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Abstract

D-Form is a special piece-wise developable surface formed by aligning the boundaries of two planar domains. It has been
widely used in different design scenarios. In this paper, we study how to computationally and intuitively model D-Forms.
We present an optimisation-based framework that can efficiently generates D-Form shapes. Our framework can model
D-Forms with two approaches based on two different user inputs, including the forward modelling from two given planar
domains and, more importantly, the inverse modelling from a given space curve where the planar domains are no longer
needed. Our optimisation is devised based on two critical characteristics of D-Forms. Firstly, the constituent developable
surfaces of a D-Form are isometrically deformed from planar domains. Secondly, there is a close relationship between a
D-Form and the convex hull of its seam. Through extensive evaluation, we demonstrate that our approach can model
plausible D-Forms efficiently from various inputs with different geometric properties.

Keywords: D-Form, developable surfaces, isometric deformation, optimisation

1. Introduction

Developable surfaces with zero Gaussian curvature are
popular geometric design choices as they can be directly
fabricated by bending common materials such as paper
and flat metal sheets. The D-Form, obtained by simply
conjoining the boundaries of two planar domains with the
same perimeter length, is known as an important type of
piece-wise developable surfaces. It has been widely used
to model shapes in different design contexts such as fur-
niture, industrial object, decoration, etc. (see Fig. 1).
Although flat materials are relatively easy to deal with,
the form-finding stage still largely depends on the skills
and experiences of designers to specify planar domains and
manipulate (cut, bend, connect) materials. Satisfactory
designs are usually achieved by a long and troublesome
trial-and-error process.

To facilitate the design process, researchers have at-
tempted to simulate the D-Form generation computation-
ally from different aspects. Some common D-Form shapes
were made from Surface Evolver [3], an interactive physi-
cal simulator for modelling liquid surfaces, by adding var-
ious forces and constraints [4]. A computational approach
was presented to model a particular type of D-Form with
constant discrete Gaussian curvature [1]. Optimisations
were also employed to generate D-Form shapes from pla-
nar domains with various discrete representations [5, 6].
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Figure 1: Examples of real D-Form designs, including mechanical
part [1], decorative furniture [2], and art work [2] created by design-
ers.

However, all previous works merely follow the traditional
design pipeline, i.e., define planar domains in 2D and then
generate the corresponding D-Form in 3D. Moreover, to
change the 3D D-Form shape, the 2D domains need to be
updated beforehand. Hence it is difficult to either expect
or control the shape of the resultant D-Form, making the
design exploration far from intuitive.

Our goal is to model a D-Form shape computation-
ally with more intuitive control. To achieve this goal, we
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first devise a purely geometric approach that can model
D-Form in a forward way. The key idea is to deform
two planar domains isometrically while satisfying bound-
ary alignment constraints. This is formulated as an opti-
misation problem that can be efficiently solved by solving a
non-linear least-square objective with Cholesky factorisa-
tion. Moreover, we present an inverse modelling technique
that allows intuitive D-Form control over its seam (i.e.,
the 3D space curve conjoined by the two planar domain
boundaries in 3D) without knowing the 2D planar domains
beforehand. More specifically, given a user-prescribed 3D
space curve as the target seam, we first initialise the piece-
wise developable surfaces based on the convex hull of the
input curve. Then we flatten both developable pieces to
generate the two initial planar domains. Finally, we em-
ploy another isometric deformation optimisation (varied
from the forward modelling process) to refine the planar
domains and generate the resultant D-Form shape that
meets the seam requirement. Our forward and inverse
modelling techniques can be used to handle general D-
Form shapes with complicated settings in both 2D and
3D, such as the planar domain with non-convex bound-
aries, non-convex D-Form bodies, and complex seam con-
figurations, as demonstrated in the experiments.

Overall our work makes two major contributions:

• We present an optimisation-based framework that
can efficiently model D-Form and its variants.

• We propose a novel inverse modelling approach that
can intuitively generate D-Form shapes from space
curves.

The rest of the paper is organised as follows. The re-
lated works are discussed in Section 2. Important defini-
tions and problem statements regarding D-Form are pre-
sented in Section 3. The forward D-Form modelling and
inverse D-Form modelling processes are detailed in Sec-
tion 4 and Section 5, respectively. The presented frame-
work will be extensively evaluated in Section 6. Finally,
we conclude and discuss our work in Section 7.

2. Related Work

2.1. D-Forms

D-Forms were proposed by [7] and drew attention to
many design and research works [8, 9, 5, 10, 11]. Demaine
and Price [12] solved two theoretical problems regarding D-
Forms. They indicated that the D-Form was always free of
creases when being the convex hull of its seam under some
general assumptions. They suggested constructing a D-
Form from two flat sheets from the mathematical perspec-
tive using Alexandrov’s theorem. Other works attempted
to generate D-Forms computationally. Orduno et al. [13]
presented a simple yet effective method for generating D-
Form shapes to guide the fabrication. Physical simulation
and tension-based energy minimisation are other options

for D-Form generation [3, 1]. Leduc et al. [1] proposed to
generate specific D-Forms with a procedural computation
approach. Besides, A D-Form also appeared as a repre-
sentative example in some works related to developable
surface modelling, such as optimising D-Form shapes in
[6] and remeshing D-Form shapes in [14].

2.2. Developable Surface Modelling

The developable surface is a special type of smooth
surface with zero Gaussian curvature everywhere; thus it
can be isometrically mapped onto a 2D plane [15, 10]. De-
velopable surfaces are widely used in geometric design [5].
They can be easily fabricated by simply bending real-world
materials, such as metal, paper, and cold-bent glass. In
the geometry processing field [16], researchers are more
interested in discrete developable surfaces with piece-wise
linear mesh representations.

Various methods have been proposed for directly mod-
elling discrete developable surfaces. Solomon et al. [17]
utilised the fact that the rulings of a developable surface
are along with the directions of the non-zero principal cur-
vatures. Based on this, a planar sheet with a set of given
rulings was used to model discrete developable surfaces by
bending across the rulings. Liu et al. [18] studied planar
quadrilateral (PQ) meshes. They presented an alternating
subdivision and PQ optimisation approach to model dis-
crete developable surfaces as a PQ strip. Tang et al. [19]
introduced a method to model developable surfaces inter-
actively. The modelling may start from different forms,
such as planar sheets or standard cylinders. Rabinovich
et al. [20, 21] proposed to parameterise developable sur-
faces through orthogonal geodesics. They used geodesic
net to represent and reshape developable surfaces. Some
other works used free-form quad meshes to represent and
model discrete developable surfaces by isometric deforma-
tion [22, 6, 23].

Approximating a given shape with piece-wise devel-
opable surfaces is another important research area. Wang
and Tang [24] deformed a given shape and decomposed it
into a group of developable surfaces in an iterative manner.
Julius et al. [25] decomposed the input mesh into a set of
quasi-developable charts. Kilian et al. [26] reconstructed
developable surfaces by explicitly discretising from their
rulings from a given shape.

Tang et al. [19] presented an interactive developable
surface modelling tool to approximate a given shape. Stein
et al. [27] defined a new developability term ‘hinge’. With
the new definition, they transferred a triangular mesh to
assemble developable surfaces. Ion et al. [28] wrapped de-
velopable sheets according to the target mesh and lever-
aged a global optimisation to refine the result. Verhoeven
et al. [14] estimated the rulings of a given triangular de-
velopable surface and produced a simplified representation
with PQ strips.
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(a) (b)

Figure 2: A typical D-Form generated from two ellipses. (a) Two
flat components. (b) D-Form. The seam is highlighted in pink color.

3. Definitions and Problem Statement

In this section, we first introduce the key concepts that
help the formulation, then state the fundamental problems
to be handled in the present work.

3.1. Definitions

Definition 1 (Flat components). A flat component is
a disk-like planar domain. Two flat components with the
same perimeter length are used to define a D-Form shape
as follows. Note that the name ‘flat component’ follows
the discussion in [12] (see Fig. 2a).

Definition 2 (D-Form). A D-Form D is obtained by bend-
ing two flat components D1 and D2 while aligning their
domain boundaries. Two constituent developable surfaces
D̂1 and D̂2 of the D-Form D are isometric to D1 and D2,
respectively.

Definition 3 (Starting pair). A starting pair is a pair
of vertices, each from the boundaries of the one flat com-
ponents. Matching the two vertices in the pair (thus the
rest of the two boundaries sequentially) can uniquely de-
termine the alignment of the two boundaries for D-Form
generation.

Definition 4 (Seam). The space curve shared by devel-
opable surfaces D̂1 and D̂2 in D-Form D is called the seam
S. The length of the seam is equal to the perimeter of the
two flat components D1 and D2 (see the pink curve in Fig.
2b).

3.2. Problems to Solve

We divide D-Form modelling into two sub-problems.
The first is the forward modelling problem: given two flat
components with the same perimeter length, how to bend
both of them by aligning their boundaries to form a 3D
D-Form shape. The second is the inverse modelling prob-
lem: given a 3D space curve, how to generate a 3D D-Form
shape whose seam conforms to the space curve. The for-
ward modelling follows the traditional D-Form modelling
pipeline. In contrast, the inverse modelling allows intu-
itive control of D-Form modelling by specifying the seam
as its prominent feature. Both of them use optimisation
strategy to generate the result. In the following part of
this work, we will elaborate on how to solve the forward
problem (Section 4), followed by the detailed solution of
the inverse problem (Section 5).

4. Forward Modelling

We formulate the forward modelling as an optimisation
problem. The basic idea is to evolve the two flat compo-
nents in 3D by aligning their boundaries while preserv-
ing their intrinsic distance metrics. In other words, the
two flat components are deformed isometrically to meet
the physical requirement of forming 3D D-Form shapes in
practice, i.e., no stretching or tearing of the flat material,
such as processing paper or metal sheets.

4.1. Initialisation

As shown in Figure 3, the input of the forward mod-
elling is two flat components D1 and D2. Their boundaries
are discretised as polylines B1 and B2 with the same num-
ber of vertices. These vertices are distributed along the
boundary uniformly according to the arc length parame-
terisation. The average length of the boundary line seg-
ment is normalised to a unit value. The inner region of the
flat component is further discretised using constrained De-
launay triangulation by fixing the boundary vertices and
allocating an adequate number of internal vertices, result-
ing in two triangular meshes M1 and M2. To align B1

and B2, we also need to specify the boundary vertex cor-
respondences by indicating the starting pair, then the rest
vertices can be matched one by one along the two bound-
aries from the starting pair.

4.2. Optimisation

4.2.1. Variables

Let M̂1(V̂1, E1, F1) and M̂2(V̂2, E2, F2) be the two con-
stituent 3D meshes of the 3D D-Form shape. They are iso-
metrically deformed from the two 2D meshesM1(V1, E1, F1)
andM2(V2, E2, F2), thus have topologically equivalent edge
sets E1 and E2, and face sets F1 and F2, respectively.
The variables of the optimisation include the 3D vertices
v̂i
1 ∈ V̂1 and v̂i

2 ∈ V̂2. Note that the 2D vertices vi
1 ∈ V1

and vi
2 ∈ V2 are also treated as variables to add more de-

grees of freedom for vertex distribution in 2D, which allows
more flexibility for isometric deformation during D-Form
construction.

4.2.2. Energy Terms

Here we define energy terms that take into account
various properties of D-Form constructed from flat com-
ponents.

(a) (b)

Figure 3: The input and output of the forward modelling. (a) The
two input flat components are discretised by Delaunay triangulation.
Red dots represent the starting pair of vertices. (b) The output D-
Form.
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Isometry term. The isometry term is defined to ensure
isometric deformation from M1 to M̂1 and from M2 to M̂2.
This term is realised by preserving the length of edges in
each mesh during the deformation as:

fiso =
∑

eij1 ∈E1

(∥v̂i
1 − v̂j

1∥2 − ∥vi
1 − vj

1∥2)2

+
∑

eij2 ∈E2

(∥v̂i
2 − v̂j

2∥2 − ∥vi
2 − vj

2∥2)2.
(1)

Boundary alignment term. This term is defined to align
the boundaries of two flat components while bending them
in 3D, as required by modelling D-Forms. As mentioned,
we discretise the two flat component boundaries to B1 and
B2, which have the same number of vertices. Therefore,
the alignment of the boundaries can be measured by the
closeness between the corresponding boundary vertices as
follows:

falign =
∑

v̂i
1∈B̂1

∥v̂i
1 − v̂i

2∥2, (2)

where B̂1 represents the boundary of M̂1 formed by bound-
ary vertices v̂i

1 ∈ B̂1, whose corresponding boundary ver-
tices are v̂i

2 ∈ B̂2. Note that the boundary alignment is
measured in 3D (i.e., on M̂1 and M̂2), while the boundaries
of M1 and M2 remain fixed in 2D (see below).

Boundary fix term. We require the boundaries of M1 and
M2 (marked as B1 and B2) to be fixed due to two reasons.
First, the boundaries of two flat components are key inputs
of the forward modelling; thus, they are required to keep
fixed during optimisation. Second, M1 and M2 may de-
generate into one point, leading to a naive global minimum
if no boundary condition added. For each vertex vi

1 ∈ B1,
we store its original position bi

1. In optimisation, we min-
imise their distance in-between to preserve the boundary
shape of B1. The same also applies to B2. The overall
term is defined as:

ffix =
∑

vi
1∈B1

∥vi
1 − bi

1∥2 +
∑

vi
2∈B2

∥vi
2 − bi

2∥2. (3)

Surface smoothness term. This term ensures the mesh qual-
ity by preventing flipped and degenerated triangles. The
smoothness is required for all meshes to be optimised, in-
cluding M1, M2 and M̂1, M̂2. Its definition is based on
the discrete Laplacian operator [29] per mesh vertex:

fsmooth = ω2D

∑
vi
∗∈V∗

∥
∑

vj
∗∈Ni

∗

wij
∗ (vj

∗ − vi
∗)∥2

+ ω3D

∑
v̂i
∗∈V̂∗

∥
∑

v̂j
∗∈N̂i

∗

ŵij
∗ (v̂j

∗ − v̂i
∗)∥2.

(4)

Here we use N i
∗ to represent the one-ring neighbor of ver-

tex vi
∗ of 2D mesh M∗(∗ = 1, 2). wij

∗ is the cotangent

Algorithm 1: Forward modelling optimisation

Data: M1, M2, initial value for M̂1 and M̂2

Fix threshold fmin, maximum iterations imax

Initialise i = 0, ωiso, ωalign, ωfix, ωseam

while f ≥ fmin and i < imax do
f ← fsmooth + ωisofiso + ωalignfalign +
ωfixffix + ωseamfseam
i← i+ 1
Update V1, V2, V̂1, V̂2

end

Result: V1, V2, V̂1, V̂2

weight between current vertex vi
∗ and its neighboring ver-

tex vj
∗. The same also applies for the smoothness of 3D

mesh M̂∗(∗ = 1, 2). ω2D and ω3D are two weights to bal-
ance between M∗ and M̂∗.

Seam smoothness term. To penalise the irregular shape of
the D-Form seam (see Definition 4) by aligning the bound-
aries of M̂1 and M̂2, we also add a seam smoothness term
by minimising the second-order differences of consecutive
boundary vertices as:

fseam =
∑

v̂i
1∈B̂1

∥v̂i−1
1 + v̂i+1

1 − 2v̂i
1∥2

+
∑

v̂i
2∈B̂2

∥v̂i−1
2 + v̂i+1

2 − 2v̂i
2∥2

(5)

4.2.3. Objective

The forward D-Form modelling formulation is an opti-
misation of the overall objective, which is a weighted sum
of all the terms defined above: ωisofiso + ωalignfalign +
ωfixffix + fsmooth + ωseamfseam. Our formulation is es-
sentially geometric by following the definition and geomet-
ric properties of D-Form modelling. The isometric term
and boundary alignment term coincide with the modelling
process, while the other terms avoid trivial solutions and
ensure the quality of the optimisation result. In practice,
we utilise the Cholesky decomposition to solve the optimal
solution of the non-linear least-squares problem. Alg. 1
breaks down the optimisation procedure, and the detailed
evaluation can be found in Section 6.

5. Inverse Modelling

Unlike the forward modelling, where the two flat com-
ponents are given, the inverse modelling (see Fig. 4) aims
to automatically determine two flat components guided
by the given design specification, i.e., a space curve that
represents the target seam of the D-Form. It is also for-
mulated as an optimisation problem. As in the forward
modelling, we require the boundaries of the two flat com-
ponents to align with each other after deformation in 3D.

4



(a) (b)

(c) (d)

(e)

Figure 4: The inverse modelling pipeline. (a) The input is a smooth space curve. (b) The convex hull of the space curve. (c) The convex hull
is divided into two pieces by the space curve. Each piece is unfolded onto the 2D plane, resulting the initial flat components. (d) The flat
components are discritised by Delaunay triangulation. (e) The output d-from after optimisation constrained on the input space curve.

Additionally, the seam (by aligning the two boundaries)
also needs to fit the given space curve. The critical part is
how to initialise the two flat components and update them
in the optimisation process.

5.1. Initialisation

The input of our inverse modelling is a space curve in
3D (see Fig. 4a), which is implemented as a Bezier curve
but can be any smooth curve in general. The space curve
represents the target seam (can also be treated as the sharp
feature) of the output D-Form. The curve is parameterised
by arc length and discretised into an ordered list of vertices
C. As in the forward modelling, the average edge length
between consecutive vertices in C is normalised to a unit
value. The basic idea for our initialisation is to form a
preceding geometric form (we call it pre-D-Form) based
on the convex hull of C (see Fig. 4b), then use the two
parts on the pre-D-Form divided by C to initialise the two
flat components of the D-Form (see Fig. 4c). According
to its relationship with the convex hull, we classify C into
two categories: on-hull space curve and non-on-hull space
curve, which are detailed below.

On-hull space curve. D-Form has been studied from the
perspective of the convex hull of its seam. [12] proved
that as long as the metric space of the D-Form is locally
convex, the D-Form is always the convex hull of its seam.
[30] and [31] also show that the triangulation approximates
a developable surface when most edges are locally convex.
Inspired by the above, we first construct the convex hull
H of C. If C fully resides on H, we call it an on-hull space
curve, and the pre-D-Form is exactly the convex hull of C
in this case. Then it is easy to divide the pre-D-Form into
two parts by C, resulting in two surfaces D̊1 and D̊2 in
3D. D̊1 and D̊2 can be treated as the initialisation of D̂1

and D̂2, the two constituent developable surfaces of the
D-Form.

a

b c

d

e

f
g

(a)

a

b c

d

e

f
g

(b)

Figure 5: Local modification of the convex hull to construct the pre-
D-Form. The edge eae on the convex hull but not on the input space
curve is replaced with four new edges along the space curve. The
faces fafe and faeg are removed and replaced by eight new faces.

Non-on-hull space curve. Unlike the on-hull space curve
case, C may not entirely reside on its convex hull H. In
other words, only part of the vertices in C lies on H, while
other vertices are inside H. Here we call C a non-on-hull
space curve. In this case, we construct the pre-D-Form
by locally modifying the convex hull H, such that it can
still be divided into two parts by C. The basic idea is
to extract space curve segments on H first and keep their
associated convex hull parts only as a partial pre-D-Form
(this is similar to what we did for the on-hull space curve,
where it only has one space curve segment on H which is
associated with the whole convex hull). Then we fill in the
missing parts of the pre-D-Form by adding triangle fans
based on those vertices in C and inside the convex hull H.
One example of triangle fan filling is shown in Fig 5. Here
edge eae lies on the convex hull. However, it links two non-
consecutive vertices va and ve in C. Hence we delete their
associated triangles (fafe and faeg) in H. Vertices vb, vc

and vd form one curve segment of C which lies inside H.
In this case, we add two triangle fans. One is formed by
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fafb, fbfc, fcfd, and fdfe to replace the missing fafe. The
other is formed by fabg, fbcg, fcdg and fdeg to replace the
missing faeg. In total eight new faces are added to the pre-
D-Form. Note that after the triangle fan filling process, all
the vertices in C now reside on the pre-D-Form.

After the pre-D-Form is achieved (by handling either
on-hull or non-on-hull space curve), we can easily divide
it into two surfaces D̊1 and D̊2 in 3D by cutting along C.
Both D̊1 and D̊2 are formed by triangle strips/fans con-
structed by all vertices in C. Thus they can be flattened
onto the 2D plane without any distortion, leading to two
planar domains, which can be treated as the initialisation
of the two flat components of the D-Form. We keep the
boundaries of two planar domains and remesh them by ap-
plying Delaunay triangulation to generate M1 and M2 as
in the forward modelling (see Fig. 4d). Then we re-project
the vertices of M1 and M2 back onto D̊1 and D̊2 based on
the barycentric coordinates of each vertex in their flattened
triangles, resulting in the initialised M̂1 and M̂2. C, M1

and M2 are all forwarded into the following optimisation
to generate the final D-Form result (see Fig. 4e).

5.2. Optimisation

5.2.1. Variables

After initialisation, the variables to be optimised in
the inverse modelling are the same as those in the forward
modelling described in Section 4.2.1.

5.2.2. Energy Terms

Here we define energy terms used in the following-up
optimisation after initialisation.

Seam closeness term. To meet the requirement of the tar-
get seam, we define a term that minimises the closeness
between the seam and the two boundaries B̂1 and B̂2 of
3D meshes M̂1 and M̂2 as follows:

fclose =
∑

v̂i
1∈B̂1

∥v̂i
1 − ci∥2 +

∑
v̂i
2∈B̂2

∥v̂i
2 − ci∥2, (6)

where ci is one of the vertex in C and vi
1 and vi

2 are its
corresponding boundary vertices on B̂1 and B̂2, respec-
tively.

Isometry term. This term is adopted from the forward
modelling process (Eqn. 1) to ensure isometric deformation
when generating D-Form.

Surface smoothness term. This term is also defined as in
the forward modelling (Eqn. 4) to ensure mesh quality for
D-Form generation.

5.2.3. Objective

The objective we minimise in the inverse modelling is
fsmooth+ωclosefclose+ωisofiso. Note that the inverse mod-
elling is different from the forward modelling in the sense
that the target seam of the D-Form is prescribed. As a

result, the boundary alignment term and seam smooth-
ness term do not need to apply here. Although the seam
is fixed, the two flat components have more degrees of
freedom because their boundaries are not fixed during the
optimisation. Therefore, it better allows the isometric de-
formation between M∗ and M̂∗ while meeting the seam
requirement. The overall inverse modelling optimisation
procedure is shown in Alg. 2.

Algorithm 2: Inverse modelling optimisation

Data: Input curve C, initial value for M1, M2,
M̂1, M̂2

Fix threshold fmin, maximum iterations imax

Initialise i = 0, ωiso, ωclose

while f ≥ fmin and i < imax do
f ← fsmooth + ωisofiso + ωclosefclose
i← i+ 1
Update V1, V2, V̂1, V̂2

end

Result: V1, V2, V̂1, V̂2

6. Evaluation

In this section, we extensively evaluate our work by
1) testing forward modelling and inverse modelling from
various inputs and specifications; 2) measuring the quality
of the results using different metrics and/or under differ-
ent scenarios; and 3) demonstrating other design possibil-
ities. In addition, we list the related statistics, including
evaluation metrics and weights for optimising all examples
presented in this paper in Table 1.

6.1. Forward Modelling Results

We show a variety of forward modelling results in Fig.
6. Our work is capable of modelling D-Forms composed
of two developable surfaces deformed from two flat com-
ponents isometrically.

Different starting pairs for boundary alignment. In Fig. 7,
we show examples of the forward modelling using the same
flat components with different starting pairs (shown as red
dots). We can see that different starting pairs lead to dif-
ferent D-Form shapes. The same two flat components can
generate various D-Forms with different boundary align-
ment configurations determined by the start pairs.

Flat components with non-convex boundaries. Prior works
usually demonstrate D-Forms based on flat components
with convex boundaries. We also test our forward mod-
elling algorithm with non-convex boundaries, as shown by
the last two cases in Fig. 6. We can see that non-convex
flat components can also produce reasonable D-Forms. [12]
proved that the D-Form generated from two convex flat
components was free of creases, which means the D-Form
has no sharp edge except its seam. However, this does not
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(a) (b)

Figure 6: Forward modelling results. (a) Flat components triangu-
lated from input boundaries. Red dots represent the starting pair
for each example. (b) D-Forms generated from the input.

hold for D-Forms generated from non-convex flat compo-
nents, where additional creases may be introduced. De-
signers may want to take this problem into account when
designing D-Forms.

6.2. Inverse Modelling Results

Apart from the forward modelling, our work can fur-
ther be employed to generate plausible inverse D-Form
modelling. Fig. 8 shows various inverse modelling results
by not specifying the two flat components but using a
space curve to denote the target seam, where the flat com-
ponents and their corresponding D-Form shape are auto-
matically generated. The flexibility of specifying the target
seam allows more intuitive control of the resultant D-Form
shape without trying out different flat components.

Non-on-hull seams. The second, fourth, and fifth cases
in Fig. 8 are generated from non-on-hull space curves
(seams). From [12], we know that D-Forms are often the
convex hull of their seams (i.e., on-hull seams), such as the
first and third cases in Fig. 8. However, more complicated
seams are under-explored. We show that plausible results
can be generated in such cases.

(a) (b)

Figure 7: With the same flat components, different starting pairs
result in different D-Forms. The top row of each sub-figure shows
the specified starting pairs (denoted by red dots). The bottom row
shows corresponding results.

6.3. Quality Validation

Developability. We evaluate the developability of the re-
sultant D-Forms in two ways. Firstly, we visualise the
Gaussian curvature shown in Fig. 9. We can see that the
resultant D-Form has zero Gaussian curvature almost ev-
erywhere except the seam, meaning the two constituent
surfaces bent from flat components are developable. Sec-
ondly, we evaluate the developability error based on edge
length variations as in [6]. The Lerror is defined as ||L̂ −
L||/||L||. L̂ refers to the vector composed by all the edge
lengths of the 3D meshes M̂1 and M̂2. L refers to that
of 2D meshes M1 and M2. The developability error for
each example is shown in Table 1. All the examples have
error value less than 1%, most of which are less than 0.5%.
We also show the maximum developability error per edge
Lmax in Table 1. It is defined as the maximum value of
(L̂i−Li)/Li, where i denotes the component index within
a vector. All the examples have Lmax < 3% except one
special demi D-Form in Fig. 12 which is 7.18%.
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(a) (b)

Figure 8: Inverse modelling results. (a) Input space curve. (b) D-
Form generated from the left input.

Curve matching. In the inverse modelling we minimise
the distance between two boundaries and the input space
curve. We calculate the (normalised) average error Derror

between vertices of the input space curve and their corre-
sponding vertices on the two boundaries as:

D̂ = D̂1 + D̂2 = {d̂1, d̂2, ..., d̂n}T ,

Derror =

∑
d̂i/n

Lcurve
,

(7)

where D̂1 is the vector composed of distances between each
vertex on the boundary of M̂1 and its corresponding ver-
tex on the input curve. D̂2 represents the vector composed
of distances between the boundary of M̂2 and the input
curve. Lcurve refers to the length of the input curve. Val-
ues of Derror are shown in Table 1. All values are smaller
than 0.0001%. Our algorithm can produce the D-Form
whose seam matches the input curve with a reasonable-
small error.

Comparison with previous work. We compare our work
with [6], a recent method for quad-mesh-based developable
surface modelling, which can also be adopted for (only)
the forward D-Form modelling. The qualitative results
are shown in Fig. 10. The quantitative comparisons on
computational time, developability, boundary matching,
etc. can be found in Table 2. From both qualitative and

−

+

0

(a) (b)

Figure 9: Developability validation by visualising the Gaussian cur-
vature of two resultant D-Forms.

(a) (b)

Figure 10: We compare our forward modelling result (bottom row)
with the output from [6] (middle row). Top row shows the two groups
of input flat components.

quantitative results, we can see that both methods gener-
ate smooth D-Form shapes that are visually pleasing and
similar. The computational costs are comparable given
both methods are based on non-linear least-squares opti-
misation. While the errors are reasonably small (<1.5e-
3) for both methods, the D-Form shapes generated from
our method have slightly better developability and better-
matched boundaries. We attribute this to the better ge-
ometric representation ability of triangle mesh over quad
mesh.

Fabrication. We also validate our results by actual fab-
rication using paper to create physical objects. Fig. 11
shows the virtual D-Forms, and their corresponding paper
objects, where D-Forms in (a), (b) and (d) are generated
from the forward modelling while D-Form in (c) is gener-
ated from the inverse modelling. We can see that the vir-
tual D-Forms and their physical counterparts are visually
close, which verifies the quality of our results, in particu-
lar the developability. This can largely benefit artists for
creating design prototypes in practice.

6.4. Other Design Possibilities

Anti D-Forms and demi D-Forms. The D-Form we dis-
cussed so far is formed by matching the outer boundaries

8



Fig. |V | |F | I t(s) L-Error(%) L-Max(%) D-Error(%) wiso walign wfix wclose wsmooth3D wsmooth2D wseam

3 0.8k 1.5k 10 1.06 0.03 0.33 - 1 1 1 - 0.01 1 0.01
6(1) 1.2k 2.4k 7 1.79 0.21 1.05 - 1 1 1 - 0.01 1 0.01
6(2) 1.3k 2.4k 10 2.36 0.17 0.99 - 1 1 1 - 0.015 1 0.01
6(3) 0.8k 1.5k 12 1.38 0.06 0.62 - 2 1 1 - 0.01 1 0.01
6(4) 0.9k 1.6k 15 1.86 0.43 2.66 - 1.5 1 1 - 0.015 1 0.01
6(5) 1.1k 2k 10 1.82 0.19 2.92 - 1 1 1 - 0.01 1 0.01
4 1.7k 3.3k 3 0.82 0.006 0.07 7.2e−7 1 - - 1 0.001 1 -

8(1) 1.7k 3.3k 3 0.82 0.002 0.02 2.9e−7 1 - - 1 0.001 1 -
8(2) 1.5k 3k 3 0.65 0.06 0.61 1.3e−5 1 - - 1 0.005 1 -
8(3) 1.2k 2.2k 3 0.28 0.0003 0.09 8.9e−7 1 - - 1 0.001 1 -
8(4) 1.7k 3.3k 7 1.81 0.11 0.71 4.5e−5 1 - - 1 0.02 1 -
8(5) 1.6k 3k 7 1.52 0.14 1.34 8.6e−5 1 - - 1 0.01 1 -

7(a)(1) 0.8k 1.5k 10 1.06 0.02 0.29 - 1 1 1 - 0.01 1 0.01
7(a)(2) 0.8k 1.5k 10 1.03 0.03 0.32 - 1 1 1 - 0.01 1 0.01
7(b)(1) 0.9k 1.6k 15 1.86 0.43 2.24 - 1.5 1 1 - 0.01 1 0.01
7(b)(2) 0.9k 1.6k 15 1.92 0.44 2.37 - 1.5 1 1 - 0.01 1 0.01
10(a) 1.1k 2k 15 3.62 0.12 2.16 - 2 1 1 - 0.014 1 0.01
10(b) 1.2k 2.2k 15 2.83 0.046 0.55 - 2.2 1 1 - 0.01 1 0.01
11(d) 0.9k 1.6k 15 1.78 0.46 2.16 - 1.5 1 1 - 0.01 1 0.01
12(a) 2.7k 5.4k 20 15.79 0.31 2.13 - 1 1 1 - 0.08 1 0.1
12(b) 2.1k 4k 20 12.08 0.25 7.18 - 1 1 1 - 0.08 1 0.1
14(b) 0.8k 1.4k 7 1.10 0.18 1.13 - 1 1 1 - 0.01 1 0.01

Table 1: The statistics of the results in this paper. We show the figure index, number of vertices |V |, number of faces |F |, number of
optimisation iterations I, time for optimisation, developability error Lerror, maximum developability error per edge Lmax, seam matching
error Derror, and optimisation weights. )

Fig. |V | I tv L-Error(%) B-Error(%)
10(a) (middle) 11k 10 8.18e-4 0.15 2.56e-3
10(a) (bottom) 1.1k 15 3.29e-3 0.12 2.75e-9
10(b) (middle) 2.5k 20 2.08e-3 0.054 2.63e-2
10(b) (bottom) 1.2k 15 2.35e-3 0.046 8.41e-10

Table 2: Quantitative comparison between our method and [6] in
the forward modelling setting. We compare number of vertices |V |,
number of optimisation iterations I, computational time per vertex
tv, developability error Lerror, and boundary matching error Berror.
The B-Error is defined similarly to the curve/seam matching error
Derror in the inverse modelling, but using one boundary (not the
target seam) as the other boundary’s target.

of two disk-like flat components. By matching the inner
boundary instead of the outer boundary, two variations
of D-Form can be created, including anti D-Form formed
by matching the inner boundaries of two annulus-like flat
components with holes, and demi D-Form constructed by
matching the outer boundary of one disk-like flat compo-
nent and the inner boundary of the other annulus-like flat
component. Our work can be adapted to generate anti
D-Form and demi D-Form shapes, as shown in Fig. 12. In
our implementation, we do not take the annulus-like flat
component as input directly. Instead, we first convert it
to a disk-like component by filling the hole while keeping
the marks of inner boundary vertices. Then we still use
the marked vertices for boundary alignment. After opti-
misation, we remove those faces added for hole filling to

generate the final output.

Intuitive design exploration. Our work can benefit intu-
itive design exploration. Here we show an example of the
easy creation of design variations from an existing design.
Based on an existing D-Form [2] as shown in Fig. 13a,
we can easily modify its seam and then employ the inverse
modelling to create a new D-Form (see Fig. 13b). This new
D-Form matches the prescribed seam constraints without
tuning the shape of the flat components, making the design
process much more efficient. A demonstration of applying
the new D-Form for street furniture design is in Fig. 13c.

6.5. Implementation Details

We implement our framework with C++ on a desk-
top PC with i7-8700K CPU and 32GB RAM. The in-
put meshes for optimisation typically have about 2k trian-
gles, and the input space curves have around 100 vertices.
The approximate running time of the algorithm is usually
around 2s. The most time-consuming part is the iterative
optimisation.

6.6. More on Optimisation

Our current optimisation solution penalises the error
of the isometry term (Eqn. 1) and boundary alignment
terms (Eqn. 2, 3, 6) by specifying much bigger weights
(∼100 times larger than mesh smoothness in Eqn 4 and
seam smoothness in Eqn 5), as shown in Table 1. The

9



(a) (b)

(c) (d)

Figure 11: The resultant D-Form shapes can be easily fabricated
using paper. Top row in each sub-figure shows the virtual shape.
Bottom row shows the paper object. (a), (b), and (d) are generated
from forward modelling. (c) is generated from inverse modelling.

(a) (b)

Figure 12: Two special D-Forms generated from our work. (a) anti
D-Form. (b) demi D-Form.

optimisation process can be treated as a ‘geometric simu-
lation’ of how D-Form is fabricated in practice (smoothly
bending two flat components while aligning boundaries).
Different terms in the objective function are not mutually
conflict and they can be effectively minimised altogether.
As a result, our solution achieves satisfactory results with
very small errors (see Tables 1 and 2). Another possible so-
lution is to only keep smoothness-related terms in the ob-
jective function while modelling isometry- and alignment-
related terms as hard (equality) constraints. Such a prob-
lem can be solved by constrained optimisation algorithms
such as Augmented Lagrangian Method (ALM). This so-
lution would perform better on hard constraints but the
computational cost would also increase.

Also, in our current inverse modelling formulation, we
expect the two boundaries to match the target seam, thus
using the penalty term of seam closeness in Eqn. 6. Given
the pre-D-Form already meets this requirement (see Sec-
tion 5.1) and the boundaries of the two flat components

(a) (b)

(c)

Figure 13: Intuitive design exploration inspired existing designs. (a)
Westminster street furniture collection [2]. (b) A D-Form variant
inspired by (a). We use a varied space curve as input and generate
a design variation based on inverse modelling. (c) A street furniture
scene design based on the resultant D-Form.

are not fixed during the optimisation (see Section 5.2.3),
such an initialisation along with the additional degrees of
freedom produce good target seam matching results as val-
idated by the very small Derror in Table 1. On the other
hand, for potential cases where the seam closeness term
cannot be effectively minimised, relaxing the seam match-
ing energy and forcing no gap at the seam with large pe-
nality or hard constraints would be interesting to explore.

7. Conclusion and Discussion

In this paper, we present a computational framework
for modelling D-Forms. Unlike prior work, our framework
can model D-Forms not only forwardly from two planar
domains but also inversely from a space curve, making the
modelling and exploration process more intuitive. Various
outputs with different design constraints demonstrate the
efficacy and efficiency of our work. We hope our work can
inspire following-up research works on D-Form and other
types of pieces-wise developable surfaces.

Discussion. Our forward D-Form modelling is based on
automated smooth isometric deformation of the flat com-
ponents (recall the isometric term and the smoothness
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(a) (b)

Figure 14: D-form shape formed by one disk and one square. (a) The
Squaricle D-Form design [2], where four sharp edges were introduced
to bend the disk component. (b) The output generated from our
algorithm, which produces smooth deformation result from the disk
component.

term). As a result, we cannot generate D-Form with sharp
features in addition to the seam, such as the Squaricle, the
D-Form shape formed by one disk and one square (see Fig.
14). In the future, we plan to allow user sketches to fur-
ther split 2D flat components and their 3D developables
into smaller segments to handle such cases. Also, our
inverse D-Form modelling is automatically initialised by
constructing the convex hull. Although this approach suc-
cessfully provides proper initialisation, there can be other
initialisation possibilities, which is especially true for com-
plicated space curves, given there can be finitely many
developable surfaces having such a boundary [32]. We will
further explore how to perform interactive initialisation
similar to [31] for sketches. Further, there is no guarantee
that any space curve can be the boundary of a developable
surface, especially for space curves that are non-smooth
and winding around. We only provide a practical method
to find one of the solutions if it exists, but what space
curve can correctly serve as the seam of a D-Form is still
an open question.
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