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A B S T R A C T

Tracking-by-regression is a new paradigm for online Multi-Object Tracking (MOT). It unifies detection and
tracking into a single network by associating targets through regression, significantly reducing the complexity
of data association. However, owing to noisy features from nearby occlusions and distractors, the regression is
vulnerable and unaware of the inter-object occlusions and intra-class distractors. Thus the regressed bounding
boxes can be wrongly suppressed or easily drift. Meanwhile, the commonly used bounding box-based post-
processing is unable to remedy false negatives and false assignments caused by regression. To address these
challenges, we present to leverage regression tubes as input for the regression-based tracker, which provides
spatial–temporal information to enhance the tracking performance. Specially, we propose a novel tube re-
localization strategy that obtains robust regressions and recovers missed targets. A tube-based NMS (T-NMS)
strategy to manage the regressions at the tube level is also proposed, including a tube IoU (T-IoU) scheme
for measuring positional relation and tube re-scoring (T-RS) to evaluate the quality of candidate tubes.
Finally, a tube re-assignment strategy is further employed for robust cost measurement and to revise false
assignments using motion cues. We evaluate our method on benchmarks, including MOT16, MOT17, and
MOT20. The results show that our method can significantly improve the baseline, mitigate the challenges of
the regression-based tracker, and achieve very competitive tracking performance.
1. Introduction

Multi-object tracking (MOT) involves localizing objects in each
frame and temporally forming trajectories. MOT is one of the core tasks
in computer vision to facilitate scene understanding and has various ap-
plications such as video surveillance, autonomous vehicles, and human
behavior analysis. However, it remains challenging in crowded scenes
with occlusions, distractors, low frame rates, and camera motions.

Due to the rapid progress in deep-learning-based object detection,
tracking-by-detection became the dominant paradigm in MOT. It di-
vides the MOT task into two separate steps: (i) localizing multiple
objects in each frame and (ii) linking the identical objects across frames.
Therefore, with the provided detections, MOT is formed as a data
association problem. Specifically, it aims to distinguish different targets
by assigning a unique identity (ID) while keeping the ID consistent
across the temporal domain. Most previous works focus on extracting
discriminative features such as appearance features (Wojke et al., 2017;
Chen et al., 2018; Zhang et al., 2021), making motion predictions (Zhou
et al., 2020; Wu et al., 2021), and utilizing the attention mecha-
nism (Zhu et al., 2018; Guo et al., 2021; Peng et al., 2020a). However,
these methods can significantly increase computational complexity
since extra tracking-related networks are typically employed.
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The tracking-by-regression framework (Bergmann et al., 2019) is
proposed to reduce the complexity of data association in MOT. By
reusing the regression head of two-stage object detectors Faster R-
CNN (Ren et al., 2016), the existing tracks in the previous frame
are associated automatically with the targets in the current frame,
demonstrating promising tracking performance while significantly re-
ducing the complexity of data association. Later works (Xu et al., 2020;
Liu et al., 2020; Stadler and Beyerer, 2021; Guo et al., 2021) take
advantage of this new framework for further improvements.

However, despite its simplicity, the regression-based tracking net-
work is modified from an object detector, which relies on the repre-
sentative features of input targets for regression. As in single object
tracking (Li et al., 2018; Yuan et al., 2020) and thermal infrared track-
ing (Liu et al., 2022), the learned global semantic features are sensitive
to all related semantic objects and insensitive to similar objects of
the same class. Therefore, the regression-based multi-object tracker is
unaware of inter-object occlusions and intra-class distractors, working
in an ID-agnostic fashion. That is to say, the noisy features of occlu-
sions and distractors from nearby objects can easily cause target drift
(see Fig. 1) and missing targets, dramatically damaging the tracking
performance. Besides, the simple bounding boxes-based post-processing
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Fig. 1. Noisy features from nearby cause typical false negatives and ID switches in the
tracking-by-regression paradigm. The dashed box represents the raw regressed result,
which becomes invalid in the post-process. Top row: The nearby targets with similar
appearances introduce noisy features. Therefore the dashed blue box drifts to a nearby
target and is eventually eliminated. Bottom row: The two boxes in white and green
contain mixed features of two targets, and representative features are contaminated
as the two targets get closer, resulting in an ID switch. Different box colors indicate
different identities. (For interpretation of the references to color in this figure legend,
the reader is referred to the web version of this article.)

procedure, such as Intersection-over-Union (IoU) and non-maximum
suppression (NMS), can easily lead to incorrect relational measure-
ments, ID switches (IDS), false positives (FP), and false negatives (FN)
in crowded scenes. Meanwhile, the target identities are generally main-
tained with NMS based on the confidence obtained from the regression
network, which only represents the quality of localization but not
tracking and can not sufficiently reveal the quality of identity matching.
Therefore, in challenging cases with inter-object occlusions and intra-
class distractors, the original post-processing procedure and confidence
are not optimal for identity assignment as occluded targets are often
suppressed, and identities are often mistakenly assigned. Moreover, the
regression-based trackers cannot recover the missed targets once lost.

In this paper, we mitigate these issues in the regression-based
trackers and enhance the MOT performance by leveraging regression
tubes instead of simple static boxes (see Fig. 2) as input. The regression
tubes constructed by consecutive bounding boxes of individual tracks
contain spatial–temporal information (such as moving direction and
speed) and have been proved to be effective in MOT (Pang et al., 2020)
and video object detection (Kang et al., 2016; Tang et al., 2019). We
improve the performance of the regression-based tracker by regressing
the tubes to unleash the potential of the regression network in three
aspects. Firstly, we utilize regression tubes as input and propose a
tube re-localization strategy that benefits regression by incorporat-
ing spatial–temporal information extracted from the formed tubes. It
can effectively resolve the inaccurate regression problem in box-based
regression by reusing discriminative features and recovering missed
targets. Secondly, we propose a tube-based NMS (T-NMS) mechanism
to process the tubes by utilizing the information from the previous
frames to process regressed targets at the tube level. With T-NMS, we
can promote partly occluded targets to stay active and penalize low-
quality regressions, resulting in improved identity consistency. Finally,
in order to correctly measure the similarity and assign the identity of
targets with regression tubes, we propose a tube re-assignment strategy,
which integrates the spatial–temporal features and the motion cues to
improve the traditional bounding box-based matching. We evaluate the
proposed method through extensive comparisons with existing state-
of-the-art trackers and apply our method to other regression-based
trackers. Both qualitative and quantitative results demonstrate the
effectiveness of our approach.

In summary, the main contributions of this paper are:

• We leverage the regression tubes as input to incorporate the
spatial–temporal information and propose a tube re-localization
strategy for better target localization and recovering missed tar-
gets.
2

• We propose a T-NMS mechanism that robustly processes the tube
regressions at the tube level and correctly scores the associations
by penalizing low-quality regressions.

• We propose a tube re-assignment strategy that integrates the
spatial–temporal features and motion cues of regression tubes in
similarity measuring to revise false assignments to enhance the
identity consistency of the tracking.

• Extensive experiments demonstrate that our method effectively
improves the performance of the regression-based tracker, and
the proposed tracker can obtain very competitive tracking per-
formance on MOT benchmarks.

2. Related work

The existing MOT algorithms can be categorized into online and
offline methods. Future frames can be used for matching globally in
offline tracking. Therefore, offline methods are more robust to occlu-
sions and distractors in general. In contrast, only previous and current
frames are available for online methods, which have a broader range
in real-world applications but are more vulnerable to occlusions and
distractors. Here we focus on online tracking where our work lies.

2.1. Tracking-by-detection

Most previous methods (Wojke et al., 2017; Chen et al., 2018)
utilize the tracking-by-detection (TBD) framework, where off-the-shelf
detectors provide the detections on each frame. and then MOT is
formulated as a data association problem that links the detected objects
with the existing tracks temporarily. A common formalism is to build a
graph for associations, where the nodes represent targets, and the edges
represent relations of potential links. The appearance features (Wang
et al., 2020; Guo et al., 2021; Zhang et al., 2021) are widely used for
similarity measuring, and the additional ReID models (Wojke et al.,
2017; Son et al., 2017) are often employed to match re-appeared
identities to form long trajectories. Besides, Some methods adopt mo-
tion models, such as the Kalman filter (Wojke et al., 2017; Zhang
et al., 2021), optical flow (Tang et al., 2017), and motion prediction
networks (Zhou et al., 2020; Sadeghian et al., 2017; Wang et al.,
2022), that incorporate temporal features to make dynamic position
predictions to compensate for noisy detections. Some methods establish
Recurrent Neural Networks (Milan et al., 2017; Sadeghian et al., 2017;
Jain et al., 2020) to model complex motion patterns. Moreover, data
association is also formulated as a graph optimization problem in some
methods (Li et al., 2022) and solved globally with network flow (Schul-
ter et al., 2017) and Multiple Hypothesis Tracking (Kim et al., 2015)
frameworks. Despite the superior performance, this separate pipeline
impedes the TBD from real-time utilization.

2.2. Joint-detection-and-tracking

The joint-detection-and-tracking (JDT) framework is proposed to
eliminate the gap between object detection and data association, reuse
backbone features, solve MOT end-to-end with multi-task learning in
a single network, and state-of-the-art results are achieved. A unified
framework is proposed by Feichtenhofer et al. (2017) to jointly perform
detection and tracking based on the detector R-FCN (Dai et al., 2016).
JDE (Wang et al., 2020) employs the detector YOLOv3 (Redmon and
Farhadi, 2018) by adding an appearance embedding branch, result-
ing in detections and representative features of targets obtained with
shared backbone features. Likewise, the FairMOT (Zhang et al., 2021)
is built on top of the CenterNet (Zhou et al., 2019) with an additional
appearance embedding branch. CTracker (Peng et al., 2020a) integrates
object detection, feature extraction, and data association in an end-
to-end framework. The predictions of the same targets in consecutive
frames are obtained with chained boxes. Similarly, CenterTrack (Zhou
et al., 2020) is built based on the CenterNet with an added tracking
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Fig. 2. Overview of the method pipeline. The red, blue, and yellow boxes represent existing tracks with different identities for each frame. The tracked boxes across continuous
frames on the frames 𝐼𝑡−1 and 𝐼𝑡 form a tube set (illustrated by boxes connected via dashed lines), which is used as the input for the proposed tube-based robust regression and
association. The proposed method extends the tracks to the next frame 𝐼𝑡+1 with identities. This process is conducted iteratively to the whole sequence. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
offset prediction branch. DHN (Xu et al., 2020) proposes a Deep Hun-
garian Net module that transforms the Hungarian algorithm (Kuhn,
1955) to comply with the neural networks by learning to assign the
target identities and builds an end-to-end MOT training framework.
Although effective, these trackers are all built upon existing detectors
by adding tracking-related networks, which brings difficulties in train-
ing and increases the parameters of the network. On the contrary, our
regression-based tracker with regression tubes as input achieves very
competitive results without extra networks and training difficulties.

2.3. Tracking-by-regression

This stream works by regressing tracked targets from previous
frames for associations by leveraging the regression network of bound-
ing box refinement. The data association is performed without extra
matching methods. Tracktor (Bergmann et al., 2019) is an inspiring
tracking-by-regression framework that adapts the detector Faster R-
CNN (Ren et al., 2016) into a multiple object tracker by re-utilizing the
regression head. The existing tracks (represented as bounding boxes)
are used as inputs, and the identities of targets are assigned by box
regressions directly. This procedure eliminates the necessity of the
complex data association process, and some other methods follow
this paradigm for further improvements. GSM (Liu et al., 2020) pro-
poses a novel graph representation to leverage the relations among
objects to improve the robustness of the similarity model. An occlusion
handling strategy that models the relation between occluding and
occluded tracks is proposed in TMOH (Stadler and Beyerer, 2021) to
improve the track management of the regression-based tracker. The
TMOH outperforms the feature-based approaches without a separate re-
identification network. TADAM (Guo et al., 2021) utilizes two attention
modules that allow the tracker to focus more on targets and suppress
the influence of distractors nearby. More discriminative features and
accurate position predictions are obtained. However, these methods
ignore the spatial–temporal features of tracks and cannot recover the
missing targets. Our method leverage the regression tubes as input,
fully utilize the spatial–temporal information provided by tubes and
retrieve the missing targets to boost the tracking performance.

2.4. Video object detection and MOT with tubes

Video object detection is closely related to MOT without the re-
quirement of identity for each target. However, both tasks face similar
challenges, such as occlusions, camera motions, and noisy detections.
The tubes incorporating spatial–temporal information and motion cues
by stacking consecutive targets are widely used in this field. A tubelet
proposal network (Kang et al., 2017) that combines object detection
and object tracking is presented to generate tubelet proposals effi-
ciently. The tubes are generated by the object tracker and used for
localizing objects. However, our method is different in that tubes
3

are generated from the regression instead of object proposal and are
intended for identity assignment. Seq-NMS (Han et al., 2016) is a
post-processing strategy that uses high-scoring object detections to
boost scores of weaker detections within the same clip, similar to
the proposed T-NMS in this paper. However, T-NMS processes the
regression tubes based on scores of matching pairs produced by a
novel scoring strategy and reveals the quality of candidate tubes. The
average detection scores are used in Seq-NMS, indicating the confi-
dence of classification. The tubes are employed in the field of MOT
as well. TubeTK (Pang et al., 2020) encodes spatial–temporal features
with bounding-tube, regresses bounding tubes for data association,
and processes tubes with Tube NMS. However, TubeTK works offline,
i.e., the tracking is performed with future frames included for both
bounding-tube regression and Tube NMS. An additional IoU-based
greedy algorithm is needed to complete data association. However,
our method differs because the proposed modules in our method are
tailored for regression tubes and track in an online fashion.

3. Proposed method

In this section, we first give an overview of our method (Sec-
tion 3.1), then present its three key components in detail, includ-
ing tube re-localization (Section 3.2), T-NMS (Section 3.3), and tube
re-assignment (Section 3.4).

3.1. Overview

The existing regression-based tracker (Bergmann et al., 2019) per-
forms data association based on the regression procedure of the object
detector Faster R-CNN (Ren et al., 2016). Thus heavily depends on
the quality of the representative features for the regression head,
i.e., the embeddings of existing tracks on previous frames. Specifically,
given as input the tracks of the frame 𝐼𝑡 represented by a box set
𝑡 = {𝑏𝑡1, 𝑏

𝑡
2,… , 𝑏𝑡𝑁}, the regression results of the frame 𝐼𝑡+1 are

𝑡+1
𝑡 = {𝑝𝑡1, 𝑝

𝑡
2,… , 𝑝𝑡𝑁} with identities transferred from the previous

frame by regression. We argue that this simple bounding-boxes-based
data association is not optimal and cannot robustly handle inter-object
occlusions and intra-class distractors since the regression is performed
based on the extracted semantic features. Thus it is ID-agnostic and
vulnerable. In order to take advantage of spatial–temporal information
to tackle the inter-object occlusions and intra-class distractors, we
propose to leverage regression tubes as the primary input for robust
regression and employ general tube-based measuring and processing
strategies for robust association in crowded scenes.

The overview of our method is shown in Fig. 2. Compared with
previous work (Bergmann et al., 2019) that only utilized the bounding
box on the frame 𝐼𝑡, the tracks on frame 𝐼𝑡−1 are also employed
to form the tube set  𝑡 as the input in our method. Each tube is
formed by two boxes with the same identity. The backbones of the
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siamese network share the weights. To deal with inaccurate regressions
and false assignments caused by inter-object occlusions and intra-class
distractors, we propose a tube re-localization strategy to process tube-
based regressions (Section 3.2), resulting in more accurate regressions
and recovers targets of the frame 𝐼𝑡+1. We then propose a novel tube-
based NMS (T-NMS) (Section 3.3) to better manage the regression tubes
at the tube level with the proposed tube IoU (T-IoU) and re-score
the corresponding confidences with a tube re-scoring (T-RS) scheme.
The re-scored confidence is used in tube re-localization (Section 3.2)
and tube re-assignment (Section 3.4). The T-IoU is employed when
measuring the locality relationships between different tubes. Finally,
we propose a tube re-assignment (Section 3.4) strategy to accurately
measure the similarity between different targets and revise wrongly
assigned identities. The costs of associating candidate tubes are refined
by considering spatial–temporal features and motion cues within tubes.

3.2. Tube re-localization

The regression is performed based on the representative features.
Therefore, the regression is an identity-agnostic process and unaware
of inter-object occlusion and intra-class distractors. The noisy features
from similar appearances and nearby targets can easily damage the
regression quality. Consequently, the correct regressed results are often
eliminated, and the identities become lost (see the top row in Fig. 1).
Thus, one of the drawbacks of the regression-based tracker is that
the regression is vulnerable to inter-class occlusions and intra-class
distractors. Besides, regression is a one-to-one procedure. Therefore it
cannot recover missing targets once lost.

To deal with this, we take regression tubes as input and propose a
novel tube re-localization strategy, incorporating spatial–temporal fea-
tures and historical information of tracked tubes into regression. Better
regressions are obtained by reusing the discriminative features inside
tubes from previous frames, and missed targets are recovered simulta-
neously. Technically, given 𝑁(𝑡) existing tracks (hereafter referred to as
𝑁 for simplicity) of the frame 𝐼𝑡 denoted as  𝑡 = {𝑇 𝑡

1 , 𝑇
𝑡
2 ,… , 𝑇 𝑡

𝑁}, each
track contains a series of bounding boxes with the same identity. The
boxes of 𝑁 active tracks in frames 𝐼𝑡 and 𝐼𝑡−1 are 𝑡 = {𝑏𝑡1, 𝑏

𝑡
2,… , 𝑏𝑡𝑁}

and 𝑡−1 = {𝑏𝑡−11 , 𝑏𝑡−12 ,… , 𝑏𝑡−1𝑁 }. We utilize 𝑁 formed tubes  𝑡 =
{𝑢𝑡1, 𝑢

𝑡
2,… , 𝑢𝑡𝑁} as the input for regression, where each tube 𝑢𝑡𝑖 is formed

by two boxes 𝑏𝑡−1𝑖 and 𝑏𝑡𝑖 with the same identity of two consecutive
frames. Note that if no track in the previous frame is available, we
duplicate the bounding box in the current frame to form the input tube.
Based on this, we can regress  𝑡 and obtain the initial regression results
̃𝑡+1

𝑡 = {𝑝̃𝑡1, 𝑝̃
𝑡
2,… , 𝑝̃𝑡𝑁} and ̃𝑡+1

𝑡−1 = {𝑝̃𝑡−11 , 𝑝̃𝑡−12 ,… , 𝑝̃𝑡−1𝑁 } of two frames
inside each tube.

To obtain the final regression boxes of each track at the frame 𝐼𝑡+1,
we need to process the regressed boxes from tubes of each existing track
to decide the final regression. The high video frame rate assumption
suggests that the regressed boxes with large overlaps and similar geo-
metric characteristics are more likely to be the correct target for each
track. Thus, on top of the original regression results, we first coarsely
match the regressed boxes in the frame 𝐼𝑡+1 with the corresponding
tracks on frame 𝐼𝑡 by minimizing the position cost to obtain the
re-arranged regression boxes 𝑡+1

𝑡 with re-assigned identities. A cost
matrix 𝐶𝑝𝑜𝑠 can be constructed by measuring the position cost when
linking box 𝑝̃𝑡𝑗 in the frame 𝐼𝑡+1 to the existing tracked box 𝑏𝑡𝑖 in the
frame 𝐼𝑡 as:

𝐶𝑖,𝑗
𝑝𝑜𝑠 = 1 − IoU(𝑏𝑡𝑖, 𝑝̃

𝑡
𝑗 ). (1)

Then the Hungarian algorithm (Kuhn, 1955) is employed for assign-
ment. The assignment of identities for the regressed boxes in ̃𝑡+1

𝑡−1 to
previous existing tracks 𝑡−1 is performed similarly, and we can obtain
the re-arranged regression boxes 𝑡+1

𝑡−1 as well.
Ideally, it is expected that the two regressed boxes of the same ID in

𝑡+1
𝑡−1 and 𝑡+1

𝑡 are largely overlapped with each other with a very sim-
ilar appearance since each target has only one position on each frame.
4

Thus, we can obtain the final regressions of each tube by measuring
the overlaps on the same frame. More specifically, assume there are 𝑁
formed tubes  𝑡 at the frame 𝐼𝑡, two regressed box sets with the same
assigned ID are 𝑡+1

𝑡 =
{

𝑝𝑡1, 𝑝
𝑡
2,… , 𝑝𝑡𝑁

}

and 𝑡+1
𝑡−1 =

{

𝑝𝑡−11 , 𝑝𝑡−12 ,… , 𝑝𝑡−1𝑁
}

.
The corresponding confidence scores  𝑡+1

𝑡−1 and  𝑡+1
𝑡 , are re-scored with

the tube re-scoring (T-RS) strategy (detailed in Section 3.3). Then we
calculate the overlaps of boxes that point to the same target at the frame
𝐼𝑡+1, and obtain the overlap set 𝑡+1 =

{

𝑜𝑡+11 , 𝑜𝑡+12 ,… , 𝑜𝑡+1𝑁
}

, where
𝑜𝑡+1𝑖 = IoU(𝑝𝑡𝑖, 𝑝

𝑡−1
𝑖 ), which is measured by the original bounding box-

based IoU. A significant overlap (larger than a pre-defined threshold
𝜂1) of two boxes indicates high confidence in the regressed position.
On the contrary, a low overlap (smaller than a pre-defined threshold 𝜂2)
means the tube regresses to two different positions. The box with the
higher confidence is treated as the final regression of the track, while
the ones with lower confidence are likely to be the recovered targets
missed by the detector, which will be treated the same as detections
from . By doing so, the final regressed boxes 𝑡+1 = (𝑟𝑡+11 , 𝑟𝑡+12 ,… , 𝑟𝑡+1𝑁 )
and the retrieved targets  𝑡+1 = (𝑒𝑡+11 , 𝑒𝑡+12 ,… , 𝑒𝑡+1𝐿 ), and the correspond-
ing scores,  𝑡+1 and  𝑡+1

𝑟𝑒𝑡𝑟 (obtained with the proposed T-RS) can be
obtained by merging the final regression results within each tube. The
tube re-localization is summarized in Alg. 1. The retrieved targets  𝑡+1

in the frame 𝐼𝑡+1 will be added to the provided detection set 𝑡+1 for
further process.

The regression tubes contain discriminative spatial–temporal fea-
tures from previous frames, which have been verified effective by
the active tracks up to the current. These discriminative and accu-
rate features are reused for regressing the tracked tubes. Thus, the
tube re-localization strategy is beneficial in crowded scenes, where
nearby targets and backgrounds can severely contaminate the repre-
sentative features. Moreover, the targets missed by detectors or due
to drift can also be recovered. Therefore, we employ the tubes for
robust regression-based tracking to help eliminate the influence of
inter-object occlusions and intra-class distractors. The effectiveness and
generalization of tubes are proved in experiments.

Algorithm 1 Tube Re-localization
Input:

• Tubes  𝑡 of existing tracks in frame 𝐼𝑡

Output:
• Regressions 𝑡+1 and corresponding confidences  𝑡+1 in frame
𝐼𝑡+1• Recovered targets  𝑡+1 and corresponding confidence  𝑡+1

𝑟𝑒𝑡𝑟 in
frame 𝐼𝑡+1

1: Obtain ̃𝑡+1
𝑡 , ̃𝑡+1

𝑡−1 with tubes  𝑡 by regression;
2: Assign identities for (̃𝑡+1

𝑡−1,
𝑡−1) and (̃𝑡+1

𝑡 ,𝑡) according to the
position cost in Eq. (1);

3: Obtain the 𝑡+1
𝑡−1, 𝑡+1

𝑡 for each tube at frame 𝐼𝑡+1 based on the
positional relation within tube;

4: Obtain the (𝑡+1, 𝑡+1) and ( 𝑡+1, 𝑡+1
𝑟𝑒𝑡𝑟) with T-RS based on overlaps

𝑡+1 between different tubes;
5: Update provided detection set 𝑡+1.

3.3. Tube-based NMS

To avoid redundant targets, NMS is often employed as post-
processing for identity management (Bergmann et al., 2019; Stadler
and Beyerer, 2021; Shuai et al., 2021). Typically, two boxes are treated
as pointing to the same target if they are largely overlapped. The
correct regression should have higher confidence to survive, which
helps to reduce false negatives and ID switches. However, the score
of a regressed box mainly represents the confidence of localization,
and it cannot well indicate the tracking quality, thus often leading to
false identity assignments under frequent inter-object occlusions and
intra-class distractors. For example, when two boxes largely overlap,
they are regarded as pointing to the same target (but actually not).
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Since the original NMS only measures the relation of targets at the box
level within the same frame, it ignores the spatial–temporal information
and historical relations. The correct regressions may be mistakenly
suppressed with a lower score. Thus, the original box-based NMS is
unsuitable for measuring and matching the regression tubes, which
can easily lead to false negatives and ID switches of occluded and
intersected targets in crowded scenes.

To address this, we propose the T-NMS (including the tube IoU and
tube re-scoring), which is tailored for processing regression tubes, to
measure the positional relations between different targets and eval-
uate the confidence of the candidate tubes at the tube level with
spatial–temporal information considered. The proposed tube IoU (T-
IoU) coincides with regression tubes and measures the overlaps of
different targets by considering the historical positional relations at
tube level. More specifically, two regressed boxes in frame 𝐼𝑡+1 with
different IDs have an overlap measured by the original IoU(𝑟𝑡+1𝑖 , 𝑟𝑡+1𝑗 ),
and their corresponding boxes within tubes in the previous frame 𝐼𝑡

have an overlap of 𝑜𝑡𝑖,𝑗 = IoU(𝑏𝑡𝑖, 𝑏
𝑡
𝑗 ). The proposed T-IoU of the two

target tubes can be calculated as follows:

𝑜𝑡+1𝑖,𝑗 =

{

IoU(𝑟𝑡+1𝑖 , 𝑟𝑡+1𝑗 ) 𝑜𝑡𝑖,𝑗 < 𝛾

0.5[IoU(𝑟𝑡+1𝑖 , 𝑟𝑡+1𝑗 ) + 𝑜𝑡𝑖,𝑗 ] 𝑜𝑡𝑖,𝑗 ≥ 𝛾,
(2)

where 𝛾 is a pre-defined threshold for T-IoU. The T-IOU considers
positional relations of previous frames, which reveal the states before
current intersections. Thus it enables the tracker to alleviate the in-
fluence of the inter-object occlusion by reducing the actual overlaps
between occluded targets and relieving those targets from being sup-
pressed by the coarse decision-making process. Therefore, by measuring
with the proposed T-IoU instead of the original IoU, the partly occluded
targets with lower scores could survive rather than being eliminated
with high overlaps, raising the recall and stability of tracking. The
examples can be found in Section 4.4. Note that the original IoU is used
when calculating the final regression within each tube in the proposed
tube re-localization since each target only has one unique position at
any single frame. And the proposed T-IoU is employed for tube level
measurement between different tubes to reduce the false negatives and
ID switches.

The proposed tube re-scoring (T-RS) is used to score the confidence
of the formed tubes in tube re-localization. This scoring scheme is
also used to evaluate the confidence of candidate tubes formed with
boxes from regressions 𝑡+1 and existing tracks. In order to accurately
reflect the quality of tracking, we introduce Gaussian penalty functions
to the original confidence to discourage the difference of potentially
associated targets similar to SOT (Yang et al., 2021). We define the
relative positional displacement of linked targets from the frame 𝐼𝑡 to
frame 𝐼𝑡+1 as follows:

𝛥𝑐𝑡 =

√

(𝛥𝑐𝑡𝑥)2 + (𝛥𝑐𝑡𝑦)2

ℎ𝑡 +𝑤𝑡 , (3)

where 𝛥𝑐𝑡𝑥 = |𝑐𝑡𝑥 − 𝑐𝑡+1𝑥 | and 𝛥𝑐𝑡𝑦 = |𝑐𝑡𝑦 − 𝑐𝑡+1𝑦 | are the absolute center dis-
placement of the candidate tubes. Likewise, a relative shape difference
of linked tubes can be defined as:

𝛥𝑠𝑡 =
𝛥ℎ𝑡 + 𝛥𝑤𝑡

ℎ𝑡 +𝑤𝑡 , (4)

where 𝛥ℎ𝑡 = |ℎ𝑡 − ℎ𝑡+1| and 𝛥𝑤𝑡 = |𝑤𝑡 −𝑤𝑡+1
| are the absolute height

and width differences, respectively. Consequently, the refined scores of
the candidate tubes can be computed by:

𝑠𝑡𝑟𝑎𝑐𝑘 = 𝑠𝑑𝑒𝑡 ⋅ 𝑒
−

𝛥𝑐2𝑡
𝜎21 ⋅ 𝑒

−
𝛥𝑠2𝑡
𝜎22 , (5)

where 𝑠𝑑𝑒𝑡 denotes the original confidence obtained from the regression
network, the 𝜎1 and 𝜎2 are the Gaussian standard deviation. We set
𝜎21 = 𝜎22 = 2.0 experimentally. The T-RS accords with the principle
of tracking based on smooth movement and proves to be effective in
practice (see Section 4.4).
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The proposed T-NMS well matches with tubes and improves eval-
uation and processing of tracks, enabling the tracker to manage the
regression tubes within and among targets at the tube level and ob-
tain the candidate tubes for further assignment. The missed and oc-
cluded targets are prevented from being mistakenly eliminated with
T-NMS caused by inter-object occlusion. To summarize, T-NMS pro-
motes spatial–temporally consistent tracks with accurate measurement
and refined confidence obtained by the proposed T-IoU and T-RS
strategies.

3.4. Tube re-assignment

The target identities are assigned by regression directly in the orig-
inal regression-based tracker (Bergmann et al., 2019), greatly reducing
the complexity of data association. However, the success of this simple
process is based on the assumption of high frame rates and constant
target velocity. When the assumption breaks (such as low frame rates
and large camera motions), inter-object occlusions and intra-class dis-
tractors vastly increase, often leading to false assignments, ID switches,
and trajectory fragments. Therefore, it would be better if the tracker is
aware of false assignments and has the ability to revise them to enhance
identity consistency in crowded scenes.

The positional relation of bounding boxes is widely used for measur-
ing the similarity of linked targets in previous methods (Wojke et al.,
2017; Wang et al., 2020; Zhang et al., 2021). This simple metric can
cope with most targets correctly for easy tracking scenarios. However,
owing to the neglect of temporal information and motion cues, this
bounding box-based metric is not optimal for handling complex scenes
with occlusions and intersections, resulting in false assignments and
track fragmentation. The matching cost of identity is calculated by
box-based measurement within each tube in Eq. (1). Therefore, the
corresponding identities are coarse and unreliable and need to be re-
assigned for better identity consistency. The location and scale penalty
regarding the size and position changes to re-rank the candidate targets
are widely used for smoothing tracks (Yang et al., 2021; Li et al.,
2018). Thus, we propose a tube re-assignment strategy to evaluate the
similarity of candidate tubes in multi-object tracking scenarios, which
can revise false assignments and mitigate the issues of inter-object
occlusions and intra-class distractors.

Consider a set of existing tracks  𝑡 = {𝑇 𝑡
1 , 𝑇

𝑡
2 ,… , 𝑇 𝑡

𝑛}. Each track is
composed of a set of bounding boxes 𝑇 𝑡

𝑖 = {𝑏𝑡𝑖, 𝑏
𝑡−1
𝑖 ,…}, and each box

𝑏𝑡𝑖 is represented by {𝑥𝑡1, 𝑦
𝑡
1, 𝑥

𝑡
2, 𝑦

𝑡
2}, i.e., top-left and bottom-right coor-

dinates. Regression results of tubes and their confidence can then be
obtained using the proposed tube re-localization and T-NMS. The can-
didate tubes for potential links between existing tracks and regressions
are formed as input for the tube re-assignment strategy. Each formed
candidate pair is also a tube. Therefore, the re-assignment procedure is
well matched with tubes and enables the tracker to perform at the tube
level with spatial–temporal information.

Unlike most bounding box-based methods that measure locally
by overlaps, the tube re-assignment approach takes into account ex-
tra information, including the size and displacement of linked boxes
within tubes. More specially, given both the 𝑖th existing track with
position 𝑏𝑡𝑖 = (𝑥𝑡𝑖,1, 𝑦

𝑡
𝑖,1, 𝑥

𝑡
𝑖,2, 𝑦

𝑡
𝑖,2) in frame 𝐼𝑡 and the 𝑗th regression

𝑟𝑡+1𝑗 = (𝑥𝑡+1𝑗,1 , 𝑦
𝑡+1
𝑗,1 , 𝑥

𝑡+1
𝑗,2 , 𝑦

𝑡+1
𝑗,2 ) in frame 𝐼𝑡+1, the center position, width, and

height of the two boxes are (𝑐𝑡𝑖,𝑥, 𝑐
𝑡
𝑖,𝑦, 𝑤

𝑡
𝑖, ℎ

𝑡
𝑖) and (𝑐𝑡+1𝑗,𝑥 , 𝑐

𝑡+1
𝑗,𝑦 , 𝑤

𝑡+1
𝑗 , ℎ𝑡+1𝑗 ),

respectively. Then the size cost of this formed candidate tube is defined
as:

𝐶𝑖,𝑗
𝑠𝑖𝑧𝑒 =

|ℎ𝑡𝑖 − ℎ𝑡+1𝑗 |

ℎ𝑡𝑖
+

|𝑤𝑡
𝑖 −𝑤𝑡+1

𝑗 |

𝑤𝑡
𝑖

. (6)

Likewise, the displacement cost measures the normalized relative dis-
placement of linked center positions as:

𝐶𝑖,𝑗
𝑑𝑖𝑠 =

√

(𝛥𝑐𝑡𝑥)2 + (𝛥𝑐𝑡𝑦)2

𝑡 𝑡 , (7)

ℎ𝑖 +𝑤𝑖
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where 𝛥𝑐𝑡𝑥 = |𝑐𝑡𝑖,𝑥 − 𝑐𝑡+1𝑗,𝑥 | and 𝛥𝑐𝑡𝑦 = |𝑐𝑡𝑖,𝑦 − 𝑐𝑡+1𝑗,𝑦 |. The shape cost is the
summation of the size cost and the displacement cost:

𝐶𝑖,𝑗
𝑠ℎ𝑎𝑝𝑒 = 𝐶𝑖,𝑗

𝑠𝑖𝑧𝑒 + 𝐶𝑖,𝑗
𝑑𝑖𝑠. (8)

The regression tubes contain temporal information and motion trails
of tracks, which are vital for distinguishing intersected targets. For
challenging cases such as targets becoming occluded while walking,
the moving directions of targets are generally different. Therefore,
we utilize the motion information in regression tubes and propose
a direction cost that measures the difference between the movement
of the candidate tubes. Specifically, for the 𝑖th target, we construct
a 6-dimension direction vector as 𝐨𝑡𝑖 = (𝑐𝑡𝑖,𝑥, 𝑐

𝑡
𝑖,𝑦, 𝑥

𝑡
𝑖,1, 𝑦

𝑡
𝑖,1, 𝑥

𝑡
𝑖,2, 𝑦

𝑡
𝑖,2), the

elements of 𝐨𝑡𝑖 denote horizontal, vertical centers, top-left, and bottom-
right coordinates. The direction cost between the 𝑖th existing track and
the 𝑗th candidate regression can be calculated with the direction vector
with formed tubes as:

𝐶𝑖,𝑗
𝑑𝑖𝑟 = 1 −

𝐨(𝑡−1)→(𝑡)
𝑖 ⋅ 𝐨(𝑡)→(𝑡+1)

𝑖,𝑗

‖𝐨(𝑡−1)→(𝑡)
𝑖 ‖ ⋅ ‖𝐨(𝑡)→(𝑡+1)

𝑖,𝑗 ‖

, (9)

where 𝐨(𝑡−1)→(𝑡)
𝑖 = 𝐨𝑡𝑖 − 𝐨𝑡−1𝑖 and 𝐨(𝑡)→(𝑡+1)

𝑖 = 𝐨𝑡+1𝑖 − 𝐨𝑡𝑖.
Identity consistency can be further enhanced by minimizing the

combination of shape cost and the direction cost as (𝐶𝑠ℎ𝑎𝑝𝑒 + 𝜆 ⋅
𝐶𝑑𝑖𝑟), the 𝜆 is used to balance two losses. False assignments can be
revised and re-assigned by minimizing this combined cost, and the
identity consistency is enhanced simultaneously. This proposed fine-
grained cost provides very discriminative similarity measurements in
distinguishing the occluded and occluding targets, compensating for the
weakness of box-based evaluation and mitigating the influence of inter-
object occlusions and intra-class distractors. The tube re-assignment
strategy is summarized in Alg. 2. Note that the proposed tube re-
assignment only considers potential associations between the target
and its neighbor candidate regressions whose overlap is larger than a
pre-defined threshold 𝜉. Easy cases can be solved successfully with the
original regression-based algorithm, and a large re-assigning area will
introduce unexpected false assignments and computational burden. The
unmatched detections after tube re-assignment are initialized as new
tracks.

Algorithm 2 Tube Re-assignment
Input:

• Existing tracks  𝑡 in frame 𝐼𝑡
• Regression results 𝑡+1 in frame 𝐼𝑡+1
• Provided detections 𝑡+1 in frame 𝐼𝑡+1

Output:
• Tracks  𝑡+1 in frame 𝐼𝑡+1.

1: Filter the candidate targets to be re-assigned with overlaps higher
than 𝜉 from the nearby;

2: Compute the shape cost 𝐶𝑠ℎ𝑎𝑝𝑒;
3: Compute the direction cost 𝐶𝑑𝑖𝑟;
4: Minimize (𝐶𝑠ℎ𝑎𝑝𝑒 + 𝜆 ⋅ 𝐶𝑑𝑖𝑟) to re-assign the IDs.

4. Experiments

In this section, we evaluate our work by extensive ablations and
comparisons. We first present the evaluation datasets, metrics, and
implementation details. Then we demonstrate the effectiveness of the
proposed tube re-localization, T-NMS, and tube re-assignment by qual-
itative and quantitative ablation studies. Finally, we carefully compare
our work with prior works to demonstrate its superior performance and
robustness.
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4.1. Datasets and metrics

We evaluate our work on three benchmark datasets: MOT16,
MOT17 (Milan et al., 2016), and MOT20 (Dendorfer et al., 2020) from
the MOTChallenge Benchmark. Both MOT16 and MOT17 contain 7
sequences for training with publicly available ground truths and 7
sequences for online testing. However, MOT16 provides frame-wise box
detections using DPM (Felzenszwalb et al., 2009), while MOT17 gives
more accurate annotations from three detectors: DPM (Felzenszwalb
et al., 2009), Faster R-CNN (Ren et al., 2016), and SDP (Yang et al.,
2016). The newly released MOT20 contains 4 training and testing
sequences, and all the sequences are collected from extremely crowded
scenes with frequent occlusions. To make fair comparisons, we con-
ducted all experiments with public detections to avoid the discrepancy
introduced by detectors.

The widely used CLEAR MOT Metric (Bernardin and Stiefelhagen,
2008) is adopted for evaluation. Specifically, metrics such as Multi-
Object Tracking Accuracy (MOTA), Multi-Object Tracking Precision
(MOTP), False Positives (FP), False Negatives (FN), ID switches (IDS),
Most Tracked trajectories (MT), Most Lost trajectories (ML), Fragmen-
tation (FM), and ID F1 Scores (IDF1) (Ristani et al., 2016) are assessed.
The two most important metrics are MOTA which evaluates track-
ing coverage, and IDF1, which describes the performance of identity
consistency.

4.2. Implementation details

We take the Tracktor (Bergmann et al., 2019) as the baseline, and
our tracker is built on top of the detector Faster R-CNN (Ren et al.,
2016) with ResNet-50 (He et al., 2016) and FPN (Lin et al., 2017)
as backbones, which are pre-trained on Microsoft COCO (Lin et al.,
2014). Then separately fine-tuned on MOT17Det (Milan et al., 2016)
and MOT20Det (Dendorfer et al., 2020) datasets, the former is used
for evaluation on MOT16/MOT17, and the latter is for MOT20. We
only train the network as a general detector, and the training strategy
follows the baseline for a fair comparison. Our tracker follows the
public protocol and does not initiate new tracks unless provided by
the benchmark. All experiments are conducted with RTX 2080 Ti with
PyTorch. As for the parameters, in tube re-localization, we decide the
regressions with 𝜂1 = 0.9 and 𝜂2 = 0.5. In the T-NMS, we set 𝛾 = 0.5 in
Eq. (2). We set 𝜆 = 5 in tube re-assignment to balance two costs and
𝜉 = 0.6 for filtering neighboring targets.

4.3. Target re-localization

To incorporate spatial–temporal and motion information and reuse
discriminative features from previous frames for robust regression, we
propose to leverage regression tubes as input. In this work, we utilize
the shortest tube, i.e., a 2-frame tube across two frames 𝐼𝑡−1 and 𝐼𝑡,
as inputs to the regression network for the frame 𝐼𝑡+1, which has
been proved to be effective in MOT (Zhou et al., 2020; Peng et al.,
2020a) and video object detection (Tang et al., 2019). Intuitively, more
discriminative information could be used with longer tubes. However,
this may also introduce unexpected noisy features, especially in large
camera motion and crowded scenes. Moreover, the computational cost
increases with longer tubes as well.

We compare the tracking performances based on tubes with dif-
ferent lengths. The results are shown in Table 1. It is obvious that
tubes with 2-frame lengths outperform the 1-frame ones in MOTA and
IDF1. The single static bounding boxes are used as input in the 1-
frame scenario. The performance of the 2-frame tube also demonstrates
the superiority of using tubes over static bounding boxes as input for
the regression-based tracker, which provides discriminative features
and incorporates temporal information and motion cues. Thus, the
2-frame tube can achieve robustness in regression. More targets are
retrieved with regression tubes, leading to decreased FN, ML, and
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Table 1
Experiments on different lengths of tubes for regression. The results are obtained on
MOT17 training datasets with public detections provided by DPM, Faster R-CNN, and
SDP. The arrows here indicate the optimal trend of metrics.

Length MOTA↑ IDF1↑ MT↑ ML↓ FP↓ FN↓ IDS↓

DPM

1 frame 61.2 62.8 29.5 26.6 2114 41 047 375
2 frames 61.7 64.6 29.7 26.0 2187 40 403 443
3 frames 61.7 63.4 29.7 25.8 2258 40 218 473

Faster R-CNN

1 frame 63.4 65.8 40.3 17.9 2382 38 251 500
2 frames 64.1 67.1 40.8 17.3 2456 37 366 519
3 frames 64.1 66.6 40.8 17.2 2475 37 372 522

SDP

1 frame 72.7 69.0 46.2 13.6 2479 27 658 523
2 frames 72.8 70.9 46.3 13.5 2573 27 341 585
3 frames 72.9 69.9 46.3 13.4 2653 27 185 598

Table 2
Experiments on the effectiveness of tubes as input. The results are obtained on the
MOT17 training dataset with detections provided by Faster R-CNN.

Method Mode MOTA↑ IDF1↑ MT↑ ML↓ FP↓ FN↓ IDS↓

Tracktor Public 61.9 64.7 35.3 21.4 323 42 454 326
Tracktor† Public 63.5 66.2 40.5 17.9 2353 38 198 484
Tracktor Privete 70.0 69.6 34.6 8.1 1354 31 945 443
Tracktor† Privete 75.3 72.0 44.3 4.8 5853 21 214 702

DHN Public 62.2 65.7 35.9 14.5 303 41 840 272
DHN† Public 63.9 68.7 43.0 18.0 3325 36 749 416
DHN Privete 70.1 69.2 43.2 7.7 600 32 562 400
DHN† Privete 75.8 74.3 47.4 7.5 6859 19 663 630

increased MT for different detectors. Therefore, the influence of inter-
object occlusions and intra-class distractors are alleviated, and the
tracking performance is improved. However, with the longer tubes,
i.e., 3-frame, no noticeable improvement is observed in MOTA, while
the IDF1 drops and IDS increases in all three detectors. We reckon
that 3-frame tubes incorporate more redundant and noisy features,
increasing false positives and thus damaging identity convergence. The
superior performance of 2-frame tubes over 3-frame ones demonstrates
that longer tube is not optimal for regression-based tracker since they
introduce unexpected false positives and ID switches. Moreover, a
longer tube increases the computational burden inevitably. Therefore,
we utilize 2-frame tubes in our method.

To demonstrate the effectiveness and generalization of tubes as
input for regression with tube re-localization strategy, we apply the
2-frame regression tubes to Tracktor (Bergmann et al., 2019) and
DHN (Xu et al., 2020) in both public and private protocols. The private
protocol works by employing fine-tuned models as the detector. The
variants with regression tubes are denoted as Tracktor† and DHN†.
As shown in Table 2, significant improvements are achieved in both
public and private settings for Tracktor and DHN, especially in the
private setting, where better detection results are provided, demonstrat-
ing the superiority of regressing tubes for tracking. More significant
improvements in private protocol also show that high-quality detection
is the key to tracking. Although FP and IDS increased with tubes, a
much larger drop in FN and decrease in ML shows that most retrieved
targets are true positives and longer trajectories are formed. Table 2
also verifies the generalization of tube re-localization in boosting the
performance of the regression-based tracking framework.

Since the baseline tracker works in an ID-agnostic fashion due to
the unawareness of inter-object occlusions and intra-class differences,
the noisy features can damage the regression quality. As shown in
Fig. 3 top row, under camera motion, the position of the same target
on the adjacent frames differs with low bounding box overlaps, thus
introducing the nearby noisy features and leading to inaccurate drift
for the left target. As a result, the identities are wrongly assigned,
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Table 3
Ablation studies of different components of the proposed method. The results are
obtained on the MOT17 training dataset with public detectors provided by Faster R-
CNN. ‘‘TA’’, ‘‘TN’’, and ‘‘TL’’ stand for the proposed tube re-assignment, T-NMS, and
tube re-localization, respectively.

Method MOTA↑ IDF1↑ MT↑ ML↓ FP↓ FN↓ IDS↓

Baseline 61.9 64.7 35.3 21.4 323 42 454 326

Baseline+TA 63.0 66.3 39.7 18.0 2343 38 669 482
Baseline+TN 63.4 66.2 40.3 17.9 2352 38 241 488
Baseline+TL 63.5 66.2 40.5 17.9 2353 38 198 484

Baseline+TN+TA 63.9 66.5 40.5 17.4 2445 37 604 547
Baseline+TL+TA 63.9 66.8 40.8 17.4 2434 37 611 536
Baseline+TL+TN 64.1 66.7 40.7 17.4 2454 37 368 539

Baseline+TL+TN+TA (ours) 64.1 67.1 40.8 17.3 2456 37 366 519

Fig. 3. Visualization of the qualitative results with tube re-localization. The tracking
results are obtained from frames 507, 509, 510, and 512 of MOT17-13, which are
captured with large camera motion. Different box colors represent different identities.
Top row: The tracking results without tube re-localization. Bottom row: The results
with tube re-localization by regressing tubes to keep identity consistent with camera
motion. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

resulting in continuous ID switches. However, with the proposed tube
re-localization, as shown in the bottom row of Fig. 3, the regression
tubes are used as input, and discriminative features are reused with
historical positions considered, resulting in high-quality regressions.
Therefore, both targets are tracked correctly and continuously with
consistent identities.

We conduct ablation experiments to prove the effectiveness of
each component of our method. As shown in Table 3, compared with
Baseline, the Baseline + TL makes a clear improvement in MOTA and
IDF1 with tube re-localization (TL), and the number of FN decreases.
Besides, compared with Baseline + TA, the MOTA of Baseline + TA +
TL increases by 0.9, the FN decreases dramatically (by 1058), thus more
targets are tracked, and longer trajectories are formed with increased
MT (by 1.1). The identity convergence is enhanced, proved by the 0.5
increase of IDF1. Similar results can be found by comparing Baseline +
TN with Baseline + TL + TN. Likewise, compared with Baseline + TN +
TA, the Baseline + TL + TN + TA still improves in MOTA (by 0.2) and
IDF1 (by 0.6). Also, lower FN represents that more targets are recovered
and tracked, and better trajectories are formed, as shown by increased
MT and decreased IDS. Therefore, we argue that the regression tubes
are optimal input for the regression-based tracker.

4.4. Tube-based NMS

The tube-based NMS (T-NMS) is intended for better processing of
regressions at the tube level to improve the robustness of the tracker.
T-NMS leverages the historical positions of targets inside the tubes
to deal with inter-object occlusions and enhance identity consistency.
The T-IoU measures the overlaps at the tube level by considering
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Table 4
Ablations on different components of T-NMS. The results on MOT17-02 and MOT17-05. The former sequence is captured
with occlusions and target intersections. The latter sequence is recorded with low frame rates, camera motion, and frequent
occlusion.

Method MOT17-02 MOT17-05

MOTA↑ IDF1↑ FP↓ FN↓ IDS↓ MOTA↑ IDF1↑ FP↓ FN↓ IDS↓

Baseline 43.9 46.2 62 10 288 68 54.9 60.4 228 2713 181
Baseline+T-IoU 44.1 46.3 62 10 260 66 54.9 60.6 229 2708 180
Baseline+T-RS 44.0 48.1 60 10 288 62 54.9 61.0 248 2707 166
Baseline+T-NMS 44.2 48.5 61 10 257 58 55.1 61.4 237 2702 154
Fig. 4. Visualization of the qualitative results with T-NMS (boxes of irrelevant targets
are not shown for clarity). The results are from frames 278, 229, and 295 of sequence
MOT17-02, and frames 728 and 729 of sequence MOT17-12. Top row: The results
without T-NMS. In (a), (b), and (c), the correct regression at frame 292 (dashed green
box) is eliminated by NMS. In (d) and (e), the target at frame 729 is suppressed
by NMS. Bottom row: The results with T-NMS, where the target survives with the
correct identity, and the partly occluded target is preserved. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

the positional relations of tubes. For original NMS, if two targets are
intersected with substantial overlap, one of the targets would typically
be suppressed with a lower score. In contrast, we lower the measured
overlaps by considering the historical status to make partly occluded
targets active to reduce false negatives and ID switches. Besides, the
confidences of candidate tubes are vital for identity assignments. The
confidence re-scored by T-RS improves data association quality as
low-quality regression is suppressed and less likely to survive. Thus
false assignments can be largely avoided. Table 4 demonstrates the
effectiveness of the proposed T-IoU and T-RS. Compared with Baseline,
the increased MOTA and decreased FN in the second row demonstrate
that T-IoU can keep more true positive targets active, which would
be suppressed by the original IoU measurement. Meanwhile, from
the third row of Table 4, IDF1 is dramatically increased with T-RS,
which verifies that T-RS can revise false assignments with re-scored
confidence and enhance identity preservation. Further improvements
can be achieved with T-IoU and T-RS work together, i.e., the proposed
T-NMS. Fig. 4 shows two typical failure cases with false assignments
using the original confidence score and original IoU measurement on
the top row. The results of utilizing T-NMS are shown in the bottom
row. From the bottom row, it is clear that by utilizing T-NMS, the
false negatives and ID switches caused by inter-object occlusions and
intra-class distractors are resolved, and longer and consistent tracks are
formed.

Table 3 further demonstrates the effectiveness of the proposed T-
NMS. Compared with Baseline, Baseline + TN achieves higher MOTA,
IDF1, and MT, as well as lower FN and ML with the proposed T-NMS
(TN in table). Besides, Baseline + TL + TN achieves higher MOTA (by
0.6) and IDF1 (by 0.5), lower FN (by 830) compared with Baseline +
TL. The proposed T-NMS works parallel with tube re-localization to
enhance tracking robustness by keeping more occluded targets alive
with correct identities. As a result, longer trajectories with high quality
are formed with increased MT (by 0.2). Similar enhanced performance
can be observed by comparing Baseline + TN + TA with Baseline + TA.
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Fig. 5. Visualization of the qualitative results with tube re-assignment. The results are
from frames 132, 142, 152, and 162 of sequence MOT17-01. Top row: The results
without tube re-assignment make identity association with regression, resulting in ID
switches when severe occlusions exist. Bottom row: With tube re-assignment, the motion
cues are considered. Thus the identities are assigned correctly. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version
of this article.)

Likewise, compared with Baseline + TL + TA, the proposed T-NMS can
still help to keep more true positives alive and increase the MOTA (by
0.2), reduce the FN (by 245), improve the IDF1 by 0.3, and IDS reduced
at the same time. Therefore, the T-NMS is optimal for processing tubes
for robust data association.

4.5. Target re-assignment

The vulnerable box-based measurement cannot reasonably reflect
the relations between tubes, which often leads to ID switches and
fragmentations. A typical failure case of ID switches is shown in the
top row of Fig. 5. The proposed tube re-assignment is designed by
considering association metrics at the tube level within the candidate
tube to alleviate the influence of inter-object occlusions and intra-class
distractors.

As shown in Table 3, the proposed tube re-assignment (TA) can
boost the IDF1 when comparing Baseline with Baseline + TA. Further-
more, compared with Baseline + TN and Baseline + TL, both Baseline
+ TN + TA and Baseline + TL + TA could boost the IDF1 by 0.3 and
0.6, and increase MT by 0.2 and 0.3, respectively. Likewise, compared
with the method Baseline + TL + TN, which already achieves good
tracking performance in MOTA, the IDF1 of Baseline + TL + TN+TA
further increases by 0.4 with the proposed tube re-assignment, and
the IDS decreases as well. The superior performance and improvement
demonstrate that the proposed tube re-assignment can revise false
assignments to re-assign identities correctly, form longer trajectories of
high quality, and enhance the identity consistency and stability of the
tracker. The bottom row of Fig. 5 shows the case where the mistakenly
assigned identities are revised, and consistent trajectories are formed
with the proposed tube re-assignment.

4.6. Robustness analysis

The bounding box refinement is utilized in the regression-based
trackers (Bergmann et al., 2019; Guo et al., 2021; Stadler and Beyerer,
2021) and other methods (Zhou et al., 2020; Shuai et al., 2021), which
aims to refine the noisy detections provided by the benchmark. We
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Table 5
Evaluate the effectiveness of bounding box refinement (BBR), camera motion com-
pensation (CMC), and Re-identification (ReID) for our method and baseline. Here we
evaluate the public detections provided by Faster R-CNN on the MOT17 training set.

Method MOTA↑ IDF1↑ MT↑ ML↓ FP↓ FN↓ IDS↓

Tracktor w/o BBR 57.0 63.1 33.7 22.2 5003 42 972 301
Tracktor w/o (CMC+ReID) 61.5 61.1 33.5 20.7 367 42 903 1747
Tracktor w/o CMC 61.5 62.8 33.5 20.7 367 42 903 921
Tracktor w/o ReID 61.9 64.1 35.3 21.4 323 42 454 458
Tracktor 61.9 64.7 35.3 21.4 323 42 454 326

Ours w/o BBR 57.3 64.4 39.9 19.8 8211 39 423 352
Ours w/o (CMC+ReID) 62.0 62.3 37.9 17.8 2498 38 318 1801
Ours w/o CMC 62.6 64.0 37.5 17.8 2502 38 321 1200
Ours w/o ReID 63.7 64.7 41.2 17.4 2430 37 607 708
Ours 64.1 67.1 40.8 17.3 2456 37 366 519

evaluate the effectiveness of bounding box refinement for the baseline
tracker and our method. As shown in Table 5, our method achieves
competitive results without bounding box refinement, improving the
baseline counterpart tracker in both MOTA and IDF1. Besides, camera
motion compensation (CMC) is crucial for compensating camera mo-
tion. Compared with the baseline method, our method can better deal
with large camera motion and enhance identity consistency with the
proposed tube-based regression and tube-level process without CMC.
Moreover, the ReID module is an essential component for re-identifying
the reappeared targets, which is widely used in the previous state-of-
the-art methods (Bergmann et al., 2019; Wojke et al., 2017; Zhang
et al., 2020) and proved to be effective in dealing with long-term
occlusions and re-appeared targets. Table 5 also proves that our method
achieves superior results without the ReID module and suppresses the
performance of the baseline with the ReID module.

Then we also analyze the robustness of our proposed tracker in
crowded scenes that is error-prone by visualizing the comparison with
the baseline. We conduct the experiments and visualize examples on the
MOT20 test datasets with public detections for a fair comparison. The
baseline method Tracktor is based on the detector Faster R-CNN with
ResNet (Ren et al., 2016) and FPN (Lin et al., 2017) as the backbone
network. The Faster R-CNN is aware of the inter-class difference, such
as the difference between bicycles and pedestrians, but not the intra-
class difference, such as pedestrians with similar appearances from
nearby, thus is vulnerable to neighboring distractors of the same class.
Besides, it evaluates relations between targets with original NMS at the
bounding box level, and the confidence of localization obtained from
regression reveals the quality of detection instead of tracking. Therefore
the baseline tracker can easily lead to false negatives, false positives,
and ID switches. Therefore, we utilize the tubes for regression, and
process the targets on the tube level with T-NMS and tube-related
metrics.

We visualize extremely crowded cases from MOT20 test sequences
obtained from the Tracktor and our method in Figs. 6 and 7. In the
top row of Fig. 6, the target with the white hat is lost in frame 1749,
retrieved in frame 1760, and lost again in frame 1881, leading to false
negatives. In contrast, this target can be tracked continuously despite
being largely occluded in our method. Similar results can be found in
Fig. 7. Compared with the results obtained with Tracktor in the top
row, our method (bottom row) can significantly reduce the number of
FN and ID switches and enhance identity preservation. Therefore, by
leveraging the regression tubes, our tracker can mitigate the influence
of inter-object occlusions and intra-class distractors, reduce the false
negatives and ID switches, recover the lost targets and revise false
assignments.

4.7. Benchmark comparison

We extensively evaluate our method by comparing it with the pub-
lished state-of-the-art (SOTA) methods on multiple benchmark datasets
on MOTChallenge Benchmark, including MOT16, MOT17, and MOT20.
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Fig. 6. Qualitative comparison results with the baseline and our method. The tracking
results are obtained from frames 1745, 1749, 1760, 1881, and 1894 of test sequence
MOT20-04, recorded in a very crowded scene. Different box colors represent different
identities. Top row: The tracking results of Tracktor. Bottom row: The results of our
method. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

Fig. 7. Qualitative comparison results with the baseline and our method. The tracking
results are obtained from frames 532, 552, 559, and 582 of test sequence MOT20-08,
which is captured with frequent occlusions. Different box colors represent different
identities. Top row: The tracking results of Tracktor. Bottom row: The results of our
method. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

We adopt the best-performing settings on MOT17 training sets and test
on MOT benchmarks with public detections for fair comparisons. We
consider only public methods which are comparable to our tracker.

The results are detailed in Table 6. Our method achieves very
competitive results with public detections. In particular, our method
outperforms the baseline Tracktor in terms of MOTA and IDF1 in all
three benchmark datasets. The state-of-the-art performance on MOT20
demonstrates the superiority of using regression tubes in dealing with
extremely crowded scenes. Compared with methods that are devel-
oped from the tracking-by-regression paradigm, including GSM (Liu
et al., 2020), DHN (Xu et al., 2020), TADAM (Guo et al., 2021),
and TMOH (Stadler and Beyerer, 2021), our method ranks second-
best among them that only behind TMOH in MOT16 and MOT17, and
achieves the best in MOT20. An occlusion handling strategy that models
the relation between occluding and occluded tracks are proposed in
TMOH. The inactive tracks are regressed along with the active ones
in TMOH. However, our tracker surpasses TMOH in MOT20, showing
the advantage of employing tubes for regression in extremely crowded
scenes. Besides, as shown in Table 7, our method runs faster than
TMOH because of fewer computation burdens. Our tracker excels DHN,
GSM, and TADAM in MOTA and IDF1, although all of them utilize extra
association-related networks. Since our method can retrieve missed
targets and keep partly occluded targets active, it tends to have higher
FP and IDS. Moreover, our method achieves the best performance in
terms of FN and ML among them, showing that more true positives are
recovered and tracked, and longer trajectories are formed.

Compared with other state-of-the-art methods, ArTIST (Saleh et al.,
2021) proposes a stochastic autoregressive motion model that learns
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Table 6
Comparisons with state-of-the-art methods on MOT16, MOT17, and MOT20 datasets with public detections. The ‘‘✓’’ represents the online
method, and the ‘‘%’’ denotes the offline method. The best result of each metric is highlighted in bold.

MOT16

Method Mode MOTA↑ IDF1↑ MT↑ ML↓ FP↓ FN↓ IDS↓

STRN (Xu et al., 2019) ✓ 48.5 53.9 17.0 34.9 9038 84 178 747
Tracktor++ (Bergmann et al., 2019) ✓ 54.4 52.5 19.0 36.9 3280 79 149 682
DHN (Xu et al., 2020) ✓ 54.8 53.4 19.1 37.0 2955 78 765 645
Tracktor++v2 (Bergmann et al., 2019) ✓ 56.2 54.9 20.7 35.8 2394 76 844 617
GSM (Liu et al., 2020) ✓ 57.0 58.2 22.0 34.5 4332 73 573 475
MPN (Brasó and Leal-Taixé, 2020) % 58.6 61.7 27.3 34.0 4949 70 252 354
TADAM (Guo et al., 2021) ✓ 59.1 59.5 – – 2540 71 542 529
TMOH (Stadler and Beyerer, 2021) ✓ 63.2 62.5 27.0 31.0 3122 63 376 635

Ours ✓ 62.2 60.9 27.0 28.1 5930 62049 854

MOT17

FAMNet (Chu and Ling, 2019) ✓ 52.0 48.7 19.1 33.4 14 138 253 613 3072
DHN (Xu et al., 2020) ✓ 53.7 53.8 19.4 36.6 11 731 247 447 4792
TPM (Peng et al., 2020b) % 54.2 52.6 22.8 37.5 13 739 242 730 1824
Tracktor++v2 (Bergmann et al., 2019) ✓ 56.3 55.1 21.1 35.3 8866 235 449 1987
GSM (Liu et al., 2020) ✓ 56.4 57.8 22.2 34.5 14 379 230 174 1485
MPN (Brasó and Leal-Taixé, 2020) % 58.8 61.7 28.8 33.5 17 413 213 594 1185
TADAM (Guo et al., 2021) ✓ 59.7 58.7 – – 9676 216 029 1930
CenterTrack (Zhou et al., 2020) ✓ 61.5 59.6 26.4 31.9 14 076 200 672 2583
TMOH (Stadler and Beyerer, 2021) ✓ 62.1 62.8 26.9 31.4 10 951 201 195 1897
ArTIST (Saleh et al., 2021) ✓ 62.3 59.7 29.1 34.0 19 611 191 207 2062
SimaMOT (Shuai et al., 2021) ✓ 65.9 63.3 34.6 23.9 18 098 170955 3040

Ours ✓ 61.8 60.4 29.1 27.6 21 903 190 938 2953

MOT20

SORT (Bewley et al., 2016) ✓ 42.7 45.1 16.7 26.2 27 521 264 696 4470
Tracktor++v2 (Bergmann et al., 2019) ✓ 52.6 52.7 29.4 26.7 6930 236 680 1648
ArTIST (Saleh et al., 2021) ✓ 53.6 51.0 31.6 28.1 7765 230 567 1531
TADAM (Guo et al., 2021) ✓ 56.6 51.6 – – 39 407 182 520 2690
MPN (Brasó and Leal-Taixé, 2020) % 57.6 59.1 38.2 22.5 16 953 201 384 1210
TMOH (Stadler and Beyerer, 2021) ✓ 60.1 61.2 46.7 17.8 38 043 165899 2342

Ours ✓ 61.1 58.9 48.7 17.3 33 108 166 170 2192
-

Table 7
Experiments on the running speed of different methods on the MOT16, MOT17, and
MOT20 test sets. The higher the running speed (measured by Hz), the faster the tracker
is.

Dataset TMOH TPM Tracktor GSM ArTIST DHN Ours

MOT16 0.7 0.8 1.6 7.6 4.5 1.6 1.2
MOT17 0.7 0.8 1.5 8.7 4.5 4.9 1.2
MOT20 0.6 – 1.2 – 1.0 – 0.8

the distribution of trajectories, which can inpaint a tracklet in the
presence of occlusion and noisy detection. However, our method still
excels in IDF1 on MOT17 and MOT20, which shows the effectiveness of
our method in enhancing identity consistency. SiamMOT (Shuai et al.,
2021) is the current state-of-the-art tracker in MOT17, which integrates
the SOT tracker (Li et al., 2018) into Faster R-CNN to form a unified
network. The SiamMOT assigns each target a SOT tracker and actively
tracks the target once the detector observes them. SiamMOT tracks
in an ID-aware fashion, thus significantly overcoming the weakness
of the detector. In contrast, our method tracks in an ID-agnostic way
with limited information provided by the detectors. However, the
state-of-the-art performance on MOT20 demonstrates that our method
is capable of dealing with highly crowded scenes with frequent oc-
clusions and small targets. The results also prove the generalization
ability of our method since the two test scenes of MOT20 never ap-
pear in the training set. Thus, we argue that the performance of the
regression-based tracker can be considerably improved by regressing
and processing tubes.

4.8. Discussion

Our method exploits regression tubes as base inputs for the regression
based tracker. It reuses the discriminative features inside the tubes to
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help eliminate the influence of inter-object occlusions and intra-class
distractors and recover missed targets. However, there is still plenty of
room for improvement. Fig. 8 shows some typical failure cases of our
tracker. The top figures are selected from the test sequence MOT17-
03, and the bottom ones are from MOT17-06. For the top row, the
lamp strongly influences representative features of targets passing by.
Therefore, ID switches are caused in Fig. 8(b) and Fig. 8(d), which are
captured from frames 357 and 686. Similarly, in the bottom row, the
sequences are captured in a low frame rate, where the positions of
the same target in the consecutive frames have comparatively small
overlaps, and noisy features from nearby objects are introduced. The
bottom row shows that the reused features are contaminated under
continuous occlusion, even using regression tubes as input. As a result,
the identities of targets are mistakenly assigned, as shown in Fig. 8(f)
and Fig. 8(h). Therefore, the intense illumination and low frame rate
are two challenges for our method.

We also compare the running speed of different methods in different
MOT benchmarks. As shown in Table 7, our method runs slower than
Tracktor since we employ the tubes instead of bounding boxes for
regression, more bounding boxes are employed, and extra spatial–
temporal information is included for tube processing and similarity
calculation. Moreover, our tracker runs faster than TMOH in all three
datasets. Our future work is to improve the running speed and effi-
ciency of our method to make it more suitable for real-time utilization.

5. Conclusion

In this work, we proposed to leverage the regression tube as input to
address the natural limitations of the tracking-by-regression paradigm
for the multi-object tracking. Our method can effectively reuse the
discriminative features and spatial–temporal information provided by
tubes in dealing with inter-object occlusions and intra-class distractors
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Fig. 8. Typical failure cases. Top row: typical failure cases of ID Switches from
sequence MOT17-03 caused by illumination changes. Bottom row: typical failure cases
of ID Switches from sequence MOT17-06 caused by low frame rate and occlusion.
The failure cases are highlighted with red arrows. Different colors represent different
identities. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

in crowded scenes. We introduced the tube re-localization strategy,
which regressed the tubes of existing tracks to handle inaccurate re-
gressions and recover missed targets. We then presented the T-NMS
to measure and process the tracks at the tube level, which provided
an accurate local evaluation between targets, maintained partly oc-
cluded targets to stay active, and enhanced the consistency of target
identities. Benefiting from the improved regressions and re-scored tube
confidences, we applied a tube re-assignment strategy that accurately
measured the cost of candidate tubes to revise false assignments for
robust data association and boosted tracking performance. The results
showed that very competitive results are obtained with tubes, which
are optimal for the regression-based tracker.
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