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Abstract—This work presents a framework for Human-Robot
Collaboration (HRC) in assembly tasks that uses multimodal
sensors, perception and control methods. First, vision sensing is
employed for user identification to determine the collaborative
task to be performed. Second, assembly actions and hand
gestures are recognised using wearable inertial measurement
units (IMUs) and convolutional neural networks (CNN) to
identify when robot collaboration is needed and bring the
next object to the user for assembly. If collaboration is not
required, then the robot performs a solo task. Third, the
robot arm uses time domain features from tactile sensors to
detect when an object has been touched and grasped for
handover actions in the assembly process. These multimodal
sensors and computational modules are integrated in a layered
control architecture for HRC collaborative assembly tasks. The
proposed framework is validated in real-time using a Universal
Robot arm (UR3) to collaborate with humans for assembling
two types of objects 1) a box and 2) a small chair, and to
work on a solo task of moving a stack of Lego blocks when
collaboration with the user is not needed. The experiments show
that the robot is capable of sensing and perceiving the state
of the surrounding environment using multimodal sensors and
computational methods to act and collaborate with humans to
complete assembly tasks successfully.

Index Terms—vision and touch sensing, wearable sensing,
human-robot collaboration, assembly tasks

I. INTRODUCTION

The trend of mass customisation in manufacturing has
led to companies having flexible production methods where
human-robot collaboration (HRC) has become a leading
approach [1]. HRC systems need to be capable of sensing
the surrounding environment and perceiving the state of the
user to perform a natural task flow in robotic assembly
tasks whilst maintaining the safety of the operator [2]. These
high-level processes can be achieved reliably by the use of
multimodal sensor data, advanced computational methods
and multilayer control architectures. These components have
been used for research and development of safe and interac-
tive work environments between humans and robots using a
variety of sensing and robotic technologies [3].

In human-robot collaborative tasks, the robot can perform
collaborative actions by perceiving its surrounding environ-
ment, but also by explicit commands from the operator. Un-
derstanding the actions performed by the human allows the
robot to predict the next actions required for a synchronised
and efficient collaboration with the user [4]. This prediction
process has been investigated in a variety of assembly tasks
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Fig. 1. Overview of collaborative system setup.

such as PCB assembly and legs onto a table [4], [5].
Explicit robot control to perform actions required by the
user has been explored with the recognition of arm and hand
gestures for a variety of collaborative assembly tasks [6]–
[10]. User identification, based on face recognition and visual
authentication methods, has been used to explicitly control
the robot to personalise the speed and type of collaborative
actions in manufacturing environments [11], [12].

Collaborative tasks require object handover actions, where
the robot detects and grasps objects to bring them to the
user. Handover actions, which involve physical contact and
close interaction with objects and the human operator, require
tactile sensors and perception methods [13]. This sensing
modality allows robots to interact with objects and humans
safely. Handover actions have been studied with a variety of
tactile technologies and data processing methods in assembly
tasks and human-robot interaction scenarios [14]–[16].

Robots need to be capable of processing data from multi-
ple sensors at different levels of abstraction for better percep-
tion, learning and interaction with objects and humans [17].
This process has been investigated using layered control
architectures in robotic applications such as context-aware
scenarios, assistive robots and collaborative tasks [18], [19].

In this work, we present a framework for multimodal
sensor-based human-robot collaboration in assembly tasks.
This framework uses data from wearable inertial measure-
ment units (IMU), tactile and vision sensors. These sensing
modalities, together with Convolutional Neural Networks
(CNN), authentication methods and time domain features,
are employed for human action recognition (HAR), hand
gesture recognition, bi-directional handover actions and user
identification. These processes are implemented in a control



architecture composed of perception, reasoning and control
layers employed by a Universal Robot (UR3) arm to collabo-
rate with the human operator in assembly tasks. This control
architecture also allows the robot arm to perform a solo task
when no collaborative actions are required by the user.

The multimodal sensor-based framework is validated with
the collaborative assembly of two types of objects: 1) a box
and 2) a small chair. The robot arm identifies the user and
determines the required assembly task and set of collabora-
tive actions. The robot also recognises the actions performed
by the user during the assembly process, which involve
screw driver, Allen key, hand screw and hammer. Explicit
robot control actions are also tested with wave, forwards,
backwards, left, right and stop hand gestures. The capability
of the robot arm for handover actions is also tested, bringing
objects to the user and grasping objects placed on the robot
by the user. The processes for user identification, gesture
recognition and handover actions improve the complexity of
the collaborative scenario from our previous work in [20].
The experiments show that the robot arm is capable of
collaborating with the human to perform different sets of
actions needed to complete different assembly tasks. Overall,
the results demonstrate that the proposed multimodal sensor-
based framework has the potential for reliable control of
robotic platforms for collaborative tasks with humans.

II. METHODS

A. Overview of System Architecture

The modules for sensing, perception, reasoning, control
and memory are implemented with ROS. These modules
have been extended from our previous work on action
recognition in [20]. Communication between modules is
managed with ROS messages and a PostgreSQL database
containing tables of key information. This includes the list
of actions required for each assembly task, action duration,
an episodic memory of all completed actions, and the real-
time predictions of how long actions have left and when the
next robot collaborative action is required.

B. User identification using vision

A user identification step is included to allow the col-
laborative system to adapt its behaviour to the current user.
This can be used as a security feature to ensure only eligible
persons use the system while also offering improved robot
behaviour personalised to each user. In this work, user iden-
tification allows automated selection of which assembly task
the robot should perform based on which user is recognised.

The person is identified using QR code recognition. The
user wears a QR code attached to their chest which encodes
their name. During system initialisation, the user is instructed
to look at the webcam on the control laptop allowing the QR
code to be read. For demonstration purposes, each user name
is preallocated with the task that they are to perform (either
assembling a box or chair). Then, the robot loads the list of
actions for that task from the relevant PostgreSQL database.

C. Action recognition using wearable sensors

HAR is used as the key form of environment perception
to allow the robot to interact with the user. In this process,
the robot must be able to track at what stage through the

Fig. 2. CNN architecture for HAR and gesture recognition

assembly task the user is in order to predict what actions to
perform next. Hand gesture recognition is also implemented
to allow natural and explicit communication with the robot
when specific collaborative actions are required by the user.

Bodyworn IMU sensors are used for action and gesture
recognition. IMU sensors are immune to occlusion and
lighting conditions while also allowing tracking of fine
motions, which are key requirements for use in industrial
environments. Three Shimmer3 IMU sensors are placed
on the user; one on the hand, wrist and arm. The 3-axis
accelerometer and gyroscope signals from each sensor are
streamed over Bluetooth to the user control laptop at 50 Hz.
A 3 s window of data are collected, updated every 0.5 s, and
used for both the HAR and gesture recognition methods.

1) Action Recognition: The HAR method uses a CNN
based classifier method updated from [20]. A separate classi-
fier is used to recognise each of four assembly actions versus
null: screw driver, Allen key, hand screw and hammer. By
using separate classifiers, different actions could easily be
added to the system in future works without having to retrain
the entire recognition process. Other benefits are improved
real-time accuracy given the expected action sequence can
be used to isolate which classifier is relevant, and allowing
each action to have a different, optimal recognition method,
illustrated here with different numbers of training epochs.

The structure of the CNN classifiers used in this work is
shown in Fig. 2. The 18 channel, 150 sample long (3 s at
50 Hz) IMU data are first normalised to mean of zero and
unit standard deviation based on training data. The signal
is then processed by two sets of two 1D convolution layers
and a 1D max-pooling followed by a fully connected layer,
dropout and output unit. All convolution kernels have length
of 3 with 100 filters, max-pooling window lengths of 5, 64
fully connected units and 0.5 dropout. ReLU and sigmoid
activation functions are used for internal layer and output
units, respectively. The Adam optimiser with learning rate of
0.001 and batch size of 128 is used. Each action is trained
with an optimised number of epochs as follows: screw driver
4, Allen key 7, hand screw 23 and hammer 18.

2) Gesture Recognition: Gesture recognition allows for
natural and explicit communication with the robotic sys-
tem, even in noisy manufacturing environments where other
communication modalities such as speech is less reliable. A
CNN classifier is used to recognise 7 hand gestures: wave,
forwards, backwards, left, right, stop and null. The structure
of the classifier is similar to that of the HAR classifiers
(Fig. 2), though the output layer now has 7 units with softmax
activation. The Adam optimiser is again used with batch size
of 128, though learning rate set to 0.0001 for 95 epochs.



(A) (B) (C)
Fig. 3. (a) The tactile sensor is fabricated in a sandwich form, with three sensors used to design a tactile finger. The tactile finger is mounted to the
2F-140 gripper for handover (b) Pressure data collected from 24 contact positions at 0.8 mm and 1.6 mm contacted depth. (c) The change of gyroscope
data on x and y axes at 1.6 mm contact depth along 24 contact points.

D. Tactile finger for grasping and handover
Grasping and handover objects are performed in a con-

trolled environment, with predetermined picking location,
grasping strategy and handover location. For these processes,
a tactile finger is mounted in the Robotiq gripper of the UR3
robot arm. The tactile finger is composed of three soft mul-
timodal tactile sensors capable of providing accelerometer,
gyroscope and barometric pressure data (Fig. 3A). Each soft
tactile sensor can provide pressure output at 24 contact loca-
tions with 1 mm intervals along the sensor surface (Fig. 3B),
with the highest sensitivity at the centre of the sensor. The
gyroscope response in x and y axes for applied contact at the
different locations on the sensor is shown in Fig. 3C. When
pressure output from any of three sensors in the tactile finger
exceeds the predefined threshold value of 500, the gripper
is controlled to perform a grasping motion for posterior
handover actions in collaborative tasks [16]. A linear filter
is also used on the gyroscope and pressure signals of the
tactile sensor to ensure robust grasping and handover actions.
This approach reduces the effect of vibrations generated from
assembly actions performed by the user such as hammering.

The optimal weights of the linear filter are obtained using
tactile datasets recorded in a handover scenario where the
robot grasps an object and the operator attempts to pull the
object multiple times within 30 s. This data collection process
is repeated for each object used in the assembly of the box
and chair. Tactile data are also recorded while the robot
grasps an object and the human performs hammering actions.
All the data are processed using 0.5 s sliding windows to
extract time domain features such as standard deviation
(STD), mean absolute value (MAV), slope sign change (SSC)
and waveform length (WL) [21]. These features are then used
to compute the optimal weights of the filter as follows:

d = XW (1)

where d = [d(1), .., d(n)]T is an n-by-1 vector of zeros and
ones representing the occurrence of handovers for n discrete
time indexes. X is the n-by-m matrix of observations, where
m is the total number of extracted features for gyroscope in
three axes and the pressure signal:

x1(1) ... x1(m)
x2(1) ... x2(m)

... ...
...

xn(1) ... xn(m)



where W = [w(1), ...., w(m)]T is the m-by-1 vector of filter
coefficients. The Wiener solution to equation 1 is as follows:

Wo = (XTX)−1XT d (2)

Since in practice this solution is perturbed with a series
of statistical and computational inaccuracies, Wo repre-
sents weights approximated to the theoretical optimum [22].
Hence, as we assumed any exogenous disturbances are
bounded we found a general empirical value ϵ for detection
of handover in the assembly tasks as follows:{

XWo > ϵ, handover
XWo < ϵ, do nothing

E. Task Status Reasoning and Robot Control

Task status reasoning allows the system to track what
actions have been finished and how long until future actions
are completed. This is combined with the gesture recognition
commands for efficient robot control allowing an adaptable
and intuitive collaborative experience.

Each assembly task has a predefined list of actions the
user and robot must complete in sequence, with each action
type having a default time taken to complete it. During the
task, the HAR module updates the current action prediction

Hammer x4
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key x2

Screw driver x4

Hand 
screw x4

Screw driver x2

Screw driver x3

Screw driver x3

Screw driver x4

Allen key x4

Hand screw x4

Hammer x4

(a)

(b)

(c)

Fig. 4. Assembly tasks used in system demonstrations with user actions
shown. (a) Box assembly task (b) Chair assembly task (c) Lego stack moved
between positions for solo robot task
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Fig. 5. Sequence of collaborative steps. (a) Wave (b) Forwards (c) Part handover (d) User assembly (e) Robot solo task (f) Assembly handover

every 0.5 s. If the action matches the previous action, the
current episode end time is updated. If the action changes,
then the completed action is saved to the episodic memory
and compared against the expected action from the action
list. If it matches, then the current action number is moved
on and the next action start time is set as the current time.
If the current action expected is a robot action, the episodic
memory is checked to observe if the robot has completed
the action or not. If it has been completed, then the current
action is moved on, otherwise, the user is instructed to wait
for the robot to complete it.

At each 0.5 s update step, the future action timing predic-
tions are also updated. Each action in the task is iterated over
with time left for completed actions set to 0 s. The time left
for the current action is set as the default time for that action
minus the time since the action started. Future actions in the
sequence add the previous actions’ time left to the default
duration for that action. Each of these timing predictions is
then uploaded to the future action predictions database table.

The robot control module is responsible for deciding
which action the robot should undertake next. Given the
action completion time estimates in the future action pre-
dictions table, the time until the next collaborative action
is required can be found. The robot aims to be ready to
handover/receive the part in collaborative actions at the exact
time the user is ready. The robot action is therefore started
when the time left for the preceding user action is equal to
or less than the time the robot action takes. If there is time
to complete an action on the robot’s solo task before the
collaborative action is required, then the robot arm performs
one action on that task first. If neither of those conditions
is met, then the robot waits in the home position until the
collaborative action should be started.

III. EXPERIMENTS AND RESULTS

A. Task description and process flow

Two collaborative assembly tasks and a robot only solo
task are used to test the system. The tasks show how the
methods used are adaptable to any similar collaborative task
where relevant action recognition methods can be provided.
The two collaborative tasks are the assembly of a box and
small chair shown in Fig. 4(a) and 4(b), respectively. Each
task requires the robot to bring the next part or box of parts
to the user at the right time where a handover will take place.
At the end of the task the user hands the completed assembly
back over to the robot, removing it from the workspace. The
robot solo task is to move a stack of Lego blocks from one
position to another and back again continuously (Fig. 4(c)).

This task is used for illustration purposes to force the robot
to choose between which task to perform an action on next.

The handover location is determined by considering the
safety, physical comfort of the operator and the UR3 robot
workspace. To improve handover robustness, the tactile sen-
sor is only monitored when the robot is stopped in the
handover position and no human action or gesture is detected.
These conditions help prevent undesired grasps/releases from
the gripper in the event the user or robot is not ready.

Key collaborative steps are shown in Fig. 5 with overall
module interaction process flow shown in Fig. 6. The system
initialises without knowing who the user is or which task
is being performed. When ready, the user performs wave
actions which are recognised by the gesture recognition
module, enabling the person recognition step. The QR code
on the user is read to provide their name, and the task that
user will perform is inferred from the preallocation of tasks
to users. The system loads in the task specific actions from
the PostgreSQL database. The user gestures forwards to start
the task, at which point the system begins predicting how
long each future action will take and the robot brings the
first part required. The system progresses through the task
continuously updating action prediction, task status reasoning
and action selection as described in Section II-E.

Throughout the task, gestures can be used for added
levels of control over the robot. The initial wave and
forwards gestures allow the robot to be sure of when to
start. Throughout the task, the stop gesture can be used to
force the robot to wait at the end of whichever action it
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TABLE I
OFFLINE HAR AND GESTURE RECOGNITION CLASSIFIER RESULTS.

MEAN AND STD. DEV. FROM 10 FOLD LOOCV SHOWN.

Accuracy F1 Score
Mean Std. Mean Std.

Screw driver 0.89 0.05 0.68 0.14
Allen Key 0.89 0.03 0.67 0.15

Hammer 0.98 0.01 0.57 0.24
Hand Screw 0.87 0.04 0.16 0.07

Gestures 0.91 0.05 0.66 0.13

is completing and the forwards gesture used to restart it.
The left gesture can be used to force the robot to perform
the next collaborative action in the event the system fails to
correctly track human actions and thus fails to bring a part at
the right time. All actions preceding the next collaborative
robot action are labelled as completed, while the robot is
instructed to begin the next collaborative action. A graphical
user interface (GUI) provides the user feedback on the system
status including the current action and gesture predictions,
action status predictions and text feedback instructing the
user which action to perform next.

B. Action recognition in offline mode

A dataset of IMU signals has previously been collected for
offline training of the HAR and gesture recognition methods.
Ten participants completed the box assembly task and each of
the gestures for 10 s twice over while IMU data are recorded
and current action is labelled in real-time. This leads to
12,458 s of data overall. The data are split into 3 s windows
with 50 % overlap where the target class for each window is
the most common label within the window. For each of the
HAR classifiers, all data windows corresponding to actions
other than the target action are added to the null class set.
Model validation is performed using Leave One Out Cross
Validation (LOOCV), where an entire participant’s data are
used for testing in each of the 10 folds.

The results from offline testing can be seen in Table I,
along with confusion matrices in Fig. 7 and Fig. 8. These
show that screw driver, Allen key and hammer actions are
well recognised, while the hand screw action has many
false negatives due to the less definite motion of the action.
The gesture recognition results show all gestures recognised
adequately, though false null predictions provide the most
common source of error.

C. Online results from assembly tasks

Real-time experiments are conducted with 3 participants,
each performing 2 trials of each assembly type (box and
chair). This gives a total of 54 robot-to-human and 12 human-
to-robot handovers. For robot-to-human handovers, 1.9 %
failed with the robot erroneously dropping the part, while
16.7 % of human-to-robot handovers failed with the robot
grasping while an object was not present. Handover duration,
measured from the initial time both robot and human have
contact with a part to the time it is grasped/released by the
robot indicates the fluidity of handover. After removing 1
erroneous data point, a mean of 2.25 s (SD 1.77) is found,
heavily skewed towards shorter handovers (Fig. 9). The
longer duration handovers are largely due to the additional
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checks, such as no HAR prediction, incorrectly blocking the
part release.

Analysing the amount of time the user and robot wait for
each other shows the efficiency of the robot action planning.
The robot aims to deliver a part to the user at the exact time
it is required, thus the user and robot wait times while in
the handover position should approach 0 s. The average user
and robot wait times per user and task type are shown in
Table II, with a histogram of times shown in Fig. 10. Both
robot and user wait times are heavily skewed towards 0 s,
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TABLE II
AVERAGE WAIT TIMES FOR HANDOVER TO BEGIN FOR USER AND ROBOT.

User Wait (s) Robot Wait (s)
Box Chair Overall Box Chair Overall

User 1 6.75 5.90 6.36 6.42 8.80 7.50
User 2 3.50 0.60 2.18 0.75 8.20 4.14
User 3 0.67 0.00 0.36 16.00 20.90 18.23
Overall 3.64 2.17 2.97 7.72 12.63 9.96
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Fig. 10. Waiting times for handover to begin for user and robot.

with a range of large wait times inflating the mean. This
is largely due to different users and tasks having varying
durations to complete actions, making prediction of when
a handover will occur difficult with the simple fixed time
per action approach used. The occurrences where the robot
waits a very long time are often due to the user fumbling
a part, quickly adding large amounts of time to the action,
or incorrect perception of a ‘left’ gesture, causing the robot
to jump ahead to the next collaborative action early. The
occurrences where a user waits a long time for the robot are
mainly due to the action recognition failing to keep track of
the assembly state. The user must then perform a next action
command, wait for the robot to finish its solo task action
before moving onto the collaborative action. The average rate
of next action gestures per handover operation is 10.6 %.

The robot is instructed to wait in the home position when it
has excess time before the next collaborative action but not
enough to complete an action on the solo task. Removing
occurrences where the robot has completed all actions on its
solo task gives an average idle time of 34.3 s and 3.67 s per
trial for the box and chair tasks, respectively. Overall, the
average trial completion times are 405 s and 260 s for the
box and chair assembly tasks, respectively.

IV. CONCLUSIONS

This work presented an approach for human-robot col-
laboration using human action recognition, hand gesture
recognition, tactile feedback handovers and user personali-
sation. Collaborative trials on two assembly tasks demon-
strated interaction fluency with reliable handovers and action
recognition leading to reliable action selection. Future work
will focus on investigating methods for more robust tactile
sensing perception to remove unintended grasping/release ac-
tions, updating the task status reasoning to be more adaptable
to different users and tasks, and faster handover processes by
predicting pregrasp phase with the wearable sensors.
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