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COMPUTATIONAL METHODS FOR LARGE-SCALE INVERSE1

PROBLEMS: A SURVEY ON HYBRID PROJECTION METHODS∗2

JULIANNE CHUNG† AND SILVIA GAZZOLA‡3

Abstract. This paper surveys an important class of methods that combine iterative projection4
methods and variational regularization methods for large-scale inverse problems. Iterative methods5
such as Krylov subspace methods are invaluable in the numerical linear algebra community and6
have proved important in solving inverse problems due to their inherent regularizing properties and7
their ability to handle large-scale problems. Variational regularization describes a broad and impor-8
tant class of methods that are used to obtain reliable solutions to inverse problems, whereby one9
solves a modified problem that incorporates prior knowledge. Hybrid projection methods combine10
iterative projection methods with variational regularization techniques in a synergistic way, provid-11
ing researchers with a powerful computational framework for solving very large inverse problems.12
Although the idea of a hybrid Krylov method for linear inverse problems goes back to the 1980s,13
several recent advances on new regularization frameworks and methodologies have made this field14
ripe for extensions, further analyses, and new applications. In this paper, we provide a practical and15
accessible introduction to hybrid projection methods in the context of solving large (linear) inverse16
problems.17

Keywords: inverse problems, projection methods, regularization, Krylov meth-18

ods, Tikhonov regularization, variational regularization, image deconvolution, com-19

puted tomography20

1. Introduction. We provide a gentle introduction to hybrid projection meth-21

ods for regularizing inverse problems by answering three essential questions: (1) what22

is an inverse problem?, (2) what is regularization and why do we need it?, and (3)23

why should we use hybrid projection methods?24

1.1. What is an inverse problem?. Inverse problems arise in various scientific25

applications, including astronomy, geoscience, biomedical sciences, mining engineer-26

ing, and medicine (see, e.g., [4, 23, 24, 32, 55, 75, 108, 111, 132, 136, 147, 235]). In27

these and other applications, one formulates an inverse problem for the purpose of28

recovering, from measured noisy data, the hidden object or phenomenon that gave29

rise to such data. In this survey, we are mainly interested in large, linear inverse30

problems of the form31

(1.1) b = Axtrue + e ,32

where a certain unknown quantity of interest is stored in xtrue ∈ Rn, the observed33

measurements are collected in b ∈ Rm, the matrix A ∈ Rm×n represents the forward34

data acquisition process, and e ∈ Rm represents inevitable errors (noise) that arise35

from measurement, discretization, or floating point arithmetic. Given measured data,36

b, and knowledge of the forward model, A, the goal is to compute an approximation37

of xtrue, i.e., a solution to the inverse problem.38

It is worth mentioning that, in stating (1.1), we have made three simplifying as-39

sumptions. First, we assume that the matrix A is known exactly while, in practice,40

one should take into account the error between the assumed mathematical model and41

the underlying physical model. Second, many inverse problems have an underlying42

mathematical model that is not linear, i.e., b = F (xtrue) + e, where F (·) : Rn → Rm43

∗Current version: February 11, 2023.
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is a nonlinear operator that is sometimes referred to as the ‘parameter-to-observation’44

map. For these cases, more sophisticated methods should be used to solve the non-45

linear inverse problem; see, e.g., [126, 171, 234]. However, many of these methods46

require solving a subproblem with an approximate linear model, and the methods de-47

scribed in this survey paper have been successfully used for this purpose; indeed, these48

simplifying assumptions will be dropped in section 4. Finally, we only consider an49

additive noise model, although other realistic assumptions (e.g., multiplicative noise50

or mixed noise models) may need to be incorporated in the model.51

Two model applications. In this paper, we focus on two model inverse prob-52

lems from image processing: image deconvolution and tomographic reconstruction.53

These two problems will be used throughout the paper for illustrative purposes, so54

we briefly describe them here. Although the sizes of the problem considered here are55

typically too small to naturally appear in real-world applications, they are adopted56

for pedagogical reasons. All of the test problems presented in this survey can be57

generated using the MATLAB toolbox IR Tools [82]1; see also section 5.58

Image deconvolution (or deblurring) problems are very popular in the image and59

signal processing literature, and are of core importance in fields such as astronomy,60

biology, and medicine. More precisely, the mathematical model of this problem can61

be expressed in the continuous setting as an integral equation62

(1.2) b(s) =

∫
a(s, t)x(t)ds + e ,63

where s, t ∈ R2 represent spatial locations. The kernel or point spread function (PSF)64

a(s, t) defines the blur, and, if the kernel has the property that a(s, t) = a(s − t),65

then the blur is spatially invariant and the integration in (1.2) is a convolution. From66

equation (1.2) it can be observed that the blurred image is formed by integrating67

the PSF with the true image (represented as a scalar-valued function of the spacial68

location t), which is further corrupted by adding a random perturbation e.69

In a realistic setting, images are collected only at discrete points (pixels), and70

are only available in a finite region (i.e., in a viewable region). Thus, the basic image71

deconvolution problem is of the form (1.1) where xtrue represents the vectorized sharp72

image, A represents the blurring process which specifies how the points in the image73

are distorted, and b contains the observed, vectorized, blurred and noisy image. Here74

we assume that the true and corrupted images have the same size, so that A ∈ Rn×n.75

The kernel a(s, t) has small support, and so pixels in the center of the viewable region76

are well defined. This results in a sparse, structured matrix A. However, pixels of the77

blurred image near the boundary of the viewable region are affected by information78

outside the viewable region. Therefore, in constructing the matrix A, one needs to79

incorporate boundary conditions to model how the image scene extends beyond the80

boundaries of the viewable region. Typical boundary conditions include zero, periodic,81

reflective, and antireflective. We highlight that the discrete problem associated to82

(1.2) often gives rise to matrices A with a well-defined structure: for instance, if83

the blur is spatially invariant and periodic boundary conditions are assumed, then84

A is a block circulant matrix with circulant blocks and efficient implementations of85

any image deconvolution algorithm can be obtained by exploiting structure of the86

1The MATLAB programs used to produce the illustrations and experiments reported herein
are available at the website: https://github.com/juliannechung/surveyhybridprojection. The com-
mented lines in the MATLAB files are designed to make the various commands comprehensible to
readers with basic programming experience.
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Fig. 1.1. Image deblurring test problem. (a) Sharp image of 256 × 256 pixels. (b) Zoomed
image (400%) of an anisotropic Gaussian PSF. (c) Blurred and noisy image.

matrix A. We refer to [4, 17, 136, 200] for a discussion of the many fundamental87

modeling aspects of the image deconvolution problem and relevant features of the88

discrete problem.89

In Figure 1.1 we display the test data that will be used through this paper, and
that can be generated running the MATLAB script generate blur. The size of the
images are 256× 256 pixels, so n = 2562 = 65, 536. The matrix A models a spatially
invariant blur, with reflective boundary conditions and an anisotropic Gaussian PSF
associated to the kernel

a(s, t) = exp

(
−1

2
(s− t)>K−1(s− t)

)
, where K =

[
σ2

1 ρ2

ρ2 σ2
2

]
and σ2

1σ
2
2 − ρ4 > 0.90

Tomographic reconstruction (or computed tomography, CT) is a critical tool in91

many applications such as nondestructive evaluation and electron microscopy; the ad-92

vent of newer technologies (e.g., spectral CT and photoacoustic tomography) prompts93

more efficient and more accurate reconstruction methods. CT consists in computing94

reconstructions of (parameters of) objects from projections, i.e., data obtained by95

integration along rays (typically straight lines, also called X-rays) that penetrate a96

domain. More precisely, this problem can be modelled by the Beer-Lambert law as97

follows: assuming that the initial intensity I0
` of the X-ray ` is known, the intensity I1

`98

recorded after the X-ray ` has penetrated the object (characterized by the attenuation99

coefficient x(t), t ∈ R2) is I1
` = I0

` exp(−
∫
`
x(t(`))d`) + e`, where d` is the Lebesgue100

measure along the X-ray ` and e` is the noise in the measurements. As a consequence,101

the data collected for the X-ray ` can be represented by the integral102

(1.3) − log

(
I1
`

I0
`

)
=

∫
`

x(t(`))d`− log

(
e`
I0
`

)
.103

If we consider the so-called parallel-beam geometry, X-rays are typically parametrized104

by the angle with respect to the horizontal axis and the distance from the origin,105

and the integral appearing in (1.3) is the Radon transform of x(t); note that other106

geometries are possible. We assume that m measurements of the form (1.3) are107

available, collected along m different X-rays at different distance from the origin108

and rotated by different angles. Employing a classical discretization scheme, which109

subdivides the object into an array of pixels and assumes that the function x(t) is110

constant within each pixel, the above integral can be expressed as a discrete sum and111

the following expression for the (i, j)th entry aij of the sparse matrix A can be readily112
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Fig. 1.2. Parallel X-ray CT test problem. (a) Phantom of size 256×256 pixels. (b) Illustration
of 2D X-ray parallel-beam tomography setup, modified from [202]. (c) Observed sinogram containing
data.

derived as113

aij =

{
Lij if j ∈ Si
0 otherwise

,114

where Si is the set of indices of those pixels that are penetrated by the ith X-ray, Lij is115

the length of the ith X-ray through the jth pixel. Thus, the basic CT problem (1.3) is116

of the form (1.1), where xtrue represents the unknown material attenuation coefficients,117

A represents a physical attenuation process, and b is the vectorized version of the118

so-called sinogram, i.e., a 2D array displaying the data measured by a detector, with119

the projection angles on the horizontal axis and the distance from the origin on the120

vertical axis. In most cases of tomography, A is a rectangular matrix, where m < n121

if fewer measurements are collected than the number of unknowns, or m > n if many122

projections can be obtained, or parameterization reduces the number of unknowns.123

Note also that, differently from the image deconvolution example where the forward124

operator maps images to images, in CT the forward operator maps images to sinogram125

space: this fundamentally affects the theory and solvers for the two applications. We126

refer to [32, 133, 174] for more details on tomography reconstruction problems.127

In Figure 1.2 we display the test data for tomography that will be used through128

this paper, and that can be generated running the MATLAB script generate tomo:129

this program still draws on IR Tools, which itself calls functions available within130

the MATLAB package AIR Tools II [132]. The object we wish to recover is the131

Shepp-Logan ‘medical’ phantom of size 256 × 256 pixels, so that n = 65, 536. The132

system matrix is modeled after a parallel tomography process, where p parallel rays133

are generated from a source ideally placed infinitely far from a flat detector; moreover,134

the source-detector pair is rotated around the object, and measurements are recorded135

for N angles. Hence the number of observations is m = pN . One can vary the136

parameters that define the measurement geometry, such as the number of angles or137

the number of rays. For this example, we take measurements from 0 to 179 degrees138

in intervals of 1 degree, resulting in a set of data with m = 64798 measurements, so139

that m < n.140

Now that we have addressed what is an inverse problem and looked at some exam-141

ples of inverse problems, our focus turns to computing solutions to inverse problems,142

and for this we need regularization.143
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Fig. 1.3. For each of the image deblurring and tomography test problems, we provide the
computed unregularized A−1b or A†b in logarithmic scale on the left, and a regularized solution
on the right. Clearly the unregularized solution is heavily corrupted with noise and errors, while the
regularized solution can provide a good approximation to the true object.

1.2. What is regularization and why do we need it?. Solving inverse prob-144

lems is notoriously difficult due to ill-posedness2, whereby data acquisition noise and145

computational errors can lead to large changes in the computed solution. For in-146

stance, if A is invertible, the solution A−1b is dominated by noise and is useless for147

all practical purposes. The same happens for a more general A and for the minimal148

norm least squares solution expressed as149

(1.4) x = A†b,150

where A† is the generalized inverse of A; see [105]. We illustrate this phenomenon for151

the described test problems, where a tiny amount of noise (here, ‖e‖2/‖Axtrue‖2 =152

10−4) enters the data collection process. ‘Naive’ solutions for the image deblurring153

and tomography test problems are displayed in the first and third frames of Figure 1.3,154

respectively. It is clear that these solutions are unacceptable approximations to xtrue155

(so much that, for image deblurring, the available corrupted image b even looks156

better!).157

Regularization can be applied to inverse problems in order to overcome the in-158

herent issues described above and compute a meaningful solution. The basic idea of159

regularization is to augment the model in (1.1) with additional information. If proper160

regularization is applied, a regularized solution (e.g., the ones shown in the second161

and fourth frame of Figure 1.3) should be close to the true solution. Regularization162

techniques come in many forms, and more details will be unfolded in the coming sec-163

tions. However, for now, we consider two types of methods: variational regularization164

methods and iterative regularization methods.165

Variational regularization methods for (1.1) involve solving optimization problems166

of the form,167

(1.5) min
x∈C
J (b−Ax) + λR(x) ,168

where J is a loss (or fit-to-data) function, R is a regularization functional3 λ >169

0 is a regularization parameter that controls the amount of regularization, thereby170

determining how faithful the modified problem is to the original problem, and C171

2Here we consider the discretized problem, but point the reader to [73, 126] for discussions on
the full implications of ill-posedness in continuous formulations.

3Commonly-used regularization functionals are defined in terms of operators that enforce some
smoothness assumptions on the solution (see subsection 4.1) or Gaussian priors (see subsection 4.4).
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denotes the set of feasible solutions (e.g., those that satisfy some constraints). The172

main advantage of formulation (1.5) is that general constraints and priors can be173

easily incorporated in the problem. Furthermore, well-known optimization methods174

can be used to solve (1.5). For the particular case where C = Rn and J (·) = R(·) =175

‖ · ‖22, direct factorization methods can, in principle, be used to compute a solution176

(see subsection 2.1), although this is often computationally infeasible for large-scale177

problems. In this setting, the main disadvantage is the need to select the regularization178

parameter λ, often prior to solution computation.179

On the other hand, iterative regularization methods for (1.1) typically consist in180

applying an iterative solver to181

(1.6) min
x
J (b−Ax),182

and computing a regularized solution by early termination of the iterations. In prac-183

tice, when J is expressed in the 2-norm, the iterative methods of choice are often184

subspace projection methods, whereby the problem is projected onto increasing (but185

relatively small) subspaces, and a projected subproblem is solved at each iteration186

by imposing certain optimality conditions on the approximated solution. Although187

an explicit choice of the regularization parameter λ is no longer required (contrary188

to (1.5)), the stopping criterion essentially serves as a regularization parameter, as189

it balances how ‘faithful’ the projected problem is to the original problem, Ax = b.190

In this setting, the main disadvantage is that general constraints cannot be easily in-191

corporated, and, even when they can, they can only be handled through complicated192

nested iterative schemes.193

Hybrid regularization methods combine variational and iterative regularization194

methods, leveraging the best features of each class, to provide a powerful compu-195

tational framework for solving large-scale inverse problems. In this paper, we focus196

specifically on hybrid projection methods that start off as iterative regularization meth-197

ods, i.e., the original problem (1.1) is projected onto a subspace of increasing dimen-198

sion, and then the projected subproblem is solved using a variational regularization199

method.200

1.3. Why should we use hybrid projection methods?. The main moti-201

vations for using hybrid projection methods to solve large inverse problems can be202

grouped as follows.203

• For many multidimensional inverse problems (such as the model ones de-204

scribed in subsection 1.1), the matrix A is very large (to the point that it205

cannot be explicitly stored). In this setting, only matrix-vector multiplica-206

tions with A (and possibly A>) can be performed, most often taking ad-207

vantage of high-performance computing or tools such as GPUs. Therefore,208

methods that compute a factorization of A (such as the singular value decom-209

position) or require access to its entries are ruled out. Hybrid regularization210

methods can be implemented without explicitly constructing and storing the211

matrix A, by treating A and A> as linear operators.212

• Even when adopting a variational regularization method (1.5), one may not213

know a good regularization parameter λ in advance, and standard methods to214

estimate λ can be expensive: indeed, these typically require first approximat-215

ing problem (1.1), or solving many instances of (1.1) with different regular-216

ization parameters. Hybrid projection methods provide a natural setting to217

estimate an appropriate value of λ during the solution computation process:218

often in a heuristic way, but in some cases with theoretical guarantees.219
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• As mentioned above, many iterative solvers for (1.6), such as projection meth-220

ods onto Krylov subspaces, have inherent regularizing properties and avoid221

data overfitting by early termination of the iterations. By using hybrid meth-222

ods, it is possible to stabilize and enhance the regularized solutions computed223

by these methods. Moreover, hybrid methods enjoy nice theoretical proper-224

ties. For instance we know that, for many hybrid frameworks, iterates ob-225

tained by first projecting the problem and then regularizing are mathemati-226

cally equivalent to iterates obtained by first regularizing and then projecting227

the regularized problem.228

• Hybrid methods provide a convenient framework for the development of ex-229

tensions to general models and regularization terms. For instance, one could230

incorporate a variety of regularization terms of the formR(x) = ‖Lx‖22, where231

L ∈ Rp×n, or also consider functions R(x) that are not expressed in the 2-232

norm. As we will see in section 4, this amounts to modifying the projection233

subspace that can be used within hybrid methods. By doing so, other pop-234

ular (but expensive) iterative regularization schemes (which are often based235

on nested cycles of iterations) can be avoided.236

1.4. Outline of the paper. The remaining part of this survey is organized237

as follows. In section 2, we describe the general problem setup to provide some238

background for hybrid methods, including an overview of the most relevant direct and239

iterative regularization techniques. Then, in section 3, we discuss hybrid projection240

methods. After providing a brief summary of the historical developments of hybrid241

methods, we address the two main building blocks of any hybrid method: namely,242

generating a subspace for the solution (subsection 3.2.1) and solving the projected243

problem (subsection 3.2.2). Important numerical and theoretical aspects will also244

be covered: these include strategies to efficiently set the Tikhonov regularization245

parameter and stop the iterations (subsection 3.3) and available convergence proofs246

and approximation properties (subsection 3.4). In recent years, we have witnessed247

the extension of hybrid methods to solve a larger scope of problems and to cover248

broader scientific applications. In section 4, we provide an overview of some of these249

extensions:250

• Beyond standard-form Tikhonov: Hybrid projection methods for general-251

form Tikhonov; see subsection 4.1.252

• Beyond standard projection subspaces: Enrichment, augmentation, and re-253

cycling; see subsection 4.2.254

• Beyond the 2-norm: Sparsity-enforcing hybrid projection methods for `p reg-255

ularization; see subsection 4.3.256

• Beyond deterministic inversion: Hybrid projection methods in a Bayesian257

setting; see subsection 4.4.258

• Beyond linear forward models: Hybrid projection methods for nonlinear in-259

verse problems; see subsection 4.5.260

Pointers to relevant software packages are provided in section 5. Conclusions and261

outlook on future directions are provided in section 6.262

Notations. Boldface lower-case letters denote vectors: e.g., c ∈ Rn; ci,263

1 ≤ i ≤ n denotes the ith entry of the vector c. Boldface upper-case letters de-264

note matrices: e.g., C ∈ Rm×n; unless otherwise stated, ci,j , 1 ≤ i ≤ m, 1 ≤ j ≤ n,265

denotes the (i, j)th entry of the matrix C. Indexed matching boldface lower-case let-266

ters denote matrix columns: e.g., cj ∈ Rm, j = 1, . . . , n denotes the jth column of267

the matrix C. Ip denotes the identity matrix of size p, whose columns ej , j = 1, . . . , p268

7

This manuscript is for review purposes only.



are the canonical basis vectors of Rp. The column space of a matrix C is denoted269

by ran(C). Lower-case Greek letters, sometimes indexed, are often used to denote270

scalars. In the following, when there is no ambiguity (essentially until section 4), the271

shorthand notation ‖·‖ = ‖·‖2 will be used.272

2. Background on direct and iterative regularization. For the simplified273

case where J (b−Ax) = ‖b−Ax‖2, R(x) = ‖x‖2, and C = Rn in (1.5), we get the274

so-called standard-form Tikhonov problem,275

(2.1) min
x
‖b−Ax‖2 + λ ‖x‖2 .276

We stress that the standard-form Tikhonov problem has been widely studied in both277

the mathematics and statistics communities and has been used in many scientific278

applications. However, computing Tikhonov-regularized solutions can still be chal-279

lenging if the size of x is very large or if λ is not known a priori. In fact, being able280

to efficiently compute solutions to (2.1) was a main motivation for much of the early281

works on hybrid projection methods. For a discussion on extensions of hybrid meth-282

ods to solve more general problems including the general-form Tikhonov problem, see283

section 4.284

2.1. SVD-based direct regularization methods. In this section, we begin285

with the standard-form Tikhonov problem (2.1), and describe a direct approach based286

on the singular value decomposition (SVD) of A to compute a solution. For the prob-287

lems of interest, direct application of this approach is not computationally feasible.288

However, the formulations briefly explored here will be useful for analysis and in-289

terpretation later in this paper. Furthermore, in the hybrid framework, the direct290

methods described here can be used to solve the projected problem. We point the291

interested reader to [126] for a more thorough exposition of direct methods.292

Let us assume that A ∈ Rm×n with rank(A) = n ≤ m4. The SVD of A is defined293

as294

(2.2) A = UAΣA(VA)>,295

where UA =
[
uA

1 . . . uA
m

]
∈ Rm×m and VA =

[
vA

1 . . . vA
n

]
∈ Rn×n are orthog-296

onal and ΣA = diag(σA
1 , . . . , σ

A
n) ∈ Rm×n contains the singular values, σA

1 ≥ σA
2 ≥297

· · · ≥ σA
n > 0.298

The solution to (2.1) can be written as299

(2.3) x(λ) =

n∑
i=1

φi(λ)
(uA
i )>b

σA
i

vA

i , where φi(λ) =
(σA
i )2

(σA
i )2 + λ

300

are the Tikhonov filter factors. Tikhonov regularization is one example from a wider301

class of spectral (or SVD) filtering methods that compute regularized solutions by302

imposing suitable filtering on the SVD components of the solution. The problems we303

are considering have some very small singular values, and the filter factors φi should304

be close to 1 for small i, and should approach 0 for large i. The Tikhonov filter factors305

φi(λ) have this property, with the amount of filtering prescribed by the regularization306

parameter λ. If λ = 0, then the filter factors are all equal to 1, and (2.3) is the307

unregularized solution (1.4). In this case, for small σi, components u>i e are magnified308

and overwhelm the solution (see Figure 1.3). For nonzero λ, φi approaches 1 as σi309

4SVD-based methods can be defined more generally, see e.g., [126].
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increases, so if σi is large with respect to λ, the i-th contribution to the solution is310

close to what it is in (1.4), while for small σi, the contribution is reduced by the filter311

factor. We refer the reader to the images provided in Figure 2.3 for an illustration of312

the impact of the regularization parameter λ on the solution.313

Also the truncated SVD (TSVD) method, which regularizes (1.1) by computing314

x(k) =

k∑
i=1

(uA
i )>b

σA
i

vA

i =

n∑
i=1

φi(k)
(uA
i )>b

σA
i

vA

i ,315

is a filtering method, with filter factors obtained by first setting a truncation index316

k ∈ {1, . . . , n}, and by then considering φi(k) = 1, if i ≤ k, and φi(k) = 0 otherwise.317

Note that choosing k = n returns the unregularized solution of (1.1). Therefore, k318

plays the role of regularization parameter.319

Every spectral filtering method requires the selection of a regularization param-320

eter. Common strategies to do so include the discrepancy principle [170], the gen-321

eralized cross-validation (GCV) method [98], the unbiased predictive risk estimation322

(UPRE) method [227], the L-curve [165], and the normalized cumulative periodogram323

(NCP) [135]. Since there is not one method that will work for all problems, it is usu-324

ally a good idea to try a variety of methods. For problems where the SVD of A325

is available, one can efficiently apply these regularization parameter strategies. For326

problems where computing the SVD is not feasible, parameter choice strategies are327

limited. However, we will see in subsection 3.3 that many of these existing regulariza-328

tion parameter selection techniques are not only feasible but also can be successfully329

integrated within hybrid projection methods.330

The SVD of A (2.2), besides being an essential building block of SVD-filtering331

methods, is a pivotal tool for the analysis of discrete inverse problems [73, 125, 126].332

For instance, looking at the decay of the singular values, one may infer different degrees333

of ill-posedness: typically, following [142], a polynomial decay of the form σA
i = ci−α,334

c > 0, is classified as mild (if 0 < α ≤ 1) or moderate (if α > 1) ill-posedness,335

while an exponential decay of the form σA
i = exp(−αi), α > 0, is classified as severe336

ill-posedness. Referring to the model applications presented in subsection 1.1, image337

deblurring is severely ill-posed, while computed tomography is only mildly ill-posed;338

see, e.g., [136, Chapter 4] and [133, Chapter 7] for a justification, respectively. The339

Picard condition, which in the continuous setting provides necessary and sufficient340

conditions for the existence of a solution of the form (1.4) [73], can be adopted in a341

discrete setting. Indeed, the so-called ‘discrete Picard condition’ is satisfied when the342

magnitude of (uA
i )>b, on average, decays to zero faster than the singular values σA

i .343

Since these quantities appear in the expression of the (filtered) solutions, assessing344

if the discrete Picard condition holds can inform us on the existence of a meaningful345

solution to (1.1) as well as the effectiveness of any (filtering) regularization method346

applied to (1.1); see [123] for additional details. Tools such as the so-called ‘Picard347

plot’ [126] can be used to visually assess the validity of the discrete Picard condition.348

In Figure 2.1 we provide an illustration of two instances of the Picard plot for the349

image deblurring test problem introduced in subsection 1.1, one for uncorrupted data350

and one for data affected by Gaussian white noise: we can clearly see that the discrete351

Picard condition holds in the first instance (provided that numerically zero quantities352

are excluded because of the effects of rounding errors), but not in the second instance.353

354

2.2. Iterative regularization methods. Next we describe iterative regular-355

ization, where an iterative method is used to approximate the solution of the unreg-356
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Fig. 2.1. Picard plots for the image deblurring test problem. On the left frame we consider
noiseless data, i.e., the inverse problem reads Axtrue = b =: btrue: in this case, the discrete
Picard condition holds and it is possible to compute (an approximation of) xtrue without resorting
to regularization. On the right frame we consider data b corrupted by Gaussian white noise e, such
that ‖e‖/‖btrue‖ = 10−2: in this case, the discrete Picard condition does not hold, and a meaningful
approximation of xtrue can be computed only employing regularization. We can clearly see that the
singular values for this test problem decay exponentially.

ularized least-squares problem,357

(2.4) min
x
‖b−Ax‖2 ,358

and early termination of the iterative process results in a regularized solution. We359

focus on projection methods where the underlying concept is to constrain the solution360

at the kth iteration to lie in a k-dimensional subspace spanned by the (typically361

orthonormal) columns of some matrix Vk =
[
v1 · · · vk

]
, where vi ∈ Rn. That is,362

the regularized solution is given as363

(2.5) xk = Vkyk , where yk = arg min
y∈Rk

‖b−AVky‖2 .364

We are interested in projection methods using Krylov subspaces [205]. Given365

C ∈ Rn×n and d ∈ Rn, a Krylov subspace is defined as366

Kk(C,d) = span{d,Cd,C2d, . . . ,C(k−1)d} .367

Here and in the following, we assume that the dimension of Kk(C,d) is k (i.e., no368

degeneracy). When Krylov methods are employed to solve problem (2.4), C and d are369

defined in terms of A and b, respectively. In iterative regularization methods based370

on the Arnoldi process (such as GMRES), the columns of Vk form an orthonormal371

basis for Kk(A,b), where A must be square. However, for problems where A is not372

square (e.g. in tomography), iterative regularization methods based on the Lanczos or373

Golub-Kahan bidiagonalization process (such as LSQR [185, 186] or LSMR [78]) are374

used, and the columns of Vk form an orthonormal basis for Kk(A>A,A>b). Note375

that LSQR is mathematically equivalent to CGLS, i.e., the conjugate gradient (CG)376

method applied to the normal equations. All the Krylov methods mentioned so far377

are minimum residual methods, so that the kth iterate can be written as xk = Vkyk,378

where yk solves (2.5). More details regarding the generation of these basis vectors379

will be addressed in subsection 3.2.1.380
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Fig. 2.2. Illustration of the semi-convergence phenomenon for the image deblurring test problem
using the CGLS method to solve (2.4). In the plot we provide the relative reconstruction error norms
‖xk − xtrue‖/‖xtrue‖ per iteration k and the relative residual norms ‖b −Axk‖/‖b‖ per iteration
k. Image reconstructions at iterations 10, 49 and 200 are provided and correspond to the stars in
the plot.

A crucial feature of classical Krylov methods when applied to ill-posed inverse381

problems is that, oftentimes, these iterative methods exhibit a regularizing effect in382

that the projection subspace in early iterations provides a good basis for the solution.383

One of the first Krylov methods that was proven to have regularizing properties is384

CGLS [119, 175]. Indeed, the CGLS iterates can be expressed as filtered SVD solu-385

tions [126]. Since these iterative methods converge to the least-squares solution, we386

get a phenomenon commonly referred to as ‘semi-convergence’ (after [174]), whereby387

the relative reconstruction errors decrease at early iterations but increase at later iter-388

ations due to noise manifestation and amplification. See Figure 2.2 for an illustration.389

Because of this, for iterative regularization, the stopping iteration plays the role of390

the regularization parameter. There have been many investigations into developing391

stopping criteria for iterative methods for inverse problems. If a good estimate of the392

amount of noise is available, the most widely used and intuitive approach is to stop it-393

erating as soon as the value of the objective function in (2.5) reaches the magnitude of394

the noise: this is the so-called discrepancy principle. GCV and modifications of GCV395

have also been used for stopping criteria [20, 22, 59]. We again refer to subsection 3.3396

for more details about these strategies. The main challenge is that for some problems,397

the reconstruction can be very sensitive to the choice of the stopping iteration. Thus,398

if the method stops a little too late, the reconstruction is already contaminated by399

noise (i.e., under-regularized). On the contrary, if the iterations are stopped too early400

(i.e., over-regularization), a potentially better reconstruction is precluded. We remark401

that it has been observed that semi-convergence may appear somewhat ‘prematurely’402

and that it is sometimes important to have a larger approximation subspace (which403

would otherwise be beneficial for the solution; see [144, 182]).404

In some circumstances, even if direct regularization methods are feasible, one405

may prefer to adopt iterative regularization methods. Some reasons are highlighted406

in [120], where the following heuristic motivation is given: contrary to TSVD, Krylov407
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methods (such as LSQR) generate an approximation subspace that is tailored to the408

current right-hand-side vector. Therefore, the basis vectors for the solution may be409

better ‘adapted’ to the given problem than the right singular vectors.410

In many fields from numerical linear algebra to differential equations, iterative411

methods and, in particular, preconditioned Krylov methods, have been immensely412

successful in solving large, sparse systems of equations efficiently [205]. Iterative413

methods have also gained widespread use in the inverse problems community. One of414

the main reasons for this is that neither the matrix A nor its factorization need to be415

constructed, and thus, these methods are ideal for large-scale problems. Furthermore,416

it has been observed many times that the generated Krylov subspaces are rich in417

information for representing the solution (i.e., corresponding to the large singular418

vectors). Thus, a reasonable solution can be obtained in only a few iterations. The419

greatest caveat for inverse problems is semi-convergence, so great care must be taken420

to find good stopping criteria. In subsection 3.4 we will dwell more on the properties421

of the approximation subspaces generated by different projection methods.422

2.3. Iterative methods for solving the Tikhonov problem. As described423

in subsection 2.1, the Tikhonov problem (2.1) can be easily solved if the SVD of A424

is available and, in this case, many well-regarded parameter choice strategies can be425

applied to compute a suitable value of the regularization parameter λ. Nonetheless,426

for large-scale problems where A cannot be constructed but matrix-vector products427

with A and A> can be computed efficiently, iterative projection methods [185, 186]428

can be used to solve the equivalent Tikhonov problem,429

(2.6) min
x

∥∥∥∥[ A√
λIn

]
x−

[
b
0

]∥∥∥∥2

.430

However, this approach may not be convenient if a suitable value of λ is not known a431

priori. In this case, often one must solve problem (2.6) from scratch for many different432

values of λ and this eventually results in an expensive approach (note that for specific433

iterative solvers, one may adopt smart strategies to reduce computations; see [81]).434

Similar to the discussion in subsection 2.1, the value of λ can have a considerable435

impact on the quality of the reconstructed solution. Moreover, when using iterative436

methods to solve the Tikhonov problem, one can to some extent leverage the number437

of iterations to enforce additional regularization. For illustration, we use CGLS to438

solve (2.6) for various choices of λ for the image deblurring example and provide439

relative reconstruction error norms per iteration in Figure 2.3. Notice that if λ is440

chosen too small, severe semi-convergence appears and a good stopping iteration is as441

crucial as for the ‘purely’ iterative (i.e., λ = 0) methods introduced in subsection 2.2;442

on the contrary, if λ is chosen too large, the solution is over-regularized and additional443

iterations cannot mitigate this phenomenon.444

We can draw the following conclusions about the successful working of a stan-445

dard iterative method to solve a Tikhonov regularized problem. First, the user must446

be confident in the choice of the regularization parameters. Second, the user must447

be cognizant about the interplay of λ and k for (2.6), as both of these contribute448

to a suitable regularized solution. As we will see in the next section, hybrid projec-449

tion methods provide an alternative approach of combining an iterative method and450

Tikhonov regularization, whereby a regularization parameter can be automatically451

and adaptively tuned during the iterative process.452

3. Hybrid projection methods. A hybrid projection method is an iterative453

strategy that regularizes problem (2.4) by projecting it onto subspaces of increasing454
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Fig. 2.3. Illustration of the interplay of the regularization parameter and the number of itera-
tions when using CGLS to solve the Tikhonov problem with a fixed regularization parameter. We
provide the history of the relative reconstruction error norms for (2.6) versus the number of CGLS
iterations, for different values of the regularization parameter λ. Image reconstructions at iteration
300 are provided for different choices of λ (these correspond to the stars on the error plots). Notice
that for too small values of λ, semi-convergence can be still detected (i.e., the behavior is similar to
the ‘unregularized’ λ = 0 case, also displayed in Figure 2.2). For too large values of λ, the iterative
method can only produce smooth reconstructions that never achieve high accuracy.

dimension and by solving the projected problem using a variational regularization455

method. Formally, recalling the framework for iterative projection methods unfolded456

in (2.5), the solution at the kth iteration of a hybrid projection method for standard457

Tikhonov can be represented as458

(3.1) xk(λk) = Vkyk(λk) , where yk(λk) = arg min
y∈Rk

J (b−AVky) + λk ‖y‖2 .459

Notice that the solution incorporates both regularization from the projection subspace460

(determined by the choice of the projection method, i.e., Vk and k) and a potentially461

changing variational regularization term (defined by λk). Again, for simplicity and462

for historical reasons, in this section we focus on the standard-form Tikhonov problem463

(2.1); extensions will be considered in section 4.464

An illustration. Before we get into the details of hybrid projection methods, we465

begin by illustrating the benefits of allowing adaptive choices for the regularization466

parameter, where a different regularization parameter can be used at each iteration,467

i.e., λ = λk. In Figure 3.1 for the image deblurring problem, we provide relative re-468

construction error norms per iteration in the left panel and computed regularization469

parameters per iteration in the right panel. Here, ‘opt’ refers to selecting at each it-470

eration the regularization parameter that delivers the smallest relative reconstruction471

error. Parameter selection methods ‘DP’ and ‘wGCV’ and others will be discussed472

in subsection 3.3. Notice that relative reconstruction errors using (appropriately se-473

lected) adaptive regularization parameters can overcome semi-convergence behavior474

(see Figure 2.2) and result in reconstruction errors that are close to a pre-selected475

optimal regularization parameter. For early iterations, a small λk (corresponding to476
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Fig. 3.1. Illustration of a hybrid projection method where an iterative method is run with an
adaptive regularization parameter selection method, applied to the image deblurring test problem.
In the left panel, we provide the history of the relative reconstruction error norms per iteration k,
for λ = λk set adaptively at each iteration using the discrepancy principle (DP) and weighted GCV
(wGCV); see subsection 3.3 for more details. The optimal (opt) parameter corresponds to selecting
the λk that minimizes the relative error at each iteration k. In the right panel, we provide the
computed regularization parameters, where the three horizontal lines correspond to λ = 5 · 10−3, 2 ·
10−2 and 5 · 10−1.

little variational regularization) is sufficient, but as iterations progress, the adaptive477

methods should select regularization parameters close to the optimal one.478

An algorithm. Now that we have seen the potential benefits of a hybrid projection479

method, let us discuss the general structure of such algorithms. A sketch of a hybrid480

projection method for standard Tikhonov regularization is provided in Algorithm 3.1,481

with links to the appropriate sections of the paper for more details. Notice that482

each iteration requires the expansion of the projection subspace and the solution of483

a projected regularized problem where a regularization parameter can be selected at484

each iteration.

Algorithm 3.1 Hybrid projection method for standard Tikhonov

Input: A, b, k = 1, projection method, regularization parameter selection method
1: while stopping criterion not satisfied do
2: Expand the projection subspace ran(Vk); see subsection 3.2.1
3: Select a regularization parameter λk; see subsection 3.3
4: Solve the projected regularized problem (3.1); see subsection 3.2.2
5: k = k + 1
6: end while

Output: xk(λk)

485

An outline of the remaining part of this section is as follows. We begin in sub-486

section 3.1 with a brief historical overview of hybrid projection methods. Details and487

derivations for hybrid projection methods can be found in subsection 3.2, where we488

describe some techniques for steps 2 and 4 of Algorithm 3.1: namely, expanding the489

projection subspace (e.g., via the Arnoldi or Golub-Kahan process) and solving the490

projected regularized problem. One of the main advantages and features of a hybrid491

projection method is the ability to select regularization parameters automatically and492

adaptively (i.e., during the iterative process as in step 3 of Algorithm 3.1). Thus, we493

dedicate subsection 3.3 to providing an overview of regularization parameter selection494

methods, with a particular emphasis on methods that have been critical for the success495

of hybrid projection methods. Although we still do not have a complete analysis of496

14

This manuscript is for review purposes only.



the regularizing properties of every hybrid projection method, important theoretical497

results and properties have nonetheless been established for specific methods, and we498

highlight some of these in subsection 3.4.499

3.1. Historical development of hybrid methods. Since the seminal publica-500

tion by O’Leary and Simmons in 1981 [182], there have been four decades of progress501

and developments in the field of hybrid projection methods. A quick google scholar502

search shows that the number of citations for this paper alone nearly doubles in each503

subsequent decade. In this section, we provide a brief overview of the main contribu-504

tions and highlights by decade. This is by no means an exhaustive list of publications,505

and we realize that there may be bias in the selections, but our goal is to provide the506

reader with some historical context. For a novice reader, this section can be skipped507

upon first reading.508

1981-1990. To the best of our knowledge, the first journal publication to intro-509

duce a hybrid projection method was by O’Leary and Simmons in 1981 [182], in510

which they describe a ‘projection-regularization’ method that combines the Golub-511

Kahan bidiagonalization for projection and TSVD for regularization. In the paper,512

the authors mention that a different hybrid algorithm was proposed independently,513

with a reference to a technical report by Björck in 1980 [19]. Björck’s work appeared514

in BIT in 1988 [20], where a key difference was that the right hand side vector b was515

used as the starting vector, since it was noted that allowing the algorithms to start516

with an arbitrary vector did not always perform well. Other algorithmic contributions517

included the use of cross-validation to determine stopping criteria and transformations518

to standard form based on Eldén’s earlier work [71]. Example problems from time519

series deconvolution were used in [182], but the computational technology at the time520

was still quite limited [214].521

1991-2000. During this period, hybrid projection methods gained significant trac-522

tion in the numerical linear algebra community as well as practical utility in various523

seismic imaging applications [206, 239]. As described in Björck’s book [21], vari-524

ous researchers were interested in characterizing the regularizing properties of Krylov525

methods (e.g., see Nemirovskii [175] and various works by Hanke and Hansen [121]),526

where the main motivation was to determine appropriate stopping criteria for itera-527

tive methods when applied to ill-posed problems. Advancements in hybrid methods528

included investigations into stable computations (e.g., reorthogonalization) by Björck,529

Grimme and Van Dooren [22] as well as new methods for selecting regularization pa-530

rameters. For example, Calvetti, Golub and Reichel [34] proposed a hybrid approach531

where a so-called ‘L-ribbon’ was computed using a partial Lanczos bidiagonalization.532

The first application of hybrid methods for large, nonlinear inversion was described533

in Haber and Oldenburg [114], and hybrid approaches based on projections with GM-534

RES or Arnoldi were described by Calvetti, Morigi, Reichel, and Sgallari in [41]. In535

terms of software, Hansen laid some groundwork for hybrid methods in the Regu-536

larization Tools package [124], where routines for computing the lower bidiagonal537

matrix and the SVD of a bidiagonal matrix were provided.538

Not all of the work on hybridized methods during this time followed the project-539

then-regularize framework. Related work on estimating the regularization parameter540

for large-scale Tikhonov problems by exploiting relationships with CG also appeared541

during this time. For example, Golub and Von Matt [107] estimated the GCV param-542

eter for large problems using relations between Gaussian quadrature rules and Golub-543

Kahan bidiagonalization, and Frommer and Maass [81] exploited the shift structure544

of CG methods to solve Tikhonov problems with multiple regularization parameters545
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simultaneously.546

2001-2010. With significant improvements in computational resources and ca-547

pabilities, researchers became interested in how to realize the benefits of hybrid548

projection methods in practice. In this decade, we saw a surge in the develop-549

ment of regularization parameter selection methods for hybrid projection methods550

[35, 59, 160, 168, 231] and various extensions of hybrid methods to include general551

regularization terms (e.g., total variation [39] and general-form Tikhonov [140, 159]).552

Still, the main focus was on TSVD and Tikhonov for regularization. New interpre-553

tations of hybrid methods based on Lanczos and TSVD were described in [120], and554

noise level estimation from the Golub-Kahan bidiagonalization process, which can be555

used for determining the stopping iteration, were described in [139]. A fully automatic556

MATLAB routine called ‘HyBR’ was provided in [59], where a Golub-Kahan hybrid557

projection method with a weighted GCV parameter choice rule was implemented for558

standard Tikhonov regularization. Hybrid methods were implemented on distributed559

computing architectures [63] and were used for many new applications such as cry-560

oelectron microscopy and electrocardiography [153]. An overview can be found in561

[57].562

2011-present. At present, hybrid projection methods have gained significant in-563

terest in many research fields, and contributions range from new methodologies and564

advanced theories to innovations in scientific applications. Many of the recent devel-565

opments in hybrid methods will be elaborated on in section 4, so here we just provide566

some highlights. In particular, there have been many papers on the Arnoldi-Tikhonov567

method [91, 93]. Flexible and generalized hybrid methods based on state-of-the-art568

Krylov subspace methods have been introduced for including more general regular-569

ization terms and constraints [54, 61, 84, 88, 162, 192]. There have been connections570

made to the field of computational uncertainty quantification [209] and new insights in571

the regularization parameter selection strategies [198], and regularization by approx-572

imate matrix functions [25, 64, 180]. There exists a plethora of papers in application573

and imaging journals, and a new software package called IR Tools [82]. We also574

refer interested readers to an older comprehensive survey paper on Krylov projection575

methods and Tikhonov regularization [94]. Other survey papers focusing on specific576

aspects of hybrid methods, such as their use in image restoration problems [16] or577

strategies for computing regularization parameters [85] appeared recently.578

3.2. Algorithmic approaches to hybrid projection methods. Following579

derivations of iterative methods for sparse rectangular systems, in subsection 3.2.1580

we first describe common techniques to iteratively build a solution subspace and to581

efficiently project problem (2.4) onto subspaces of increasing dimension. Then, in582

subsection 3.2.2, we describe techniques to solve the projected regularized problem.583

3.2.1. Projecting onto subspaces of increasing dimension. In this section,584

we address the first building block of a hybrid projection method, which is to use an585

iterative method to build a sequence of solution subspaces of small but increasing586

dimension, and to efficiently project the problem onto them. The first important587

question to address is: in practice, what makes a good solution subspace? Indeed, a588

clever choice of basis vectors should satisfy multiple requirements. Since the number589

of iterations required for solution computation should be small, a good basis should590

be able to accurately capture the important information about the solution in a few591

vectors. In this sense, the dominant SVD basis vectors (i.e, the first columns of VA592

in (2.2)) would be ideal (recall discussion about filtered SVD in subsection 2.1). Un-593

fortunately, computing the SVD can be infeasible for very large problems. Thus, we594
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seek a subspace sequence that exhibits a rapid enough decrease in the residual norm595

‖r‖2 = ‖b−Ax‖2 in (2.4) so that early termination provides good approximations596

[105]. Another desirable property is that the solution subspace can be generated597

efficiently. Here we mean that the main computational cost per iteration is manage-598

able, i.e, requires one matrix-vector multiplication with A and possibly one with A>.599

Lastly, for numerical stability it may be desirable to have an orthogonal basis for the600

solution subspace [181]. Although a variety of projection methods and solution sub-601

spaces could be used, here we focus on two of the most common projection methods602

on Krylov subspaces, namely the Arnoldi process and the Golub-Kahan bidiagonal-603

ization process. We will argue that these algorithms compute good solution spaces,604

according to the criteria listed above.605

Arnoldi process. The Arnoldi process generates an orthonormal basis for Kk(A,b)606

at the kth iteration [205]. Given matrix A ∈ Rn×n and vector b ∈ Rn, with initial-607

ization v1 = b/β1 where β1 = ‖b‖, the kth iteration of the Arnoldi process generates608

vector vk+1 and scalars hi,k for i = 1, . . . , (k + 1) such that, in matrix form, the609

following Arnoldi relationship holds,610

(3.2) AVk = Vk+1Hk,611

where612

Hk :=



h1,1 h1,2 · · · h1,k

h2,1 h2,2 · · · h2,k

0
. . .

. . .
...

...
. . .

. . . hk,k
0 · · · 0 hk+1,k

 ∈ R(k+1)×k,Vk+1 := [v1, . . . ,vk+1] ∈ Rn×(k+1),613

and where, in exact arithmetic, V>k+1Vk+1 = Ik+1. Notice that Vk+1 contains an614

orthonormal basis for Kk+1(A,b) and Hk is an upper Hessenberg matrix (i.e., zero615

below the first subdiagonal). The Arnoldi process is summarized in Algorithm 3.2.616

Algorithm 3.2 Arnoldi process

Input: A ∈ Rn×n, b ∈ Rn, k
1: v1 = b/ ‖b‖
2: for j = 1, . . . , k do
3: v = Avj
4: for i = 1, . . . , j do hi,j = v>vi end for

5: v = v −
∑j
i=1 hi,jvi

6: vj+1 = v/hj+1,j where hj+1,j = ‖v‖
7: end for

Output: Vk, Hk

Notice that the main computational cost of each iteration of the Arnoldi process617

is one matrix-vector multiplication with A. Breakdown of the iterative process may618

happen (when hj+1,j = 0), but we are typically not concerned about this because619

these methods are meaningful only when the number of iterations is not too high. We620

further note that there is a mathematically equivalent but numerically more stable621

implementation of the Arnoldi process based on Householder transformations.622

One caveat, especially for inverse problems such as tomography, is that the623

Arnoldi method relies on the fact that A is square. For rectangular problems, one624
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could apply the Arnoldi process to the normal equations A>Ax = A>b, in which case625

the Arnoldi algorithm simplifies to the symmetric Lanczos tridiagonalization process626

where, thanks to symmetry, Hk is tridiagonal rather than upper Hessenberg. How-627

ever, a numerically favorable approach would be to avoid the normal equations and628

to work directly with A and A> separately. This is achieved by adopting the Golub-629

Kahan bidiagonalization process, which we describe next; we will also state more630

precisely the links between the Golub-Kahan bidiagonalization and the symmetric631

Lanczos process.632

Golub-Kahan bidiagonalization process. Contrary to the Arnoldi process that gen-633

erates only one orthonormal basis (i.e, for Kk(A,b)), the Golub-Kahan bidiagonal-634

ization (GKB) process generates two sets of orthonormal vectors that span Krylov635

subspaces Kk(A>A,A>b) and Kk(AA>,b) [99]. Given a matrix A ∈ Rm×n and a636

vector b ∈ Rm, with initialization u1 = b/β1 where β1 = ‖b‖ and v1 = A>u1/α1637

where α1 =
∥∥A>u1

∥∥, at the kth iteration of the GKB process, we generate vec-638

tors uk+1, vk+1, and scalars αk+1 and βk+1 such that in matrix form, the following639

relationships hold,640

(3.3)
AVk = Uk+1Bk

= UkBk,k + βk+1uk+1e
>
k

,
A>Uk+1 = VkB

>
k + αk+1vk+1e

>
k+1

= Vk+1B
>
k+1,k+1

,641

where642

Bk :=



α1 0 · · · 0

β2 α2
. . .

...

0 β3
. . . 0

...
. . .

. . . αk
0 · · · 0 βk+1


=

[
Bk,k

βk+1e
>
k

]
∈ R(k+1)×k ,643

is bidiagonal, Uk+1 := [u1, . . . ,uk+1] ∈ Rm×(k+1) and Vk := [v1, . . . ,vk] ∈ Rn×k. In644

exact arithmetic Uk+1 has orthonormal columns that span Kk+1(AA>,b) and Vk has645

orthonormal columns that span Kk(A>A,A>b). The GKB process is summarized646

in Algorithm 3.3.647

Algorithm 3.3 Golub-Kahan bidiagonlization (GKB) process

Input: A, b, k
1: β1u1 = b, where β1 = ‖b‖
2: α1v1 = A>u1, where α1 =

∥∥A>u1

∥∥
3: for j = 1, . . . , k do
4: βj+1uj+1 = Avj − αjuj , where βj+1 = ‖Avj − αjuj‖
5: αj+1vj+1 = A>uj+1 − βj+1vj , where αj+1 =

∥∥A>uj+1 − βj+1vj
∥∥

6: end for
Output: Uk+1, Vk+1, Bk

The main computational cost of each iteration of the GKB process is one matrix-648

vector multiplication with A and one with A>. Breakdown in the GKB algorithm649

would occur when βj+1 = 0 or αj+1 = 0 but, similarly to the Arnoldi process, we650

will assume that breakdowns do not happen. A potential concern with the GKB651

process is loss of orthogonality in the vectors of Uk+1 and Vk, for which it may be652

necessary to use a reorthogonalization strategy to preserve convergence of the singular653
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values. Indeed, it has been shown that reorthogonalization of only one set of vectors654

is necessary [11, 215]; more details are provided in subsection 3.4.655

As mentioned above, GKB (3.3) is related to the symmetric Lanczos decompo-656

sition. Notice that, multiplying the first equation in (3.3) from the left by A>, and657

using the second equation in (3.3), we obtain658

A>AVk=A>Uk+1Bk=Vk+1B
>
k+1,k+1Bk = Vk B>k Bk︸ ︷︷ ︸

=:T̂k,k

+αk+1βk+1vk+1e
>
k .659

The above chain of equalities is the symmetric Lanczos algorithm applied to A>A and660

A>b, generating an orthonormal basis for Kk+1(A>A,A>b). Similarly, multiplying661

the second equation in (3.3) (written in terms of Uk) on the left by A, and using the662

first equation in (3.3), we obtain663

(3.4) AA>Uk=AVkB
>
k,k=Uk Bk,kB

>
k,k︸ ︷︷ ︸

=:Tk,k

+αkβk+1uk+1e
>
k .664

The above chain of equalities is the symmetric Lanczos algorithm applied to AA>665

and b, generating an orthonormal basis for Kk+1(AA>,b).666

Comparison of Solution Subspaces. Although the choice of a projection method667

relies heavily on the problem being solved, there have been some investigations into668

which projection methods might be better suited for certain types of problems, es-669

pecially in light of some recent work on flexible methods, general-form Tikhonov670

regularization, and matrix transpose approximation. We remark that the discussion671

here also relates to the material in subsection 3.4.672

For Arnoldi based methods, which build the approximation subspace starting from673

b, a potential concern is the explicit presence of the (rescaled) noise vector among the674

basis vectors [148]. For problems with very low noise level, this is not a significant675

drawback [38]. However, various methods have been developed to remedy this. For676

example, the symmetric range-restricted minimum residual method MR-II [118] and677

the range-restricted GMRES (RRGMRES) method [37] discard b and seek solutions678

in the Krylov subspace Kk(A,Ab). For various projection methods, Hansen and679

Jensen [131] studied the propagation of noise in both the solution subspace and the680

reconstruction, noting the manifestation of band-pass filtered white noise as ‘freckles’681

in the reconstructions.682

For both the Arnoldi and the GKB process, notice that each additional vector683

in the Krylov solution subspace is generated by matrix-vector multiplication with684

A or A>A respectively. Therefore the vectors defining the Krylov solution space685

are iteration vectors of the power method for computing the largest eigenpair of a686

matrix, and hence they become increasingly richer in the direction of the dominant687

eigenvector of A or A>A. For many inverse problems (and due to the discrete Picard688

condition), the orthonormal basis vectors generated in early iterations tend to carry689

important information about the low-frequency components (i.e., the right singular690

vectors that correspond to the large singular values) [126]. Therefore, the Krylov691

subspaces considered in this section can be appropriate choices for use in hybrid692

projection methods.693

It is important to note that the choice of Krylov subspace may be problem depen-694

dent. For some image deblurring problems, it has been observed that Arnoldi-based695

methods may not be suitable since multiplication with A corresponds to recursive696

blurring of the observation, resulting in a poor solution subspace. For tomography697
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applications where the coefficient matrix is often rectangular, it is natural to consider698

Golub-Kahan based methods; even if the matrix A modeling a tomographic acqui-699

sition problem happens to be square (because of a specific scanning geometry), it700

should be stressed that standard Arnoldi methods would not generate a meaningful701

approximation subspace for the solution. This is because multiplication with A maps702

images to sinograms, and subsequent mappings to sinograms are neither physically703

meaningful nor fit for image reconstruction.704

Various modifications based on ‘preconditioning’ of the Krylov methods intro-705

duced so far have been proposed: namely, a ‘preconditioner’ Ã is introduced and706

standard iterative methods are applied to left- or right-preconditioned problems,707

(3.5) ÃAx = Ãb or AÃȳ = b with x = Ãȳ ,708

respectively. Notice that left preconditioning is less commonly used when solving709

inverse problems, as it also acts on b and may change the noise statistics of the710

problem; both left and right preconditioning change the Krylov approximation sub-711

space for the solution and smart, problem-specific choices of Ã can result in efficient712

methods that perform much better than their unpreconditioned counterparts. For713

example, for image deblurring problems with nonsymmetric blurs and anti-reflective714

boundary conditions, a computationally efficient preconditioner Ã ≈ A> representing715

a low-pass filter and enforcing a more symmetric blur, was used to improve the quality716

of the computed solution when using Arnoldi-Tikhonov methods [68]. In tomography,717

in order to perform faster computations, one may naturally consider systems of the718

kind (3.5), where A and Ã ≈ A> constitute an unmatched pair of forward and back719

projector; see [129], where formulations (3.5) are analysed in the framework of the720

so-called BA- and AB-GMRES methods.721

It should be noted that preconditioning ill-posed problems can be a tricky business722

[122]. Indeed, besides improving the solution subspace, preconditioning can also be723

cautiously used with the classical goal of accelerating convergence (provided that724

it does not exacerbate the semi-convergence phenomenon). Sometimes additional725

vectors (that are hopefully meaningful to recover known features of the solution)726

can be added to the approximation subspace, where the goal is not necessarily to727

accelerate convergence, but rather to improve the solution subspace. This is the idea728

behind the so-called enriched or recycling methods (see, for instance, [69, 128]); these729

are described in more detail in subsection 4.2.730

In Figure 3.2, we show a few of the basis vectors for the solution generated by731

the Arnoldi and the GKB algorithms applied to the image deblurring and the tomog-732

raphy reconstruction problems described in subsection 1.1. The displayed images are733

reshaped columns of Vk. For the deblurring example, we observe that, as expected,734

the first basis vector for the GKB process (i.e., A>b/‖A>b‖) is smoother or more735

blurred than that from the Arnoldi process (i.e., b/‖b‖). However, we notice that736

the 4th basis vector computed by Arnoldi may have more details but is more noisy737

than that for GKB. It is interesting to note that, although any vector vk spans a738

Krylov subspace that has been obtained from the previous one by adding an increas-739

ingly blurred vector of the form Avk−1 (for Arnoldi, see Algorithm 3.2) or A>Avk−1740

(for GKB, see Algorithm 3.3), a linear combination of the columns of Vk results in741

a restored image where the blur has been removed: this is because Krylov methods742

compute polynomial (and regularized) approximations to a solution of (2.4). We refer743

to [125, Chapter 6], [146], and the references therein for more details and insight. For744

the tomography example, we provide some of the GKB solution basis vectors, for745
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which we note that the basis vector for the first iteration is the scaled vector A>b,746

which can be interpreted as an unfiltered backprojection image; see [174].

k = 1
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Fig. 3.2. For the deblurring example and the tomography example, we provide basis images
(i.e., the basis vectors vk for the solution that have been reshaped into images) for iterations k =
1, 2, 4, 10. Notice that, since the coefficient matrix in the deblurring example is square, we can
compare the Arnoldi and GKB basis vectors, while for the tomography example, we consider only
GKB approaches.

747

3.2.2. Solving the regularized, projected problem. In subsection 3.2.1, we748

described two iterative projection methods that can be used to generate and expand749

the projection subspace ran(Vk) (step 2 in Algorithm 3.1). Although projection750

onto subspaces of increasing dimension (e.g., Krylov subspaces) can have an inherent751

regularizing effect (recall the discussion in subsection 2.2), a key component of hybrid752

projection methods is the combination of iterative and variational regularization, i.e.,753

the inclusion of a regularization term within the projected problem. We remark that754

Steps 3 and 4 in Algorithm 3.1 are closely intertwined and could easily be addressed755

together. However, for clarity of presentation, methods to select the regularization756

parameter λk and the stopping iteration k will be addressed in detail in subsection 3.3,757

and this section will focus on solving the projected regularized problem (3.1). Notice758

that at step 4 of Algorithm 3.1, we have computed Vk and λk, and the stopping759

criterion is not yet satisfied.760

Computing a solution to (3.1) can be done efficiently by exploiting components761

and relationships from the projection process ((3.2) for Arnoldi and (3.3) for GKB).762

In this section, we denote the solution subspaces for Arnoldi and Golub-Kahan as763

VAr

k and VGK

k respectively. Recall that for a matrix Vk that contains orthonormal764

columns, V>k Vk = Ik and ‖Vky‖ = ‖y‖ for any y ∈ Rk.765
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The hybrid GMRES iterate at the kth iteration is given by766

xk(λk) = VAr

k yk(λk), where yk(λk) = arg min
y∈Rk

‖b−AVAr

k y‖2 + λk ‖y‖2767

= arg min
y∈Rk

∥∥VAr

k+1 ‖b‖ e1 −VAr

k+1Hky
∥∥2

+ λk ‖y‖2(3.6)768

= arg min
y∈Rk

‖‖b‖ e1 −Hky‖2 + λk ‖y‖2 .769
770

Since VAr

k contains orthonormal columns, we can equivalently write771

xk(λk) = arg min
x∈ran(VAr

k )

‖b−Ax‖2 + λk ‖x‖2 = VAr

k yk(λk) .772

Oftentimes, the hybrid GMRES approach is referred to as an Arnoldi-Tikhonov ap-773

proach [38, 94, 166].774

Similar derivations can be done for the Golub-Kahan projection method. In775

particular, the hybrid LSQR iterate is computed as776

xk(λk) = VGK

k yk(λk), where yk(λk) = arg min
y∈Rk

‖b−AVGK

k y‖2 + λk ‖y‖2777

= arg min
y∈Rk

‖β1e1 −Bky‖2 + λk ‖y‖2(3.7)778

779

or, equivalently,780

xk(λk) = arg min
x∈ran(VGK

k )

‖b−Ax‖2 + λk ‖x‖2 = VGK

k yk(λk) .781

The hybrid LSMR iterate [60] is computed as782

xk(λk) = VGK

k yk(λk), where yk(λk) = arg min
y∈Rk

∥∥A>(b−AVGK

k y)
∥∥2

+ λk ‖y‖2783

= arg min
y∈Rk

∥∥∥∥β̄1e1 −
[

B>k Bk

β̄k+1e
>
k

]
y

∥∥∥∥2

+ λk ‖y‖2 ,(3.8)784

785

where β̄k = αkβk.786

Table 3.1 provides a summary of common methods with their defining subspace787

and corresponding subproblem.

Table 3.1
Solution subspaces Vk and corresponding subproblems defining yk(λk) for different hybrid pro-

jection methods.

method subspace subproblem

hybrid GMRES Arnoldi, ran(VAr

k ) min ‖β1e1 −Hky‖2 + λk ‖y‖2

hybrid LSQR Golub-Kahan, ran(VGK

k ) min ‖β1e1 −Bky‖2 + λk ‖y‖2

hybrid LSMR Golub-Kahan, ran(VGK

k ) min

∥∥∥∥β̄1e1 −
[

B>k Bk

β̄k+1e
>
k

]
y

∥∥∥∥2

+ λk ‖y‖2

788

One important property to highlight is that, for these methods, the generated789

subspace is independent of the choice of the regularization parameter λk. This is790
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not always true (e.g., in the flexible methods presented in subsection 4.3). A very791

desirable consequence of this is that one can avoid computing the regularized solution792

at each iteration. For many of the regularization parameter selection methods, the793

choice of the parameter λk at each iteration does not depend on previous or later794

iterates. Thus, it is possible to delay regularization parameter selection and solution795

computation until a solution is needed or some stopping criterion is satisfied.796

Next, we draw some connections and distinctions to standard iterative methods797

for least-squares problems (i.e., for the case where λk = 0 in subsection 2.2 or λk = λ,798

fixed along the iterations, in subsection 2.3). For problems where no regularization799

is imposed on the projected problem (i.e., λk = 0), we recover standard iterative800

methods GMRES for Arnoldi (solving (3.6)) and LSQR for GKB (solving (3.7)).801

For hybrid projection methods, a potential concern is the need to store all of802

the basis vectors Vk. For Arnoldi based methods for solving Tikhonov regularized803

problems, this requirement is the same as for standard iterative methods. However,804

for Golub-Kahan based methods, this potential caveat warrants a discussion. Indeed,805

it is well-known that the LSQR iterates can be computed efficiently using a three-806

term-recurrence property by exploiting an efficient QR factorization of Bk. As shown807

in [185], such computational efficiencies can also be exploited for standard Tikhonov808

regularization if λ is fixed a priori. This can be done by exploiting the fact that the809

Krylov subspace is shift invariant with respect to λ. However, semi-convergence will810

be an issue if λ = 0 and the entire process must be restarted from scratch if a dif-811

ferent λ is desired. This computational flaw is even more severe when using iterative812

methods such as LSQR for general-form Tikhonov regularization, since the solution813

subspace typically depends on the regularization parameter and the regularization814

matrix (although some strategies to ease this dependence are described in subsec-815

tion 4.1). For hybrid projection methods based on GKB, storage of the basis vectors816

is the main additional cost associated with the ability to select λ adaptively during817

the hybrid projection procedure. For problems that require many iterations, potential818

remedies include developing a good preconditioner, compression and/or augmentation819

techniques [152].820

3.2.3. A unifying framework. All the methods described so far can be ex-821

pressed by this partial factorization,822

(3.9) AVk = Uk+1Gk ,823

where the columns of Vk are orthonormal and span the k-dimensional approximation824

subspace for the solution, the columns of Uk+1 are orthonormal with u1 = b/ ‖b‖ and825

span a (k+ 1)-dimensional subspace (e.g., associated to A>), and Gk is a (k+ 1)× k826

matrix that has some structure and represents the projected problem. For hybrid827

GMRES, Vk = VAr

k , Uk+1 = Vk+1 = VAr

k+1 and Gk = Hk are given in (3.2). For828

hybrid LSQR and hybrid LSMR, Vk = VGK

k , Gk = Bk, and Uk+1 are given in (3.3).829

Let the SVD of the matrix Gk be given by830

(3.10) Gk = UGΣG(VG)>,831

where UG ∈ Rk+1×k+1 and VG ∈ Rk×k are orthogonal, and ΣG = diag(σG
1 , . . . , σ

G

k ) ∈832

R(k+1)×k contains the singular values of Gk. Note that, for notational convenience,833

we have dropped the subscript k.834

For hybrid GMRES and hybrid LSQR with standard Tikhonov regularization,835
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the solution to the regularized projected problems (3.6) and (3.7) have the form,836

yk(λk) = arg min
y

‖b−AVky‖2 + λk ‖y‖2837

= arg min
y

∥∥U>k+1b−Gky
∥∥2

+ λk ‖y‖2 ,(3.11)838

839

and thus one may express the kth iterate of the hybrid projection method as840

(3.12) xk(λk) = Vk(G>k Gk + λkIk)−1G>k U>k+1︸ ︷︷ ︸
=:A†reg(λk,k)

b.841

Note that U>k+1b = ‖b‖e1 by construction.842

For many of the regularization parameter selection methods described in subsec-843

tion 3.3 and the theoretical results in subsection 3.4, it will be helpful to define the844

so-called ‘influence matrix’,845

(3.13) AA†reg(λk, k) = Uk+1Gk(G>k Gk + λkIk)−1G>k U>k+1 .846

For purely iterative methods (where λk = 0), the influence matrix is given by

AA†reg(k) = Uk+1GkG
†
kU
>
k+1 , where A†reg(k) = VkG

†
kU
>
k+1.

Also, it will be helpful to define the so-called ‘discrepancy’ (or ‘regularized residual’)847

at the kth iteration as848

(3.14) r(xk(λk)) = b−Axk(λk) = (Im −AA†reg(λk, k))b ,849

for hybrid methods; the same definition applies to iterative methods, with λk = 0. In850

the following, we will adopt the notation A†reg(λ) and r(x(λ)) to denote the regularized851

inverse and the discrepancy associated to (direct) Tikhonov regularization, coherently852

to (3.12) and (3.14), respectively. When no regularization method is specified, xreg,853

A†reg and rreg denote a generic regularized solution, inverse, and residual, respectively.854

3.3. Regularization parameter selection methods. The success of any reg-855

ularization method depends on the choice of one (or more) regularization parame-856

ter(s). This was illustrated in section 2 for Tikhonov regularization and for iterative857

regularization methods; also, when the Tikhonov-regularized problem is solved using858

an iterative method, both the Tikhonov regularization parameter and the number859

of iterations should be accurately tuned (see subsection 2.3). Similarly, for hybrid860

projection methods, there are inherently two regularization parameters to tune: (1)861

the number of iterations k (i.e., the dimension of the projection subspace), and (2)862

the regularization parameter for the projected problem (e.g., λk for Tikhonov). It is863

important to note that, when carelessly applied to hybrid projection methods where864

both regularization parameters must be determined, standard regularization parame-865

ter choice strategies may not produce good results. Instead, a two-pronged approach866

is typically adopted, where a well-established parameter choice strategy is used to867

determine λk and one or more stopping rules are used to terminate the iteration,868

typically by monitoring the stabilization of some relevant quantities; see, for instance,869

[34, 59, 91, 160, 198].870

In subsection 3.3.1 we comment on a few factors that are unique to selecting reg-871

ularization parameters in a hybrid projection method, and that should be considered872
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Table 3.2
Summary of regularization parameter choice rules described in subsection 3.3.

assumption method

(subsection 3.3.2)
requires noise magnitude discrepancy principle (DP)

unbiased predictive risk estimation (UPRE)

(subsection 3.3.3)
require noise magnitude

does not L-curve
generalized cross-validation (GCV)
normalized cumulative periodogram (NCP)

when determining which parameter selection methods to employ. Parameter choice873

rules represent a large and still growing body of literature in the field of inverse prob-874

lems, with papers ranging from theoretical developments of regularization methods875

to papers focused on methods specific to applications. Although there are extensive876

survey papers describing parameter choice methods in the continuous setting (see,877

for instance, [12, 13, 191]), we focus on parameter selection strategies for discrete878

inverse problems that have proven successful in conjunction with hybrid projection879

methods. We describe two main classes of parameter choice methods: (1) those that880

require knowledge of the noise magnitude in subsection 3.3.2 and (2) those that do not881

require knowledge of the noise magnitude in subsection 3.3.3. These are also listed882

in Table 3.2. In almost all the considered strategies for hybrid methods, there are883

common quantities that must be monitored. These include:884

1. the norm of the approximate solution, ‖xk(λk)‖,885

2. the norm of the residual, ‖r(xk(λk))‖, and886

3. the trace of the influence matrix, trace
(
AA†reg(λk, k)

)
.887

Computing these quantities can be done very efficiently by monitoring the correspond-888

ing projected quantities and exploiting the orthogonal invariance of the 2-norm. This889

fact along with the relatively cheap computation of (3.10) make the adaptation of890

standard parameter choice strategies particularly appealing in the setting of hybrid891

methods. Simplified formulations for these quantities using the SVD of the projected892

matrix can be found in Appendix A.893

Appendix B unfolds some connections between specific parameter choice rules for894

(unprojected) Tikhonov regularization (2.1) and corresponding strategies for hybrid895

methods. These leverage the fact that many parameter choice rules for setting λ in896

(2.1) involve at least one evaluation of a quadratic form of the matrix A>A or AA>,897

which can be expressed as particular Riemann-Stieltjes integrals (written in terms of898

the SVD of A). When dealing with large matrices A whose SVD is not available, the899

latter can be approximated by Gauss or Gauss-Radau quadrature rules, which are900

related to the symmetric Lanczos and the GKB algorithms; see [101] for full explana-901

tions of these relations. Exploiting these links is crucial to provide computationally902

affordable approximations of the original quadratic forms in terms of quantities (such903

as the upper bidiagonal matrix Bk) generated at the kth iteration of GKB-based hy-904

brid methods that, under some assumptions, can be proven to provide upper or lower905

bounds for λ that get increasingly accurate as k increases.906

3.3.1. General considerations on selecting λk and k.907

Selecting λk. Assume that k is fixed and consider the case of standard form908

Tikhonov regularization. First, for standard Krylov subspace projection methods909

including those described in subsection 3.2.1, the projection subspace is independent910

of the current value of the Tikhonov regularization parameter. This is due to the911
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so-called ‘shift-invariance’ property of the computed Krylov subspaces, and this has912

the effect that the approximate solution at the kth iteration only depends on the913

current regularization parameter λk. Second, notice that, for a fixed k, the projected914

problem (3.11) is a standard Tikhonov-regularized problem. A natural idea would be915

to directly apply well-established (e.g, SVD-based) parameter choice strategies that916

were developed for Tikhonov regularization; however, care must be taken to ensure917

accurate results in the hybrid setting. Third, since the number of iterations k is918

significantly smaller than the size of the original problem (i.e., k � min{m,n}) and919

the projected problem has order k (i.e., the coefficient matrix Gk has size (k + 1) ×920

k), computations with Gk can be performed easily. For many methods, there are921

computational advantages to using the SVD of Gk (3.10). Indeed, for most problems,922

the computational cost of obtaining (3.10) is negligible compared to the computational923

cost of performing matrix-vector products with A (and possibly A>) to expand the924

approximation subspace. We will see how some common parameter choice methods925

can be efficiently formulated using the SVD.926

Selecting k. Various rules have been developed for selecting the stopping iteration927

k, and these rules can be employed quite generally (and independently of the param-928

eter choice rule for λk). The main idea is to terminate iterations when a maximum929

number of iterations is achieved or when one or more of the following conditions are930

satisfied:931

(3.15)
|λk − λk−1| < τλλk−1 ,
‖r(xk(λk))− r(xk−1(λk−1))‖ < τr‖r(xk−1(λk−1))‖ ,
‖xk(λk)− xk−1(λk−1)‖ < τx‖xk−1(λk−1)‖ ,

932

where τλ, τr, τx are positive user-specified thresholds. The rationale behind these ap-933

proaches is that, often and broadly speaking, when stabilization happens, the selected934

value for the regularization parameter is suitable for the full-dimensional Tikhonov935

problem and the approximated solution cannot significantly improve with more it-936

erations. Although this argument is mainly empirical, in some cases it is supported937

by theoretical results; see Appendix B. This property is also heavily exploited in938

[56, 106, 197], where the regularization parameter (and other relevant quantities) for939

the original Tikhonov problem are estimated by projecting the original problem onto940

subspaces of smaller dimension. Once the regularization parameter is estimated, it is941

fixed and any iterative method can be used to solve the resulting Tikhonov problem;942

therefore, these methods are not considered hybrid projection methods as defined in943

this manuscript; see section 1 and subsection 2.3. The left frame of Figure 3.1 displays944

the typical behavior of adaptively chosen regularization parameters where, relevant945

to the first criterion in (3.15), some stabilization is visible as the iterations proceed.946

Returning to the issue of selecting a stopping iteration for hybrid projection methods,947

we remark that, with a suitable choice of λk, hybrid methods can overcome semi-948

convergent behavior, as illustrated in Figure 2.2. Thus, an imprecise (over-)estimate949

of the stopping iteration does not significantly degrade the reconstruction quality. In950

fact, one can typically afford a few more iterations without experiencing deterioration951

of the solution (on the contrary, the solution may improve because it is computed952

by solving a well-posed problem in a larger approximation subspace). This insight953

is also linked to the ability of the considered Krylov projection methods to ‘capture’954

the dominant (i.e., relevant) truncated right singular vector subspace information to955

reconstruct the solution; we present more details about this in subsection 3.4.956
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3.3.2. Methods that require knowledge of the noise magnitude. The957

discrepancy principle selects a regularized solution xreg satisfying958

(3.16) ‖b−Axreg‖ = ηε ,959

where ε is an estimate of the norm of the noise ‖e‖ and η > 1 is a safety factor (the960

larger η, the more uncertainty on ε). Note that if the noise e is assumed Gaussian961

with covariance matrix σ2Im, i.e., when962

(3.17) e ∼ N (0, σ2Im) ,963

then the expected value of ‖e‖2 is E(‖e‖2) = mσ2. The discrepancy principle typically964

works well if a good estimate of ε is available. For Tikhonov regularization (subsec-965

tion 2.1), xreg = x(λ) and (3.16) is a nonlinear equation in λ > 0 (that should be966

solved by employing a zero-finder, typically of the Newton family [193]); for iterative967

regularization methods (subsection 2.2), xreg = xk and the iterative method should968

stop as soon as the kth iterate satisfies969

(3.18) ‖b−Axk‖ ≤ ηε .970

Using the discrepancy principle, one can typically prove regularization properties such971

as xreg → xtrue as ‖e‖ → 0; see [40, 73, 119].972

When considering hybrid solvers, the most common approach is to solve the973

nonlinear equation,974

(3.19) ‖b−Axk(λk)‖= ‖U>k+1b−Gkyk(λk)‖ = ηε975

to determine the Tikhonov regularization parameter λk to be employed at the kth976

iteration. Notice that once the discrepancy principle is satisfied (typically after a977

few iterations are performed), one may stop the iterative process. However, it has978

been observed that the quality of the solutions improves if more iterations are per-979

formed, as the regularized solutions belong to richer approximation subspaces. This980

phenomenon is described at length in [166, 192]. In this case, one may resort to one981

(or more) stopping criterion of the form (3.15). Another approach is to update the982

regularization parameter for the projected problem in such a way that stopping by983

the discrepancy principle is ensured [86, 91]. That is, the discrepancy principle can984

be used for setting both k and λk, but only one iteration of a root-finder algorithm985

for (3.19) is applied at each iteration of a hybrid method. The approach is derived in986

[91] and its underlying theory is analyzed in [86], by leveraging the tools described in987

more details in Appendix B. Note that, thanks to the first equality in (3.19), when988

applying the discrepancy principle within hybrid methods, one can exclusively per-989

form computations with projected quantities, which are cheap when k � min{m,n}990

(see Appendix A for more details).991

UPRE (unbiased predictive risk estimation) selects the regularization parameter992

that minimizes the expectation of the mean squared norm of the predictive error,993

E(‖p(xreg)‖2) , associated to the regularized solution xreg = A†regb, where the pre-994

dictive error is defined as995

p(xreg) = Axreg − btrue = AA†regb− btrue = (AA†reg − In)btrue + AA†rege ,996

where AA†reg is assumed to be symmetric (this is the case for all the regularization997

methods considered so far). When considering (direct) Tikhonov regularization and998
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when e represents Gaussian white noise with standard deviation σ (3.17), one should999

compute the regularization parameter to be the minimizer of1000

E‖p(x(λ))‖2 = ‖(AA†reg(λ)− Im)btrue‖2 + σ2trace
(
(AA†reg(λ))>(AA†reg(λ))

)
.1001

To circumvent the fact that the first term in the above expression of p(x(λ)) is in1002

practice unavailable, one can perform some algebraic manipulations and approxima-1003

tions. The UPRE parameter is then given by1004

(3.20) λ∗ = arg min
λ∈R+

‖r(x(λ))‖2 + 2σ2trace
(
AA†reg(λ)

)
−mσ2︸ ︷︷ ︸

=:U(λ)

.1005

Note that the expected value of U(λ) is the expected value of the predictive risk, i.e.,1006

E(U(λ)) = E(‖p(x(λ))‖2). We refer to [234] for more details on the derivation of the1007

UPRE method. UPRE can also be used as a stopping rule for iterative methods, e.g.,1008

for nonnegatively constrained Poisson inverse problems [9]. When considering hybrid1009

methods, applying UPRE to the projected problem is quite straightforward, and was1010

first considered in [198]: it is essentially a matter of replacing r(x(λ)) and A†reg(λ) in1011

(3.20) by r(xk(λk)) and A†reg(λk, k), respectively. Since the influence matrix (3.13)1012

is still symmetric, performing some algebraic manipulations leads to the following1013

projected UPRE functional1014

Uk(λ) = ‖(Gk(G>k Gk + λIk)−1G>k − Ik+1)U>k+1b‖21015

+ 2σ2trace
(
Gk(G>k Gk + λIk)−1G>k

)
− (k + 1)σ2 ,1016

which is minimized at each iteration of a hybrid method to find λk. Note that the1017

functional Uk(λ) is expressed with respect to projected quantities only, which are1018

not computationally expensive to evaluate as far as k � min{m,n} (see Appen-1019

dix A for more details). An interesting (and still partially open) question (common1020

to other parameter choice strategies) is determining wether the regularization pa-1021

rameter λk so obtained is a good approximation of λ. To answer this question, the1022

authors of [198] first consider the direct regularization method to be obtained by1023

combining TSVD and Tikhonov regularization methods (sometimes referred to as1024

‘FTSVD’, i.e., filtered TSVD), so that the variational regularized solution belongs1025

to the subspace spanned by the dominant right singular vectors; they deduce that,1026

if the k-dimensional projection subspace generated by the hybrid method captures1027

the relevant (i.e., dominant) spectral information about the original problem, then1028

trace
(
Gk(G>k Gk + λIk)−1G>k

)
≈ trace

(
AA†reg

)
(the latter being specified for the1029

FTSVD), and λk ≈ λ∗.1030

We conclude this subsection by mentioning that, although it may seem to be1031

a disadvantage that these methods require knowledge of the noise magnitude, there1032

are actually various approaches for estimating the noise level from the data: here1033

we describe a couple of them. A first approach uses statistical tools and performs1034

quite well at estimating the variance [70]. Assuming Gaussian white noise (3.17), an1035

estimate σ̂ of the standard deviation σ can be obtained from the highest coefficients1036

of the noisy data under some transformation (e.g., wavelet). For instance, given an1037

observation vector b, the following MATLAB code can be used to estimate the noise1038

variance1039

(3.21)
[~, cD] = dwt(b,’db1’);

sigmahat = median(abs(cD(:)))/.67;
,1040
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where the first line returns the detail coefficients of a single-level 1D discrete wavelet
transform of b using the Haar wavelet and the second line computes an estimate of the
variance. In many inverse problems, it is common to work with a relative noise level
rather than the noise variance directly. For a simulated example, a noisy measurement
can be generated as

b = btrue + noiseLevel ∗
‖btrue‖
‖e‖

e ,

where e is a realization from a standard Gaussian and the relative noise level is given in1041

noiseLevel. Thus, an estimate of the relative noiseLevel obtained running (3.21)1042

is σ̂
√
m/ ‖b‖.1043

Still assuming Gaussian white noise, a second approach to estimate relevant noise1044

information (including ‖e‖) is to leverage some theoretical properties of the Krylov1045

subspaces generated as projection subspaces for the solution: this is especially rele-1046

vant in the context of hybrid regularization. To the best of our knowledge, the first1047

detailed analysis of how the noise affects the approximation subspace generated by1048

the GKB algorithm can be found in [139], where the authors show how to estimate1049

at a negligible cost the (assumed) unknown amount of noise in the original data. By1050

exploiting the connections between GKB and Gaussian quadrature rules (recalled in1051

Appendix B), theoretical estimates prove that the norm of the residual computed by1052

LSQR stabilizes around the noise magnitude. This can lead to the construction of1053

stopping criteria for the bidiagonalization process as well as to the application of any1054

of the parameter choice rules described in this section, using the information gathered1055

about the noise. Extensions of the analysis in [139] to projection methods based on1056

the Arnoldi algorithm can be found in [93].1057

3.3.3. Methods that do not require knowledge of the noise magnitude.1058

In many situations, assuming that an accurate estimate of ε = ‖e‖ is available is un-1059

realistic, and one cannot confidently apply the methods described in subsection 3.3.2.1060

However, a number of strategies can be adopted when dealing with direct, iterative1061

and hybrid methods: for the latter, most of these parameter choice rules can be1062

regarded as the projected variants of their full-dimensional counterparts.1063

The L-curve criterion was popularized by [137]: it relies on the intuition that1064

a good choice of the regularization parameter should balance the contribution of1065

the so-called perturbation error (i.e., the error due to overfitting the noisy data,1066

which would lead to an under-regularized solution) and regularization error (i.e., the1067

error due to replacing the original problem with a related one, which would lead to1068

an over-regularized solution). The L-curve is a plot of the norm of the regularized1069

solution ‖xreg‖ versus the norm of the regularized residual ‖rreg‖ for varying values of1070

the regularization parameter, and it is named after the desirable shape of its graph.1071

When Tikhonov regularization is considered (i.e., when the L-curve is a parametric1072

curve with respect to λ), one can prove that the L-curve is convex (see, for instance,1073

[126, Chapter 4]). The ideally steep or vertical part of the curve corresponds to1074

small amounts of regularization, so that such solutions are dominated by perturbation1075

error. The ideally flat or horizontal part corresponds to too much regularization,1076

so that such solutions are dominated by regularization error. Therefore the corner1077

represents the point on the L-curve where both errors are balanced. The L-curve is1078

commonly plotted in logarithmic scale, e.g., (log10(‖rreg‖), log10(‖xreg‖)), to better1079

highlight the corner (and also because of the large range of values of the plotted1080

quantities). For the L-curve to be effective it is necessary to have monotonicity in1081
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‖rreg‖ and ‖xreg‖ (this is not always the case, e.g., alternative L-curves have been1082

devised for GMRES [38]). Moreover, it can be experimentally noted that, when the1083

decay of the singular values, as well as the impact of noise on the computed solution1084

happen slowly, the L-curve does not exhibit a distinct corner, making the L-curve1085

criterion less successful; this is often the case for large-scale inverse problems. For1086

hybrid projection methods, since we need to select two parameters (namely, λk and1087

k), the L-curve can be interpreted as a surface, which can be challenging to analyze.1088

However, by exploiting connections to Gaussian quadrature rules (see Appendix B),1089

a variant of the L-curve called the L-ribbon has been considered that inexpensively1090

constructs a ribbon-like region that contains the L-curve of the (direct) Tikhonov1091

regularization applied to the full-dimensional problem [35, 41, 45]. Note that the1092

points on the L-curve can be computed using the projected quantities only, which are1093

not computationally expensive to evaluate as far as k � min{m,n} (see Appendix A1094

for more details).1095

An approach related to the L-curve, which still aims at finding the right balance1096

between the regularization error and the perturbation error, was described in [14, 233],1097

where the estimated regularization parameter λ for (direct) Tikhonov regularization1098

is obtained as the fixed point of the ratio between the residual norm ‖r(x(λ))‖ and1099

the solution norm ‖x(λ)‖. This same strategy can be used to select a regularization1100

parameter at each iteration of hybrid projection methods, namely, by computing the1101

fixed point λk of the function
‖r(xk(λ))‖
‖xk(λ)‖ : this is done in [231] for a hybrid method based1102

on GKB and Tikhonov regularization. The fixed point approach can be regarded as1103

a realization of a parameter choice rule due to Regińska [190], and its performance1104

strongly depends on a good initial guess of λ.1105

The generalized cross-validation (GCV) method is another popular approach1106

for selecting regularization parameters when the noise level is unknown. The GCV1107

method is a ‘leave-one-out’ prediction method. That is, the basic idea behind GCV1108

is that, if an arbitrary element of the observed data is left out, a good choice of the1109

regularization parameters should be able to predict the missing observation [98]. For1110

(direct) Tikhonov regularization applied to the full-dimensional problem (2.1), the1111

parameter computed by GCV is the one that minimizes the GCV function1112

(3.22) G(λ) =
n ‖r(x(λ))‖2(

trace
(
Im −AA†reg(λ)

))2 .1113

In [20] Björck suggested using GCV in conjunction with TSVD for hybrid projec-1114

tion methods and using GCV to determine an appropriate stopping iteration as well.1115

However, it was observed in [59] that the GCV method tended to perform poorly1116

when used within hybrid methods based on GKB and Tikhonov regularization, due1117

to over-smoothing. To remedy this, a weighted GCV (wGCV) method was intro-1118

duced, which can be interpreted as a weighted ‘leave-one-out’ approach; an adaptive1119

approach to estimate the new weight parameter was also described. At each iteration1120

k, the weighted GCV functional for estimating λ is given by1121

(3.23) Gw(λ, k) =
n ‖r(xk(λ))‖2(

trace
(
Im − wAA†reg(λ, k)

))2 ,1122

where we get the standard GCV function for w = 1. By minimizing the above func-1123

tional with respect to both λ and k, it is possible to set both regularization parameters1124
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involved in a hybrid method. One can use an alternating approach to sample the 2D1125

GCV surface (3.23) as follows: first, a projected version of the GCV functional (3.23)1126

is minimized for fixed k to get λk (this is sampling the GCV functional along lines);1127

second, the GCV functional (3.23) is minimized for fixed λk. Note that both the nu-1128

merator and the denominator of the functional Gw(λ, k) can be expressed with respect1129

to projected quantities only, which are not computationally expensive to evaluate as1130

far as k � min{m,n} (see Appendix A for more details).1131

The NCP (normalized cumulative periodogram) approach for selecting regulariza-1132

tion parameters does not require an estimate of the noise level, and it uses the residual1133

components rather than the residual norm to estimate the regularization parameter1134

[201]. This approach was used within a projection framework in [135], although this1135

was not a hybrid projection method according to the criteria given in the present pa-1136

per. It is used a stopping criterion for purely iterative methods (namely, the so-called1137

algebraic iterative reconstruction techniques for computed tomography) in [134].1138

3.3.4. Illustrations on the behavior of parameter choice in hybrid meth-1139

ods. We use the image deblurring and tomography test problems from subsection 1.11140

to show how different regularization parameter selection methods can perform within1141

GKB-based hybrid projection methods.1142

In Figure 3.3 we display the so-called ‘RRE surfaces’, i.e., the values of the relative1143

reconstructions error (RRE) norms ‖xk(λk)−xtrue‖/‖xtrue‖ versus the pair (k, λk), at1144

k = 1, . . . , 100 and at logarithmically equispaced values of λk between 10−6 and 102.1145

We can clearly see that, for both the image deblurring and the computed tomography1146

problems, there are combinations of values of k and λk that deliver minimal relative1147

reconstructions error norms, and that both the discrepancy principle (DP) and the1148

weighted GCV (wGCV) method are able to compute couples (k, λk) that eventually1149

(i.e., for k big enough) lay in such regions.1150

1151

In Figure 3.4 we only consider the computed tomography problem and we illus-1152

trate the behavior (in terms of relative reconstruction errors and selected values of1153

λ) of different regularization parameter choice strategies (DP, wGCV, optimal pa-1154

rameter minimizing the relative error at each iteration) as the number of iterations1155

progresses. We can clearly see that the behavior of the GKB-based hybrid method is1156

quite desirable for all the regularization parameter rules: namely, all approaches are1157

successful in avoiding semiconvergence and, after a very rapid decrease in the relative1158

error norms, at about the 20th iteration both the quality of the solution and the value1159

of the regularization parameter stabilize (only the parameter set by wGCV displays1160

slight variations). We observe that the first stopping criterion in (3.15) (stabilization1161

of λk at consecutive iterations, denoted by an asterisk), applied with τλ = 10−4, is1162

very effective when the DP is used (i.e., it prescribes to stop very close to the itera-1163

tion where the relative error is minimal (denoted by a circle). This is not the case for1164

wGCV, although there is no adverse impact on the quality of the solution computed1165

when the solver stops, thanks to the long-term stable behavior of relative errors.1166

1167

Finally, for both the image deblurring and computed tomography test problems,1168

we generated observations with 100 noise realizations at noise level 10−2 and used1169

GKB-based hybrid methods where the regularization parameter is chosen using the1170

DP with the true noise level and wGCV with automatically selected weighting pa-1171

rameter. The computed values are displayed as histogram plots in Figure 3.5: looking1172

at them we can infer that such strategies exhibit consistent behavior within different1173
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Fig. 3.3. Illustration of the behavior of the GKB-based hybrid methods when the regularization
parameter is chosen according to the discrepancy principle and the wGCV criterion. First and
second row: the relative error norm for each sampled (k, λk) is recorded, to form the so-called ‘RRE
surfaces’, which are displayed as 3D surface plots (first row) and as 2D contour plots (second row),
where the computed couples (k, λk) obtained by applying the discrepancy principle and wGCV are
highlighted by special markers.
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Fig. 3.4. Illustration of the GKB-based hybrid method with different adaptive parameter choice
strategies, applied to the computed tomography test problem. In the left panel, we provide the his-
tory of the relative reconstruction error norms per iteration k obtained when using the discrep-
ancy principle (DP) (3.19) and the weighted GCV (wGCV) (3.23). The optimal (opt) parameter
is the λk that minimizes the relative error at each iteration k. In the middle panel we provide
the computed regularization parameters at each iteration. Special markers highlight the iteration
satisfying the first stopping criterion in (3.15) with τλ = 10−4 (asterisks), and the iteration de-
livering the best relative error (circle), for each approach (DP, wGCV, opt). In the right panel
we display the best solution computed when applying wGCV, having relative reconstruction error
‖x30 − xtrue‖2/‖xtrue‖2 = 0.1574. We refer to Figure 3.1 for a similar illustration for the image
deblurring problem.
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deblurring tomography

Fig. 3.5. An illustration of the behavior of the GKB-based hybrid methods when the regular-
ization parameter is chosen according to the discrepancy principle and the wGCV criterion. The
test problems are run 100 times, each with a different noise realization (noise level is always 10−2).
Histogram plots of the stopping iteration k and the corresponding chosen regularization parameter
λk are displayed.

noise realizations.1174

1175

To conclude, we emphasize that every problem is different, and there is not one1176

approach that will work for all problems. Thus, it is good to have a variety of methods1177

that can guide one in selecting a suitable set of parameters.1178

3.4. Theoretical insights. The goal of this section is to give the reader a flavor1179

of the kinds of theoretical results that have been investigated for hybrid projection1180

methods. This section is organised in subsections, which present specific classes of1181

results and elaborate on their significance. Specifically:1182

• We can characterize the kth iterate of a hybrid projection method for a fixed1183

regularization parameter; see subsection 3.4.11184

• We can study how noise in the data propagates to the projected problem1185

using subspace approximation properties, and we can use this information1186

for parameter selection and analysis; see subsection 3.4.21187

• We can study the behavior of the projected problem and draw connections1188

to TSVD; see subsection 3.4.31189

• We can investigate Krylov subspace methods for continuous formulations to1190

get insight into the adopted SVD approximations and the convergence of1191

hybrid methods; see subsection 3.4.41192

3.4.1. Project-then-regularize versus regularize-then-project. For stan-1193

dard Tikhonov regularization, an insightful result deals with characterizing the iter-1194

ates from a hybrid projection method. For a fixed regularization parameter, there is1195

a result regarding the equivalence of iterates from two approaches: ‘first-regularize-1196

then-project’ and ‘first-project-then-regularize’ [121, 126]. See Figure 3.6 and the1197

following theorem.1198

Theorem 3.1. Fix λ > 0 and define xk(λ) ∈ Rn to be the kth iterate of conjugate
gradient applied to the Tikhonov problem,

min
x
‖b−Ax‖2 + λ ‖x‖2 .
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min
x
‖b−Ax‖

regularization
min
x
‖b−Ax‖2 + λ ‖x‖2

projection
min
y
‖b−AVky‖2

projection
min

x∈ran(Vk)
‖b−Ax‖2 + λ ‖x‖2

regularization
min
y
‖b−AVky‖2 + λ ‖y‖2

xk(λ)

then then

Fig. 3.6. For fixed regularization parameter λ and in exact arithmetic, both approaches ‘first-
regularize-then-project’ and ‘first-project-then-regularize’ result in the same solution approximation.
A similar figure can be found in [126].

Let yk(λ) ∈ Rk be the exact solution to the regularized, projected problem

min
y
‖β1e1 −Bky‖2 + λ ‖y‖2 ,

where Bk and Vk are derived from GKB applied to the original problem. Then

zk(λ) = Vkyk(λ) = xk(λ).

The significance of this result is that, for large-scale problems where the ‘first-regularize-1199

then-project’ approach is not feasible (e.g., because obtaining a good regularization1200

parameter is too expensive a priori, see Figure 2.3), the hybrid projection methods1201

that follow the ‘first-project-then-regularize’ approach produce, at the kth iteration,1202

the same regularized solution (in exact arithmetic and with the same regularization1203

parameter). Extensions of this result to the case where TSVD regularization is used1204

instead of Tikhonov can be found in [160].1205

3.4.2. Subspace approximation and noise propagation. Since the approx-1206

imation subspace for the solution plays a pivotal role in the success of both purely1207

iterative and hybrid projection methods, there have been recent investigations on1208

subspace approximation properties, including results quantifying how much the ap-1209

proximation subspace can be expanded and how the noise in the data affects the1210

approximation subspace.1211

The authors of [94] prove that, when GKB is applied to a severely ill-posed prob-1212

lem with noiseless data, the product of the entries of the last column of the bidiagonal1213

matrix Bk decays as (kσA

k )2; note that these entries are somewhat related to how much1214

the Krylov subspace Kk(A>A,A>b) is expanded at the kth iteration. Under similar1215

assumptions, when employing the Arnoldi algorithm, the rate of decay of the last en-1216

try of the Hessenberg matrix Hk (i.e., [Hk]k+1,k) is comparable to kσA

k . The authors1217
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of [139] study how noise in the measurements (right-hand side of (1.1)) propagates to1218

the projected problem and, in particular, how it enters the basis vectors spanning the1219

approximation subspace. This leads also to efficient estimates of the noise level that1220

can be used to set the regularization parameter λk for hybrid methods, or a stopping1221

criterion (see subsection 3.3). Specifically, assuming that the Discrete Picard Con-1222

dition holds, the noise amplification (i.e., the appearance of high frequency noise) is1223

described as an effect of damping the smooth components due to convergence of Ritz1224

values to large eigenvalues of A>A and the orthogonalization in the GKB algorithm.1225

After the noise has ‘revealed’ itself in the so called ‘noise-revealing’ iteration, the1226

LSQR relative residual can be used as a noise level estimator. This investigation is1227

extended in [138], to consider the most popular iterative solvers based on GKB and to1228

establish explicit relations between the noise-contaminated bidiagonalization vectors1229

and the residuals of the considered regularization methods. In particular, it is shown1230

that the coefficients of the linear combination of the computed bidiagonalization vec-1231

tors reflect the amount of propagated noise in each of these vectors; influence of the1232

loss of orthogonality is also discussed. Some of these investigations (most relevantly,1233

the analysis of the residual vector) have been also performed in [92, 93] for methods1234

based on the Arnoldi algorithm, mainly using tools from approximation theory.1235

Finally, the propagation of noise in the approximation subspace and the residuals1236

associated to purely iterative methods based on the GKB algorithm (such as LSQR)1237

and the Arnoldi algorithm (such as GMRES and RRGMRES) is studied in [148].1238

The latter may not be successful in filtering the noise out, because of the so-called1239

‘mixing’ of the SVD components in the approximation subspace; this issue may ac-1240

tually be irrelevant, if features of the solution can be reconstructed anyway thanks1241

to the presence of favourable vectors in the Krylov approximation subspace and it1242

can be mitigated using some ‘preconditioning’ [130]; see also subsection 4.1. Some1243

‘preconditioners’ that can be used together with (RR)GMRES to correct for severe1244

asymmetries in the discretized forward operator are proposed and analyzed in [90].1245

Focusing on image deblurring problems, and exploiting the two-dimensional discrete1246

cosine transform, [131] also analyzes how noise from the data enters the solution com-1247

puted by LSQR, GMRES, RRGMRES, MINRES, and MR-II, concluding that the1248

noise mainly affects the reconstructions in the form of low-pass filtered white noise,1249

and discouraging the use of GMRES and MINRES for image deblurring.1250

3.4.3. The projected problem and connections to TSVD. Beyond inves-1251

tigations into the approximation subspace, another class of results pair the analysis1252

of the approximation subspace for the solution with the analysis of the behavior of1253

the projected problem, or focus solely on the latter, including results on the approx-1254

imation of the singular value decomposition. These results shed light on how the1255

ill-conditioning of the original problem transfers to the projected problem, on the1256

semi-convergence phenomenon, and on how properties such as the so-called discrete1257

Picard condition are ‘inherited’ by the projected problem.1258

Bounds on the ‘residuals’ associated to the SVD approximations obtained by the1259

GKB and Arnoldi decompositions (i.e., the matrix 2-norm of the difference between1260

the original coefficient matrix (2.2) and the approximated SVD obtained at each step1261

of a Krylov subspace method) are presented in [94], where it is concluded that, de-1262

pending on the method and on the residuals, these could either be 0, or their norm1263

may decay as the singular values of the original coefficient matrix. The authors of1264

[92] prove that, starting from a full-dimensional problem satisfying the discrete Pi-1265

card condition (i.e., typically assuming noise-free data), the discrete Picard condition1266
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holds when the problem is projected using the Arnoldi or the GKB algorithms: this is1267

achieved by combining some SVD update rules and a backward induction argument1268

(i.e., going from the full-dimensional problem to projected problems of decreasing di-1269

mension). Naturally, much analysis focuses on establishing theoretical and heuristic1270

links between the performance of TSVD (which can be regarded as a least-squares1271

solver projecting the full-dimensional problem (2.4) onto the subspace spanned by the1272

dominant right singular vectors) and Krylov projection methods. Some early investi-1273

gations, such as [120], find that, since the projection attained with the LSQR method1274

is tailored to the specific right-hand side b, this results in a more rapid convergence1275

of the solver. Also, when it comes to computing TSVD-like approximations, the au-1276

thors of [16] exploit a classical property of GKB (namely, the approximation quality1277

depends on the relative distance between the singular values of A [203]) to conclude1278

that, since for discrete inverse problems the relative gap between large singular values1279

of A is generally much larger than the relative gap between its small singular values,1280

the singular values of Bk converge very quickly to the largest singular values of A.1281

Also, links between the TSVD and Lanczos algorithms (for symmetric problems) are1282

investigated in [95] where, thanks to the speed at which the nonnegative subdiagonal1283

entries of Tk decay to zero, the solution of the discrete ill-posed problems can be1284

efficiently and effectively (i.e., without significant, if any, reduction of the quality of1285

the computed solution) expressed in terms of the Lanczos basis vectors rather than1286

the eigenvectors of A; this extends to the solution subspace determined by LSQR and1287

the right singular vector subspace.1288

More recently, a body of papers by Jia and collaborators puts some renewed1289

emphasis on the investigation of the relations between the TSVD solutions and the1290

solutions computed by some popular purely iterative regularization methods (such as1291

LSQR, LSMR, and MINRES). In particular, assuming distinct singular values, [144]1292

establishes bounds for the distance between the k-dimensional Krylov subspace asso-1293

ciated to LSQR and the k-dimensional dominant right singular space associated to1294

TSVD, and concludes that the former better ‘captures’ the latter for severely and1295

moderately ill-posed problems than for mildly ill-posed problems. This implies that1296

LSQR performs better as a stand-alone regularization method for severely and mod-1297

erately ill-posed problems, but should be paired with additional regularization (i.e.,1298

in a hybrid framework) for successfully handling mildly ill-posed problems. Estimates1299

for the accuracy of the rank-k approximation generated by GKB are also provided.1300

This topic is further investigated in [149, 150], where an analysis of the approximation1301

of the large singular values of A by the Ritz values is also performed to assess if this1302

happens in natural order (i.e., largest singular values first). The paper [151] extends1303

the same investigations to the case of multiple singular values, with similar findings.1304

3.4.4. Continuous formulations. Although the present survey paper consid-1305

ers discrete inverse problems, in many situations (especially when analyzing some1306

convergence properties of solvers or inferring the behavior of the projected problems)1307

looking at the continuous formulation (i.e., within a Hibert space H) can be bene-1308

ficial. Indeed, it is well known that some discretization schemes (e.g., those based1309

on boundary element methods) actually project the continuous problem onto finite1310

dimensional vector spaces, and that such a projection has a regularizing effect; see1311

[121, 160]. Indeed, with ‘proper conversion’, many of the presented derivations for1312

Krylov methods in finite dimension can be translated to the continuous setting; see1313

[73]. CG was historically among the first Krylov methods to be analyzed in a contin-1314

uous setting: [102] reports relevant results and references. More recently, the authors1315
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of [40] show that, when the error-free data vector btrue lies in a finite-dimensional1316

Krylov subspace, then the (continuous) GMRES method is a regularization method1317

if the iterations are terminated by a stopping rule based on the discrepancy princi-1318

ple. Methods based on the Arnoldi algorithm (either FOM or GMRES) have been1319

analyzed in a continuous setting [178]: here, some of the properties described (and1320

somewhat heuristically justified) in a discrete setting in [94] are fully established (and1321

sometimes strengthened) in a continuous setting. More specifically, assuming that we1322

are dealing with Hilbert-Schmidt operators (like Fredholm integral equations of the1323

first kind with square-integrable kernels), it can be shown that the rate of conver-1324

gence of these solvers is related to the extendibility of the Krylov subspace Kk(A,b),1325

which is also comparable with the rate of decay of the singular values of A. Moreover,1326

it is proven that the dominant singular values can be approximated with improved1327

accuracy as the iterations proceed, further supporting the statement that methods1328

based on the Arnoldi algorithm are regularization methods. This investigation has an1329

impact on the finite-dimensional setting, too: for instance, having proven convergence1330

of the SVD approximation obtained by the Arnoldi algorithm, implies that many pa-1331

rameter choice rules that are intrinsically based on the success of this approximation1332

(see subsection 3.3) are meaningful when used within hybrid methods. An analo-1333

gous investigation appeared in [51], where the infinite-dimensional GKB algorithm1334

and LSQR are considered. In [179] the case of Krylov solvers applied to general-form1335

Tikhonov regularization (still in a continuous setting), with a fixed regularization pa-1336

rameter; both solvers based on the Arnoldi algorithm and on the GKB algorithm are1337

considered and the resulting scheme is dubbed ‘ Krylov-Tikhonov’. Denoting by u†1338

and uk the solution to the continuous problem and the Krylov solution, respectively,1339

the main investigation in [179] is concerned with proving that such Krylov methods1340

are orthogonal projection methods for the linear operator equation associated to the1341

normal equations for the continuous Tikhonov formulation: because of this, there1342

exists a (semi)norm E(·) in H such that E(uk − u†) converges to zero as k goes to1343

infinity.1344

4. Extensions. The goal of this section is to describe some extensions and re-1345

cent advancements in hybrid projection methods. In particular, in subsection 4.1 we1346

describe various hybrid projection methods that have been developed for general-form1347

Tikhonov regularization. In subsection 4.2 we describe hybrid projection approaches1348

that go beyond the standard projection subspaces by enrichment, augmentation and1349

recycling of approximation subspaces for the solution. Then in subsection 4.3 we1350

go beyond 2-norm regularization and consider the `p regularized problem. In par-1351

ticular, we focus on recent advancements in flexible iterative methods (which are re-1352

lated to flexible preconditioning where the preconditioner changes during the iterative1353

process) and extensions to hybrid frameworks. In subsection 4.4 we describe the in-1354

creasingly important role that hybrid iterative methods play in the field of large-scale1355

computational uncertainty quantification. We first give a brief introduction to draw1356

connections between traditional variational regularization and statistical (Bayesian)1357

inverse problems, and we describe various scenarios where hybrid projection methods1358

have enabled researchers to go beyond point estimates and perform efficient UQ. In1359

subsection 4.5, we describe the role that hybrid projection methods have played in1360

solving nonlinear inverse problems, where the forward model is nonlinear. Table 4.11361

presents a compact summary of the problem formulations considered in the following1362

subsections, highlighting similarities and differences in the choice of the fit-to-data1363

and regularization terms.1364
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Table 4.1
Variational regularization methods of the form minx∈Rn J (x,b) + λR(x), where J and R are

a fit-to-data and regularization term, respectively, considered in each subsections.

subsection J (b,x) R(x) notes
4.1 ‖b−Ax‖22 ‖Lx‖22 L ∈ Rr×n
4.2 ‖b−Ax‖22 ‖x‖22 projection on sums of subspaces
4.3 ‖b−Ax‖22 ‖x‖pp extends to J (b,x) = ‖b−Ax‖qq
4.4 ‖b−Ax‖2R−1 ‖x‖2Q−1

4.5 ‖b− F (x)‖22 ‖x‖22 F : Rn → Rm nonlinear operator

A common theme in all the following subsections is that extensions of hybrid pro-1365

jection methods beyond the standard approaches described in section 3, in order to1366

be effective in a large-scale setting, require the efficient computation of an appropri-1367

ate solution subspace and adaptive regularization parameter choice for the projected1368

problem (i.e., within the solution subspace), giving rise to hybrid formulations. Al-1369

though the computed solution subspaces may not be as straightforward as standard1370

methods, they can incorporate some prior knowledge or meaningful information about1371

the solution or the kind regularization functional to be considered, eventually leading1372

to superior reconstructions with respect to the ones delivered by standard methods.1373

Most often this means that the standard GKB or Arnoldi decompositions have to1374

be modified, for example, to formally work with variable preconditioning, to enforce1375

orthogonality or optimality properties in a different norm, or to incorporate a low-1376

dimensional subspace representing prior information. Also, most often, such tools1377

have already been developed for use in other settings, e.g., for the solution of well-1378

posed problems (e.g., PDEs). Therefore, a considerable part of this section is devoted1379

to reviewing such tools, tailoring them to the problems at hand, and drawing possible1380

analogies between them.1381

4.1. Beyond standard-form Tikhonov: Hybrid projection methods for1382

general-form Tikhonov. Thus far we have focused mainly on the standard-form1383

Tikhonov problem (2.1), where the regularizer ‖x‖2 promotes smoothness by penaliz-1384

ing solutions with large norm; however, other smoothness properties may be desired.1385

Many researchers have considered the general-form Tikhonov problem,1386

(4.1) min
x
‖b−Ax‖2 + λ ‖Lx‖2 ,1387

where L ∈ Rp×n is called the regularization matrix. We assume that the null spa-1388

ces of A and L intersect trivially, so that [A>, L>]> has full column rank and the1389

solution to (4.1) is unique. Typical choices of L include discretizations of a differ-1390

ential operator (e.g., the discrete first or second derivative, which promote further1391

smoothness by penalizing derivatives of solutions with large norms). An important1392

observation is that the general-form Tikhonov solution can be written as a spectral1393

filtered solution, where both the filter factors and the basis for the solution are de-1394

termined by the generalized singular value decomposition (GSVD) of {A,L}; see,1395

e.g., [126, Chapter 8]. However computing the GSVD is not always feasible, e.g., for1396

large-scale unstructured problems. In these settings, the most immediate approach1397

is to apply an iterative solver (e.g., any of the solvers listed in subsection 2.2) to1398

the equivalent least-squares formulation of (4.1): however, a suitable value of λ must1399

be fixed ahead of the iterative method. Since such λ is typically not available, one1400

should apply an iterative solver to (4.1) repeatedly (once for every tested value of λ),1401
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as dictated by some well-known parameter choice strategies (such as the ones listed1402

in subsection 3.3): this eventually results in a costly strategy, and alternatives have1403

been sought in the literature.1404

A common approach to handle the general-form Tikhonov problem is to transform1405

it to standard form [71]. That is, one computes1406

(4.2) ȳL(λ) = arg min
ȳ∈Rp

‖AL†Aȳ − b̄‖2 + λ‖ȳ‖2 , where
b̄ = b−AxL

0

xL(λ) = L†AȳL(λ) + xL
0

,1407

and where xL
0 is the component of the regularized solution xL(λ) in the null space of L.1408

Here L†A is the A-weighted generalized inverse of L, defined by1409

L†A = (In − (A(In − L†L))†A)L†; see [125, Section 2.3] and [127] for a geometrical1410

interpretation (in terms of projections). Note that, if L is invertible, then L†A = L−1,1411

and, if L has full column rank, then L†A = L†. If L is an underdetermined matrix,1412

then L†A may not be the same as L†. In the Bayesian inverse problems literature,1413

this particular change of variables is referred to as priorconditioning [33, 36, 47, 48],1414

because the matrix L is constructed from the covariance matrix of the solution mod-1415

eled as a random variable (see also subsection 4.4.1). The main idea is to interpret1416

L as a preconditioner; however, while preconditioning for iterative methods is often1417

discussed in the context of accelerating iterative methods (typically via clustering of1418

the eigenvalues), priorconditioners in (4.2) change the subspace for the solution by1419

including information from the prior (recall also the discussion in subsection 3.2.1).1420

Indeed, in earlier work that leveraged this idea without collocating it within the1421

Bayesian framework, this approach was dubbed ‘smoothing norm preconditioning’1422

and was first adopted in connection with CGLS [117, 121], and then GMRES [130].1423

Once formulation (4.2) is established, the hybrid projection methods of section 3 can1424

be applied, which define the approximation subspace for the solution with respect to1425

the matrix AL†A. For instance, in the case of GKB, the kth approximation subspace1426

for the solution is defined as follows:1427

Kk((AL†A)>AL†A, (AL†A)>b̄) = span{((AL†A)>AL†A)i−1(AL†A)>b̄}i=0,...,k−1 .1428

For some problems, multiplication with AL†A can be done by solving a least-squares1429

problem followed by an oblique projection; see [124, 130] for details. Furthermore,1430

there are some regularization operators L for which sparsity or structure can be ex-1431

ploited so that multiplications with L†A can be done efficiently (e.g., banded matrices,1432

circulant matrices, and orthogonal projections [46, 72, 169, 196]). However, in gen-1433

eral, performing multiplications with L†A may be computationally difficult especially1434

for large-scale problems (e.g., when L is defined as a product of matrices or as a sum1435

of Kronecker products).1436

In the framework of hybrid projection methods, alternative approaches to approx-1437

imate the solution of (4.1) have been devised without resorting to a standard-form1438

transformation. For instance, Kilmer, Hansen and Español [159] developed a hybrid1439

projection method that simultaneously bidiagonalizes both A and L (here L can be1440

rectangular and does not need to be full rank), using a joint bidiagonalization algo-1441

rithm inspired by Zha [240]. More precisely, a partial joint bidiagonalization for A1442

and L is updated at each iteration: at the kth iteration, it reads1443

(4.3) AZk = UA
k+1B

A
k , LZk = UL

kBL
k ,1444

where Zk = [z1, . . . , zk], Uk+1(βe1) = b, and β = ‖b‖. Although this algorithm only1445

requires that products with A,L and their transposes can be computed, the cost of1446
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generating the partial factorization (4.3) is somewhat difficult to quantify: indeed, the1447

kth step requires one call to LSQR to produce orthogonal projections that are needed1448

to update the partial joint bidiagonalization (4.3), and each LSQR iteration requires1449

four matrix-vector products (with each of A, A>, L, and L>). Taking x ∈ ran(Zk),1450

i.e., x = Zkw, in (4.1) results in the following equivalent problems1451

(4.4) min
w∈Rk

∥∥∥∥[ AZk√
λLZk

]
w −

[
b
0

]∥∥∥∥ = min
w∈Rk

∥∥∥∥[ BA
k√
λBL

k

]
w −

[
βe1

0

]∥∥∥∥ .1452

Since the last problem in the above equations is a Tikhonov problem of dimension1453

O(k) involving only bidiagonal matrices, it is significantly cheaper to solve than (4.1),1454

especially for k small. Let us denote by wk(λ) the minimizer of (4.4), then xk(λ) =1455

Zkwk(λ) is the minimizer of (4.1), constrained to ran(Zk). For fixed λ, the joint1456

bidiagonal structure leads to short recurrence updates (in k) for wk(λ), for the residual1457

norm ‖Axk(λ)− b‖, and for the regularization norm term ‖Lxk(λ)‖: this is relevant1458

if the solution xk(λ) = Zkwk(λ) has to be computed at fixed pre-sampled values of1459

λ, e.g., when applying the L-curve criterion. The discrepancy principle to set λ = λk1460

adaptively at each iteration can also be efficiently employed. It can be shown that1461

the approximation subspace ran(Zk) is meaningful, as xk(λ) ‘resembles’ a truncated1462

GSVD regularized solution to (1.1).1463

Reichel, Sgallari, and Ye [192] describe an iterative approach that simultaneously1464

reduces square matrices A and L to generalized Hessenberg matrices using a gener-1465

alized Arnoldi process, originally introduced in [167]. The formal full factorizations1466

associated to this method consist of1467

(4.5)
AQ = QHA, where hAi,j = 0 if i ≥ 2j + 1 ,
LQ = QHL, where hLi,j = 0 if i ≥ 2j + 2 ,

1468

and where Q is orthogonal. In practice, k iterations of the generalized Arnoldi1469

algorithm can be computed with initial vector q1 = b/‖b‖ = b/β to generate the1470

first k columns of the generalized Hessenberg matrices HA and HL appearing above,1471

and the corresponding columns of Q. The columns of Q span a so-called generalized1472

Krylov subspace obtained by multiplying q1 by A and L in a periodic fashion. Let1473

HA
k ∈ R(2k+1)×k and HL

k ∈ R(2k+2)×k be the principal submatrices of the matrices1474

HA and HL, and let Qk = [q1, . . . ,qk] ∈ Rn×k be obtained by taking the first k1475

columns of Q. Taking x ∈ ran(Qk), i.e., x = Qkw, in (4.1) results in the following1476

equivalent problems1477

min
w∈Rk

∥∥∥∥[ AQk√
λLQk

]
w −

[
b
0

]∥∥∥∥ = min
w∈Rk

∥∥∥∥[ HA
k√

λHL
k

]
w −

[
βe1

0

]∥∥∥∥ .1478

Note that the approximation subspace for the solution of (4.1) can alternatively be1479

generated starting from q1 = Qe1 = Ab/‖Ab‖, leading to minor adjustments in1480

the above projected problem (analogous to the range-restricted approach described1481

in subsection 3.2.1). Similar to the method in [159], the present approach allows1482

adaptive selection of the regularization parameter λ = λk at the kth iteration, with a1483

negligible computational overhead. Different from [159], the present method can work1484

only if both A and L are square (but this restriction can be overcome, e.g., by zero-1485

padding). Furthermore, the present method does not require the action of A> and1486

L>, and no (inner) calls to LSQR are needed to generate the factorization (4.5). While1487

these are clear advantages of the solver presented in [192] compared to that presented1488
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in [159], the downsides are that the structure of the generalized Hessenberg matrices1489

HA
k and HL

k cannot be immediately exploited (as was possible for bidiagonal matrices1490

BA
k and BL

k in (4.3)); moreover, to the best of our knowledge, no heuristic insight is1491

available to justify the choice of the approximation subspace ran(Qk) for the solution1492

(in particular, no links with truncated GSVD have been established). Despite this,1493

some specific features of the solution of (4.1) can be enhanced by pairing the present1494

method with so-called ‘selective regularization’, i.e., by augmenting the approximation1495

subspace for the solution associated to this specific method; generic (i.e., not specific to1496

the generalized Arnoldi algorithm) schemes for achieving augmentation are described1497

in subsection 4.2.1498

Lampe, Reichel, and Voss [162] propose an alternative projection method for1499

approximating the solution (4.1), which is initiated by picking an approximation1500

subspace V ⊂ Rn of small dimension k � min{m,n} spanned by the orthonormal1501

columns of a matrix Vk ∈ Rn×k. This can be done, for instance, by running k1502

GKB iterations, so that ran(Vk) = Kk(A>A,A>b). Denote by xk(λ) the solution1503

of the constrained Tikhonov problem obtained by imposing x ∈ V in (4.1), i.e., take1504

xk(λ) = Vkyk(λ), where1505

yk(λ) = arg min
y∈Rk

∥∥∥∥[ AVk√
λLVk

]
w −

[
b
0

]∥∥∥∥ = (V>k (A>A + λL>L)︸ ︷︷ ︸
=:T(λ)

Vk)−1V>k A>b1506

Note that yk(λ) can be computed efficiently by using a ‘skinny’ QR factorization1507

of [(AVk)>, (LVk)>]>, which can be updated as k increases. A suitable value of1508

the regularization parameter λ = λk can be determined using any of the strategies1509

described in subsection 3.3. Once xk(λ) is computed, the original search space V ∈1510

Rn×k is expanded by the normalized gradient of the functional in (4.1) evaluated at1511

xk(λ). Namely, one considers1512

Vk+1 = [Vk,vnew] , where vnew =
(
T(λk)xk(λk)−A>b

)
/‖T(λk)xk(λk)−A>b‖ .1513

Although vnew so defined is orthogonal to ran(Vk), this can be enforced numerically1514

using reorthogonalization techniques, if loss of orthogonality is a concern. In general,1515

the approximation subspace ran(Vk) for the solution of (4.1) is not a Krylov subspace1516

and it is therefore called a ‘generalized Krylov subspace’: note however that it is yet1517

a different generalized Krylov subspace than the one used in [192]. The process1518

of solving problem (4.1) constrained to the updated approximation subspace V is1519

repeated, and expansions of V are generated until a stopping criterion is satisfied.1520

Hochstenbach and Reichel [140] use a partial GKB built with respect to A and b1521

to generate, at the kth iteration, the solution subspace Kk(A>A,A>b), onto which1522

they project the regularization matrix L in order to compute an approximate solu-1523

tion. A similar idea was used in [94, 232]. Note that, contrary to all the strategies1524

summarized so far in the present section, when using these approaches, the matrix L1525

does not enter the approximation subspace for the solution.1526

4.2. Beyond standard projection subspaces: Enrichment and recycling.1527

The success of Krylov projection methods, and in particular the regularizing proper-1528

ties of Krylov methods, depends on the ability of the associated Krylov subspace to1529

capture the most salient features of the solution. In the previous section, we surveyed1530

approaches to solve the general-form Tikhonov problem (4.1), where the choice of1531

the matrix L 6= In may affect the solution subspace for the iterative method (e.g.,1532

via subspace preconditioning or priorconditioning with a change of variables). Such1533
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transformations result in Krylov subspaces that are ‘better suited’ for the problem1534

[47, 130]. This means that the basis vectors can capture the essence or important1535

features of the solution, which can lead to faster convergence properties since fewer1536

iterations are needed to obtain an accurate solution. However, in some applications,1537

the regularized solution can be further improved by extending or enhancing the ap-1538

proximation subspace.1539

In this section, we assume that we are given a low-dimensional subspace that rep-1540

resents prior information or expert knowledge. More specifically, we assume that we1541

are given a suitable set of basis vectors, denoted Wp ∈ Rn×p, for whichWp = ran(Wp)1542

should be used in addition to a Krylov subspace in order to improve the solution. We1543

callWp the ‘prior solution subspace’ (not to be confused with priors or priorcondition-1544

ing methods). The main assumption is that the solution has a significant component1545

in the given subspace Wp, and the goal is to incorporate the provided subspace ju-1546

diciously in order to obtain improved regularized solutions. These methods are often1547

referred to as enrichment, augmentation, and recycling techniques.1548

We begin with some motivating scenarios where such techniques may be desired.1549

First, experienced practitioners may have solution basis vectors containing important1550

information about the desired solution (e.g., a low-dimensional subspace) from previ-1551

ous experiments or theoretical analyses. By incorporating these solution basis vectors,1552

the solution accuracy can be significantly improved, depending on the quality of the1553

provided vectors. Second, for very large inverse problems where many iterations are1554

needed or where there are many unknowns, one of the main computational disadvan-1555

tages of most hybrid methods compared to standard iterative methods is the need to1556

store the basis vectors for solution computation, namely Vk (using the same notations1557

as in (3.9)). Therefore, for problems with slow convergence, extracting important in-1558

formation from existing Krylov subspaces and restarting the iterative method can1559

speed up convergence while keeping memory requirements low. Third, and this is1560

related to subsection 4.5, hybrid methods may be embedded within nonlinear opti-1561

mization frameworks, e.g., optimal experimental design [113, 115] or nonlinear inverse1562

problems [112]. In these cases, a sequence of inverse problems must be solved, e.g.,1563

where the forward model may be parameterized such that the change in the model1564

from one problem to the next is relatively small, or the goal may be to compute and1565

update solutions from streaming data. Rather than start each solution computation1566

from scratch, techniques described in this section can be used to improve the given1567

subspace and to compute a regularized solution efficiently in the improved subspace.1568

In the context of solving inverse problems, we describe extensions that go beyond the1569

standard projection subspaces.1570

Enrichment methods. We begin with enrichment methods, which we define1571

as methods that, at the kth iteration, compute regularized solutions in a solution1572

subspace that is a direct sum of the prior solution subspace and a k-dimensional Krylov1573

subspace Kk corresponding to a standard iterative approach, see e.g. subsection 2.2.1574

That is, hybrid projection methods with enrichment construct iterates defined as1575

(4.6) xk(λk) = arg min
x∈Sp,k

‖b−Ax‖2 + λk ‖x‖2 ,1576

where1577

(4.7) Sp,k =Wp ⊕Kk = {x + y | x ∈ Wp and y ∈ Kk} .1578

Enrichment methods can improve the solution accuracy by incorporating information1579

about the desired solution into the solution process, i.e., by enriching the solution1580
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subspace. Methods for enriching Krylov subspaces have been described in the context1581

of both Arnoldi and Lanczos projection methods.1582

For Arnoldi based methods, the Regularized Range-Restricted GMRES method1583

(R3GMRES) [69] extends the RRGMRES approach (see subsection 3.2.1) to include1584

a subspace that represents prior information about the solution where the approach1585

is to compute xk(λk) as in (4.6) with Sp,k = Wp ⊕ Kk(A,Ab) and λk = 0. Effi-1586

cient implementations are described in [69, 218], but these are not considered hybrid1587

methods. If additional regularization is desired, hybrid versions can be developed.1588

For Lanczos-based projection methods, enrichment methods seek solutions in the1589

solution space (4.7) with Kk(A>A,A>b). A modification of CGLS method (some-1590

times also denoted in the literature with the acronym CGNR) was described in [44],1591

where Krylov subspaces are combined with vectors containing important information1592

about the desired solution (e.g., a low-dimensional subspace). Given an enrichment1593

subspace Wp, the enriched CGLS method determines the kth iterate in the subspace1594

Wp ⊕Kk(A>A,A>b). The enriched CGLS method was used for Tikhonov problems1595

(e.g., penalized least-squares problems), where several linear systems were solved for1596

different choices of the regularization parameter as described in Frommer and Maass1597

[81]. More specifically, a sequence of Tikhonov problems for regularization parameters1598

λ = λj = 2−j for j = 0, 1, . . . are solved, until for some λj , the corresponding solu-1599

tion satisfies the discrepancy principle. In [128], a hybrid enriched bidiagonalization1600

method was developed. For a fixed regularization parameter, the iterates of the en-1601

riched bidiagonalization method take the form (4.6) with Sp,k =Wp⊕Kk(A>A,A>b)1602

and are mathematically equivalent to those of the enriched CGLS method [44]. The1603

main contribution of [128] was to turn the basic algorithm into a hybrid method1604

with automatic selection of λk, where the Lanczos bidiagonalization algorithm was1605

used to compute an orthonormal basis for Kk(A>A,A>b) that is augmented by a1606

user-defined low-dimensional subspace Wp in each step of the algorithm.1607

Finally, we remark that a subspace-restricted SVD was described in [141], where1608

a modification of the singular value decomposition permits a specified linear subspace1609

to be contained in the singular vector subspaces. That is, the user can prescribe some1610

of the columns of the U and V matrices for all truncations, and truncated versions1611

as well as Tikhonov problems can be solved. For inverse problems, such approaches1612

can give more accurate approximations of the solution when compared to standard1613

TSVD and Tikhonov.1614

Recycling techniques. Hybrid methods have been considered in the context1615

of subspace recycling methods, which were developed for solving sequences of linear1616

systems with slowly changing coefficient matrices, multiple right hand sides, or both.1617

Krylov subspace recycling methods can exhibit accelerated convergence by reusing1618

subspace information that is typically generated during a Krylov method on one or1619

more of the systems. We point the interested reader to recent surveys [219, 220] and1620

references therein.1621

A general framework to combine recycling techniques with tools from compression1622

in a hybrid context is described in [152]. More specifically, the approach consists of1623

three steps. First, a suitable set of orthonormal basis vectors Wp is provided (e.g.,1624

from a related problem or from expert knowledge) or may need to be determined (e.g.,1625

via compression of previous solutions). This prior solution subspace may even include1626

an initial guess x∗ for the solution. Let1627

(4.8) AWp = VpR1628

be the ‘skinny’ QR factorization, where Vp ∈ Rm×p contains orthonormal columns
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and R ∈ Rp×p is upper triangular. The second step is to use a recycling GKB process
to generate the columns of Ṽ` ∈ Rn×` that span the Krylov subspace

Kk(A>P⊥Vp
A,A>P⊥Vp

r) ,

where r = b − Ax∗ and P⊥Vp
= I − VpV

>
p is the orthonormal projector onto V⊥p1629

where Vp = ran(Vp). The third step is to find a suitable regularization parameter λk1630

and compute a solution to the regularized projected problem in the extended solution1631

space. The recycled, hybrid iterate is given by1632

xk(λk) = arg min
x

‖Ax− b‖2 + λk ‖x‖2 , x ∈ Wp ⊕Kk(A>P⊥Vp
A,A>P⊥Vp

r).1633

This process can be repeated in a cyclic fashion, and it is successful in solving a broad1634

class of inverse problems (e.g., solving very large problems where the number of basis1635

vectors becomes too large for memory storage, solving a sequence of regularized prob-1636

lems (e.g., changing regularization terms or nonlinear solvers), and solving problems1637

with streaming data). We also mention that there have been various works on devel-1638

oping hybrid methods for solving systems with multiple right hand sides. In [182],1639

the authors suggest using the block Lanczos algorithm [100]. Recent works extend1640

hybrid methods for multiple right hand sides via global iterative methods [226], block1641

reduction [3], and tensor-tensor products [194, 195], with applications to color image1642

and video restoration.1643

The development of recycling techniques is deeply intertwined with the develop-1644

ment of augmented iterative methods. For example, the recycling GKB process is sim-1645

ilar to that used in the augmented LSQR method [7, 8]. For well-posed least-squares1646

problems that require many LSQR iterations, augmented LSQR methods use har-1647

monic Ritz vectors that approximate singular vectors associated with the small singu-1648

lar values, thereby reducing computational cost and improving convergence. However,1649

when applied to ill-posed inverse problems, the augmented LSQR method without an1650

explicit regularization term exhibits semi-convergent behavior.1651

For all of the methods described in this section, the improvement in solution1652

accuracy significantly depends on the quality of the vectors in Wp. Some suggestions1653

for subspaces are provided in [141, 152]. For problems with unsuitable augmentation1654

spaces, an adaptive augmented GMRES was considered in [161], which automatically1655

selects a suitable subspace from a set of user-specified candidates.1656

4.3. Beyond the 2-norm: Sparsity-enforcing hybrid projection meth-1657

ods for `p regularization. Although widely used, it is well known that standard-1658

form Tikhonov regularization (2.1) and even its general-form counterpart (4.1) can be1659

rather restrictive and that other regularization terms can yield better approximations1660

of xtrue in (1.1). For example, if xtrue is known to be sparse (i.e., when most of its1661

entries [xtrue]i, i = 1, . . . , n, are expected to be zero), the variational formulation1662

(4.9) min
x
‖Ax− b‖22 + λ‖x‖pp, with 0 < p ≤ 1,1663

is commonly considered in the literature, especially since the advent of the compressed1664

sensing theory; see, e.g., [50]. Indeed, while sparse vectors have a small `0-‘norm’1665

(denoting the number of nonzero elements), replacing the `p-norm in (4.9) by an1666

`0-‘norm’ would yield an NP-hard optimization problem (see, for instance, [80]). A1667

well-established practice to remedy this drawback is to consider `p regularization1668

terms with 0 < p ≤ 1 to promote sparsity, noting that the objective function in (4.9)1669
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is non-differentiable at the origin and it is nonconvex when 0 < p < 1 (see, e.g.,1670

[143, 163, 164]). Note that, if sparsity of the solution in a different domain (e.g.,1671

wavelets, discrete cosine transform, gradient) is desired, a regularization term of the1672

form ‖L(x)‖pp should be considered, where L is a linear operator that, in this setting,1673

is typically called ‘sparsity’ transformation (i.e., it maps x from Rn to a domain where1674

x is sparse); this situation will be considered in subsection 4.3.4. Also, sometimes, an1675

`q-norm with q 6= 2 has to be used to evaluate the fit-to-data term in (4.9): this is1676

appropriate, for instance, when the noise term in (1.1) is modeled as impulse noise;1677

see, e.g., [28].1678

Optimization problems involving the `p norm, such as the `2-`p regularized prob-1679

lem (4.9), can be solved using a variety of general nonlinear solvers and optimization1680

methods; see, for instance, [15, 96, 183, 211, 238] and the references therein. A1681

common drawback of these approaches is that a suitable value of the regularization1682

parameter λ should be set a priori implying that, if such value is not available, sev-1683

eral instances of problem (4.9) with different values of λ should typically be solved1684

to determine an appropriately regularized solution. Here we focus on solvers that1685

approximate the regularization term in (4.9) by a sequence of weighted `2 terms (i.e.,1686

iteratively reweighted schemes); as we will highlight in the next section, these meth-1687

ods all support an adaptive choice of the regularization parameter. Such iteratively1688

reweighted schemes intrinsically rely on the interpretation of problem (4.9) as a non-1689

linear weighted least-squares problem of the form1690

(4.10) min
x
‖Ax− b‖22 + λ‖x‖pp = min

x
‖Ax− b‖22 + λ‖W(p)(x)x‖22 ,1691

where the diagonal weights in W(p)(x) are defined as1692

(4.11) W(p)(x) = diag
(

(|xi|
p−2
2 )i=1,...,n

)
.1693

Since we are considering 0 < p ≤ 1, division by zero might occur if xi = 0 for any1694

i ∈ {1, ..., n} and, in fact, this is common situation in case of sparse solutions. For1695

this reason, instead of (4.11), we can consider the following closely related weights1696

(4.12) W̃(p,τ)(x) = diag
(

((xi
2 + τ2)

p−2
4 )i=1,...,n

)
,1697

where τ is a parameter that, to keep the derivations simple, we will consider fixed and1698

chosen ahead of the iterations (although some authors adaptively choose it). Problem1699

(4.10) is then replaced by1700

(4.13) min
x
‖Ax− b‖22 + λ‖W̃(p,τ)(x)x‖22︸ ︷︷ ︸

T (p,τ)(x)

,1701

where τ 6= 0 ensures that T (p,τ)(x) is differentiable at the origin for p > 0. Note that1702

problem (4.10) can be recovered from problem (4.13) by setting τ = 0.1703

A well-established framework to solve problem (4.13) is the local approximation1704

of T (p,τ) by a sequence of quadratic functionals Tk(x) that, for k = 1, 2, . . . , gives rise1705

to a sequence of quadratic problems of the form1706

(4.14) xk,∗ = arg min
x

‖Ax− b‖22 + λ‖Wkx‖22 + ck︸ ︷︷ ︸
=:Tk(x)

,1707
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where Wk = W̃(p,τ)(xk−1,∗), ck is a constant (with respect to x) term for the kth1708

problem in the sequence, and λ has absorbed other possible multiplicative constants so1709

that Tk(x) in (4.14) corresponds to a quadratic tangent majorant of T (p,τ)(x) in (4.13)1710

at x = xk−1,∗, i.e., Tk(x) ≥ T (p,τ)(x) for all x ∈ Rn, Tk(xk−1,∗) = T (p,τ)(xk−1,∗),1711

and ∇Tk(xk−1,∗) = ∇T (p,τ)(xk−1,∗); see also [143, 199]. Because of this, iteratively1712

reweighted schemes (4.14) can be regarded as particular instances of majorization-1713

minimization (MM) schemes, and convergence to a stationary point of the objective1714

function in problem (4.13) can be guaranteed; see [143, 145, 163].1715

The vector xk,∗ denotes the solution of (4.14). For moderate-sized problems, or for1716

large-scale problems where A has some exploitable structure, xk,∗ may be obtained by1717

applying a direct solver to (4.14). However, for large unstructured problems, iterative1718

solvers can be used in different fashions to approximate the solution of (4.14): this1719

leads to either schemes based on nested (inner-outer) iteration cycles for the sequence1720

of problems (4.13) or schemes that adaptively incorporate updated weights at each1721

iteration of a single iteration cycle. The former are detailed in subsection 4.3.1, while1722

the latter are detailed in subsections 4.3.2 and 4.3.3.1723

4.3.1. Strategies based on inner-outer iterations. Iteratively Reweighted1724

Least Squares (IRLS, [21, Chapter 4], [67]) or Iteratively Reweighted Norm (IRN, [109,1725

199]) methods are very popular schemes that can handle the smoothed reformulation1726

(4.13) of problem (4.9). Let xk,l denote the approximate solution at the lth iteration1727

(of an inner cycle of iterations) for the kth problem of the form (4.14) (i.e., at the1728

kth iteration of an outer cycle of iterations); one typically takes xk,∗ = xk,l when a1729

stopping criterion is satisfied for the inner iteration cycle. IRLS or IRN methods based1730

on an inner-outer iteration scheme are very popular and have been used in combination1731

with different inner solvers, such as steepest descent and CGLS [79, 199].1732

If Wk is square and invertible (note that this can be assumed when the weights1733

are defined as in (4.12) with τ > 0 for any fixed p > 0), problem (4.14) can be easily1734

and conveniently transformed into standard form as follows1735

(4.15) x̄k,∗ = arg min
x̄

‖AW−1
k x̄− b‖22 + λ‖x̄‖22 , so that xk,∗ = W−1

k x̄k,∗.1736

The interpretation of the matrix W−1
k as a right preconditioner for problem (4.14)1737

can be exploited under the framework of priorconditioning; see subsection 4.1 and1738

[33]. Similar to the approaches mentioned for (4.14), Krylov methods can be straight-1739

forwardly adopted to compute an approximate solution of the equivalent kth problem1740

of the form (4.15) (i.e., at the kth iteration of an outer cycle of iterations) through an1741

inner cycle of iterations. In particular, variants based on hybrid projection methods1742

(such as hybrid GMRES or hybrid LSQR) have been successfully considered, with1743

the added benefit that adaptive regularization parameter choice strategies (based,1744

e.g., on the discrepancy principle, UPRE, and GCV) can be considered, effectively1745

overcoming a common drawback of other popular optimization methods for `p regu-1746

larization; see [198]. Specifically, at the lth iteration of a Krylov method for (4.15), let1747

Vk,l ∈ Rn×l be the matrix whose columns span a (preconditioned) Krylov Subspace1748

Kk,l of dimension l; the precise definition of Kk,l depends on the selected projection1749

method. Problem (4.15) can be projected and solved in Kk,l by computing1750

(4.16) ȳk,l = arg min
ȳ

‖A W−1
k Vk,l︸ ︷︷ ︸

=:Zk,l

ȳ − b‖22 + λ‖Vk,lȳ‖22 ,1751
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so that x̄k,l = Vk,l ȳk,l, and1752

xk,l = W−1
k x̄k,l = W−1

k Vk,l ȳk,l = Zk,l ȳk,l .1753

Once xk,l has been computed and once the weights Wk+1 = W̃(p,τ)(xk,l) have1754

been updated according to (4.12), the (k + 1)st problem of the form (4.15), with1755

k replaced by k + 1, needs to be solved: to achieve this, one needs to compute a1756

new Krylov subspace from scratch, defined with respect to the new coefficient matrix1757

AW−1
k+1. For this reason, this approach may become computationally expensive.1758

4.3.2. Strategies based on generalized Krylov methods. One way to avoid1759

inner-outer iterations when applying the IRN method described in subsection 4.3.11760

is to exploit generalized Krylov subspaces (GKS), like the ones described in sub-1761

section 4.1: this approach underlies the so-called GKSpq [163] and MM-GKS [143]1762

algorithms, which we summarize below.1763

Given the initial subspace Kh(A>A,A>b) = ran(V0) generated by the GKB1764

algorithm, where h is small (typically h ≤ 5) and V0 ∈ Rn×h has orthonormal1765

columns, at the kth iteration of the MM-GKS method, a GKS Vk spanned by the1766

orthonormal columns of Vk ∈ Rn×(h+k) is computed, and it is used to project problem1767

(4.14) as follows1768

yk = arg min
y∈Rh+k

‖AVky − b‖22 + λ‖WkVky‖22.1769

Equivalently, introducing the ‘skinny’ QR factorizations1770

(4.17) AVk = QARA , WkVk = QWRW ,1771

the above problem can be reformulated as the low-dimensional (if h+k � min{m,n})1772

problem1773

yk = arg min
y∈Rh+k

‖RAy − (QA)>b‖22 + λ‖RWy‖22 .1774

After the kth approximation to problem (4.14) is formed by taking xk = Vkyk, one1775

computes the residual of the normal equations associated to (4.14)1776

rk = (A>A + λW2
k)xk −A>b .1777

The subspace Vk+1 = ran(Vk+1) is then expanded by adding the vector rk/‖rk‖2;1778

reorthogonalization of the columns of Vk+1 may be advisable to enforce accuracy.1779

An initial guess x0 for xtrue is needed to define the first weights W1, and the authors1780

of [143] suggest to take x0 = b, although this only works when A is square. We1781

emphasize that the regularization parameter λ can be adaptively set during the GKS1782

iterations, effectively overcoming a common drawback of other popular optimization1783

methods for `p regularization; see [27, 28]. Also, an expression for the quadratic tan-1784

gent majorant (4.14) different from Tk(x) can be devised, which allows for a cheaper1785

GKS computation, in that smart updates of the QR factorization (4.17) are per-1786

formed: we refer to [143] for the details. Finally, such strategies based on GKS can1787

also handle generalizations of problem (4.9) where weights are also included in the1788

fit-to-data term.1789

4.3.3. Strategies based on flexible Krylov methods. Another approach1790

that avoids inner-outer iterations when applying the IRN method described in sub-1791

section 4.3.1 is to exploit flexible Krylov subspaces (FKS): this approach underlies1792
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hybrid methods based on the flexible Arnoldi algorithm [88] and the flexible Golub-1793

Kahan algorithm [54], as well as the more recent IRN-FKS methods [89]. The starting1794

point of this class of methods is the formulation (4.15) of the kth reweighted problem.1795

Flexible Krylov methods, which are classically employed to handle iteration-dependent1796

preconditioning [177, 204, 216], provide a natural framework to update the inverted1797

weights W−1
k as soon as a new approximation of xtrue is computed. That is, at each1798

iteration, the updated inverted weights are immediately incorporated within the ap-1799

proximation subspace for the solution to the next problem in the sequence stemming1800

from (4.15), for k = 1, 2, . . . .1801

Formally, both the flexible Arnoldi and the flexible Golub-Kahan algorithms look1802

very similar to their standard counterparts (3.2) and (3.3), respectively. If A is square,1803

taking v1 = b/ ‖b‖2 and defining W1 using an initial guess x0 (W1 = In if x0 = 0),1804

the ith iteration of the flexible Arnoldi algorithm [204] applied to problem (4.15) (with1805

k = i) computes1806

(4.18) zi = W−1
i vi , v = Azi , v = (In −ViV

>
i )v , vi+1 = v/ ‖v‖2 ,1807

where Wi = W̃(p,τ)(xi−1) is defined as in (4.12), xi−1 being the solution obtained1808

at the previous iteration (approximately solving problem (4.15) with k = i− 1), and1809

where Vi = [v1, ...,vi] ∈ Rn×i has orthonormal columns. k iterations of the flexible1810

Arnoldi algorithm can be equivalently expressed as the partial matrix factorization1811

(4.19) AZk = Vk+1Hk , where
Zk = [W−1

1 v1, ...,W
−1
k vk] ∈ Rn×k

Hk = V>k+1AZk ∈ R(k+1)×k .1812

Here the columns of Zk span the approximation subspace for the solution, Vk+1 is1813

defined as in (4.18) and, by construction, Hk is upper Hessenberg. If A is either1814

square or rectangular, taking u1 = b/ ‖b‖2, the ith iteration of the flexible Golub-1815

Kahan algorithm [54, 89] applied to problem (4.15) computes1816

(4.20)
v = A>ui , v = (In −Vi−1V

>
i−1)v , vi = v/ ‖v‖2 ,

zi = (W−1
i )2vi , u = Azi , u = (Im −UiU

>
i )u , ui+1 = u/ ‖u‖2 ,

1817

where the inverted weights W−1
i are updated as in the flexible Arnoldi case, and both1818

Vi = [v1, ...,vi] ∈ Rn×i and Ui = [u1, ...,ui] ∈ Rm×i have orthonormal columns. k1819

iterations of the flexible Golub-Kahan algorithm can be equivalently expressed as the1820

partial matrix factorizations1821

(4.21)

AZk = Uk+1Mk

A>Uk+1 = Vk+1Sk+1
, where

Zk = [(W−1
1 )2v1, ..., (W

−1
k )2vk] ∈ Rn×k

Mk = U>k+1AZk ∈ R(k+1)×k

Sk+1 = V>k+1AUk+1 ∈ R(k+1)×k
.1822

Similar to (4.19), the columns of Zk span the approximation subspace for the solution1823

xk, Vk+1 and Uk+1 are defined as in (4.20) and, by construction, Mk and Sk+11824

are upper Hessenberg and upper triangular, respectively. We emphasize that, in1825

both (4.19) and (4.21), ran(Zk) is not necessarily a Krylov subspace (see [216]), and1826

interpreting it as standard preconditioned Krylov subspaces is not straightforward1827

(see [177]). As in section 3, we assume that both (4.19) and (4.21) are breakdown-1828

free, i.e., at iteration k ≤ min{m,n}, ran(Zk) has dimension k. The approximate1829

solution xk computed at the kth iteration is used to update the matrix Wk+1 to be1830

employed to expand the solution subspace at the (k + 1)st iteration, as in (4.18) and1831

(4.20).1832
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In summary, all the available strategies [54, 88, 89] that approximate the solution1833

of problem (4.15) through flexible Krylov methods compute, at the kth iteration,1834

(4.22) yk = arg min
y

‖AZky − b‖22 + λ‖Pky‖22, xk = Zkyk ∈ ran(Zk) ,1835

and essentially differ in the choice of the regularization matrix Pk ∈ Rp×k. Specifi-1836

cally,1837

(i) The method in [88] and one of the methods in [54] (dubbed ‘hybrid-I’) take1838

Pk = Ik.1839

(ii) One of the methods in [54] (dubbed ‘hybrid-R’) takes Pk = Rk ∈ Rk×k, where1840

Rk is the upper triangular factor in the ‘skinny’ QR factorization of the basis1841

vectors, i.e., Zk = QkRk, which can be efficiently updated for consecutive k.1842

(iii) The methods in [89] take Pk = RW
k ∈ Rk×k, where RW

k is the upper trian-1843

gular factor in the ‘skinny’ QR factorization of the transformed basis vectors,1844

i.e., WkZk = QW
k RW

k . Note that, unless Wk is a multiple of the identity1845

matrix, the QR factorization cannot be efficiently updated for consecutive1846

values of k, but it is still feasible to compute if k � min{m,n}.1847

The three options above reveal that, when using hybrid projection methods based on1848

flexible Krylov subspaces, even if problem (4.14) is transformed into standard form1849

(4.15), projecting and regularizing are not interchangeable anymore. Indeed, option1850

(i) corresponds to a ‘first-project-then-regularize’ scheme (i.e., it penalizes the 2-norm1851

of the projected solution yk) while option (iii) corresponds to a ‘first-regularize-then-1852

project’ scheme; option (ii) penalizes the 2-norm of the full-dimensional solution xk.1853

When option (iii) is used, exploiting the majorization-minimization framework guar-1854

antees that the sequence of approximate solutions {xk}k≥1 to (4.22) converges to a1855

stationary point of problem (4.13). We refer to [89] for more details. Note that,1856

by exploiting the properties of the matrices appearing in (4.19) and (4.21), the fit-1857

to-data term is equivalently expressed as ‖Hky − ‖b‖2e1‖22 in the flexible Arnoldi1858

case, or ‖Mky − ‖b‖2e1‖22 in the flexible Golub-Kahan case. Although the regular-1859

ization parameter λ in (4.22) is displayed as independent of k, a heuristical adaptive1860

choice is possible employing any of the strategies described in subsection 3.3, effec-1861

tively overcoming a common drawback of other popular optimization methods for `p1862

regularization. As illustrated below, a suitable approximation to a solution of (4.9)1863

is efficiently computed if, for small k, the columns of Zk can be used to capture the1864

main features thereof.1865

An illustration. We use the tomography test problem from section 1 to show the1866

behavior of a hybrid method based on the flexible Golub-Kahan algorithm (4.20),1867

for the solution of problem (4.9) with p = 1; specifically, the regularization term in1868

the projected problem (4.22) is chosen as in (i) and the regularization parameter is1869

adaptively set at each iteration using wGCV (3.23). We run the method for 1001870

iterations. In the top row of Figure 4.1 we display the weights Wk at iterations1871

k = 4, 10, 12, 20, reshaped as images. We can clearly see that, as the iterations1872

proceed, the weights become increasingly accurate and structured. Namely, for k = 4,1873

the weights almost uniformly penalize each entry of the solution x4 and therefore1874

are not so effective in enforcing sparsity in x4. Starting at k = 10, larger weights1875

are located in spatial positions corresponding to the zero background or the zero-1876

valued pixels at the center of the phantom to be reconstructed (see also frame (a)1877

in Figure 1.2), and therefore further penalise the corresponding entries of x10. This1878

forces them towards zero. This trend continues and improves in future iterations, e.g.,1879

at k = 20, the zero-valued regions and their spatial boundaries are heavily penalised1880
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Fig. 4.1. For the tomography example, and for a hybrid method based on the flexible Golub-
Kahan algorithm (4.20) for `1-norm regularization, we display the weights Wk (upper rows) and
the basis vectors zk (lower rows), all reshaped as images, generated at iteration k = 4, 10, 12, 20.

by the weighting matrix W20. In the bottom row of Figure 4.1 we display the flexible1881

Golub-Kahan basis vectors zk generated at iterations k = 4, 10, 12, 20, reshaped as1882

images. All of these vectors capture the zero spatial locations of the phantom to be1883

reconstructed, and hence a linear combination of these vectors can produce an accurate1884

solution, where information about the phantom sparsity is encoded. In contrast, the1885

basis vectors computed by the standard GKB-based hybrid method applied to the `2-1886

norm Tikhonov problem (2.1) are not able to capture the sparsity in the phantom: we1887

refer to Figure 3.2, where the GKB basis vectors generated at iterations k = 1, 2, 4, 101888

are displayed, and Figure 3.4, where a GKB-based hybrid reconstruction is displayed.1889

The reconstruction computed at the 91st iteration of the hybrid flexible Golub-Kahan1890

method is displayed in Figure 4.2; looking at the upper-right corner of the phantom1891

displayed as a surface, it is evident that zero pixels can be accurately reconstructed1892

with a flexible method.1893

4.3.4. Sparsity under transform. Many of the methods described above for1894

problem (4.9) can be generalized to approximate a solution to the more general vari-1895

ational regularization problem,1896

(4.23) min
x
‖Ax− b‖22 + λR(x) , for many choices of the functional R(·).1897

All the methods based on inner-outer iterations described in subsection 4.3.1 and the1898

methods based on GKS described in subsection 4.3.2 can handle regularization terms1899

of the form R(x) = ‖L(x)‖pp, where L is a linear operator: this can be done efficiently1900

if, e.g., L(x) = Lx, and matrix-vector products with L are cheap to compute. Note1901

that the discrete total variation (TV) regularization functional can be expressed in1902

this framework. Specifically, discrete anisotropic TV can be expressed as1903

TV(x) = ‖L(x)‖1, where L(x) =

[
In̂ ⊗D1d

D1d ⊗ In̂

]
x1904
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Fig. 4.2. For the tomography example, we display the reconstruction obtained at the 91th
iteration of a hybrid method based on the flexible Golub-Kahan algorithm (4.20) for `1-norm regu-
larization. The relative reconstruction error is ‖xtrue − x91‖2/‖xtrue‖2 = 0.1046. On the left the
reconstructed phantom is displayed as a grayscale image; one the right, the the top right corner of
the reconstructed phantom is displayed as a surface.

and where n̂2 = n, ⊗ is the Kronecker product, and D1d is a one-dimensional finite1905

difference discretization of the derivative operator (so that the upper and lower block1906

in D represent discretizations of the derivatives in the vertical and the horizontal1907

directions of the vectorized image x, respectively. The discrete isotropic TV can be1908

expressed as1909

(4.24) TV(x) = ‖L(x)‖2,1 =
∑
i

‖e>i L(x)‖2, L(x) =
[
(In̂ ⊗D1d)x, (D1d ⊗ In̂)x

]
.1910

Both the discrete TV functionals have the effect of enforcing sparsity of the unknown1911

L(x) (i.e., the (magnitude of the) discrete gradient of x).1912

An IRN method for handling TV-like regularizers was proposed in [237] that1913

employs CGLS during the inner iterations, while [6] uses preconditioned LSQR applied1914

to a problem that is effectively transformed into standard form. The transformed1915

problem amplifies directions spanning the columns of the prior covariance matrix,1916

thereby improving convergence. The authors of [83] propose an inner-outer iterative1917

method that enhances edges through multiplicative updates of the weights, and which1918

exploits the hybrid projection method based on joint bidiagonalization method (4.3).1919

The methods based on flexible Krylov subspaces described in subsection 4.3.3 can be1920

as well extended to handle problem (4.23), but the strategies adopted to achieve this1921

are regularizer-dependent: in other words, no universal approach is possible, even for1922

the special case R(x) = ‖Lx‖pp. For instance, [54] describes an approach that works1923

when L is an orthogonal wavelet transform for methods based on both the flexible1924

Arnoldi and the flexible Golub-Kahan algorithms. Also, [84] describes an extension1925

of FGMRES that handles total variation (4.24) by first transforming the original1926

problem into standard form. Finally, hybrid Krylov projection methods based on1927

either an inner-outer iterative scheme or a flexible scheme, have been used for nuclear1928

norm regularization R(x) = ‖x‖∗, which is meaningful when x is a vectorization of a1929

low-rank 2D quantity (such as a low-rank 2D image); see [87].1930

4.4. Beyond deterministic inversion: Hybrid projection methods in a1931

Bayesian setting. Recently, hybrid projection methods have found utility in the1932

framework of statistical inverse problems, within a Bayesian approach. Our goal in1933
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this section is to draw important connections between deterministic and statistical1934

inverse problems, so that the reader can understand the role that hybrid projection1935

methods can play in the Bayesian setting. For more detailed descriptions, we refer the1936

reader to excellent books and reviews on Bayesian inverse problems [42, 48, 49, 155]1937

and computational uncertainty quantification [10], and references therein.1938

Traditionally, regularization can be interpreted as a practical approach to replace1939

an ill-posed problem by a nearby well-posed one. For example, Tikhonov regulariza-1940

tion was originally motivated as a tool to stabilize the solution process by computing1941

one single deterministic solution of a modified problem [224, 225]; see also section 2.1942

However, the Bayesian framework provides a systematic way for solving and ana-1943

lyzing inverse problems by modelling the unknown as a random variable. Although1944

Bayesian inverse problems can be analyzed in a continuous setting [222], here we focus1945

on discrete inverse problems, where the underlying mathematical models have been1946

discretized before applying Bayesian analysis.1947

In subsection 4.4.1 we will draw connections between regularization and Bayesian1948

inversion. Then, in subsections 4.4.2 and 4.4.3, we describe some computational tools1949

for UQ that can exploit hybrid projection methods. These tools bridge developments1950

in the numerical linear algebra community with those in the UQ community for more1951

efficient and practical inversion that can benefit a wide range of applications.1952

4.4.1. Connections between regularization and Bayesian inversion. Con-1953

sider the stochastic extension of (1.1) where b,x, and e are random variables. For1954

notational clarity, note that we have dropped the subscript on x. Assume that x and1955

e are independent and normally distributed,1956

(4.25) x ∼ N (µ, α2Q) and e ∼ N (0, σ2R)1957

where µ ∈ Rn is the prior mean and Q ∈ Rn×n and R ∈ Rm×m are symmetric positive1958

definite (SPD) covariance matrices for the prior and noise respectively. Here we1959

assume that α and σ are known. Although it is typically not necessary to include these1960

parameters (i.e., they can be absorbed in the definition of Q and R), we include them1961

for clarity and to draw connections to hybrid projection methods in subsection 4.4.3.1962

The probability density function for b given x is given by the likelihood function,1963

πlike(b | x) =

(
1

2πσ2|R|

)m/2
exp

(
− 1

2σ2
‖b−Ax‖2R−1

)
,1964

where | · | denotes the determinant of a matrix and ‖z‖2M = z>Mz for any z ∈ Rn and1965

M ∈ Rn×n SPD. The estimate that maximizes the likelihood function (dubbed the1966

maximum likelihood estimator or MLE) is the solution to an unregularized weighted1967

least-squares problem, i.e.,1968

xMLE = arg max
x

πlike(b | x)1969

= arg min
x

1

2σ2
‖b−Ax‖2R−1 = arg min

x

1

2σ2
‖LR(b−Ax)‖221970

1971

where maximizing the likelihood function is equivalent to minimizing the negative log-1972

likelihood function and R−1 = L>RLR is a symmetric (e.g., Cholesky) factorization.1973

Note that if R = Im, then we get a standard least-squares problem. The likelihood1974

function is defined solely based on the assumptions for the noise model and extends1975

naturally for nonlinear problems, e.g., for nonlinear forward model, b = F (x) + e1976
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where F (·) : Rn → Rm and e ∼ N (0,R), the MLE estimate is the solution to the1977

nonlinear least-squares problem, minx
1

2σ2 ‖b − F (x)‖2R−1 . Additive Gaussian noise1978

is the most common noise model used in the literature, but it is worth mentioning1979

that in many medical and atmospheric imaging applications, a Poisson noise model1980

is appropriate. Specifically, in the linear case and assuming independence, [b]i ∼1981

Poisson([Ax]i); the likelihood model takes the form1982

πlike(b | x) =

m∏
i=1

[Ax]
[b]i
i

[b]i!
exp(−[Ax]i),1983

where the notation [·]i stands for the ith entry of a vector. For general data-fit terms,1984

hybrid projection methods described in subsection 4.3 can be used to approximate1985

the MLE. For the remainder of this section, we consider additive Gaussian noise.1986

Next, we consider assumptions on prior information about x, as described in1987

(4.25), where the prior density function is given by1988

πprior(x) =

(
1

2πα2|Q|

)n/2
exp

(
− 1

2α2
‖x− µ‖2Q−1

)
.1989

Using Bayes’ Theorem, we can derive the posterior density function1990

πpost(x | b) =
πlike(b | x)πprior(x)

π(b)

∝ exp

(
− 1

2σ2
‖b−Ax‖2R−1 −

1

2α2
‖x− µ‖2Q−1

)(4.26)1991

where ∝ stands for ‘proportional to’. A crucial point to note is that for Bayesian1992

inverse problems, the posterior density function is the solution to the inverse problem.1993

The posterior distribution provides the full information about the distribution of1994

parameters in x, given the data b. However, for practical interpretation and data1995

analysis, it is necessary to describe various characteristics of the posterior distribution1996

[223]; thus leading to the field of uncertainty quantification.1997

For example, a common goal is to compute the realization of largest a posteriori1998

probability corresponding to the maximum of (4.26), i.e., the so-called maximum a1999

posteriori (MAP) estimate. We denote this as2000

xMAP = arg max
x

πpost(x | b)(4.27)2001

= arg min
x

1

2σ2
‖b−Ax‖2R−1 +

1

2α2
‖x− µ‖2Q−12002

=
(
A>R−1A + λQ−1

)−1 (
A>R−1b + λQ−1µ

)
,(4.28)20032004

where λ = σ2

α2 and the closed form solution in (4.28) can be obtained by setting the2005

derivative to zero.2006

Furthermore, it can be shown that, under the above assumptions (linear prob-2007

lem with Gaussian noise and prior), the posterior is Gaussian, where the posterior2008

covariance matrix and the posterior mean (i.e., the MAP estimate) are given as2009

(4.29) Γ ≡ ( 1
α2 Q−1 + 1

σ2 A>R−1A)−1 and xMAP = Γ( 1
σ2 A>R−1b + 1

α2 Q−1µ),2010

respectively [155]. In the following sections, we describe approaches that can exploit2011

hybrid projection methods for MAP estimation and subsequent UQ.2012
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4.4.2. Hybrid projection methods for MAP estimation. Recall that the2013

solution to a Bayesian inverse problem is the posterior distribution, and the goal is2014

to describe and explore it. For linear inverse problems with Gaussian priors, if the2015

regularization parameters σ and α are set in advance, the posterior is Gaussian with2016

covariance matrix (4.29), and various tools can be used for UQ. However, if the reg-2017

ularization parameters are not known in advance, one may consider a fully Bayesian2018

framework, where all unknown parameters (including the regularization parameters)2019

are treated as random variables, and use hierarchical models [10], also defining hyper-2020

priors for these hyperparameters. For example, for Gaussian priors, since σ and α are2021

unknown, we can assume that they are random variables with hyperpriors π(σ) and2022

π(α), respectively. Then, using again Bayes’ law, we have the full posterior density,2023

(4.30) πpost(x, σ, α|b) ∝ πlike(b|x)πprior(x)π(σ)π(α).2024

For linear inverse problems with Gaussian priors, common choices are Gamma hyper-2025

priors, i.e.,2026

π(σ) ∝ σβσ−1 exp(−γσσ),2027

π(α) ∝ αβα−1 exp(−γαα),20282029

where βσ, γσ, βα, and γα are parameters. In addition to requiring the user to pre-2030

define these additional parameters for the hyperpriors, a potential computational2031

disadvantage of this approach is that the posterior (4.30) is no longer Gaussian, so2032

more sophisticated sampling techniques (e.g., hierarchical Gibbs sampling) should be2033

used.2034

Instead, we can consider an alternative approach by observing that (4.27) is a2035

general-form Tikhonov problem, thus establishing a main connection between hybrid2036

projection methods and Bayesian inverse problems. Therefore, a simple practical al-2037

ternative to adopting a full Bayesian paradigm is to first use a hybrid projection2038

method to compute a MAP estimate efficiently while selecting the regularization pa-2039

rameter automatically (often based on some statistical tools, see subsection 3.3), and,2040

once this is done, perform standard UQ with fixed hyperparameters [209].2041

Next we discuss some examples of priors and hybrid methods that can be used2042

to approximate the corresponding MAP estimates. Gaussian priors are the most2043

common priors used in the literature. We split the discussion into three scenarios.2044

First, for cases where the symmetric factorization of the precision matrix (i.e., the2045

inverse of the covariance matrix) is computationally feasible, i.e., Q−1 = L>QLQ, the2046

MAP estimate is the solution to the optimization problem,2047

min
x

1

2σ2
‖b−Ax‖2R−1 +

1

2α2
‖LQ(x− µ)‖22.2048

With a simple change of variables, y = x− µ and d = b−Aµ, the problem reduces2049

to solving2050

min
y

1

2σ2
‖d−Ay‖2R−1 +

1

2α2
‖LQy‖22.2051

Let R = Im: then, this is general-form Tikhonov problem (4.1), and hybrid projection2052

methods to solve this problem were discussed in subsection 4.1. For this scenario, a2053

prevalent approach in the literature models LQ as a sparse discretization of a differ-2054

ential operator (for example, the Laplacian or the biharmonic operator). This choice2055

corresponds to a covariance matrix that represents a Gauss-Markov random field.2056
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Since for these choices, the precision matrix is sparse, working with LQ directly has2057

obvious computational advantages.2058

Second, for the case where application of Q−1 is feasible (e.g, it is a sparse ma-2059

trix) but computing the symmetric factorization is too expensive, a factorization-free2060

preconditioned LSQR approach called MLSQR was proposed in [6]. The approach2061

is analytically equivalent to LSQR applied to a preconditioned least-squares problem2062

with the preconditioner L−1
Q , but avoids the factorization by using weighted inner2063

products to implicitly apply the preconditioner. The authors considered applications2064

in the context of nonlinear regularizers.2065

Third, there are many prior models where the precision matrix Q−1 and its fac-2066

torization are not available, but matrix-vector multiplications with Q can be done2067

efficiently. For example, for Gaussian random fields, entries of the covariance matrix2068

are computed directly as qij = κ(xi,xj), where {xi}ni=1 are the spatial points in the2069

domain and κ is a covariance kernel function (e.g., γ-exponential, or Matérn class).2070

Although there are many modeling advantages, the main challenge is that the result-2071

ing prior covariance matrices are often very large and dense; explicitly forming and2072

factorizing these matrices is prohibitively expensive. For such prior models, efficient2073

matrix-free techniques (e.g., FFT embedding and H-matrix approaches) can be used,2074

for example, to compute matrix-vector products with the prior covariance matrix Q.2075

Generalized hybrid projection methods were proposed in [61] to compute Tikhonov2076

regularized solutions (i.e., MAP estimate (4.27)) effectively. The approach relies on2077

a change of variables and uses a generalized GKB algorithm for projection [5]; note2078

that this is a fundamentally different algorithm than the one presented in subsec-2079

tion 4.3.2 for `2− `p regularization that is based on GKB (for initialization) and some2080

generalization of Krylov projection methods.2081

Non-Gaussian priors are also common in the literature, but are more challenging2082

to handle. One class of priors contains the so-called sparsity-promoting priors or2083

`p-priors, which have the density function,2084

(4.31) πprior(x) = exp(−α‖x‖pp), for 0 < p ≤ 1.2085

One of the main challenges in considering (4.31) is that the posterior distribution is2086

no longer Gaussian. However, one could still compute the MAP estimate, which is2087

the solution to optimization problem,2088

min
x

1

2σ2
‖b−Ax‖2R−1 + α‖x‖pp.2089

Note that p = 1 corresponds to a prior where the components of x are independent2090

and follow the univariate Laplace(0, α−1) distribution [10, Chapter 4.3]; the Laplacian2091

prior promotes sparsity in x. On a related note, Besov priors can preserve sharp2092

discontinuous interfaces in Bayesian inversion, and when combined with a wavelet-2093

based approach, they can promote sparsity in the MAP estimates [30, 66, 229] but,2094

to the best of our knowledge, hybrid projection methods have not been used in this2095

setting. For many non-Gaussian priors, the methods described in subsection 4.3 may2096

be used to approximate the MAP estimate.2097

Similar approaches have been considered for hierarchical Bayesian models, where2098

hyperparameters (e.g., from hyperpriors from generalized gamma distributions) are2099

estimated during MAP estimation [43]. For example, priorconditioned Krylov sub-2100

space solvers with early stopping (e.g., via the Morozov discrpancy principle) have2101

been used within alternating optimization schemes for reconstructing sparse solutions2102
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[42, 47]. Such approaches can be used to estimate a very large number of hyperpa-2103

rameters (e.g, prior variances for individual components of the solution), but require2104

solving a sequence of optimization problems similar to reweighted inner-outer itera-2105

tions, c.f. subsection 4.3.2106

4.4.3. Exploiting hybrid projection methods for variance-covariance es-2107

timation and sampling. Handling unknown hyperparameters is not the only task2108

where hybrid projection methods can be beneficial for efficient UQ. In the remaining2109

part of this section, we consider other practical scenarios that combine hybrid projec-2110

tion methods (in particular, low-rank approximations) with UQ. We still focus on the2111

Gaussian, linear case where the posterior is given in (4.26) and consider the simple2112

case where R = Im and Q = In.2113

Assume that a hybrid projection method was used to compute an estimate xk(λk)2114

of xMAP where λk was determined using techniques in subsection 3.3. The posterior2115

variances corresponding to the diagonals of the posterior covariance matrix Γ in (4.29)2116

provide a measure of the spread of the posterior distribution around the posterior2117

mean. For many problems, Γ is large and dense, so forming it explicitly to obtain2118

the diagonal entries may be infeasible. Instead, we can exploit available information2119

from the subspace projection process (c.f., subsection 3.2.1) to estimate the posterior2120

variances.2121

Using notation from subsection 3.2.3, after k iterations of the projection process,2122

we have matrices Gk,Uk+1 and Vk satisfying (3.9). Let G>k Gk = VG(ΣG)>ΣG(VG)>2123

be the eigenvalue decomposition with eigenvalues (σG
1 )2, . . . , (σG

k )2 and let Zk =2124

VkV
G, then we get the following low-rank approximation,2125

(4.32) A>A ≈ VkG
>
k GkV

>
k = Zk(ΣG)>ΣGZ>k .2126

Assume we have an estimate of the noise variance σ2 and fix λ = λk, then2127

using (4.32) and the Woodbury formula, we obtain the approximation2128

Γ = σ2(λIn + A>A)−1 ≈ σ2(λIn + Zk(ΣG)>ΣGZ>k )−1
2129

= σ2(λ−1In − λ−1Zk(Ik + λ((ΣG)>ΣG)−1)−1Z>k )2130

= σ2(λ−1In − Zk∆kZ
>
k ) ≡ Γk21312132

where2133

(4.33) ∆k ≡ λ−1


(σG

1 )2

(σG
1 )2+λ

. . .
(σG
k )2

(σG
k )2+λ

 ∈ Rk×k.2134

Notice that we have an efficient representation of Γk as a low-rank perturbation of the2135

prior covariance matrix, σ2λ−1In. Thus, diagonal entries of Γk can provide estimates2136

of diagonal entries of Γ, where the main computational requirement is to obtain the2137

diagonals of the rank-k perturbation. In addition, one can approximate the sum of2138

all values in the posterior covariance matrix 1>Γ 1 as2139

(4.34) 1>Γk 1 = σ2(λ−1n− 1>Zk∆kZ
>
k 1)2140

where 1 is an n×1 vector of ones. These approximations were considered for dynamic2141

inverse problems using generalized Golub-Kahan approaches in [52, 62].2142
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Fig. 4.3. For the deblurring and tomography examples, we provide estimates of 1>Γ 1 using
both the GKB approximation and the RSVD approximation. Solution variances computed at the
stopping iterate (corresponding to the vertical line) are provided for GKB. Solution variances that
can be obtained using an RSVD approximation with comparable computational cost are provided as
well.

In fact, there has been plenty of work at the intersection of Krylov methods2143

and UQ. For example, the idea of using low-rank perturbative approximations for the2144

posterior covariance matrix previously appeared in [29, 31, 77, 221]. Along these lines,2145

there has also been some work on using randomized approaches to efficiently compute2146

a low-rank approximation for use in UQ settings [210]; however, such methods are2147

not ideal for inverse problems where the decay of the singular values is not sufficiently2148

rapid (e.g., in tomography applications). In Figure 4.3, we provide estimates of (4.34)2149

at various iterations k of the GKB process. In exact arithmetic, the values converge2150

to 1>Γ 1. We also provide estimates that use a randomized SVD approximation2151

of the original matrix A, where to ensure that the main computational cost is the2152

same, the iteration corresponds to the number of matrix-vector multiplications with2153

A and A>. See Appendix C for details on the RSVD approximation. We observe2154

that for both the deblurring and tomography examples, the GKB approximations2155

of the sum of elements in the posterior covariance matrix exhibit faster decay (and2156

hence better approximations) than the RSVD approximations. For the automatically2157

selected stopping iteration, denoted with a vertical line, we provide an image of the2158

solution variances (corresponding to the diagonal entries of Γk) for both GKB and2159

RSVD.2160

2161

Theoretical results on approximating the posterior distribution and posterior co-2162

variance matrix can be found in [209, 215]. Beyond variance-covariance estimation,2163

previous work on Lanczos methods for sampling from Gaussian distributions can be2164

found in, e.g., [53, 188, 212, 217], but these algorithms are meant for sampling from2165
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generic Gaussian distributions and do not exploit the structure of the posterior covari-2166

ance matrix (4.26). Low-rank approximations for proposal sampling are commonly2167

used for efficient UQ. In [26], the authors consider a fully Bayesian approach with as-2168

signed hyperpriors and use MCMC methods with Metropolis-Hastings independence2169

sampling with a proposal distribution based on a low-rank approximation of the prior-2170

preconditioned Hessian. In [208], these ideas are combined with marginalization. We2171

point the interested reader to [10, 49] for more examples where Krylov methods are2172

used for UQ.2173

4.5. Beyond linear forward models: Hybrid projection methods for2174

nonlinear inverse problems. In this section, we consider the role that hybrid pro-2175

jection methods have played in the context of solving nonlinear inverse problems. We2176

remark that the literature on nonlinear inverse problems is vast, and it is not our in-2177

tention to survey this topic. We point the interested reader to books on this topic, see2178

e.g., [74, 171, 213], and we focus on frameworks and methodologies for solving nonlin-2179

ear inverse problems that have successfully utilized or incorporated hybrid projection2180

methods.2181

We are concerned with nonlinear inverse problems, where the forward model de-2182

pends nonlinearly on the desired parameters. Consider the discrete nonlinear inverse2183

problem,2184

(4.35) b = F (xtrue) + e2185

where F : Rn → Rm is a transformation representing the forward model. Notice that2186

the linear model (1.1) is a special case of (4.35) with F (xtrue) = Axtrue.2187

Regularization methods for nonlinear inverse problems typically follow a varia-2188

tional approach, where the goal is to solve an optimization problem of the form,2189

(4.36) min
x
J (b, F (x)) + λR(x)2190

where similar to (1.5), J is some loss function, R is a regularization operator, and2191

λ ≥ 0 is a regularization parameter.2192

There are two main computational difficulties in solving problems like (4.36),2193

especially for large-scale problems. First, the regularization parameter is unknown,2194

and estimating it may require a significant computational effort to solve the same2195

nonlinear optimization problem multiple times for various parameter choices, which2196

can be a very expensive and time-consuming task; see [73]. Second, since the opti-2197

mization functional to be minimized is nonlinear, gradient-based iterative techniques2198

(even Newton-type approaches) are needed, but computing derivatives can be costly2199

[112]. We remark that similar challenges arise for linear inverse problems with nonlin-2200

ear regularization terms (see, e.g., (4.10)), where sophisticated nonlinear optimization2201

schemes are required; we point the reader to the discussion in subsection 4.3 for some2202

efficient approaches to deal with these kinds of nonlinearities. Alternatively, a two-2203

stage method could also be used that splits the inversion process. First the misfit J2204

is reduced to some target misfit value. In the second stage, the target misfit is kept2205

constant and the regularization term R is reduced. Although very popular in practice,2206

this approach is not guaranteed to converge (in fact it diverges in some cases) and2207

appropriate safety steps and ad hoc parameters must be used; see [65, 189].2208

Specifically for nonlinear least-squares problems, other solvers can be used, such2209

as the one described in Haber and Oldenburg [114], which combines a damped Gauss-2210

Newton method for local regularization with a GCV method for adaptively selecting2211
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the global regularization parameter. To the best of our knowledge, this is the first pa-2212

per that exploits hybrid projection methods for selecting the regularization parameter2213

for solving large-scale nonlinear inverse problems. Thus, we further describe the ap-2214

proach. Consider problem (4.36) where J (b, F (x)) = ‖F (x)− b‖22 and R(x) = ‖x‖22,2215

such that we get the Tikhonov-regularized nonlinear problem,2216

(4.37) min
x
‖F (x)− b‖22 + λ ‖x‖22 .2217

Let’s begin by assuming that λ is fixed. If we differentiate the objective function in2218

(4.37) with respect to x and set the result to zero, we get2219

(4.38) g(x) = 2(J(x)>(F (x)− b) + λx) = 0,2220

where g(x) is the gradient and J(x) = ∂F
∂x ∈ Rm×n is the Jacobian matrix that2221

contains the partial derivatives or sensitivities of the forward model. If we find a2222

solution to (4.38), we have the desired solution to (4.37) for fixed λ. Rather than2223

using Newton’s method, which requires calculating the second derivative of F with2224

respect to x (i.e., differentiation of g(x)), a damped Gauss-Newton approach can be2225

used. That is, let F (x + δx) = F (x) + J(x)δx + R(x, δx), be a linearization of F .2226

Since R(x, δx) is assumed small, we aim to solve the Gauss-Newton equations,2227

(4.39) (J(x)>J(x) + λIn)δx = −J(x)>(F (x)− b)− λx.2228

or equivalently the least-squares problem,2229

(4.40) min
δx

∥∥∥∥[ J(x)√
λIn

]
δx−

[
b− F (x)√

λx

]∥∥∥∥ .2230

The Gauss-Newton method is an iterative approach where given an initial guess x0,2231

the update at the kth iteration is computed by solving (4.40) for the perturbation2232

δx and updating the solution estimate as xk+1 = xk + αkδx, where αk is a line-2233

search parameter. Notice that, for a given λ, Krylov iterative methods could be used2234

to efficiently estimate the solution to (4.40). However, the authors of [114] propose2235

a reformulation that enables the direct use of hybrid projection methods described2236

in Section 3. The astute observation is that at each iteration of the Gauss-Newton2237

method, we have the option to solve directly for the step δx or to solve for the updated2238

solution xk+1. To see the latter option, substitute xk+1 = xk + δx into (4.39) to get2239

least-squares problem,2240

(4.41) min
x

∥∥∥∥[J(xk)√
λIn

]
x−

[
b− F (xk)− J(xk)xk

0

]∥∥∥∥2

2

.2241

At this point, (4.41) is just a standard-form, linear Tikhonov problem, and hybrid2242

projection methods can be used in each nonlinear step to simultaneously estimate2243

the regularization parameter λ and compute an approximate solution. Although the2244

hybrid projection method solves the linearized problem with automatic regularization2245

parameter selection, a major concern is that the objective function changes from2246

iteration to iteration because the regularization parameter is changing. Furthermore,2247

we are not guaranteed to reduce the nonlinear function that we seek to minimize.2248

A remedy is to consider the solution to (4.41) as a proposal xpk+1 and to take the2249

step direction to be a weighted version of the perturbation δx = xpk+1 − xk. The2250
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Algorithm 4.1 Gauss-Newton with hybrid projection for nonlinear problem (4.37)

Input: F , b, x0, k = 0
1: while stopping criterion not satisfied do
2: Calculate J(xk) and r(xk)
3: Compute xpk+1 by solving (4.41) using a hybrid projection method
4: Calculate the perturbation δx = xpk+1 − xk
5: Update xk+1 = xk + αδx where α ensures reduction of the nonlinear function
6: k = k + 1
7: end while

Output: xk

general damped Gauss-Newton approach with a hybrid Krylov solver is summarized2251

in Algorithm 4.1.2252

Another adaptive approach to select the regularization parameter when solving2253

nonlinear inverse problems is based on continuation or cooling approaches [112]. By2254

reformulating the Tikhonov problem as a constrained optimization problem where the2255

objective function is given in terms of the regularizer, and the constraints are given2256

in terms of the data misfit, and exploiting the connection between the regularization2257

parameter and the inverse of the Lagrange multiplier for the constraint, the regu-2258

larization parameter can be selected to be a large value initially, and then gradually2259

reduced to an appropriate value.2260

Finally, in the context of solving large-scale nonlinear inverse problems, there is
another class of nonlinear inverse problems that have greatly benefited from recent
developments in hybrid projection methods. These are separable nonlinear inverse
problems, where the unknown parameters can be separated into two distinct compo-
nents such that the forward model is linear in one set of parameters and nonlinear in
another set of parameters. This situation corresponds to problem (4.35) with

F (xtrue) = A
(
x

(nl)
true

)
x

(l)
true,

where xtrue =
[
x

(nl)
true x

(l)
true

]>
, with x

(nl)
true ∈ R` and x

(l)
true ∈ Rn−` and A is a lin-2261

ear operator defined by a set of nonlinear parameters x
(nl)
true. Therefore F is linear in2262

x
(l)
true and nonlinear in x

(nl)
true. Furthermore, it is often the case that ` � n − `. Such2263

problems arise in imaging applications such as blind deconvolution, super-resolution2264

imaging, and motion correction [55, 58], but also in other inverse problems; see [97].2265

Although one could treat separable nonlinear inverse problems using standard op-2266

timization techniques, approaches that exploit their separable structure have been2267

successfully used to improve convergence. For example, a decoupled or alternating2268

optimization approach is a simple approach where, for fixed x(nl), a hybrid projection2269

method could be used to solve the resulting linear inverse problem, and, for fixed x(l),2270

a nonlinear optimization scheme can be used to solve the smaller dimensional opti-2271

mization problem. However, a potential disadvantage of these alternating approaches2272

is slow convergence and sensitivity to initializations. An alternative approach is to2273

use the variable projection method [97, 103, 104, 157, 184], where the linear variables2274

are implicitly eliminated and a reduced optimization problem is solved. Consider the2275
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full Tikhonov problem,2276

(4.42) min
x(nl),x(l)

‖A
(
x(nl)

)
x(l) − b‖22 + λ‖x(l)‖22 =

∥∥∥∥[ A
(
x(nl)

)
√
λIn

]
x(l) −

[
b
0

]∥∥∥∥2

2

.2277

A variable projection approach applied to (4.42) would seek the solution to the reduced2278

optimization problem,2279

(4.43) min
x(nl)
‖A(x(nl)) x(l)(x(nl))− b‖22,2280

where2281

(4.44) x(l)(x(nl)) = arg min
x(l)

∥∥∥∥[ A(x(nl))√
λIn

]
x(l) −

[
b
0

]∥∥∥∥2

2

.2282

Each iteration of a nonlinear optimization method to solve (4.43) would require solv-2283

ing linear subproblems (4.44). Since this is a linear inverse problem, hybrid projection2284

methods can be used (especially in the large-scale setting), and the regularization pa-2285

rameter can be estimated automatically, giving rise to an inner-outer iterative scheme2286

[55, 58]. A more recent hybrid regularization method, which avoids inner-outer iter-2287

ations by exploiting inexact Krylov solvers, is presented in [86]. For solving inverse2288

problems with coupled variables, an approach called Linearize and Project (LAP) was2289

described in [173] as an alternative to variable projection methods. LAP can support2290

different regularization strategies as well as equality and inequality constraints, and2291

thus is more broadly applicable than variable projection. Hybrid regularization meth-2292

ods are used in LAP to simultaneously compute the search direction and automatically2293

select an appropriate regularization parameter at each iteration.2294

Although hybrid projection methods have found practical uses in various non-2295

linear scenarios, there are still open questions and yet-to-be-explored uses of hybrid2296

projection methods for solving nonlinear inverse problems. Recent advancements2297

in flexible hybrid methods and iteratively reweighted approaches for solving linear2298

inverse problems with nonlinear regularization terms have opened the door to new2299

approaches for handling nonlinear optimization problems. Furthermore, the train-2300

ing of many state-of-the-art deep neural networks can be interpreted as a separable2301

nonlinear inverse problems [176], and there is great potential for the use of hybrid2302

projection methods for training deep neural networks [156].2303

5. Software. We start this section by listing some software packages for inverse2304

problems that contain implementations of some hybrid projection methods. To the2305

best of our knowledge, one of the most recent ones is called IR Tools [82], and it runs2306

in MATLAB. This toolbox provides implementations of a range of iterative solvers,2307

including many of the hybrid projection methods discussed in this paper and extend-2308

ing the GKB-based hybrid solver originally implemented in [172]. Various examples2309

(including image deblurring and tomography reconstruction) are also provided as test2310

problems. For specific details, we point the reader to the IR Tools software package2311

and documentation [82]. Here we only highlight a few important design objectives2312

and considerations for the implementation of hybrid projection methods for inverse2313

problems, which are also adopted within IR Tools:2314

• The implementation should work for the common scenarios where the coeffi-2315

cient matrix is only available as a (sparse) matrix, a function handle, or an2316

object. Matrix-vector multiplications with the coefficient matrix represent a2317
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core component (and oftentimes the computational bottleneck) of iterative2318

projection methods. High performance or distributed computing tools can2319

be used to accelerate the task of matrix-vector multiplication. For example,2320

hybrid projection methods were used with message passing tools for cryo-EM2321

reconstruction [63] and were included in a high-performance java library in2322

[236].2323

• The software should enable automatic regularization parameter selection and2324

automatic stopping criteria, but at the same time provide easy-to-use func-2325

tionalities for users to manually change any algorithm parameter.2326

• Compared to some standard iterative methods, one of the main disadvan-2327

tages of hybrid methods is the need to store the basis vectors for solution2328

computation. Thus, it is often assumed that solutions can be captured in rel-2329

atively few iterations or that appropriate preconditioning can be used. Thus,2330

it is desirable that implementations of hybrid projection methods can incor-2331

porate preconditioning techniques or exploit recycling techniques. Another2332

potential issue is the computational costs associated with reorthogonalization,2333

especially with GKB-based hybrid methods [11, 22].2334

• The software should provide basic outputs (e.g., the solution automatically2335

computed with default solvers’ settings) as well as a range of outputs that2336

provide relevant information (e.g., for subsequent UQ or prediction).2337

The illustrations for this paper were made using the IR Tools software, and MAT-2338

LAB scripts for reproducing the experiments reported herein are available at2339

https://github.com/juliannechung/surveyhybridprojection. Although IR Tools contains2340

implementations of many state-of-the-art hybrid projection methods, it is by no means2341

exhaustive and the authors encourage further extensions. For some recent work on2342

generalized hybrid projection methods and subsequent UQ (including those described2343

in subsection 4.4), and hybrid methods with recycling (including those described in2344

subsection 4.2), see https://github.com/juliannechung.2345

Leaving aside hybrid methods’ implementations, but still considering software2346

packages written in MATLAB, we point the reader to Regularization Tools [124]2347

for getting familiar with some small-scale test problems and basic direct and iterative2348

regularization methods, Restore Tools [172] for image deblurring problems, and2349

AIR Tools II [132] for tomographic reconstruction problems. For computational2350

UQ, we refer to the accompanying MATLAB codes for the book [10].2351

Leaving aside MATLAB, a number of general purpose or application-specific li-2352

braries for the solution of inverse problems exists, which are mainly written in Python2353

or C++. To the best of our knowledge, at present, such software collections do not2354

contain implementations of hybrid projection methods, and therefore providing an2355

exhaustive account of such packages is outside the scope of this paper. We mention2356

anyway a few of them, which currently appear to be among the most popular ones2357

within communities of researchers in inverse problems. Concerning Python-based2358

general-purpose ones, we list:2359

• The Operator Discretization Library (ODL) [1], which mainly provides a2360

unified framework for the discretization of a variety of forward operators and2361

optimization algorithms for variational regularization.2362

• The Inverse Problem PYthon library (hIPPYlib) [230], which implements2363

state-of-the-art algorithms for PDE-based deterministic and Bayesian inverse2364

problems.2365

Concerning application-specific software, many recent libraries target tomography2366

reconstruction problems, to match the latest technological advances in the field that2367
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enable enhanced and innovative imaging modalities: these packages typically provide2368

extensive modular optimization toolboxes to be used in connection with variational2369

regularization methods, powerful data processing and visualization tools, as well as2370

new challenging test cases and datasets. We mention the Python-based Core Imaging2371

Library (CIL) [154, 187], the Python-based platform tomoPy [110] for the analysis of2372

tomographic datasets acquired with synchroton light sources. Aside from Python, the2373

toolboxes TIGRE [18] and ASTRA [228], and the CCPi-Regularisation toolkit [158],2374

all feature building blocks in C or C++ and user interfaces in MATLAB (TIGRE,2375

ASTRA, CCPi) and Python (CCPi and ASTRA only).2376

6. Concluding remarks and future outlook. This survey provides an over-2377

view of hybrid projection methods for solving large-scale inverse problems. Our aim2378

is to provide a gentle introduction to the area for budding scientists and interested2379

researchers working in related fields. We explain the general principles underlying hy-2380

brid projection methods for standard Tikhonov regularization (Algorithm 3.1), and2381

carefully describe the most common algorithmic choices (including subspace projec-2382

tion approaches and parameter choice techniques), and finish with a summary of2383

extensions that go beyond standard approaches and uses.2384

The field of hybrid projection methods has gained significant momentum in the2385

past few years, and there are many new areas of exploration. Large-scale inverse2386

problems continue to motivate the development of more efficient and accurate solvers,2387

which often leverage tools from different areas of numerical linear algebra, optimiza-2388

tion, and statistics. We envisage that a lot of scientific research will be devoted to2389

using hybrid projection methods to incorporate more sophisticated priors and for per-2390

forming subsequent UQ, e.g., for further prediction and forecasting, in forthcoming2391

years. There is still need for the development and analysis of new parameter selection2392

rules, and strategies that can incorporate supervised learning techniques in optimal2393

experimental design and deep learning frameworks seem promising [2]. Efficient im-2394

plementations of hybrid methods will be needed for advanced distributed computing2395

architectures and sampling techniques for massive or streaming data problems. With2396

the plethora of examples of inverse problems in areas ranging from biomedical imaging2397

to atmospheric monitoring for threat detection, it is inevitable that many scientific2398

and engineering applications will benefit from recent and forthcoming advancements2399

in hybrid projection methods for inverse problems.2400
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Appendix A. SVD formulations of quantities used for regularization2408

parameter selection. As emphasised in subsection 3.3, many of the regularization2409

parameter selection strategies for hybrid projection methods require solving a nonlin-2410

ear optimization or root finding problem to estimate λk. As far as k � min{m,n},2411

one can exploit the SVD of the matrix Gk appearing in the projected problem (3.11)2412

for efficient computation of the norm of the approximate solution, the norm of the2413

residual, and the trace of the influence matrix, which all depend on λk. We remark2414

that these efficiencies are especially impactful when these quantities need to be com-2415
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puted for many regularization parameters (e.g., to obtain a representative L-curve, or2416

when many iterations of the nonlinear optimization solver or zero finder for λk have2417

to be performed). In this section, we provide SVD formulations for these quantities2418

for Tikhonov regularization, but remark that similar derivations can be made for any2419

spectral filtering method (e.g., TSVD) used to solve the projected problem (3.11) in2420

a hybrid projection method.2421

Let the SVD of Gk ∈ R(k+1)×k be given as in (3.10) and let

Ũ = Uk+1U
G =

[
ũ1 · · · ũk+1

]
and Ṽ = VkV

G =
[
ṽ1 · · · ṽk

]
;

notice that these contain orthonormal columns. Then the solution of the regularized,2422

projected problem (3.12) has the form2423

xk(λk) = Ṽ((ΣG)>ΣG + λkIk)−1(ΣG)>Ũ>b2424

=

k∑
i=1

φG

i

ũ>i b

σG
i

ṽi, where φG

i =
(σG
i )2

(σG
i )2 + λk

.2425

2426

The influence matrix (3.13) can then be represented as2427

AA†reg(λk, k) = ŨΣG((ΣG)>ΣG + λkIk)−1(ΣG)>Ũ>.24282429

Using the above formulas, the squared norm of the solution can be represented as2430

‖xk(λk)‖2 =

k∑
i=1

(
φG

i

ũ>i b

σG
i

)2

2431

and the trace of the influence matrix takes the form2432

trace
(
AA†reg(λk, k)

)
=

k∑
i=1

φG

i .2433

To obtain an expression for the norm of the residual, we exploit the fact that Ũ2434

has orthonormal columns to get2435

‖r(xk(λk))‖2 = ‖ŨΣG((ΣG)>ΣG + λIk)−1(ΣG)>Ũ>b− ŨŨ>b‖22436

= ‖(ΣG((ΣG)>ΣG + λkIk)−1(ΣG)> − Ik)Ũ>b‖2.24372438

Let b̃ = Ũ>b ∈ Rk+1 with entries b̃i, then2439

‖r(xk(λk))‖2 = b̃2k+1 +

k∑
i=1

(φG

i − 1)2b̃2i .2440

Thus, computing the norms of candidate solution and residual vectors, and the trace2441

of the influence matrix can be done efficiently exploiting the SVD of Gk, without2442

forming the solution, the residual or the influence matrix.2443

Appendix B. Parameter choice rules that exploit the links between2444

GKB and Gaussian quadrature rules.2445

As mentioned in subsection 3.3, connections between GKB and Gaussian quadra-2446

ture rules can be naturally exploited in the framework of hybrid projection methods,2447
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for both defining the kth projected problem (3.7) or (3.8) and computing an approx-2448

imation λk of the regularization parameter λ for the Tikhonov problem (2.1). Such2449

connections are underpinned by a solid and elegant theory: in this appendix we will2450

mention without proof some basic facts, which are fully unfolded in, e.g., [101]. Since2451

all the parameter choice rules described for Tikhonov regularization in subsection 3.3.22452

and subsection 3.3.3 involve the discrepancy norm ‖r(x(λ))‖, and since2453

‖r(x(λ))‖2 = λ2b>(AA> + λIm)−2b2454

= λ2b>ψ(AA>)b , with ψ(t) = (t+ λ)−2 ,(B.1)2455

in the following we provide the details of the approximation of such a quadratic form2456

and for an overdetermined A (i.e., m ≥ n) only. However, the derivations below can2457

be extended to consider other quadratic forms commonly appearing in regularization2458

parameter choice strategies, such as ‖x(λ)‖.2459

Considering the eigendecomposition AA> = UAΣA(ΣA)>(UA)> given in terms2460

of the SVD of A (2.2), and setting2461

ΛA := diag(λA

1 , . . . , λ
A

n, 0, . . . , 0) = ΣA(ΣA)> ∈ Rm×m, b̄ := λ(UA)>b,2462

it can be shown that2463

(B.2) λ2b>ψ(AA>)b = b̄>ψ(ΛA)b̄ =

∫ λA
1

0

ψ(t)dω(t) =: I(ψ) ,2464

where the discrete measure ω(t) is a non-decreasing step function with jump discon-2465

tinuities at the λA
i ’s and at the origin. It is well-known that the above integral can2466

be numerically approximated using a Gaussian quadrature rule, whose nodes are the2467

zeros of a family of orthonormal polynomials with respect to the inner product in-2468

duced by the measure ω(t). Such polynomials satisfy a three-term recurrence relation2469

whose coefficients coincide with the entries of the tridiagonal matrix computed by2470

the symmetric Lanczos algorithm applied to AA> with initial vector b (specifically,2471

the entries on the kth column of such tridiagonal matrix define the kth orthonormal2472

polynomial). Note that such decomposition can be conveniently obtained from the2473

partial GKB decomposition, as shown in (3.4).2474

Consider the eigendecomposition Tk,k = UB(ΣB)2(UB)> given in terms of the2475

SVD of the matrix Bk,k appearing in (3.3), i.e., Bk,k = UBΣB(VB)>. Then it is2476

well-known that the k-point Gauss quadrature rule for approximating (B.2) is given2477

by2478

Gk(ψ) = λ2‖b‖2
k∑
j=1

ψ((σB

i )2)(e>1 UBek)2 = λ2‖b‖2e>1 UBψ((ΣB)2)(UB)>e12479

= λ2‖b‖2e>1 ψ(Tk)e1 = (λ‖b‖e1)>ψ(Bk,kB
>
k,k)(λ‖b‖e1) ,(B.3)2480

i.e., the quadratic form ψ evaluated with respect to the projected matrices. The2481

k-point Gauss-Radau quadrature rule for approximating (B.2), with one node at2482

the origin, can be evaluated similarly, replacing the matrix Bk,kB
>
k,k by the ma-2483

trix Bk−1B
>
k−1, where Bk−1 ∈ Rk×(k−1) is computed at the (k− 1)st GKB iteration.2484

That is,2485

(B.4) Rk(ψ) = (λ‖b‖e1)>ψ(Bk−1B
>
k−1)(λ‖b‖e1) .2486
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Since ψ defined in (B.1) is a 2k-times differentiable function, the quadrature errors2487

EQk(ψ) := I(ψ)−Qk(ψ) associated with the k-point Gauss and Gauss-Radau quad-2488

rature rules (i.e., with Qk(ψ) = Gk(ψ) and Qk(ψ) = Rk(ψ), respectively), are given2489

by2490

EGk(ψ) =
ψ(2k)(ζGk)

(2k)!

∫ +∞

0

k∏
i=1

(t− ζi)2dω(t) ,2491

ERk(ψ) =
ψ(2k−1)(ζ̄Rk)

(2k − 1)!

∫ +∞

0

t

k∏
i=2

(t− ζ̄i)2dω(t) ,2492

where ζGk , ζ̄Rk ∈ [0, λA
1 ], and the ζi’s and the ζ̄i’s denote the nodes of the Gauss and2493

the Gauss-Radau quadrature rules, respectively. Since ψ(2k−1)(t) < 0 and ψ(2k)(t) > 02494

for t ≥ 0, the Gauss-Radau quadrature rule (B.4) is an upper bound for ‖r(λ)‖2, while2495

the Gauss quadrature rule (B.3) is a lower bound for ‖r(λ)‖2.2496

The idea of exploiting Gaussian quadrature to approximate functionals used to2497

set the Tikhonov regularization parameter was first presented by Golub and Von2498

Matt [107], with derivations specific for GCV. This investigation can be regarded as2499

a particular case of the broader explorations of the links between some Krylov meth-2500

ods and Gaussian quadrature conducted by Golub and collaborators; see again [101]2501

for a complete overview of the accomplishments in this area. An important remark2502

concerning GCV is that a different treatment is needed to derive bounds for the nu-2503

merator and denominator of the GCV function (3.22): since a trace term appears in2504

the denominator, a randomized trace estimator can be used to compute its approxima-2505

tion (see, e.g., [107, 207]), while Gauss-quadrature bounds can be used to handle the2506

numerator, which is essentially of the form (B.1). Note, however, that the approach2507

in [107] cannot be regarded as a hybrid solver according to the framework adopted2508

in this paper, since a Krylov projection method is adopted to set the regularization2509

parameter λ for the full-dimensional Tikhonov problem (2.1), which is then solved2510

using an iterative method. To the best of our knowledge, Gaussian-quadrature-based2511

regularization parameter choice strategies were first adapted to work within hybrid2512

solvers in [34]: here the algorithm involved in setting the regularization parameter2513

according to GCV is identical to the one described in [107], and the computations2514

performed to approximate the numerator of the GCV functional in (3.22) are then2515

also employed to define approximation subspaces (of increasing dimensions) for the2516

solution, effectively making this approach a hybrid solver. A similar strategy, still2517

tailored to GCV, is presented in [76].2518

Regularization parameter choice rules for hybrid methods that exploit the links2519

between GKB and Gaussian quadrature rules are especially successful and well-2520

understood when the L-curve is employed. Gauss and Gauss-Radau quadrature rules2521

provide computationally inexpensive upper and lower bounds (i.e., boxes) for each2522

point on the L-curve associated to the full-dimensional Tikhonov problem, creating a2523

so-called ‘L-ribbon’; see, e.g., [35, 45]. Since the L-curve bounds are nested (i.e., they2524

become tighter as the number of GKB iterations increases), when the ‘L-ribbon’ is2525

narrow it is possible to infer the approximate location of the ‘vertex’ of the L-curve2526

from its shape. For hybrid methods, the ‘L-ribbon’ may first conveniently determine2527

narrow bounds for the (direct) Tikhonov L-curve (thereby performing a suitable num-2528

ber of GKB iterations), and then easily locate the approximate vertex of the L-curve.2529

Most recently, the authors of [85] introduce a new principled and adaptive algorithmic2530

approach for regularization, which provides reliable parameter choice rules by leverag-2531
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ing the framework of bilevel optimization, GKB-based hybrid methods, and the links2532

between Gauss quadrature and GKB.2533

To conclude, exploiting the connections between GKB and Gaussian quadrature2534

rules can lead to the derivation of new regularization parameter choice rules that2535

can naturally be employed within GKB-based hybrid methods; error estimates for2536

Gaussian quadrature rules can allow further theoretical analysis of the approximation2537

properties of GKB-based hybrid methods.2538

Appendix C. Low-rank Approximation of the Posterior Covariance us-2539

ing RSVD. In subsection 4.4.3, we described low-rank approximation techniques2540

based on hybrid projection methods that can be used for efficient computation of2541

desired variance-covariance estimates. In this section, we describe an approach based2542

on a randomized version of the SVD (henceforth called RSVD) for computing a rank2543

k approximation of an m×n matrix A [116]. Then, we use the RSVD approximation2544

to approximate the posterior covariance matrix (see subsection 4.4.3).2545

The idea underlying the RSVD approach is to find a matrix Q whose range ap-
proximates that of A. This is done by first drawing a standard Gaussian random
matrix G ∈ Rn×(k+p), where k is the desired target rank and p ≥ 0 is an oversam-
pling parameter. Then, the matrix Y = AG, computed with k + p matrix-vector
multiplications with A, contains random linear combinations of columns of A. We
can obtain a matrix Q such that ran(Q) ≈ ran(A) using a thin QR factorization
Y = QR. A low-rank approximation can be obtained as

A ≈ Q Q>A︸ ︷︷ ︸
B

= QUBΣB(VB)>.

The process is summarized in Algorithm C.1.

Algorithm C.1 RSVD

Input: matrix A ∈ Rm×n with target rank k, and oversampling parameter p such
that k + p ≤ min{m,n}

Output: Û ∈ Rm×k, Σ̂ ∈ Rk×k, and V̂ ∈ Rn×k
1: Draw standard Gaussian random matrix G ∈ Rn×(k+p)

2: Multiply Y = AG
3: Compute thin QR factorization Y = QR
4: Form B = Q>A
5: Calculate thin SVD B = UBΣB(VB)>

6: Set Û = QUB(:, 1 : k), Σ̂ = ΣB(1 : k, 1 : k), and V̂ = VB(:, 1 : k)

2546

Notice that the total number of matrix-vector multiplications with A is k+p and2547

with A> is at most k + p. If the singular values of A decay rapidly or if the rank of2548

A is exactly k, then ran(Q) is a good approximation of ran(A). Moreover, the above2549

algorithm can be combined with a power iteration (replacing line 2 of Algorithm C.12550

with Y = (AA>)qAG for q ≥ 0) for tighter approximation bounds, but this would2551

require additional matrix-vector multiplications with A and A>. Assuming that2552

we a rank-k RSVD approximation A = ÛΣ̂V̂>, an approximation of the posterior2553

covariance matrix can be obtained as2554

(C.1) Γ ≈ σ2(λI + V̂Σ̂
>

Σ̂V̂>)−1.2555
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Results comparing the GKB approximation and the RSVD approximation for variance-2556

covariance estimation are provided in Figure 4.3 for the deblurring and tomography2557

examples.2558
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[89] S. Gazzola, J. G. Nagy, and M. Sabaté Landman. Iteratively reweighted FGMRES and FLSQR2759
for sparse reconstruction. SIAM J. Sci. Comput., pages S47–S69, 2021.2760

[90] S. Gazzola, S. Noschese, P. Novati, and L. Reichel. Arnoldi decomposition, GMRES, and2761
preconditioning for linear discrete ill-posed problems. Applied Numerical Mathematics,2762
142:102–121, 2019.2763

[91] S. Gazzola and P. Novati. Automatic parameter setting for Arnoldi-Tikhonov methods. J.2764
Comput. Appl. Math., 256:180–195, 2014.2765

[92] S. Gazzola and P. Novati. Inheritance of the discrete Picard condition in Krylov subspace2766
methods. BIT Numerical Mathematics, 56(3):893–918, 2016.2767

[93] S. Gazzola, P. Novati, and M. R. Russo. Embedded techniques for choosing the parameter in2768
Tikhonov regularization. Numer. Linear Algebra Appl., 21(6):796–812, 2014.2769

[94] S. Gazzola, P. Novati, and M. R. Russo. On Krylov projection methods and Tikhonov regu-2770
larization. Electron. Trans. Numer. Anal., 44:83–123, 2015.2771

[95] S. Gazzola, E. Onunwor, L. Reichel, and G. Rodriguez. On the Lanczos and Golub-Kahan2772
reduction methods applied to discrete ill-posed problems. Numer. Linear Algebra Appl.,2773
23:187–204, 2016.2774

[96] T. Goldstein and S. Osher. The split Bregman method for L1-regularized problems. SIAM J.2775
Imaging Sci., 2(2):323–343, 2009.2776

[97] G. Golub and V. Pereyra. Separable nonlinear least squares: the variable projection method2777
and its applications. Inverse Problems, 19(2):R1–R26, 2003.2778

[98] G. H. Golub, M. Heath, and G. Wahba. Generalized cross-validation as a method for choosing2779
a good ridge parameter. Technometrics, 21(2):215–223, 1979.2780

[99] G. H. Golub and W. Kahan. Calculating the singular values and pseudo-inverse of a matrix.2781
Journal of the Society for Industrial and Applied Mathematics, Series B: Numerical2782
Analysis, 2(2):205–224, 1965.2783

[100] G. H. Golub, F. T. Luk, and M. L. Overton. A block Lanczos method for computing the sin-2784
gular values and corresponding singular vectors of a matrix. ACM Trans. Math Software,2785
7(2):149–169, 1981.2786

[101] G. H. Golub and G. Meurant. Matrices, moments, and quadrature with applications. Princeton2787
University Press, Princeton, NJ, 2010.2788

[102] G. H. Golub and D. P. O’Leary. Some history of the conjugate gradient and Lanczos algo-2789
rithms: 1948–1976. SIAM review, 31(1):50–102, 1989.2790

[103] G. H. Golub and V. Pereyra. The differentiation of pseudo-inverses and nonlinear least squares2791
problems whose variables separate. SIAM Journal on numerical analysis, 10(2):413–432,2792
1973.2793

[104] G. H. Golub and V. Pereyra. Separable nonlinear least squares: the variable projection method2794
and its applications. Inverse Problems, 19:R1–R26, 2003.2795

[105] G. H. Golub and C. F. Van Loan. Matrix Computations. The Johns Hopkins University Press,2796
2013.2797

[106] G. H. Golub and U. Von Matt. Quadratically constrained least squares and quadratic prob-2798
lems. Numer. Math., 59:561–580, 1991.2799

[107] G. H. Golub and U. Von Matt. Generalized cross-validation for large-scale problems. Journal2800

71

This manuscript is for review purposes only.

https://github.com/jnagy1/IRtools


of Computational and Graphical Statistics, 6(1):1–34, 1997.2801
[108] R. A. Gonsalves. Phase diversity in adaptive optics. Opt. Eng., 21:829–832, 1982.2802
[109] I. F. Gorodnitsky and B. D. Rao. A new iterative weighted norm minimization algorithm and2803

its applications. In IEEE Sixth SP Workshop on Statistical Signal and Array Processing,2804
pages 412–415, 1992.2805

[110] D. Gürsoy, F. D. Carlo, X. Xiao, and C. Jacobsen. TomoPy: a framework for the analysis of2806
synchrotron tomographic data. J. Synchrotron Radiat., 21:1188–1193, 2014.2807

[111] E. Haber. Computational Methods in Geophysical Electromagnetics. SIAM, Philadelphia, PA,2808
2014.2809

[112] E. Haber, U. M. Ascher, and D. Oldenburg. On optimization techniques for solving nonlinear2810
inverse problems. Inverse Problems, 16(5):1263, 2000.2811

[113] E. Haber, L. Horesh, and L. Tenorio. Numerical methods for experimental design of large-scale2812
linear ill-posed inverse problems. Inverse Problems, 24(5):055012, 2008.2813

[114] E. Haber and D. Oldenburg. A GCV based method for nonlinear ill-posed problems. Com-2814
putational Geosciences, 4(1):41–63, 2000.2815

[115] E. Haber and L. Tenorio. Learning regularization functionals—a supervised training approach.2816
Inverse Problems, 19(3):611, 2003.2817

[116] N. Halko, P.-G. Martinsson, and J. A. Tropp. Finding structure with randomness: Proba-2818
bilistic algorithms for constructing approximate matrix decompositions. SIAM review,2819
53(2):217–288, 2011.2820

[117] M. Hanke. Regularization with differential operators: An iterative approach. Numerical2821
Functional Analysis and Optimization, 13(5-6):523–540, 1992.2822

[118] M. Hanke. Conjugate Gradient Type Methods for Ill-Posed Problems. Pitman Research Notes2823
in Mathematics, Longman Scientific & Technical, Harlow, Essex, 1995.2824

[119] M. Hanke. The minimal error conjugate gradient method is a regularization method. Pro-2825
ceedings of the American Mathematical Society, 123(11):3487–3497, 1995.2826

[120] M. Hanke. On Lanczos based methods for the regularization of discrete ill-posed problems.2827
BIT, 41(5):1008–1018, 2001.2828

[121] M. Hanke and P. C. Hansen. Regularization methods for large-scale problems. Surv. Math.2829
Ind, 3(4):253–315, 1993.2830

[122] M. Hanke, J. G. Nagy, and R. J. Plemmons. Preconditioned iterative regularization for ill-2831
posed problems. In L. Reichel, A. Ruttan, and R. S. Varga, editors, Numerical Linear2832
Algebra, pages 141–163. de Gruyter, Berlin, 1993.2833

[123] P. C. Hansen. The discrete picard condition for discrete ill-posed problems. BIT, 30:658––672,2834
1990.2835

[124] P. C. Hansen. Regularization Tools: A MATLAB package for analysis and solution of discrete2836
ill-posed problems. Numerical Algorithms, 6(1):1–35, 1994.2837

[125] P. C. Hansen. Rank-Deficient and Discrete Ill-Posed Problems. SIAM, Philadelphia, PA,2838
1998.2839

[126] P. C. Hansen. Discrete Inverse Problems: Insight and Algorithms. SIAM, 2010.2840
[127] P. C. Hansen. Oblique projections and standard-form transformations for discrete inverse2841

problems. Numerical linear algebra with applications, 20(2):250–258, 2013.2842
[128] P. C. Hansen, Y. Dong, and K. Abe. Hybrid enriched bidiagonalization for discrete ill-posed2843

problems. Numerical Linear Algebra with Applications, 26(3):e2230, 2019.2844
[129] P. C. Hansen, K. Hayami, and K. Morikuni. GMRES methods for tomographic reconstruction2845

with an unmatched back projector. Journal of Computational and Applied Mathematics,2846
413:114352, 2022.2847

[130] P. C. Hansen and T. K. Jensen. Smoothing-norm preconditioning for regularizing minimum-2848
residual methods. SIAM J. Matrix Anal. Appl., 29(1):1–14, 2007.2849

[131] P. C. Hansen and T. K. Jensen. Noise propagation in regularizing iterations for image deblur-2850
ring. Electron. Trans. Numer. Anal., 31:204–220, 2008.2851

[132] P. C. Hansen and J. S. Jørgensen. AIR Tools II: Algebraic Iterative Reconstruction Methods,2852
Improved Implementation. Numerical Algorithms, 2018. Sotfware available at https:2853
//github.com/jakobsj/AIRToolsII/.2854

[133] P. C. Hansen, J. S. Jørgensen, and W. R. B. Lionheart. Computed Tomography: Algorithms,2855
Insight, and Just Enough Theory. SIAM, Philadelphia, PA, 2021.2856

[134] P. C. Hansen, J. S. Jørgensen, and P. W. Rasmussen. Stopping rules for algebraic iterative2857
reconstruction methods in computed tomography. In 2021 21st International Conference2858
on Computational Science and Its Applications (ICCSA), pages 60–70. IEEE, 2021.2859

[135] P. C. Hansen, M. E. Kilmer, and R. Kjeldsen. Exploiting residual information in the parameter2860
choice for discrete ill-posed problems. BIT Numerical Mathematics, 46(1):41–59, 2006.2861

[136] P. C. Hansen, J. G. Nagy, and D. P. O’Leary. Deblurring Images: Matrices, Spectra and2862

72

This manuscript is for review purposes only.

https://github.com/jakobsj/AIRToolsII/
https://github.com/jakobsj/AIRToolsII/
https://github.com/jakobsj/AIRToolsII/


Filtering. SIAM, Philadelphia, PA, 2006.2863
[137] P. C. Hansen and D. P. O’Leary. The use of the L-curve in the regularization of discrete2864

ill-posed problems. SIAM J. Sci. Comput., 14:1487–1503, 1993.2865
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