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Abstract— Water resources are vital to the energy conversion process but 
few efforts have been devoted to the joint optimization problem which is 
fundamentally critical to the water-energy nexus for small-scale or remote 
energy systems (e.g., energy hubs). Traditional water and energy trading 
mechanisms depend on centralized authorities and cannot preserve security 
and privacy effectively. Also, their transaction process cannot be verified and 
is subject to easy tampering and frequent exposures to cyberattacks, forgery, 
and network failures. Toward that end, water-energy hubs (WEHs) offers a 
promising way to analyse water-energy nexus for greater resource utilization 
efficiency.  

We propose a two-stage blockchain-based transactive management 
method for multiple, interconnected WEHs. Our method considers peer-to-
peer (P2P) trading and demand response, and leverages blockchain to create 
a secure trading environment. It features auditing and resource transaction 
record management via system aggregators enabled by a consortium 
blockchain, and entails spatial-temporal distributionally robust optimization 
(DRO) for renewable generation and load uncertainties. A spatial-temporal 
ambiguity set is incorporated in DRO to characterize the spatial-temporal 
dependencies of the uncertainties in distributed renewable generation and 
load demand. We conduct a simulation-based evaluation that includes robust 
optimization and the moment-based DRO as benchmarks. The results reveal 
that our method is consistently more effective than both benchmarks. Key 
findings include i) our method reduces conservativeness with lower WEH 
trading and operation costs, and achieves important performance 
improvements by up to 6.1%; and ii) our method is efficient and requires 18.7% 
less computational time than the moment-based DRO. Overall, this study 
contributes to the extant literature by proposing a novel two-stage 
blockchain-based WEH transaction method, developing a realistic spatial-
temporal ambiguity set to effectively hedge against the uncertainties for 
distributed renewable generation and load demand, and producing empirical 
evidence suggesting its greater effectiveness and values than several prevalent 
methods.  

 
Index Terms—Blockchain, spatial-temporal ambiguity set, two-stage 

framework, water-energy nexus. 

NOMENCLATURE 
A. Sets  

T Time slots. 

H Water energy hubs (WEHs). 

 
 

B. Parameters  

���� 
�  Unit cost of selling power to the market. 

����  
�/�/�

 Unit cost of buying market power, gas, water.  

���
� , ���

� , ���
�  Reward unit cost of resource trading estimation. 

����
� , ����

� , ����
�  Unit cost of resource trading among P2P WEHs. 

��
��, ��

��, ��
�� Depreciation unit cost of storage devices. 

����
� , ����

�  Penalty unit cost of power trading difference among two 

stages. 

����
� , ����

�  Penalty unit cost of gas and water trading difference 

among two stages. 

����
� , ����

� , ����
�  Penalty unit cost of resource trading difference among 

two stages for WEHs. 

����
{∙}  Cost coefficient of consensus process. 

��, ��� CHP’s power and heating conversion efficiency. 

�� Efficiency of gas furnace conversion. 

���� Coefficient of performance. 

����
�  Conversion efficiency for P2G electrolyser. 

���
�  Conversion efficiency of boiler. 

����
� , ���

�  Water consumption coefficient.  

���,���
� , ����,���

�  

���,���
� , ����,���

�  

Maximum (max) input of all the energy converters. 

���,���
� , ����,���

�  

���,���
� , ����,���

�  

Minimum (min) input of all the energy converters. 

���,���
� , ���,���

�  Max & min input of electric boiler.  

���,���/���
�,��  

 Max & min charging power of heat storage. 

���,���/���
�,���  

 Max & min discharging power of heat storage. 

���,���/���
�,��  

 Max & min charging power. 

���,���/���
�,���  

 Max & min discharging power. 

���,���/���  Max & min remaining energy of battery.  

���,���/���
�,��  

 Max & min charging water. 

���,���/���
�,���  

 Max & min discharging water. 

���,���/���  Max & min remaining water.  

���
�� , ���

��� Charging and discharging efficiency of battery. 

����/���
���

  Max & min buying power from the market. 

����/���
���   Max & min selling power to the market. 

����/���
���

  Max & min buying gas from the market. 

����/���
���

  Max & min buying water from the market. 
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��,���/���
���   Max & min buying power between WEHs. 

��,���/���
���   Max & min selling power of WEHs. 

��,���/���
���   Max & min buying heat between WEHs. 

��,���/���
���   Max & min selling heat between WEHs. 

��,���/���
���   Max & min buying water between WEHs. 

��,���/���
���   Max & min selling water between WEHs. 

��
�,���, ��

�,���, ��
�,��� Max load with demand response. 

���,���, ���,���, 

���,��� 

Demand response level (%). 

��,� Output forecast of PV generation. 

��,�
� , ��,�

� , ��,�
�  Load demand of power, heat and water. 

 
 

C. Variables 

��,�
�,���, ��,�

�,��� Selling and buying power with the market. 

��,�
�,���, ��,�

�,��� Buying gas/water from the market. 

��,�,�/�
�,���  P2P power trading amount of WEHs. 

��,�,�/�
�,���  P2P heat trading amount of WEHs. 

��,�,�/�
�,���  P2P water trading amount of WEHs. 

��,�� ,�
�,� , ��,�� ,�

�,�  Energy output of CHP. 

��,��,�
�,� , ��,���,�

�,� ,  

��,���,�
�,� , ��,��,�

�,�  

Energy output of gas furnace, GSHP, P2G and 

boiler. 

��,���/�� ,�
�,�  Hydraulic demand of P2G and CHP. 

��,��,�
�,�� , �ℎ,��,�

�,��ℎ (dis)Charging amount of battery devices.  

��,��,�
�,�� , ��,��,�

�,���  (dis)Charging amount of heat storage devices. 

��,��,�
�,�� , ��,��,�

�,���  (dis)Charging of water storage devices. 

��,��,�
� , �ℎ,��,�

� , �ℎ,��,�
�  Residual capacity of energy storage devices.  

��,�
��,�, ��,�

��,�, ��,�
��,� Load deviation owing to demand response. 

��,�
� , ��,�

� , ��,�
�  Load after demand response.  

��,� PV generation uncertainty. 

��,���, ��,��, ��,� Load uncertainty. 

 

I. INTRODUCTION 

A. Research Motivation 

NERGY and water are closely interdependent and can create 
significant restrictions on each other. Water resources are 
critical to energy transmission, distribution and conversion 

[1]. To illustrate, the converted heat in combined heat and 
power (CHP) often appears in hot water. Power-to-gas (P2G) 
facilities consume a giant portion of water and split it into 
hydrogen via electrolyzers [2]. Hydrogen can be fed and stored 
into natural gas pipes or storage devices, and absorbing carbon 
dioxide emissions. Furthermore, water facilities consume 3% of 
the total electric power in the U.S [3]. Toward that end, about 
80% of the electric power consumed by water distribution 
systems is used to pump and distribute water in urban areas. In 
the existing research, energy and water are mostly modelled and 
managed separately, which substantially affects the resource 
usage efficiency.  

The emerging multi-energy perspective allows effective 

ways to enhance energy utilization efficiency [4]. Central to 
multi-energy carriers are energy hubs that serve as an interface 
between energy suppliers and consumers [5]. These hubs 
provide greater operational flexibility through energy 
conversions. Previous research has shown a desirable efficacy 
in the trading and operations facilitated by interconnected 
multi-energy hubs [6, 7]. The dense linkage between water and 
energy resources underscore the criticality of increasing the 
overall operational efficiency, especially in light of their 
increasing synergistic relationship in urban areas. However, 
water-energy hubs (WEHs) have received little attention and 
warrant efforts to examine the multiplicity of feedback and 
interdependency, which jointly influence the sustainability of 
water-energy nexus in the form of WEHs.  

As energy trading is transforming from the centralized 
management toward a consumer-interactive paradigm, the P2P 
trading environment for WEHs should be analysed to increase 
the overall efficiency of the water-energys nexus. Yet, the 
growing use of data sharing in P2P trading, enabled by 
advanced information and communication technologies (ICTs), 
has led to serious security and privacy problems [8, 9]. Instead 
of a centralized third party that acts as a transaction 
intermediary, a blockchain can be employed to provide a 
transparent, secure trading platform; e.g., financial applications 
[10]. The blockchain distributes data ledgers among 
autonomous nodes (i.e., entities) and enable smart contracts, 
with increased trading security [11]. With a blockchain, energy 
trading data is stored and transmitted as sealed blocks that are 
linked as a chain. All the entities can verify the chain order to 
detect data tampering [12]. The use of a blockchain ensures 
confidentiality and transparency in P2P trading that includes 
transactions involving multiple energy resources. The 
consensus mechanism is central to a blockchain, because it 
audits and records the (trading) information of distinct nodes 
[13]. This mechanism depicts the dynamically active status of a 
blockchain and is critical to the resulting reliable and efficient 
environment that guarantees genuine and safe transactions [14].  

The uncertainties in water-energy trading stem from 
renewable generation, load, and trading prices. They are 
stochastic in nature, complicate the optimization problem, and 
likely lead to sub-optimal solutions. This uncertainty-aware 
decision-making problem is typically modelled as robust 
optimization (RO) [15, 16] or stochastic optimization (SO) [17, 
18]. In general, RO requires little uncertainty information about 
the predefined uncertainty set and usually leads to excessive 
robustness [19]. On the other hand, SO either highly depends 
on historical data or assumes a particular distribution of the 
uncertainty, and its computational efficiency is an important 
limitation. 

Distributionally robust optimization (DRO) can address the 
limitations of RO and SO, and has been considered for energy 
management [20]. It offers a mitigated robust solution within 
the ambiguity set [21] by using it to characterize all possible 
distributions instead of assuming the availability of an 
uncertainty distribution [22, 23]. The choice of an optimal 
ambiguity set should adhere to two principles: the ambiguity set 
must contain the real distribution and the size of the ambiguity set 
needs to be minimized. When both principles are satisfied, the 
optimization problem can be robustified against the real 

E 
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uncertainty distribution and the computational conservativeness is 
reduced. Building on these principles, we develop a DRO model 
that contains structural information about the underlying 
uncertainty distribution. A new spatial-temporal-based ambiguity 
set is used to represent the copula constraint and thus further 
determine the original discrepancy-based ambiguity set. The 
copula constraint essentially models multivariate dependences, 

such that the resulting spatial-temporal dependencies can 
remove the unrealistic uncertainty distributions of renewable 
generation.  

B. Background and Related Works 

Optimization modelling of the water-energy nexus is closely 
relevant to our study. We then review several representative 
studies of blockchain-based P2P energy trading schemes, and 
finally summarize the state-of-the-art research on DRO. 
Previous literature focuses on joint optimization of water-power 
systems to reduce operation costs and carbon abatement [24-
27]. For example, Oikonomou and Parvania [24] study an 
integrated power-water system (IPWS) and develop an optimal 
power-water flow management model to excavate operational 
benefits and flexibilities in water treatment and desalination 
plants. Li et al. [25] design an optimal demand-side 
management for IPWSs at the distribution level by using a 
quasi-convex hull-based technique for intractable nonlinear 
programming. Mehrjerdi [26] develops a joint optimization of 
IPWS for remote islands and examines a desalination procedure 
that includes multi-stage flash and reverse osmosis, and uses a 
battery system to store excessive renewable generation.  

Previous studies also analyse the water-energy scarcity problem 
in energy shortage and drought scenarios. To test system 
robustness and resilience in extreme weather, Martinez-Cesena et 
al. [28] develop a IPWS simulation method to mitigate climate-
driven stresses and shocks. This method incorporates a mixed 
integer linear programming model to examine assumptions that are 
commonly made by models and methods to simulate the influences 
of high temperatures on generation capacity. Case studies are 
conducted in a Ghanaian IPWS. Zuloaga and Vittal [29] design 
long-term simulations for an IPWS to mitigate the gap between 
requested water and dispatched supply for hedging against extreme 
drought conditions. These studies have shed light on optimization 
of an IPWS but they fall short in coordinating the increasingly 
complex, coupled, and constrained multi-vector energy systems.  

Research on WEH is still an infant field so far, which mostly 
focuses on optimal operation designs to reduce the operation cost. 
Pakdel et al. [30] suggest a multi-objective optimization for WEHs 
to minimize energy costs and the amount of freshwater extracted, 
using the interdependency between the energy hub and water 
desalination systems to reduce the renewable spillage. Roustaei et 
al. [31] design a scenario-based WEH operation scheme for smart 
islands, which considers the impacts of the microgrid integration 
and uncertainty factors. To safely feed power, thermal, and water 
for remote regions, a resilience-based WEH scheduling model is 
proposed by [32], with the consideration of maintenance impacts. 
This model introduces the beneficial degree of freedom to 
guarantee the safe mode of component maintenance programming. 

The emerging blockchain technology offers a promising 
solution to secure trading mechanisms in WEHs. Most previous 
focuses on blockchain-based P2P energy trading and management 
for decentralized energy systems. For example, Huang et al. [33] 
describe a bi-layer energy trading scenario enabled by a multi-

blockchain with delegated proof of reputation for microgrids to 
ensure users can execute their promised transactions completely. 
Yan et al. [34] apply blockchain to trade energy and carbon 
allowance for microgrids, using a scalable payoff allocation 
method for co-operative game formulation. Huang et al. [35] 
suggest scalable blockchain-based energy trading for cooperative 
microgrids, consisted of data, consensus, and application layers. A 
redundant data exchange strategy is used to scale block creation. 
Yang and Wang [36] create a blockchain-based energy trading 
model to attain socially optimal solutions with ensured safety, and 
test the model with a prototype blockchain system implemented on 
a hardware platform. Hua et al. [37] design a blockchain-based P2P 
scheme that integrates negotiation-oriented auctions and pricing 
mechanisms in local energy markets. A Stackelberg cooperative 
game model is developed to aggregate energy retailers and 
prosumers. To incentivize prosumers for energy savings, 
Abdelsalam et al. [38] take a percentage power change approach to 
allow a blockchain to preserve trading information until no 
sensitive information is shared. Xu et al. [39] propose a trustworthy 
dispatch model for distribution energy systems, which considers a 
high penetration of electric vehicles and renewable generation. An 
orderly charging iteration optimization algorithm is applied to 
records and verifications in the blockchain.  

Furthermore, DRO considers the occurrences of various 
uncertainty scenarios as imprecise data that follow an ambiguous 
distribution rather than a deterministic distribution [40]. Moment- 
[41, 42] and discrepancy-based [43, 44] constitute two major types 
of DRO. Most early DRO models apply a moment-based 
ambiguity set that provides limited moment information and 
support. For example, Lu et al. [45] design an electric vehicle 
management model for distribution firms. The model employs 
moment-based DRO to capture the impacts of vehicle mobility and 
seeks to minimize them. Mean vectors and covariance matrices are 
included as additional moment information and a tractable 
semidefinite programming model is then reformulated. Ding et al. 
[46] use the mean, symmetric, and unimodal of different ambiguity 
sets to characterize the stochastic nature of renewable generation 
and contingencies. Yang et al. [47] provide a less conservative 
solution by developing a frequency constrained multi-energy 
system optimization in combination with wind uncertainty, which 
considers the joint chance constraints in second-order moment and 
unimodality. 

Discrepancy-based models define the ambiguity sets as a ball 
within a certain measured space of uncertainty distributions [48, 
49]. Toward that end, Li et al. [50] target microgrid operations and 
exploit the Wasserstein metric to construct the ambiguity set for 
uncertain renewable generation and load consumption. They use 
the Wasserstein radius to quantify the vicinity of support points. 
Che et al. [51] suggest a strategic operation for heating, ventilation, 
and air-conditioning systems, which enhances operational 
efficiency by incorporating a discrepancy-based ambiguity set, in 
the presence of unavoidable forecasting errors of temperature. To 
enhance the computational efficiency (i.e., speed), a separation 
method is applied to perform off-line computations of the 
counterparts in chance constraints. Chu et al. [52] suggest a 
microgrid scheduling approach that considers system frequency 
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dynamics, which employs an ambiguity set to model the noncritical 
load with second-order moment information. In [53], a hybrid 
Wasserstein metric-moment ambiguity set is constructed to capture 
uncertain contingencies for integrated power and heat systems. The 
recast problem under ��  norm is then efficiently solved by a 
modified column-and-constraint generation algorithm.  

A review of related literature indicates several important gaps 
that we seek to address. First, despite the increasing attention to 
water-energy nexus, optimization and transactive management of 
WEHs that considers complex and intrinsic interdependencies in 
the hub level are lacking. Effective P2P water-energy trading 
mechanisms are especially pivotal to efficient coordination of 
multiple, interconnected WEHs. Second, data security is crucial, 
due to the fast-growing cyber-attacks. In that regard, blockchain-
based urban WEH transactive management is promising, avoids 
exclusive reliance on a trusted third party, but remains 
understudied. Third, traditional DRO uses a minimal set of 
historical data to model uncertainties, which is prone to yielding 
excessively conservative solutions. This reveals the need for 
methods capable of enhancing solution optimality and enriching 
the modeling of ambiguity sets. 

C. Key Contributions 

We propose an innovative blockchain-based transactive co-
optimization of WEHs, which considers P2P trading and demand 

response, using a consortium blockchain for privacy-preserving 
trading and operation mechanism. Each WEH represents as an 
automatous entity that consumes and trades water and energy with 
other WEHs or the system aggregator (SA). To be qualified for 
trading of water, power, heating, and gas, a WEH needs to be 
registered with a unique key and certificate using crypto coins. 
Transaction record auditing and sharing to the public are managed 
by SAs rather than being intermediated by a centralized third party. 
The proposed two-stage operation method allows trading with 
external water and energy markets in the day-ahead stage. The 
second (real-time) stage features blockchain-based P2P trading 
among interconnected WEHs. Multi-vector demand response are 
considered in this stage, so WEHs can actively participate in 
response to fluctuating prices in external markets. Our spatial-
temporal DRO considers uncertain weather conditions, user-side 
load fluctuations, variations in renewable generation and load 
demand. These uncertainties are captured by an ambiguity set 
constructed with copula information. Compared with existing 
discrepancy-based ambiguity sets, this copula-based spatial-
temporal ambiguity set effectively incorporates spatial-temporal 
dependencies and avoids unrealistic uncertainty distributions.  

The proposed blockchain-based WEH management is novel and 
valuable. Our study makes several important contributions:  

 
 

 
 

Fig. 1.  Schematic overview of the reported study.   
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Fig. 2. Proposed trading mechanism. 

 
1. Water-energy nexus management: We develop a novel two-

stage water-energy nexus management that involves WEHs, which 
adds to previous research in two essential aspects: i) the water-
energy nexus we formulate is appropriate and crucial for WEHs in 
small-scale communities (e.g., residential areas), while many prior 
studies target meta-analyses or resource allocation problems for 
water-energy nexus at the country or grid level [54-56]; ii) the 
intricate water-energy nexus among water, power, gas, and heat 
aims to achieve system optimality by allocating interactives in 
resource usages [28, 57] and helps ensure transparent, safe P2P 
transactions among WEHs. The transactive management also 
increases operational flexibility and resource utilization efficiency.     

2. Blockchain-based trading mechanism: We create a 
consortium blockchain for secure water-energy trading and 
information sharing. The necessary consensus is incorporated in 
the proposed method’s second stage to audit transactions that then 
are used to link and update blocks in the existing chain. The 
blockchain-based trading mechanism is advantageous since it is 
embedded in the proposed two-stage optimization framework. The 
WEH owners are able to submit initial day-ahead transaction 
requests and adjust their decisions the next day. 

3. Spatial-temporal ambiguity set: To capture variations in 
renewable generation, our DRO includes a spatial-temporal 
ambiguity set, which is constructed with copula information, to 
separate the joint distribution and create marginal distributions and 
dependence structures. The inclusion of correlation information 
can enhance discrepancy-based DRO by removing erroneous 
distributions. 

4. Cross-vector demand response: A cross-vector demand 
response is incorporated to encourage and foster intelligent 
consumptions of water and energy loads, which in turn reduces 
operation costs and contributes to water and energy savings.  

D. Paper Organization 

The rest of the paper is organized as follows. Section Ⅱ presents 
the problem formulation. The solution approach for solving the 
two-stage spatial-temporal DRO is given in section Ⅲ. Section Ⅳ 
discusses simulation results and the conclusion is drawn in section 
Ⅴ. 

II. PROBLEM FORMULATION 

This section presents the blockchain-based transactive 
management model of WEHs firstly, followed by introducing the 
system structure of WEH. Then the day-ahead and real-time 
models are proposed in sections C and D, respectively. In Fig. 1, 
the schematic overview of the entire paper is given.  

A. Blockchain-based Transactive Management  

The water-energy trading is manipulated not only between 
different WEHs, but also between WEHs and SAs. During the first 
stage, the main grid operator (MGO), who is responsible for the 
urban water and energy grids, determines the initial operation 
planning according to the day-ahead trading estimation by WEH 
owners. WEH owners are motivated and recompensed to share the 
expected next-day trading specification with SAs, which 
contributes to the optimal and accurate operation decision made by 
the MGO. The pre-determined trading scheme should be encrypted 
and signed with digital signatures for securing the transaction. The 
MGO receives the pseudonym information from SAs, followed by 
the reserve schedule of energy units based on the collected water-
energy trading plan from SAs. The second stage requires the WEH 
owners to send another water-energy trading request due to the 
uncertain renewable generation and load. The MGO then takes 
corrective actions to mitigate the uncertain trading manner.  

The step-by-step blockchain-based trading mechanism is 
illustrated in Fig. 1. SAs receive the trading requests from WEHs 
and broadcast them to all the WEH owners and the MGO. There is 
a consensus procedure in the second stage for transaction audits, 
which is the responsibility for all the authorized SAs. As shown in 
Fig. 2, an SA is composed of a transaction storage and server, and 
an identification server. We use the transaction server to collect 
trading requests from WEHs. The trading pairs are then matched 
for all the registered WEHs. The identification server is adopted to 
manage the account information of WEHs. It also ciphers and 
forms transactions into blocks followed by the transmission to all 
the SAs for auditing. The transaction records are saved in the 
transaction storage section. Each transaction record is encrypted 
with a unique timestamp and digital signatures are required. WEH 
owners are able to submit a trading request for either the following 
24 hours or conduct the real-time adjustment. We compile smart 
contras via Solidity 0.8.7 with the code shown in Fig. 3. We 
provide a flowchart of the smart contract in Fig. 4 [58, 59]. External, 
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digital data are input to the contract, together with the 
predetermined trigger conditions. The state machine and the 
contract transaction set are used to assess and dock the external 
information. 

 

 
Fig. 3. Deployed smart contract code via Solidity. 
 
 

 
 

Fig. 4. Flowchart of the proposed smart contract. 
 
 

 
Fig. 5. Submitted water-energy request from WEH1. 

 

Once a transaction is authorized by the SA, the transaction is 
completed. In Fig. 5, the figure shows the hash codes of 
transactions and the blocks where the corresponding transactions 
are included. The addresses of the contract sender and receiver are 
also recorded. The hash guarantees this trade is publicly traceable 
and verified by the SA community for viewing and auditing. Each 
WEH is registered via a trusted authority with a unique identity 
���, which is thus legitimate for secure and safe trading. The public 
and private keys ( ����  and ���� ), and certificates (�� ) are 
coupled with ���. The crypto coin is used as an online ledger with 
cryptography to secure transactions. Each ��� has a digital wallet 
with the wallet address ��  and a mappling lits 
{����, ����, ��, ��}  which is provided by the registration 
authority. The WEH owner can decide to trade with other WEHs, 
the MGO or not participate in the trading. Pseudonyms are 
generated for participators for every transaction.  

When trading is agreed, the buying side makes the payment via 
crypto coins. The buying side drafts the transaction record, waiting 
for the verification and signature from the selling side. When a 
trade is agreed, the buying side makes a payment using crypto 
coins. In addition, the buying side drafts the transaction record, and 
waits for verification and signature from the selling side. This trade 
then is uploaded to all the authorized SAs for auditing, which 
provides a proof-of-X (PoX) mechanism, where X can refer to 
anything. Essentially, PoX ensures all decentralized participants’ 
ability to secure the transaction. Exemplary PoX mechanisms 
include proof-of-work, proof-of-stake, proof-of-burn, and proof-
of-inclusion [60, 61]. 

A unique hash of each block is created by the PoW. The 
cryptographic hash provides the main secure guarantee for the 
blockchain as the linkage between each block. To tamper the 
block’s content, the hash with difficulty needs to be disconnected 
first. After a transaction is successfully added to the consortium 
blockchain, it is structured into a block and linked with the existing 
blockchain. The record is publicly visible to all the WEHs and SAs.   

B. System Structure of WEH 

The WEH structure is shown in Fig. 6, which is composed of 
water-energy supply, converters, storage systems, a PV generator, 
and consumption. Each WEH can be supplied from the external 
markets or other interconnected WEHs. CHP generates heat and 
power simultaneously with gas supply. P2G converts power to 
hydrogen gas, which is of high efficiency and enables to reduce 
carbon emission. The ground source heat pump (GSHP) transfers 
to heat from power with the ground as the media. Gas furnaces and 
electric boilers utilize gas and power to produce heat. The proposed 
WEH considers a hybrid storage system to store power, heat, and 
water, which is extensively utilized to facilitate P2P trading and 
demand response. Apart from the local water-energy consumption, 
excessive resources can be traded within the P2P trading 
environment.  

C. Day-Ahead Transactive Management  

The day-ahead transactive co-optimization is to be minimized in 
the first stage. The day-ahead objective is given in (1). The first 
term of (1) shows the reward for selling power to the MGO. Trade 
with external markets is determined in the day-ahead stage. 
Therefore, the second to fourth terms are the estimated purchase of 
water and energy. Next day estimation of load consumption and 
trading are encouraged by the MGO because it is beneficial for 
reducing the difficulties of the main grid management. The day-
ahead trading estimation reward is given in the fifth and sixth terms. 
The lack of day-ahead water and energy purchase due to the 
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wrongly estimated usage may lead to insufficient supply, which 
can be resolved by P2P trading or purchase from the real-time 
external market with a higher price. The final three terms are the 
degradation costs of the hybrid storage system.  

��
 = min �  

�∈�,�∈�

−���� 
� ��,�

�,���

+ ����
� ��,�

�,���
+����

� ��,�
�,���

+����
� ��,�

�,���
 

−���
� ���,�

�,���
+ ��,�

�,���
� − ���

� ��,�
�,���

 

+��
�����,��,�

�,�� + ��,��,�
�,���� + ��

�����,��,�
�,�� + ��,��,�

�,����

+ ��
�����,��,�

�,�� + ��,��,�
�,��� � 

(1) 

1) Conversion Constraints  
The converter operational constraints are shown in (2)-(11). 

Constraint (2) presents the heat output of GSHP. Equation (3) 
shows the output expression of P2G. Constraint (4) models the 
water consumption of P2G. The constraints of the gas furnace, 
electric boiler are given in (5)-(7). For CHP, the power and heat 
output are shown in (8) and (9), respectively, followed by the 
water consumption constraint in (10). Constraint (11) limits the 
input of all the energy converters. 

��,���,�
�,� = ������,���,�

�,�  (2) 

��,���,�
�,� = ����

� ��,���,�
�,�

���
 

(3) 

��,��� ,�
�,� = ����

� ��,���,�
�,�  (4) 

��,��,�
�,� = �����,��,�

�,�  (5) 

��,��,�
�,� = ���

� ��,��,�
�,�  (6) 

��,��,�
�,� = ���

� ��,��,�
�,�  (7) 

��,�� ,�
�,� = ���

� ��,�� ,�
�,�  (8) 

��,�� ,�
�,� = ���

� ��,�� ,�
�,�  (9) 

��,�� ,�
�,� = ���

� ��,�� ,�
�,�  (10) 

�{∙},���
� ≤ ��,{∙},�

�,� ≤ �{∙},���
� , {∙} = ���, �2�, ��, ��, �� (11) 

2) Storage Constraints  
The constraints of the hybrid storage system are shown in 

(12)-(20), including the i) limits of charging and discharging 
power, heat and water, ii) remaining storage capacity 
expression and iii) maximum limits of remaining storage 
capacity.  

���,���
�,��/���

≤ ��,��,�
�,��/���

≤ ��,��,���
�,��/���

 (12) 

��,��,�
� = ��,��,���

� + � ��,��,�
�,�� ���

�� −
�

�
��,��,�

�,���/���
���  

(13) 

���,��� ≤ ��,��,�
� ≤ ���,���

   (14) 

���,���
�,��/���

≤ ��,��,�
�,��/���

≤ ��,��,���
�,��/���

 (15) 

��,��,�
� = ��,��,���

� + � ��,��,�
�,�� ���

�� −
�

�
��,��,�

�,��� /���
���  

(16) 

���,��� ≤ ��,��,�
� ≤ ���,���

   (17) 

���,���
�,��/���

≤ ��,��,�
�,��/���

≤ ���,���
�,��/���

 (18) 

��,��,�
� = ��,��,���

� + � ��,��,�
�,�� −

�

�
��,��,�

�,���   
(19) 

���,��� ≤ ��,��,�
� ≤ ���,���

   (20) 

 

3) Trading with The External Market 
In the day-ahead transactive management, WEH operators 

can trade with the external market for preparing the next-day 

supply. Above all, values of ��,�
�,���

, ��,�
�,���

, ��,�
�,���

, and ��,�
�,���

 

 

 
Fig. 6.  Structure of the proposed WEH.   
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need to be limited. In (21)-(23), balancing conditions for power, 
gas, heat, and water are presented, respectively.  

 ��,�
�,���

+ ��,�� ,�
�,� + ��,��,�

�,��� + ��,� =  

��,���,�
�,� + ��,��,�

�,�� + ��,�
�,���

+��,���,�
�,� + ��,��,�

�,� + ��,�
�

 
 (21) 

��,�
�,���

+ ��,���,�
�,� = ��,��,�

�,� + ��,��,�
�,�  (22) 

��,�� ,�
�,� + ��,���,�

�,� + ��,��,�
�,��� + ��,��,�

�,� = ��,��,�
�,�� +��,�

�  (23) 

��,�
�,���

+ ��,��,�
�,��� = ��,��,�

�,�� + ��,�
�

 
+ ��,��� ,�

�,� + ��,�� ,�
�,�

+ ��,�� ,�
�,�  

(24) 

D. Real-time Transactive Management  

The objective function of real-time model is given in (25), 
containing i) the P2P trading cost among interconnected WEHs, 
ii) the penalty cost of trading with the external markets, and iii) 
the consensus cost for PoW mechanism. The penalty cost is 
used to limit the real-time purchase from the markets. When the 
day-ahead purchase is insufficient, the penalty cost is regarded 
as the purchase from the real-time external market with a higher 
price. On the contrary, the over-purchase from the day-ahead 
market is also regulated as P2P purchase is considered as the 
priority when the external supply is insufficient.    

��
 = min �  

�∈�,�∈�

����
� ���,�,�

�,��� − ��,�,�
�,���� + ����

� ���,�,�
�,��� − ��,�,�

�,���� 

 

+����
� ���,�,�

�,��� − ��,�,�
�,���� + ����

� ���,�
�,���

− ��,�
�,���

� + ����
� ���,�

�,���
− ��,�

�,���
� 

       +����
� ���,�

�,���
+ ��,�

�,���
+ ��,�,�

�,��� + ��,�,�
�,���� + ����

�  (25) 

���,�,�
�,��� + ��,�,�

�,���� + ����
� ��,�

�,���

+ ����
� ���,�

�,���
+ ��,�,�

�,��� + ��,�,�
�,���� 

 

1) P2P Trading and Cross-Vector Demand Response 
In real-time transactive management, P2P trading among 

power, heat, and water is scheduled. Above all, we need to 
ensure the trading amount (��,�,�/�

�,��� , ��,�,�/�
�,��� , ��,�,�/�

�,��� ) is within the 

predefined limits. This paper adopts a cross-vector demand 
response as a viable option to facilitate the active participation 
of WEHs in shifting the load profile of power, heat, and water, 
which is inspired by the integrated demand response in [62, 63]. 
Demand response can guide WEH users with a rational and 
reasonable transfer of water and energy resources to stabilize 
peak and valley load consumption. Accordingly, a lower energy 
consumption cost can be achieved with a load peak shift. The 
pricing-based demand response program is applied [64, 65] 
with a real-time pricing (RTP) tariff scheme. Based on the users’ 
price sensitivity, the original demand is affected by the price 
fluctuation. However, existing literature ignores the demand 
response of water to further enhance the flexibility of system 
operation and thus fail to promote the interaction among water 
and energy. Therefore, the cross-vector demand response is 
central to encourage the active consumption changing 
behaviours of water and energy and facilitate the energy 
substitution effect.   

Equation (26) presents the altered WEH load profile of power, 
heat, and water with the maximum limit shown in (27). 
Constraint (28) limits the load deviation of demand response 
participation. Finally, constraint (29) is used to ensure the total 
load deviation is zero, which indicates that the load 
consumption is only shifted without curtailment.   

 ��,�
{∙} = ��,�

{∙} + ��,�
��,{∙}, {∙} =  �, �, � (26) 

��,�
{∙}

≤ ��
{∙},���

, {∙} =  �, �, � (27) 

���,�
��,{∙}

� ≤ ��,�
{∙} ��{∙},��� , {∙} =  �, �, � (28) 

� ��,�
��,{∙}

�

���

= 0 , {∙} =  �, �, � (29) 

2) Balancing Conditions 
The real-time model takes adjustive recourse actions with 

respect to the parameter changes. Intuitively, due to the P2P 
trading, demand response program, and uncertainties 
considered in the second stage, the new balancing conditions of 
power, gas, heat, and water are given in (30)-(33). The rest of 
the second-stage constraints are the same as those of the first-
stage constraints in (2)-(24) when the superscript ‘s’ is replaced 
by ‘r’, which represent ‘scheduled’ and ‘regulated’, 
respectively.  

��,�
�,���

+ � ��,�,�
�,��� + ��,�� ,�

�,� + ��,��,�
�,��� + ��,� =

�∈�

  

��,���,�
�,� + � ��,�,�

�,��� + ��,��,�
�,��

�∈�

+ ��,�
�,���

+ ��,�
�  (30) 

��,�
�,���

= ��,��,�
�,� + ��,��,�

�,�  (31) 

� ��,�,�
�,��� + ��,�� ,�

�,� + ��,���,�
�,� + ��,��,�

�,��� =

�∈�

  

� ��,�,�
�,��� + ��,��,�

�,��

�∈�

+ ��,�
�  (32) 

��,�
�,���

+ � ��,�,�
�,��� + ��,��,�

�,��� = � ��,�,�
�,���+��,��,�

�,�� + ��,�
�

 
�∈��∈�

  

+��,��� ,�
�,� + ��,�� ,�

�,� + ��,�� ,�
�,�  (33) 

III. SPATIAL-TEMPORAL DISTRIBUTIONALLY ROBUST 

OPTIMIZATION METHOD 

The proposed spatial-temporal ambiguity set is first 
introduced before reformulating the complex min-max problem 
with dualization actions. The proposed method aims to derive 
the optimal result from the worst-case distribution under the 
expected manner. We thus formulate the original objective 
function in a min-max framework: 

min  ��′� + max
ℙ∈�

�ℙ[�(�)�� + �(�)]�
�∈�

 
(34) 

�� ≤ � (35) 

Where � and y represent the decision variables of the first 
and second stages, �(�) and �(�) are the coefficient vectors of 

the objective function (34), � ∈ ℝ|�| stands for the uncertainty 

parameter, which belongs to probability distribution ℙ�ℝ|�|�.  

A. Spatial-Temporal Ambiguity Set 

The ambiguity set contains a family of distributions, which 
characterizes the occurrence of all the possible uncertainty-
aware scenarios. A discrepancy-based ambiguity set ��  is 
defined as (36) containing distribution � close to the empirical 

distribution ℙ��� , where ���ℙ�ℙ����  is the distributional 

distance; �  is the radius of the ambiguity set. The empirical 

distribution ℙ���  is given as (37), where ���  represents the 

historical observations;  ����
 represents the Dirac distribution; i 

is the index among the N historical samples.  
�� = �ℙ ∈ ������ℙ�ℙ���� ≤ �� (36) 

ℙ��� =
1

�
 � ����

�

���

 
 
(37) 
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The discrepancy-based ambiguity set enables to incorporate 
the neighbourhood of the nominal distribution. However, it may 
accommodate erroneous distributions, i.e., it cannot limit the 
shape of the distribution and the dependence structure 
information cannot be reflected. To this end, it will lead to 
unnecessary over-conservative decisions. To avoid modelling 
the erroneous distributions, we further incorporate the copula 
limit in the ambiguity set (38). 

��� = �ℙ ∈ ���ℝ|�|��
���ℙ�ℙ���� ≤ �

���ℂ�ℂ���� ≤ �
� 

 
(38) 

 

The distribution information of any multivariate distributions 
can be decomposed into a collection of marginal distributions 
and a copula. The distributional distance between the candidate 
copula ℂ and the empirical copula ℂ��� is constrained within � 

to guarantee the fixed dependence structure property.  

B. Tractable Mathematical Reformulations  

For notation brevity, the inner worst-case expectation of (34) 
is solely given as (39), where Ξ(�, �) = �(�)�� + �(�).  

max
ℙ∈���

�ℙ[Ξ(�, �)] (39) 

Subject to                 ���ℙ�ℙ��� ≤ � (40) 

���ℂ�ℂ��� ≤ � (41) 

Assuming that distribution ℙ is discrete with a sufficiently 
large number of samples, the probability distribution can be 
defined as (42), where ℙ� is the endogenous probability and 
����

 is the Dirac distribution. Equation (39) can be reformulated 

into (42)-(47). The original discrepancy functions are 
reformulated as (44)-(47), where ���  and ���  are the 
transportation coefficients of the optimal transport mapping. 

ℙ =  � ℙ�����

�

���

 
 
 (42) 

max
ℙ�∈���

� Ξ(�, ��)ℙ�

�

���

  
(43) 

subject to min � � ������‖������

�

���

�

���

≤ � 
 

(44) 

� ���

�

���

= �ℙ���
�
 , � ���

�

���

= ℙ� 
 

(45) 

min � � �������‖������

�

���

�

���

≤ � 
(46) 

� ���

�

���

= �ℂ���
�
 , � ���

�

���

= ℂ� 
 

(47) 

We then eliminate the ‘min’ operator due to the ‘ ≤ ’ 
constraint. The reformulation of (43)-(47) is given as: 

max
���,���

� � Ξ(�, ��)���

�

���

�

���

 
 

(48) 

subject to � � ������‖������

�

���

�

���

≤ � ∶  � 
 

(49) 

� ���

�

���

=
1

�
 � �������

�

���

, �������
= � 1 � ≥ ����

0 Otherwise
, ∀�

∈ {1, … , �}   ∶  �� 

 
(50) 

� � �������‖������

�

���

�

���

≤ �  ∶  � 
 

(51) 

� ���

�

���

=
1

�
, ∀� ∈ {1, … , �}   ∶  �� 

 
(52) 

We then dualize (48-52) to obtain the ‘min’ objective, where 
�, ��, ν, and �� are the dual variables.  

min
�,���,��,�� ,��

� � + �� +
1

�
� ��

�

���

+
1

�
� ��

�

���

 
    

(53) 

Subject to  

�� ≥ max
��,��

Ξ(�, ��) − � ������‖���  

    
(54) 

�� ≥ max
��,��

−� �������‖��� (55) 

The distance functions of (54) and (55), i.e., �� and ���, can 

be defined by norms in (56) and (57), where �(∙) stands for the 
marginal cumulative distribution function.   

������‖��� = ���� − ��� (56) 

������‖��� = ������� − �(��)� 
(57) 

We can thus merge equations (54) and (55) into (58) 
combining (56) and (57). 

�� + �� ≥ max
��,��

Ξ(�, ��) − ��� ���� − ��� − � ����������

− �(��)� 

(58) 

In order to eliminate the norms, equation (58) is derived by 
the dual norm reformulation:   

�� + �� ≥ max
��,��

Ξ(�, ��) − �  ��′ �� ���� − ��� − � ����������

− �(��)� 

(59) 

‖��‖∗ ≤ �, ‖��‖∗ ≤ � 
(60) 

The function Ξ(�, ��) can be represented by the indicator 
function (61), where w stands for the total number of the 
uncertainty sources, i.e., w renewable power generators in this 
paper.  

��(�) =
1

�
 � �������

�

���

, �������
= � 1 � ≥ ����

0 Otherwise
 

 
(61) 

Moreover, the equation (61) is equivalent to the following 
linearized formulation: 

��(�) =
1

�
 � ���

�

���

 
 
(62) 

   Subject to   ����� − ����� ≥ 0, 0 ≤ ��� ≤ 1 (63) 

Equation (59) needs to be further simplified with the removal 
of the maximization operator. Based on the Slater condition, the 
optimality conditions are required to support the outer ‘max’ 
problem. Accordingly, the optimality conditions of ��(�) 
consist of both the primal and dual constraints with the strong 
duality characteristic. Thus, constraint (68) becomes:  

�� + �� ≥ max
� ,����,����,

Ξ(�, ��) −  ��′ ���� − ���

− ��′

⎝

⎜
⎜
⎜
⎜
⎜
⎛

������� −
1

�

⎝

⎜
⎜
⎜
⎜
⎛

� ����

�

���…
… 

� ����

�

��� ⎠

⎟
⎟
⎟
⎟
⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎞

 

(64) 

        Subject to     ������� − ����� ≥ 0 
(65) 

0 ≤ ���� ≤ 1 (66) 

1

�
+ ������� − ����� − ���� ≤ 0 

(67) 

Constraint (65) contains bilinear terms, which are relaxed by 
the McCormick relaxation approach [66, 67]. The tight 
relaxation can be obtained with the available support set of 



 10 

�� ∈ [��
���, ��

���]. The linearized McCormick reformulation is 
given: 

�� + �� ≥ max
� ,����,����,����

Ξ(�, ��) −  ��′ ���� − ���

− ��′

⎝

⎜
⎜
⎜
⎜
⎜
⎛

������� −
1

�

⎝

⎜
⎜
⎜
⎜
⎛

� ����

�

���…
… 

� ����

�

��� ⎠

⎟
⎟
⎟
⎟
⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎞

 

 
 
 
 

(68) 

����
� ≥ ��������    :   ����

(�)
 (69) 

����
� ≥ ������

���  :   ����
(�)

 (70) 

����
� ≥ ������

���:   ����
(�)

 (71) 

����
� − ������

��� ≥ �� − ��
��� :   ����

(�)
 (72) 

����
� − ������

��� ≥ �� − ��
��� :   ����

(�)
 (73) 

0 ≤ ���� ≤ 1 :   ����
(�)

 (74) 

Another dualization is required to resolve the ‘max’ problem 
in (69). Therefore, the dual form of equations (68-74) is given 
as: 

min
�,���,��,�� ,��

� � + �� +
1

�
� ��

�

���

+
1

�
� ��

�

���

 
    

(75) 

Subject to  

�� ≥ �(�) −  ��′ ��� − ��′������� +

∑ ∑ �����
(�)

��
��� − ����

(�)
��

��� + ����
(�)

��
���

�
���   

    
(76) 

��(�) +  ���′ + � � �����
(�)

+ ����
(�)

�

�

���

�

���

= 0 
 

(77) 

1

�
����

(�)
− ����

(�)
���� − ����

(�)
��

��� − ����
(�)

��
���

+ ����
(�)

��
��� + ����

(�)
��

��� − ����
(�)

= 0 

 
(78) 

����
(�)

+����
(�)

+ ����
(�)

+ ����
(�)

− ����
(�)

− ����
(�)

= 0 (79) 

‖��‖∗ ≤ �, ‖��‖∗ ≤ � (80) 

Finally, we have eliminated the min-max structure based on 
the original two-stage formulation (34)-(35). Problem (75)-(80) 
is a tractable formulation of (53)-(55), which can be solved by 
an off-the-shelf optimization commercial solver. 

C. Approximation of Chance Constraints 

We apply the CVaR-based distributionally robust chance 
constrained (DRCC) approach  for realizing chance constraints 
in (30). The DRCC formulation is given as: 

min
ℙ∈���ℝ|�|�

ℙ(� ≤ 0) ≥ 1 − � (81) 

The CVaR approximation for (81) is given in (82) and (83), 
where �  is the auxiliary variable.  

max
ℙ∈���ℝ|�|�

ℙ: CVaR�(�) ≤ 0 (82) 

min
�∈ℝ

� +
1

�
max

ℙ∈���ℝ|�|�
�ℙ[(� − �)�] 

(83) 

The explicit reformulation of (83) is based on [68] recasting 
the ‘max’ problem into ‘min’ problem. The reformulated 
DRCC problem can be incorporated into the (34)-(80) 
according to [68]. 

IV. CASE STUDIES 

A. Simulation Setup  

To demonstrate the proposed method’s effectiveness and 
practical values, we conducted a total of six case studies with a 

water-energy system that involves 4 networked WEHs. The 
structure of a WEH system is given in Fig. 2; as shown, each 
WEH is composed of PV generators, converters, and storage 
[69]. The initial load profile can be found in Fig. 10 [70, 71]. 
The parameters trading amount is summarized in TABLE Ⅱ [30, 
71]. The PV generation and load profile are estimated with a 
long short-term memory recurrent neural network [72, 73], 
using the hourly data from the SoLa BRISTOL project in Bath 
and Bristol, United Kingdom [74, 75]. This project aims to 
design a smart energy usage pattern for both general consumers 
and distribution systems, which can increase energy efficiency, 
reduce energy bills, solve essential network harmonics issues, 
phase distortions, and improve voltage controls. The root mean 
square error of the forecasting result is 4.73. Fig. 7 shows a 365-
day PV generation data. Fig. 8 demonstrates the copula between 
the historical and candidate PV generation samples. We solve 
the proposed water-energy transactive management problem 
using the YALMIP R20200930 combined with MOSEK 
version 10 in the MATLAB environment. All the numerical 
tests were evaluated on a personal computer. The following 6 
cases were studied to investigate the impact of PV capacity, 
trading unit cost and converter capacity on the performance of 
the proposed model:  
Case 1: Baseline case. 
Case 2: Considering twice the PV capacity of case 1. 
Case 3: Considering twice the trading cost with external 
markets. 
Case 4: Considering twice the P2P trading cost. 
Case 5: Considering twice the GSHP capacity. 
Case 6: Considering twice the CHP capacity.  
 

TABLE Ⅰ 
TRADING PARAMETERS 

Limit ����
���

 ����
���

 ����
���

 ����
���

 ����
���  ����

���  ��,���
���  

Max 600kWh 400kWh 500kWh 5m3 500kWh 200kWh 5m3 

 

 
Fig. 7.  PV generation profile. 

 

B. Economic Performance Analysis  

TABLE Ⅱ presents the operation costs in each investigated 
case. Case 1 incurs a cost of $2789 in the first stage and $805 
in the second stage. Case 2  attains the lowest operation cost. Its 
second-stage cost is 8% higher than that of Case 1, partially 
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since the larger PV capacity not only allows a higher power 
supply from the WEH itself but also creates higher output 
deviations. Regardless, the operation cost is still $734 lower 
than Case 1. Case 3 has the highest total operation cost, due to 
the doubled trading cost of external market purchases. The 
operation costs of the day-ahead and real-time operations are 
$5578 and $912, respectively. A doubled P2P trading cost is 
applied in Case 4, which has a marginal impact on the day-
ahead operations but leads to a total cost 28% higher than that 
of Case 1. Cases 5 and 6 consider twice the capacity of GSHP 
and CHP, respectively. Case 5 exhibits a lower operation cost 
when a higher GSHP capacity is considered, in comparison 
with Case 6. The conversion efficiency of GSHP is 300%, 
which results in a lower power consumption but a greater heat 
output that is doubled in capacity.  

TABLE Ⅲ summarizes the water consumption of CHP, P2G, 
and electric boiler. As shown, CHP consumes most water in all 
the investigated cases. Case 1 (i.e., baseline) consumes 51.51 
m3 of water, with CHP accounting for 64% of the water 
consumption. In Case 2, the water consumed by P2G and 
electric boiler increase by 34% and 20% from the baseline case. 
Its PV capacity is doubled, which allows more power supply. 
Cases 3 and 4 show similar water consumptions relative to Case 
1, suggesting an insignificant impact of the trading cost on 
water consumption. Case 5 takes 42.89 m3 of water, which is 
83% of the consumption in Case 1, partly because GSHP is 
utilized more frequently without consuming additional water. 
Yet, the utilization of CHP, P2G, and electric boiler is reduced. 
In Case 6, 5.8 m3 more water is consumed when considering 
twice the capacity of CHP. The total water consumption in Case 
6 also increases, reaching 58.22 m3. 

The storage scheduling of WEH 1 in Case 1 is presented in 
Fig. 9. As shown, the battery is charging before 5:00, followed 
by a discharging until 8:00 at the lowest capacity level (40kWh). 
As PV generation increases, the battery remains at full capacity 
from 11:00 to 15:00. Then, the increasing load in the evening 
requires another discharging of the battery storage. Heat storage 
exhibits a pattern similar to that of battery storage, though the 
highest capacity level (i.e., 90kWh) lasts for two hours only. 
Overall, the water storage displays general charging before 
18:00, followed by a discharging scheduling in the peak load 
time periods for power, heat, and water. Notably, the extensive 
usage of energy converters consumes a large amount of water 
too. 

C. Demand Response Analysis 

Fig. 10 depict the impact of demand response on WEHs. The 
power load profile under different demand response levels 
(DRLs) is displayed in Fig. 10 (a), showing that the original 
peak load at 19:00 is shifted to the morning. As DRL increases, 
a greater portion of power load in the original high-level load 
periods is shifted; specifically, the peak load at 19:00 is 378kW 
when DRL is 30% but 486kW when DRL is 10%. Similarly, 
both heat and water loads exhibit greater load shifts when DRL 
increases. Fig. 11 illustrates the total load shift when DRL 
equals to 10%, 20%, and 30%, respectively. For example, with 
DRL being 10%, the total load shift of power, heat, and water 
is 4149kWh, 2800kWh, and 19 m3, respectively. When DRL is 
20%, the load shift increases by 175% for power, 187% for heat, 
and 163% for water. With DRL equal to 30%, the increases in 

power, heat, and water load shifts attenuate, with the power load 
shift greater than that of heat or water. 

D. Blockchain-Based P2P Trading Analysis  

In this paper, we employ the P2P trading as an effective 
measure to realize decentralized management and improve the 
system efficiency of the entire WEH community. The 
effectiveness of employing P2P trading can be reflected in 
TABLE Ⅱ, TABLE Ⅳ, and Fig. 12 which directly demonstrate 
the P2P trading amount. TABLE Ⅳ summarizes the volume of 
power, heat, and water trading via P2P. Case 1 has 24500kWh, 
10219kWh, and 265 m3 in power, heat, and water trading, 
respectively. With the twice capacity of PV, Case 2 records 
higher power and heat trading. Case 3 features a doubled 
trading cost with external markets, which elevates P2P trading; 
i.e., 2010kWh for power, 1981kWh for heat, and 16 m3 for 

Fig. 8.  Copula cumulative distribution function of two sets of PV generation 
output.  

 
TABLE Ⅱ 

ECONOMIC PERFORMANCE FOR ALL CASES 

Economic 
result ($) 

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

First-stage 
cost 

2789 1986 5578 2780 2042 2529 

Expected 
second-
stage cost 

805 874 912 1033 840 852 

Total cost 3594 2860 6490 3813 2882 3381 

 
TABLE Ⅲ 

WATER CONSUMPTION BY CONVERTERS 

Water (m3) Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

CHP 33.30 30.03 33.32 33.32 28.68 39.10 

P2G 5.34 7.19 5.69 5.47 4.15 4.60 

Boiler 12.87 15.44 13.50 13.02 10.06 14.52 

Total 51.51 52.66 52.51 51.81 42.89 58.22 

 

 
Fig. 9. Remaining energy and water storage under case 1. 
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water. In contrast, Case 4 shows less P2P trading, mainly 
because the trading unit cost is now doubled. To illustrate, the 
power trading is only 85% of that in Case 1. Case 5 has less 
power trading but more heat trading, probably because the 
greater GSHP capacity leads to an increased power-to-heat 
conversion and therefore reduces the (total) operation costs. 
Meanwhile, the water trading drops by 48 m3, as the converters 
that consumes water are used at a lower level. 

Fig. 12 shows the P2P trading scheduling. As shown in Fig. 
12 (a), WEH 4 mainly purchases power and WEHs 1–3 instead 
sell power primarily. There are multiple trading peaks (400kW) 
in the entire time horizon. Relatively, heat P2P trading features 
more frequent P2P transactions, with consistent trading at the 
highest level except 1:00–4:00 and 15:00–18:00 (see Fig. 12 
(b)). There are no direct buying heat from the market, so either 
P2P heat purchases or power-to-heat and gas-to-heat 

conversions take place during the high demand periods for heat. 
Energy conversions inevitably cause energy losses, which 
favors more active heat P2P trading than power P2P trading. 
Fig. 12 (c) details the water P2P trading patterns with multiple 
trading peaks.  

E. Comparative Analysis 

We then compare the proposed two-stage blockchain-based 
spatial-temporal transactive management framework (TS-
STDRO) with the existing frameworks including a single-stage 
robust optimization [15] and a two-stage moment-based DRO 
[41, 42], which are denoted as SS and TS-MDRO. In Fig. 13, 
we compare the second-stage expected operation cost results 
between TS-MDRO and TS-STDRO. The PoX and trading 
deviation penalty cost coefficients are adjusted and the results 
suggest that a monotone increasing trend of the operation cost. 
Overall, the results of TS-MDRO are generally higher than that 
of the proposed TS-STDRO, which peak at $1416 and $1326, 
respectively.  

 

 
                                  (a) power load 

 
(b) heat load 

 

 
(c) water load 

Fig. 10.  Altered load applying DRLs. 
 

 
Fig. 11.  Total altered load profile under different DRLs. 
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TABLE Ⅳ 
P2P TRADING AMOUNT  

Trading 
amount 

Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 

Power 
(kWh) 

24500 25198 26510 20986 22100 24008 

Heat (kWh) 10219 10414 12200 9214 10328 9803 

Water (m3) 265 269 281 217 259 277 

 

 
(a) power trading 

 
(b) heat trading 

 
(c) water trading 

 
Fig. 12.  P2P trading scheduling of power, heat, and water. 
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(a) TS-MDRO 

 

(b) TS-STDRO 
 
Fig. 13.  Expected second-stage operation costs of TS-MDRO and TS-
STDRO. 

 
In TABLE Ⅴ, we compare the total operation cost results 

between the three different methods, which demonstrates that 
the proposed TS-STDRO is able to reduce the computational 
conservativeness with the lowest operation cost among cases 1-
4. TS-STDRO is economically effective in reducing 2.3% and 
6.1% of the operation cost compared with TS-MDRO and SS. 
Moreover, the results of power and water trading amount are 
given in Fig. 14. Both the left and right panels show that the 
trading amount decreases with the growth of PoX cost 
coefficient. Instead of implementing P2P trading with other 
WEHs, the WEH owners choose to trade more with the MGO. 
The comparative analyses reveal that TS-STDRO can produce 
a scheme that features higher P2P trading volumes than that by 
any benchmark, because it can better characterize the associated 
uncertainties. Overall, the evaluation results suggest that our 
method is practical and enables effective water-energy 
transactive management, with the assumption of moderate 
fluctuations in renewable generation and load.  

We empirically examine the computational efficiency of each 
method. In Fig. 15, TS-MDRO has the most stringent run time, 
which is an averagely 3894 seconds when the sample size is 
1000. An iterative constraint and column generation algorithm 
is applied to search for the optimality within upper and lower 

bounds. The proposed TS-STDRO shows higher computational 
efficiency. We test the performance when γ is 0.05 and 0.1, 
respectively. The computational time are 2937 and 3124 
seconds. It shows that the result with γ=0.05 is more efficient 
due to the smaller copula radius of the ambiguity set. The tighter 
ambiguity set has a relatively smaller feasibility area with 
reduced computational complexity. 

 
TABLE Ⅴ 

THE OPERATION COST COMPARISON ($) 

Methods Case 1 Case 2 Case 3 Case 4 

SS 3782 3014 6990 4112 

TS-MDRO 3670 2899 6712 3903 

TS-STDRO 3594 2860 6490 3813 

 

 
Fig. 14. Comparison with the benchmark on trading amount. 
 
 

 
Fig. 15. Computational time comparison of TS-MDRO and TS-STDRO with 
γ=0.1 and γ =0.05. 

 

F. Discussions  

    Incorporating TS-STDRO in the proposed blockchain-based 
WEH trading mechanism is valuable and cost-effective. In 
Section E, we compare TS-STDRO and the state-of-the-art TS-
MDRO. As shown, the proposed TS-STDRO method achieves 
an average 4.6% reduction in total operation cost than TS-
MDRO, across all deviation penalties and PoX cost conditions. 
TABLE Ⅴ reveals the desirable cost reduction by TS-STDRO, 
which is economically effective and capable of decreasing the 
operation cost by 2.3% and 6.1% relative to TS-MDRO and SS, 
respectively. These comparative results demonstrate that TS-
STDRO is more cost-effective than the commonly used RO, an 
extreme uncertainty modelling method with enormous, inherent 
conservativeness [45, 76]. Jointly, our evaluation results 
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indicate that TS-STDRO outperforms existing blockchain-
based trading mechanisms in cost effectiveness [77, 78].  

This study can inform the practicability for related research. 
The proposed WEH is a hypothetical term to define the 
community-scale hybrid water-energy systems, which contains: 
i) the energy vectors of power, natural gas, water, and heating; 
ii) the interdependencies between water and energy; iii) energy 
converters of electricity generation, P2G, gas furnace, boiler, 
CHP, GSHP, renewable energy (PV); iv) storage devices of 
battery, water, and heat. In particular, the energy converters can 
efficiently satisfy energy demand through conversion between 
energy vectors. The proposed WEH system is suitable for 
small-scale buildings, such as residential buildings, hospitals, 
and shopping malls. The capacity of PV, converters and ESS 
are all appropriate for small-scale buildings at the community 
level. Moreover, we believe that the proposed two-stage 
framework can produce a more practical scheme for WEH 
owners to prepare operations and transactions in the first 24 
hours, then adjust the prespecified plan in the next day.  

This paper adopts the real-world energy and water prosumer 
data based on the SoLa BRISTOL project [74, 75] in the United 
Kingdom, which was practiced in energy communities. When 
considering a specific WEH into practice, more factors should 
be considered. For example, the energy and water losses, which 
have unignorable impacts on operational efficiency and 
economic benefits. In addition, other uncertainties such as 
trading willingness of prosumers, water and energy prices 
should be modelled, which can also be handled by the proposed 
TS-STDRO approach with more explicit data.  

V. CONCLUSION 

This study develops an innovative, blockchain-based water-
energy hub operation scheme that offers optimality, security, 
and transparency in the water-energy nexus for multi-energy 
systems. Optimal coordination and complementation via 
energy converters are central to the economic efficiency and 
safety of WEH operations. In that regard, we design a 
blockchain-based P2P trading mechanism for interconnected 
WEHs to trade surplus energy that pertains to power, heat, and 
water for increased economic efficiency. Additionally, we 
leverage a consensus-based trading mechanism to audit and 
encrypt transaction records that are stored in a consortium 
blockchain. The spatial-temporal ambiguity set in DRO can 
handle uncertainties effectively by characterizing PV 
uncertainties with a tractable robust counterpart reformulation. 
Moreover, the proposed two-stage trading method benefits both 
WEH operators and external markets by allowing greater 
flexibility and a more effective, preparatory plan in the day-
ahead stage. It allows trading between external water and 
energy markets in the day-ahead stage. In the second (real-time) 
stage, corrective operations can be made to properly adjust 
trading and converter scheduling in which demand response 
and blockchain-based P2P trading resemble real-time scenarios. 
Six case studies are performed and the results demonstrate the 
effectiveness of our two-stage transactive management method 
which allows WEH operators to formulate practical, 
economical, and secure operation plans for the entire WEH 
system that is crucial to the water-energy nexus. Key findings 
derived from the simulation study imply that: 

i) Early investment on PV installation could result in 20% 
saving of the WEH operation cost.  

ii) Meanwhile, on the contrary, the twice of PV capacity 
expectedly causes 8% higher cost in the second-stage 
adjustment. 

iii) Therefore, the proposed TS-STDRO is designed to 
effectively handle the inherent system uncertainties, which 
yields 2.3% and 6.1% compared with the state-of-the-art SS and 
TS-MDRO methods.  

iv) Moreover, the proposed TS-STDRO is computationally 
efficient. In particular, it reduces 18.7% of the computational 
time compared with the prevalent TS-MDRO. 

v) Enhanced by the proposed two-stage blockchain-based 
trading mechanism, the trading security is ensured.  

Two directions are important and deserve further 
investigative efforts. First, auction-based P2P trading 
mechanisms are essential and promising for the increased social 
welfare of prosumers. Future research can extend our method 
by considering these trading mechanisms. Second, the proposed 
blockchain-based transactive management scheme can be 
enhanced with advanced encryption and auditing, as well as 
appropriate success rate modelling.   
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