, as 𝜆2,+, = 1 + 𝜆3,+,𝑇. 

 
The z-domain eigenvalue trajectory diagram is captured in 

Fig. 4 with 	𝜆2,!-' in red line,  𝜆2,!-: in blue line and  𝜆2,+, in 
black line. The analysis is divided into two different types of 
original eigenvalue 𝜆3,+, of original system mode: 
• Case 1: real eigenvalue,  𝜆3,+, = 𝜎 and 𝜆2,+, = 1 + 𝜎𝑇 in 

Fig. 4(a) 
• Case 2: complex eigenvalues, 𝜆3,+, = 𝜎 ± 𝑗𝜔 and 𝜆2,+, =

1 + 𝜎𝑇 ± 𝑗𝜔𝑇  (negative frequency and positive frequency 
distinguished with subscripts – and + in dashed and solid 
respectively) in Fig.4(b) 

 

 
(a)  Case 1: real eigenvalue 

 

 
(b)  Case 2: complex eigenvalue 

Fig. 4.  Eigenvalue trajectory analysis in z domain. 
     

Fig. 3. Eigenvalue mapping of discretization in synchronous frame and discretization in stationary frame in frequency domain. Method 
2 is equivalent to the discretization in stationary frame directly without additional frame transform. The frame transform in method 2 is 
added only for consistent comparison with method 1 and analysis in Section III. 

            Section III-A                                                                      Section III-B 
     Analysis in z Domain                                                          Analysis in s Domain    
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    As indicated from the eigenvalue trajectory diagram, the 
numerical discretization in method 1 takes the frequency 𝜔*	of 
synchronous frame into consideration. Compared to 𝜆2,+,		, the 
imaginary part of 𝜆2,!-' is shifted down vertically with a step 
of 𝜔1𝑇 , which changes the magnitude correspondingly. For 
case 1 in Fig. 4(a), the z-domain eigenvalue magnitude |𝜆2,!-'| 
of method 1 is prolonged compared to |𝜆2,+,|. For case 2 in Fig. 
4(b), the negative-frequency magnitude |𝜆2,!-')| of method 2 
is also increased than |𝜆2,+,)|. By contrast, 𝜆2,!-:	 of method 2 
remains the same magnitude as 𝜆2,+, and only rotates with an 
angle of 𝜔1𝑇 in both cases. 
    To sum up, method 1 (conventional discretization in 
synchronous frame) changes the numerical stability with the 
magnitude of z-domain eigenvalue changing accordingly, i.e., 
𝜆2,!-'  and 𝜆2,+,  indicate different system stability. But by 
contrast, method 2 (discretization in stationary frame) reveals 
the same stability as the original system, i.e., 𝜆2,!-: and 𝜆2,+, 
indicate the same system stability.  
 

B. Analysis in s Domain  
    As shown in Fig. 3, the s-domain systems for two methods 
can be reconstructed from z-domain using (9) which leads to 

𝜆3,+,'; 	= <=>('&@*)+&((±7)7&)*)+

*
+ 𝑗(

CD=',(±)')&)*,01*
*

+𝜔1)                

𝜆3,+,:; = <=>('&@*)+&(±7*)+

*
+ 𝑗

CD=', ±)*,01*
*

              (21)  

It also indicates that the numerical discretization performance 
is affected by the synchronous frame frequency 𝜔1  in 
discretization in synchronous frame due to 𝜔1 existing. 
 

The eigenvalue relationship between an original eigenvalue 
𝜆3,+, = 𝜎 + 𝑗𝜔		and the reconstructed system eigenvalues with 
method 1 and method 2 are visualized in line mapping and plane 
mapping as follows: 

 
1)  Real Part Analysis: Horizontal Line Mapping 

Supposing the original eigenvalue with only real value in s 
domain as 𝜆3,+, = 𝜎	 , where 𝜎	varying in [-5,5] as shown in 
black line in Fig. 5. The numerical mapping with method 1 and 
2 in red and blue lines is represented respectively. Obviously, 
the blue line of method 2 almost overlaps the original black line, 
which means method 2 (discretization stationary frame) 
reconstructs the signal with an extremely small error in 
frequency and an almost equivalent numerical stability. By 
contrast, for method 1, with each 𝜆3,!-'; 	 linked to the 
corresponding 𝜆3,+,	with a dashed line, the whole mapping is 
right shifted in the real value part, which means the numerical 
stability error in method 1 (discretization in synchronous frame) 
is increased. 

With Re(𝜆3,+,'; ) set to 0 in (21), the stable boundary real 
eigenvalue 𝜎E' for method 1 is defined as 

𝜎E' = (O1 − (𝜔1𝑇): − 1)/𝑇.                  (22) 
The stable range of real eigenvalue in method 1 can be yielded 
with [−∞, 𝜎E' ]. However, the stable range for method 2 is 

[−∞, 0], which maintains the numerical stability with 𝜎 ≤ 0 in 
original modes. 

 

 
Fig. 5. Horizontal line eigenvalue mapping of method 1 in red line and 
method 2 in blue line in s domain of stationary frame. 

 
Based on Fig. 5, Fig. 6 further focuses on the real part 

relationship, i.e., relationship between 𝜎; = Re(𝜆3,!-; )  of the 
two methods and original 𝜎 = Re(𝜆3,+,) . It shows that the 
numerical stability of method 2 is almost unchanged because 
ReQ𝜆3,!-:; R ≈ Re(𝜆3,+,). However, for method 1, ReQ𝜆3,!-'; R >
Re(𝜆3,+,) with right shifting, which means the system stability 
is worsening.  

 
Fig. 6. Real part of reconstructed eigenvalues with method 1 and 
method 2 with original 𝜎 changing. 
 
2) Imaginary Part Analysis: Vertical Line Mapping 

If an original system is stable with a fixed negative real part 
of eigenvalue (vertical line in s domain), the discretized system 
is stable only under some range of the original system 
oscillating at frequency 𝜔. As shown in Fig. 7 (𝜎 = −6.8) as an 
example, the original eigenvalue with a vertical line in s domain 
𝜆3,+, = 𝜎 ± 𝑗𝜔 with 𝜎 fixed and 𝜔	varying in [-250, 250] is in 
black line. 
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Fig. 7. Vertical line eigenvalue mapping of method 1 and method 2 in 
s domain of stationary frame. 

To further highlight the influence on the system stability, the 
real part of the reconstructed system mode 𝜎; = Re(𝜆𝑠,𝛼𝛽

; )  of 
two methods with changing the frequency 𝜔  of the original 
system mode 𝜆3,+, is shown in Fig. 8.  

According to 𝜎; = ReQ𝜆𝑠,𝛼𝛽2; R = 0  in (21), the boundary 
frequency for method 2 is defined as  

𝜔E: = O1 − (1 + 𝜎F𝑇):/𝑇.                      (23) 
Similarly, the boundary frequency for method 1 is deduced as 

𝜔E' = 𝜔E: ±𝜔1.                               (24) 

 
Fig. 8. Real part of reconstructed eigenvalues in method 1 and method 
2 with the original 𝜔	changing in stationary frame. 

 
As shown in Fig. 8 with absolute value of oscillating 

frequency |𝜔|, the stable range of |𝜔| for the two methods is 
achieved with 𝜎; ≤ 0,	which is divided into three regions by 
𝜔E: and 𝜔E: −𝜔1 in the vertical line mapping:  

• Range I [0, 𝜔E: −𝜔1] - both methods stable 
• Range II [𝜔E: −𝜔1 , 𝜔E:]  - method 2 stable and 

method 1 unstable 
• Range III [𝜔E:, +∞] - both unstable 

 
3)  Complex Number Analysis: Plane Mapping  

    Supposing original eigenvalues of stationary frame in s 
domain 𝜆3,+, = 𝜎	 ± 𝑗𝜔  with 𝜎  varying in [-2,2] Hz and 𝜔 
varying in [0,100] Hz shown as black plane in Fig. 9, the 

mapping planes with method 1 and method 2 are visualized as 
the blue area and red area respectively. The overall numerical 
performance of method 2 is better than that of method 1 because 
the red area shifts to right more than the blue area. 

 
Fig. 9. Plane eigenvalue mapping with method 1 and method 2 in s 
domain of stationary frame. 
 
 
C. Practical Recommendations 

From the eigenvalue mapping, we see that discretization in 
the stationary and synchronous frames each has regions with 
superior convergence. It is preferred to perform discretization 
in the frame where the eigenvalue of the continuous system (s-
domain) is closer to the origin of the complex plane, so that the 
discretization has higher fidelity in approximating the natural 
mapping. In power systems, physical inductors and capacitors 
present eigenvalues close to origin in the stationary frame, 
whereas integral controllers (such as the current control in grid-
following inverters [29]-[31]) present eigenvalues close to 
origin in the synchronous frame. It is therefore recommended 
to discretize inductors and capacitors in a stationary frame, and 
to discretize integral related control in a synchronous frame. 
This is especially important where explicit discretization is used. 

It is worth mentioning that inverters in practice are normally 
digitally controlled and discretized by themselves. The inner 
current and voltage loops consist of digital (discretized) 
proportional-integral controllers in dq frames in most cases 
[29]-[31]. This is consistent with our recommendations. 

If the time step (sample period) is sufficiently small, the 
difference between discretization methods vanishes according 
to the zero-stability of Euler method [27]. This, however, comes 
at the expense of long computation time. A proper 
discretization method allows for a higher time step without 
compromising accuracy.  

 

IV. CASE STUDY RESULTS 
Single-machine-infinite-bus system [32] and modified IEEE 

57-bus with multi-inverters are simulated to identify the impact 
of frame transformation via the Simplus Grid Tool [33]. The 
discretization in synchronous frame (method 1) and 
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discretization in stationary frame (method 2) are implemented 
in each case study. 

A. Single-Machine-Infinite-Bus System 
    The stationary eigenvalue in the single-machine-infinite-bus 
model is a pure real value, which can be adjusted by changing 
the equivalent inner resistor value 𝑅 of the output inductor of 
synchronous machine. The inductor value of SM model and line 
are 𝑋 = 0.3	pu  and 𝑋G = 0.65	pu respectively.  

Case A.1 with 𝑅 = 0.003	pu  and Case A.2 with 𝑅 =
0.03	pu  are simulated, which is designed to achieve two 
different real eigenvalues located in [−∞, 𝜎E']  and [𝜎E', 0] 
respectively, where 𝜎E' = −1.1314 in (22) shown in Fig. 6 of 
the horizontal mapping. The original eigenvalue 𝜆3,+,	 and 
reconstructed eigenvalues 𝜆#,%&'5   and 𝜆#,%&,5  are summarized in 
Table II. And the responses of synchronous currents (𝑖! and 𝑖-) 
and system frequency 𝜔 with the two methods are collected to 
analyse in all cases.  

TABLE II  
PARAMETER AND EIGENVALUES IN CASE A 

Case R (pu) 𝜆#,() (Hz) Re(𝜆#,%&'5 ) 
(Hz) 

Re(𝜆#,%&,5 ) 
(Hz) 

A.1 0.003 −0.1895 0.9409 −0.1895 

A.2 0.03 −1.8955 −0.7638 −1.8966 

 
1) Stability Validation 

As can be seen from Table II, for case A.1, method 2 
indicates the same stability as the original system (a stable 
system), but method 1 indicates an unstable system which 
worsens the system stability, as validated by simulation in Fig. 
10(a). The eigenvalues of method 2 is also quite close to the 
original system eigenvalue. For Case A.2, both methods 
indicate a stable system, as validated by simulation in Fig. 
10(b).  

 
(a) Case A.1 

 

 
(b) Case A.2 

Fig.10. Case A system responses with methods 1 and 2. (a) Case A.1. 
(b) Case A.2.   
 
2) Transient Response 

In Fig. 10(b), a disturbance (a 30-degree phase jump) is 
simulated to compare the system dynamic transient stability of 
the two methods. As can be seen, method 2 has a faster transient 
than method 1 which also indicates the better system stability, 
i.e., more damped system mode shown in Table II. 
 

B. Single-Machine-Infinite-Bus System with A Parallel 
Capacitor 

TABLE III 
PARAMETER AND EIGENVALUE IN CASE B 

Case 𝜔𝐶 
(pu) 

𝜆#,() 
(Hz)  𝜆#,%&'5  (Hz) 𝜆#,%&,5  (Hz) 

B.1 2.45 −6.8
+ 83𝑗 

𝜆#,%&65  −6.6470	
+ 	23.0971𝑗 

−4.6347	
+ 	23.2801𝑗 

𝜆#,%&-5  −0.36136	
+ 	143.2257𝑗 

−4.6347	
+ 	143.2801𝑗 

B.2 1.2 −6.8
+ 120𝑗 

𝜆#,%&65  −5.6748	
+ 	60.2287𝑗 

−2.2648	
+ 	60.2854𝑗 

𝜆#,%&-5  3.3860	
+ 	180.0009𝑗 

−2.2649	
+ 	180.2854𝑗 

B.3 0.1 −6.8
+ 418𝑗	 

𝜆#,%&65  32.7933	
+ 	353.6009𝑗 

46.7077	
+ 	350.4456𝑗 

𝜆#,%&-5  62.4769	
+ 	466.2395𝑗 

46.7077	
+ 	470.4456𝑗 
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A capacitor is further added in parallel with the synchronous 
machine with fixed parameters 𝑅 = 0.01	pu, 𝑋 = 0.3	pu  and 
𝑋G = 0.65	pu to “create” an oscillation mode with an imaginary 
part. The oscillation frequency can be adjusted by the capacitor. 

The vertical line mapping in Fig. 8 in s domain with 𝜎 fixed 
can be applied with method 1 and method 2 to find the stable 
range of oscillation frequency (imaginary part of 𝜆3,+,) with 
𝜔E: = 146.964 calculated in (23). The oscillating frequency of 
Case B.1, Case B.2 and Case B.3 is designed in Range I, II and 
II correspondingly with different capacitor values, as 
summarized in Table III. The calculated s-domain eigenvalues 
with the two methods are also listed. 

 
1) Stability Validation      

The response results shown in Fig. 11 follow the numerical 
stability as deduced in the mathematical analysis in Case B.1 
(both stable), Case B.2 (method 1 unstable and method 2 stable) 
and Case B.3 (both unstable). It is worth highlighted that, in 
Case B.2, an originally stable system does not converge when 
discretized in synchronous frame (method 1) and would still be 
stable when discretized in stationary frame (method 2). In other 
words, method 2 reflects the stability of the original system 
better than method 1. 

 

 
(a) Case B.1 

 
(b) Case B.2 

 
(c) Case B.3 

Fig. 11. Case B system responses with methods 1 and 2. (a) Case B.1. 
(b) Case B.2. (c) Case B.3. The reference is obtained by setting a very 
small time step in simulation, which is a good approximation of the 
real continuous response according to the zero-stability theorem [27]. 

2) Transient Response 

     The disturbance of a 30-degree phase jump is simulated at 
0.1 s of Case B.1, as shown in Fig. 11(a). When the phase jump 
occurs, method 1 oscillates more in 𝑖!-  response in 143 Hz 
oscillation mode.  

As shown in Fig. 12, Fourier analysis is performed on current 
responses for Case B.1 in Fig. 11(a). In the 60Hz mode, 
stationary discretization also has less oscillation, with the same 
conclusion as Case A.2. In the oscillation mode caused by the 
additional capacitor, the oscillation amplitude in method 1 
(synchronization discretization) is larger at 143Hz and smaller 
at 23Hz than method 2 (stationary discretization), which can be 
explained in z-domain eigenvalue trajectory analysis of Fig. 
4(b) with the prolonged and shrunk magnitude of method 1. 

 
Fig. 12. Spectral plot with Fourier analysis for Case B.1. 
 

C. IEEE 57-bus Multi-Inverter System 
To further show the effectiveness of the proposed theory in 

an inverter-based system, a modified IEEE 57-bus system with 
inverters is simulated. The system parameters are exactly same 
to a standard IEEE 57-bus system [34], except that apparatuses 
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at bus 2 and 12 are replaced by grid-following inverters and 
apparatuses at bus 1, 3, 6, 8 and 9 are replaced by grid-forming 
inverters. The transient responses of currents (𝑖!  and 𝑖-) and 
frequency 𝜔 with the two discretization methods are collected 
on all buses with inverters.  

The integral control of inverters is all discretised in the 
synchronous frame. The filtering inductors of grid-forming 
inverters are discretised in either the synchronous frame 
(method 1) or stationary frame (method 2), and the results are 
compared. 

 
(a) Case C.1  

 
(b) Case C.2  

Fig. 13. Case C IEEE 57-bus with inverters system response. (a) Case 
C.1 with sampling period 16.667 µs; (b) Case C.2 with sampling period 
0.333 µs. The current and frequency waveforms of all inverters are 
illustrated. GFL and GFM represents gird following inverter and grid-
forming inverter respectively. The number after GFM or GFL indicates 
the bus that the inverter is connected, e.g., GFL12 means the grid 
following inverter on bus 12. 

As can been seen in Fig. 13(a), for the sampling rate of 60 
kHz and sampling period T of 16.667 µs, the discretization in 
method 1 (all elements are discretized in synchronous frame) 
leads to unstable collapse but the method 2 (all elements is 
discretized in the stationary frame except integral controllers) 
gives a stable result.  

A discretized system can always reflect the original system 
stability if the sampling period T is sufficiently small, 
regardless of the discretization method [27]. Here, we 
dramatically increase the sampling rate to 3000k Hz or 
equivalently reduce the sampling period T to 0.333 µs. The 
simulation results are shown in Fig. 13(b). Noticeably, both 
methods are stable now and the responses are almost similar.  

 
However, an excessively small sampling period T drama-

tically slows down the computation speed, as compared in 
Table IV with Case C.1 (sampling period 16.667 µs) and case 
C.2 (0.333µs) in Matlab. In addition, this sampling period 
0.333µs is even smaller than the minimal sampling period of 
some real-time simulation systems (e.g. Opal-RT has a minimal 
time step of 1µs [12] for CPU based simulation), and therefore 
is not acceptable in certain practical applications.  

     Additionally, from Table IV, we can observe that the 
computation time for methods 2 is slightly smaller than method 
1 if the sampling period T and other parameters fixed. This is 
intuitive because the only difference between two methods is 
the frame transform which costs some extra computation efforts 
in simulation especially for method 1 which discretizes the 
system in synchronous frame rather than its original frame. This 
is another advantage of method 2. 

TABLE IV 
COMPUTATION TIME COMPARISON FOR CASE C 

Case Sampling 
Period 

Computation 
Time Method 1 Method 2 

C.1 16.667 
µs 

No.1 82.620 s 74.381 s 

No.2 81.642 s 73.171 s 

No.3 80.887 s 73.571 s 

Average 81.716 s 73.708 s 

C.2 0.333 
µs 

No.1 3930.409 s 3740.620 s 

No.2 4229.443 s 3607.101 s 

No.3 4155.294 s 3758.425 s 

Average 4105.048 s 3702.049 s 

0 0.2 0.4 0.6 0.8 1
-5

-4

-3

-2

-1

0

1

i d (p
u)

method 1

0 0.2 0.4 0.6 0.8 1
-5

-4

-3

-2

-1

0

1

i d (p
u)

method 2

0 0.2 0.4 0.6 0.8 1
-2

0

2

4

6

i q (p
u)

0 0.2 0.4 0.6 0.8 1
-2

0

2

4

6

i q (p
u)

0 0.2 0.4 0.6 0.8 1
Time (s)

0.99

0.995

1

1.005

1.01

 (p
u)

0 0.2 0.4 0.6 0.8 1
Time (s)

0.99

0.995

1

1.005

1.01

 (p
u) GFL12

GFM9
GFM1
GFM3
GFM6
GFL2
GFM8



9 
TPWRS-01076-2022.R1 
 

V. CONCLUSION 
Power system numerical discretization is evaluated 

considering the impact of frame transformation in this article. 
The conclusion has been reached that, for an explicit 
discretization (e.g., forward Euler method), the stability of the 
original system is best preserved in the frame where the system 
eigenvalue is closer to the origin of the complex plane. For 
example, most electrical elements (e.g., inductors and 
capacitors of transmission lines and inverter filters, and flux 
inductors of grid-forming apparatuses) should be discretized in 
stationary frame directly. By contrast, dq-frame integral control 
(e.g., inner current controller for grid-following inverters) 
should be discretized in synchronous frame. This reduces the 
numerical error and improves the convergence of numerical 
analysis.  
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