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Multimodal barometric and inertial measurement
unit based tactile sensor for robot control

Gorkem Anil AL and Uriel Martinez-Hernandez

Abstract—In this paper, we present a low-cost multimodal tactile
sensor capable of providing accelerometer, gyroscope and pres-
sure data using a 7-axis chip as sensing element. This approach
reduces the complexity of tactile sensor design and collection of
multimodal data. The tactile device is composed of a top layer (a
printed circuit board and sensing element), a middle layer (soft
rubber material), and bottom layer (plastic base) forming a sandwich
structure. This approach allows the measurement of multimodal
data when force is applied on different parts of the top layer of
the sensor. The multimodal tactile sensor is validated with analyses
and experiments in both offline and real-time. First, the spatial
impulse response and sensitivity of the sensor are analysed with
accelerometer, gyroscope and pressure data systematically collected from the sensor. Second, estimation of contact
location from a range of sensor positions and force values is evaluated using accelerometer and gyroscope data together
with a Convolutional Neural Network (CNN) method. Third, the estimation of contact location is used to control the position
of a robot arm. The results show that the proposed multimodal tactile sensor has the potential for robotic applications
such as tactile perception for robot control, human-robot interaction and object exploration.
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[. INTRODUCTION use of multiple sensing elements in a tactile sensor, makes its
design and fabrication complex and costly.

To tackle these challenges, we present a low cost mul-
timodal tactile sensor for contact detection, recognition of
contact location and robot control. This work contributes to
the field of tactile sensing with a novel multimodal tactile
sensor that requires only one chip (sensing element) to provide
pressure, accelerometer and gyroscope data. The use of one
chip reduces the complexity of sensor design and multimodal
data acquisition. The tactile sensor is built using a sandwich
structure which increases the spatial impulse response.

The performance of the multimodal tactile sensor is vali-
dated with various experiments in offline and real-time modes.
First, the sensitivity across the tactile device is analysed using
pressure data systematically collected by applying repetitive
force with a robotic platform on the sensor. Second, ac-
celerometer and gyroscope data obtained by applying different
force values on the tactile sensor are used, together with
a Convolutional Neural Network (CNN), for recognition of
contact location. This experiment is performed in offline and
real-time modes to show that the sensor can detect contact
location accurately from a sensing area larger than the size of
the chip. Third, a robot arm is controlled to move to specific
positions on a grid based on the contact location recognised
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OBOTS offer a tremendous potential for interaction and

collaboration with humans and other robots to perform
tasks efficiently and safely such as assembly, telemanipulation,
assistance and healthcare [1], [2]. These robots need to be
capable of physically sensing and perceiving their surrounding
environment to make reliable decisions, actions and avoid
collisions that can harm humans and other robots [3]. Tactile
sensing is an essential component that needs to be considered
in the design and development of robots to allow them to
physically explore their surrounding environment for safe
interaction with humans and other robots, detection of contact,
recognition and manipulation of objects [4], [5].

Tactile sensors have been studied taking inspiration from
the human sense of touch, which can respond to stimuli
such as pressure, vibration, deformation and temperature [6].
Particularly, researchers have focused on biomimetic fingertips
and skin for robotic grippers, dexterous robot hands and for the
torso and arms of humanoids to perform object manipulation
and recognition, human-robot interaction tasks [7]. These
tactile sensors tend to combine different sensing elements to
obtain multiple data formats, e.g., pressure and vibration, that
mimic the stimuli from the sense of touch [8]. However, the
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related work. The sensor design and performance analysis are
described in Section III. Offline and real-time experiments
are presented in Section IV. Sections V and VI present the
discussion and conclusions, respectively.

[I. RELATED WORK

Tactile sensors designed and developed using different trans-
duction technologies and data processing methods for robotic
applications are presented in this section.

Capacitive technology has been used to develop tactile sen-
sors that require large dynamic range, high spatial resolution
and sensitivity. This technology has been used in robots such
as the iCub humanoid skin [9], the gripper of PR2 robot [10],
and soft fingertips of RobotiQ gripper [11]. Capacitive sensing
is commonly affected by hysteresis, and requires relatively
complex measurement systems [12].

Piezo technology has been used for piezoresistive and piezo-
electric tactile sensors for robot fingers and palms to recognise
deformable and rigid objects [13], to detect slippage [14]
and as array of sensors in robot hands for object recognition
based on the object size and stiffness [15]. Tactile sensors
with piezo technology are relatively easy to build, low cost,
and can provide high sensitivity and high frequency. However,
hysteresis, reproducibility and susceptability to slight changes
in temperature limit their application [12].

Optical systems offer a solution that rely on fiber optics and
cameras for tactile sensors. Arrays of optical fibers and fiber
Bragg grating have been used in robotic finger designs [16].
Soft skin with embedded cameras has been employed in robot
hands for force estimation and object slippage detection [3].
TacTip fingertip uses a camera covered with a soft skin for
robotic applications such as object exploration and manipula-
tion [17]. This technology provides high spatial resolution,
repeatability and sensitivity, but they are limited by large
sensor size, high power consumption, computational cost and
susceptible to light conditions [7].

Magnetic technology has been used to build tactile sensors
for measuring three-dimensional force based on the Hall
effect [18]. Soft tactile sensors with magnetic technology
have also been used for detection of light touch and shear
forces [19]. Magnetic tactile sensors offer high sensitivity, lin-
ear response and physical robustness, but their performance is
affected by the magnetic field of nearby electrical devices [8].

Barometric modules can be embedded in rubber to build soft
tactile sensors to provide pressure output with high sensitivity
and linearity [20]. Arrays of barometric modules have been
used in robotic applications such as footpads for running
robots [21], estimation of ground forces and centre of pressure
in robotic legs [22], and on robotic hands and fingers to
estimate material stiffness [23]. This technology allows to
build low-cost and small size tactile sensors, but they are
limited by low frequency response.

The use of multiple integrated circuits or chips in the design
of tactile sensors to mimic human tactile sensing abilities
has shown improvements in robotic applications for object
detection, recognition, and manipulation. The BioTac fingertip
composed of multiple sensing elements is capable of providing

contact information, temperature and vibrations [24]. A bio-
inspired multimodal tactile sensor embedded with pressure,
magnetic, angular velocity and acceleration sensors has been
used for profile and object recognition [25]. Multimodal data
from an inertial measurement unit (IMU) and pressure sensor
in a tactile device have been used for detection of contact force
and surface orientation [26]. HEX-O-SKIN is a multimodal
tactile module consisting of proximity, accelerometer and
thermistor sensors designed for safe robot interaction [27].
Surface classification has been performed using an array of
seven force sensors and five accelerometers embedded in a
biomimetic fingertip sensor [28]. Even though tactile devices
with multimodal sensing elements provide rich information for
a variety of robotic applications, the combination of different
sensing elements poses challenges. For example, the integra-
tion of multiple sensors increases the complexity of design and
wiring, the fabrication cost, and requires complex acquisition
boards and programs for multimodal data collection.

Tactile sensors have been used with computational methods
for data processing, feature extraction, classification and robot
control. Data from soft fingertip sensors with embedded cam-
eras have been processed for feature extraction, recognition
and exploration tasks using methods such as Principal Com-
ponent Analysis (PCA) and Convolutional Neural Networks
(CNN) [29], [30]. Recognition of touch on robot skin for
human-robot interaction tasks has been studied using Support
Vector Machines, Dynamic Bayesian Networks (DBN) and
Gaussian Processes (GP) with the Baxter robot and iCub
humanoid skin [31], [32]. Self-Organising Maps (SOM), k-
Nearest Neighbour (kNN), Artificial Neural Networks (ANN)
and DBNs have been used for detection of contact location
and object shape extraction using biomimetic tactile robot
hands and fingers [33]-[35]. Intelligent tactile sensing for
object exploration and robot control has been studied using
pressure and piezoresistive sensor arrays with CNN and Deep
Convolutional Neural Networks [36], [37].

The paper proposes a multimodal tactile sensor that uses
only one chip to provide accelerometer, gyroscope and pres-
sure data. This approach contributes to reducing the complex-
ity of design, sensor size and cost of fabrication. A CNN
method is used for tactile data processing to exploit the sensor
capability for contact detection, recognition of contact location
and robot control. The detailed description of the proposed soft
multimodal tactile sensor is presented in the next sections.

[1l. METHODS
A. Sensor Package and Electrical Design

The sensing element of the tactile sensor uses the 7-axis
ICM-20789 device (TDK InvenSense) which consists of 3-
axis gyroscope, 3-axis accelerometer and a barometric pressure
sensor. This device has dimensions of 4 mmx4 mmx 1.4 mm
and offers two data transfer options: 400kHz 12C commu-
nication for accelerometer, gyroscope and pressure sensors
and 8 MHz SPI for acceleometer and gyroscope sensors.
The barometric sensor consumes less power than any other
barometric sensor in the market. The pressure sensor operates
between 30 kPa and 110 kPa, and data can be collected in four
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different modes in terms of current and noise; Low Power
(3.2Pa noise, 1.3uA), Normal (1.6 Pa noise, 2.6uA), Low
Noise (0.8 Pa noise 5.24A), and Ultra Low Noise (0.4 Pa noise
10.4pA). The ICM-20789 device with orientation axes, and
the block diagram of gyroscope, accelerometer and pressure
sensors are shown in Figures 1A and 1B, respectively.

The ICM-20789 chip is soldered on a QFN/QFP PCB
(socket with 0.5mm pitch and 30x 15 mm size) as follows.
First, a 24 pin steel stencil is placed on the PCB. Second,
Loctite LF 318 96SCAGS88.5V solder paste is spread on the
stencil avoiding the excess of paste between or around pads.
Third, the chip is placed gently on the PCB and aligned to
the orientation of the socket using an electronic microscope
(Figure 1C). Finally, the PCB and sensor are placed in a
reflow oven with the temprature set at 250° to solder the chip
correctly. The I2C communication protocol is used to transfer
data from accelerometer, gyroscope and pressure sensors to a
microcontroller board. Figure 1D shows the circuit diagram
needed to set the correct signals for synchronisation and
data transferring from the ICM-20789 sensor to an Arduino
Mega2560 board. These data are then transferred to a work-
station using the Robot Operating System (ROS) for posterior
analysis and robot control as described in next sections.

B. Tactile Sensor Design

The PCB and sensor are covered with a rectangular soft
case made of Ecoflex 00-30 silicon material. The design and
fabrication process of this soft case is as follows. First, same
amount of Ecoflex rubbers are mixed in a small glass. Second,
the rubber is degassed using a vacuum chamber to reduce the
air bubble that can affect the material behaviour. Third, the
rubber is poured in a 3D printed mold to fabricate the rectan-
gular case, and cured for 5 hours at room temperature. Fourth,
the soft case is glued on the PCB using a strong adhesive
(Figure 2A). Finally, the soft case glued on a plastic base to
form a sandwich structure. This process is shown in Figure 2B.
The soft case with dimensions of 24 mmx11.5 mmx4.5 mm
covers the area of the PCB that can be used efficiently. The
chip is covered with silicon material leaving a 0.5 mm gap
between the top of the chip and the inner layer of the case,
preventing the possibility of contacting with the silicone before
applying a force on the sensor. When a force is applied on the
tactile sensor, the silicon material compresses, touching the
chip and generating pressure data from the barometric sensor.

C. Sensor Performance

The spatial impulse response of the multimodal tactile
sensor is analysed using sensor data when force is systemati-
cally applied with a tapping exploratory procedure performed
employing the Universal Robot (UR3) arm and a 10 mm
spherical tip (Figure 3B). For this process, an extension board
is mounted on the tactile sensor to connect to the circuitry
responsible for data transfer using 12C communication pro-
tocol. The tactile sensor is covered with an elastic fabric to
avoid slippage during the data collection (Figure 3A). The
tapping process is performed on an array of 3 columnsx24
rows (72 sensor locations in total) with 1 mm step size on y

Microcontroller

A A A
12C 12C 12C

47 {V v

Accelerometer Gyroscope Pressure Sensor

ICM 20789

oo o

© (D)
Fig. 1. Sensing element used in the multimodal tactile sensor. (A) 7-axis
ICM-20789 chip and orientation axes. (B) Block diagram of accelerom-
eter, gyroscope and pressure sensors. (C) ICM-20789 chip placed on a
PCB using a stencil and electronic microscope. (D) Schematic for data
transfer with 12C communication protocol.

axis and 3.5 mm step size on z axis, and duration of 3s per
tap (Figures 3A and 3C). The tapping process is repeated 5
times in a range of contact depths from 0.2mm to 1.6 mm
with 0.2mm steps. Sensor data are collected in Low Noise
mode (0.8 Pa noise, 5.2 ptA) using an Arudino Mega 2560
and ROS with 30Hz sampling frequency. The force applied
on the sensor is measured using the FT-300 force/torque sensor
with 180 Hz sampling frequency.

Examples of mean pressure and measured force collected
at different contact depths are shown in Figure 4. The data
represented by blue, red and green lines correspond to the first
(blue), second (red) and third (green) columns, respectively,
along 24 rows on the sensor as shown in Figure 3A. Pressure
data from the tactile sensor was able to be measured from
a contact depth of 0.8 mm. In this contact depth, the highest
pressure output and measured force are observed in the second
column of the sensor (red colour line) in Figure 4. These data
show that when a force is applied near to or at the centre of the
sensor (contact points 12, 13 and 14 in Figures 4A and 4C), a
large contact between the chip and the silicon material results
in a large pressure output. When the force is applied near to or
at the edge of the sensor (e.g., contact points 22, 23, and 24),
it bends, reducing the contact between the silicon material and
the chip which results in a lower pressure output. Moreover,
when the contact depth increases, the sensor can detect more
contact points along the 24 rows or positions used for data
collection. For example, with 0.8 mm contact depth the sensor
provides pressure data between positions 8 and 19 along the
sensor (Figure 4A), while at 1.6 mm contact depth, pressure
data is available between positions 4 to 24 (Figure 4C). When
a contact is applied on the centre locations of the tactile sensor,
the silicon shows high resistance resulting in large measured
forces. However, if a contact is applied near to or at the edges
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PCB

Silicone 0,5 mm gap

Plastic Base

(A)

of the tactile sensor, this bends and the resistance of the silicon
decreases resulting in lower measured forces. This behaviour
is observed in the examples of measured forces at the centre
and edge contact points in Figures 4B and 4D.

Examples of accelerometer and gyroscope data from the
tapping process described previously are shown in Figure 5.
These figures illustrate mean accelerometer and gyroscope
signals in = and y axes along 24 rows and columns 1 to
3 for contact depths of 0.8 mm and 1.6 mm. Accelerometer
signals in x axis change from positive to near zero values
in column 1, from positive to negative values in column 2,
and from near zero to negative values in Column 3. Opposite
output signals are observed for accelerometer in y axis. The
amplitude of gyroscope signals in x axis changes from zero to
positive and negative values gradually in Column 1, between
positive and negative values in Column 2, and from positive
and negative values to zero in Column 3. Opposite output
trends are observed for gyroscope in y axis in Column 1
and Column 3 for taps along 24 rows, and similar change
in Column 2.

The analysis of the spatial response shows that the highest
sensitivity is achieved at contact positions 13 and 14, where

Columns

Y-

Data acquasition
PCB

PCB

Plastic base Silicone

Side view &\
(A) (B)
O O
7 | —
©) D)

Fig. 3. Sensor and robot setup. (A) Multimodal tactile sensor covered
with elastic fabric (bottom), and array of 3 columns and 24 rows for data
collection (top). (B) Robotic setup used for tactile data collection. (C)
The robot taps on the tactile sensor along 24 contact positions on each
column (side view). (D) Data collection on top of the sensing element for
sensitivity analysis (side view).

tactile Sensor Force/Torque
Sensor

(B)

Fig. 2. Fabrication process of the multimodal tactile sensor. (A) Steps for fabrication of the soft rectangular case of the sensor: 1) rubber liquids
are mixed, 2) material degassing using a vacuum chamber, 3) rubber is poured in the mould to form a rectangular case, 4) cured soft rectangular
case, 5) chip covered with the soft case. (B) Soft case attached on the PCB and mounted on a plastic base creating a sandwich configuration.
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Fig. 4. Pressure data along the 24 rows of each column of the tactile
sensor. (A) Mean pressure output for all contact points at 0.8 mm contact
depth. (B) Mean measured force values for all contact points on z axis
at 0.8 mm contact depth. (C) Mean pressure output for all contact points
at 1.6 mm contact depth. (D) Mean measured force values for all contact
points on z axis at 1.6 mm contact depth.

the chip is located on the PCB. The experimental setup in
Figure 3B is used for the analysis of the sensor sensitiv-
ity, where pressure output from the tactile sensor and force
measured with the FT-300 force/torque sensor are sampled
at 30Hz and 100 Hz, respectively, and sent to a workstation.
In this experiments, the UR robot moves along the z axis
to apply force on contact position 13 that corresponds to the
position of the chip. The robot touches the sensor from contact
depth 0.8 mm to 1.7mm (the sensor output saturates) with
0.1 mm steps and 5 s contact duration at each step (Figure 3D).
This process is repeated 30 times. After completing the data
collection, the force/torque sensor data are down-sampled to
match the number of samples from the tactile sensor.

The mean values of measured force and pressure output



GORKEM ANIL AL et al.: MULTIMODAL TOUCH SENSOR FOR ROBOT CONTROL

Column 1
T

1000

-1000 H

1000

o

-1000

Accelerometer Raw Data

1000

o

3
8
S

—— Accel x —Accel y|
)

2000t L 101001
1 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24

Contact Position

(A) 0.8 mm contact depth

Column 1
T

1000

-1000

3
8
S

o

3
8
S

1000

Accelerometer Raw Data

—— Accel x —Accel y|
)

1 u it 1 L L L L L L
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
Contact Position

(C) 1.6 mm contact depth
Fig. 5.

Gyroscope Raw Data

Gyroscope Raw Data

2000

b b L el bbbt b Ll Ll
el TR
ZOOZilJLJljJ_JJlJM.J';:J_rLWJ_L_LALAL‘LLli

7TT['['FITFTVT'"V” 77TW1T77
bbb bbb
2o 1 "\T- 1 1 L L I’ 1 L L L 1 1 1 1 L L :76‘}”0)(\_9"”0}/

1 2 3 4 6 7 8 9 10 (jl:nla'\gt l;;qn:‘;n 15 16 17 18 19 20 21 22 23 24

(B) 0.8 mm contact depth

mz } LJ ' 1 LJL LLLJ.JLLMLMU[J.L |
wo] | LT T TN ]
CLLLLLLL Lo, N | |
w JULTITEOT o T
SRR AR AR RN
a | EET T

Contact Position

(D) 1.6 mm contact depth

Accelerometer and gyroscope signals on the « and y axes along the 24 rows of each column of the tactile sensor. (A)-(B) Mean

accelerometer and gyroscope signals for all contact points in Columns 1, 2 and 3 on = and y axes at 0.8 mm contact depth. (C)-(D) Mean
accelerometer and gyroscope signals for all contact points in Columns 1, 2 and 3 on @ and y axes at 1.6 mm contact depth.

data are used for the sensitivity analysis of the tactile sensor.
This data is shown in Figure 6A, which presents a quasi-linear
increment of pressure output from 263 to 969 counts for force
values from 3.53N to 13N. The change in measured force
for contact depths ranging from 0.8 mm to 1.7 mm are shown
in Figure 6B. The second order polynomial function from the
measured force and pressure data from the highest sensitive
position of the tactile sensor (contact position 13) is shown in
Figure 6C. The polynomial function employed is as follows:

F(p) = 5.844e™%.p? + 0.0041.p + 2.3304 (1)

where F' is the estimated force and p is the pressure output
from the sensor. The polynomial function exhibits R? = 94%.

Finite Element Analysis (FEA) is used to compare the
simulation results with the experimental data from the sensitive
contact position of the sensor. In the simulation, force is
applied on the center of the tactile sensor, which corresponds
to contact position 13 of the real sensor. The tactile sensor
model used in FEA analysis is shown in Figure 7, which
represents the real sensor described in Section III-B. The
FEA analysis shows the compression of the silicon material

S
=
S

212 212 12

g 10 10

2 s Z

- 8 - 8 88

g 2 5

a 6 ;» 6 = 6

= 4 S 4 4

2 400 600 800 1000 20.8 09 1 11121314151617 20 200 400 600 800 1000 1200
Pressure Output (Counts) Contact Depth (mm) Pressure Output (Counts)
(A) B) ©
Fig. 6. Tactile sensor response to force applied at different contact

depths. (A) Mean pressure output against measured force. (B) Contact
depths against mean measured force. (C) Estimated force using a
second order polynomial function.

under simulated forces. The nonlinear elastic response of
the Ecoflex 00-30 material is described using a version of
constitutive Yeoh model for compressible rubbers. The strain
energy density function of this model is represented as follows:

N N

W= "Ci(T-3) + 3 Di(J — 1)*

i=1 k=1

@

where T; = J=2/3, and C; and D, are material constants.
Constant parameters for Ecoflex 00-30 used in the FEA
analysis are C; = 17kPa, Cy, = —0.2kPa, C3 = 0.023 kPa,
D, =15, Dy = 20, and D3 = 10, which are obtained under
uniaxial compressible experiments in third order (N = 3) [38].
In simulation, force is applied on the top of the sensor, while
compressing the sensor to contact depth of 1.7mm, which
corresponds to the maximum contact depth used in the sensory
sensitive experiment. The contour plot of the von Mises stress
and results of compressing the sensor at 0.85 mm, 1.3 mm and
1.7 mm are shown in Figures 7A and 7B, respectively. Sensor
compression between 0.85mm and 1.7mm is used for force
prediction and comparison with experimental results. Stress
values from the centre of the sensor (red frame) are used to
calculate the force values. The force applied on the sensor can
be calculated using the von Mises stress as follows:

Force
Stress =

3

Area

For example, if the sensor is compressed at 0.85mm,
the stress value of the centre of the sensor is 0.012MPa
and the surface area of the silicon covering the sensor is
11.5mmx24mm = 276 mm?2, then the predicted force is
3.31N. Figure 7B shows the experimental (blue curve) and
predicted force (red curve) values for different compression
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values or contact depths applied on the tactile sensor. Experi-
mental and predicted force at contact depth of 1.7 mm are 13N
and 14.6 N, respectively, whereas for the minimum contact
depth of 0.8 mm, the experimental and predicted force values
are 3.5N and 3.3 N, respectively. For the contact depth of
1.3 mm, the value of 8 N is observed for both the experimental
and predicted force.

Centre of the sensor
S, Mises 14
(Avg: 75%)
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Fig. 7. FEA analysis of the tactile sensor. (A) Tactile sensor compressed
at different contact depths. (B) Predicted force applied on the sensor for
different contact depths.

IV. EXPERIMENTS AND RESULTS

In this section, the capability of the multimodal tactile
sensor for estimation of contact location and robot control are
tested in offline and real-time modes.

A. Contact Location Estimation in Offline Mode

The capability of the multimodal tactile sensor to estimate
where it is being touched is tested in offline mode using
accelerometer and gyroscope data. This type of data, together
with different computational methods and robot platforms, has
shown to be accurate for detection of contact location [35],
[39]. For this experiment, data is collected from an array
of 3 columnsx24rows based on a tapping exploratory pro-
cedure on the tactile sensor, with a range of contact depths
from 0.2mm to 1.6mm and 0.2mm steps as described in
Section III-C. This process is systematically performed and
repeated 5 times using the UR robot platform. The data
collected from the 24 rows are segmented into 3 groups of 8
rows each to create the array of 3x3 contact regions or classes
for recognition with the tactile sensor (a total of 9 contact
regions) as shown in Figure 8A. The recognition of this array
of contact regions with our tactile sensor is possible by the
use of multimodal data together with computational methods.
Each of the 9 contact regions is composed of 38 samples of
z- and y signals from accelerometer and gyroscope, creating
a data matrix of 4 signalsx38 samples. The size of the dataset
of each contact depth is augmented adding Gaussian noise (30
dB signal-to-noise ratio) from 5 to 105. Each contact region
consists of 840 data matrices from one contact depth, and
totally including data from 8 different contact depths, each
contact region has 6720 data matrices.

This dataset is used as input data to the CNN model shown
in Figure 8B, where the feature learning layer is composed
of one convolutional layer with 3x3 filter size, a ReLU
activation function and max-pooling. The output of this layer
is connected to the classification layer, where the input data is
flattened and sent of a fully connected layer with 320 neurons,

followed by the softmax function with 9 output neurons that
output the probability of being touched each of the 9 contact
regions defined on the tactile sensor. The training and testing
of the CNN model use 80% and 20% of samples from the
dataset, respectively. This process is performed using data
from each contact depth individually and also combining the
data from all contact depths to analyse which case provides
better recognition of contact regions. This recognition process
is repeated 10 times to analyse the robustness of the data and
recognition method. A k-fold cross validation (with k=5 folds)
is also performed to analyse the robustness of the recognition
process. The mean accuracy results in Table I, show that
large contact depths provide strong acceleration and gyroscope
signals, resulting in a higher accuracy for estimation of contact
location on the sensor. Thus, small and larger contact depths of
0.2 mm and 1.6 mm achieved 84.7% and 98.9% mean accuracy
for 10 times trial, and 86.9% and 99.4% mean accuracy
for k-fold cross validation method, respectively. For the case
when all contact depths were used with the CNN model, the
recognition accuracy was affected by the low accuracy from
small contact depths. Mean accuracy and standard deviation
obtained by k-fold cross validation method are slightly higher
than the mean accuracy and standard deviation of 10 times
trial. However, the mean accuracy from the 10 trials of training
and testing performed for all cases was 93.1%, while the mean
accuracy from k-fold cross validation for all cases was 89.7%.
Figure 8C presents the confusion matrix which shows that
the recognition errors mainly occurred at the middle contact
regions of the multimodal tactile sensor.

B. Contact Location Estimation in Real-time

The multimodal tactile sensor is also validated in real-time
mode with experiments for estimation of the contact location
and robot control. For the recognition of contact location, data
is systematically collected from the 9 contact regions using the
UR robot platform. The contact depth for this process is set to
1.2 mm which provided a reliable recognition accuracy in the
offline experiment. The robot is programmed using Movelt
motion planning libraries to perform a tapping exploratory
procedure on each contact region of the sensor with a duration
of 3s per tap to collect accelerometer and gyroscope signals
(Figure 9A). This data is prepared into 4x38 matrices, as
described in Section IV-A, to be used as input to the CNN
model for recognition of contact location in real-time. The data
collected from the sensor is sent to a workstation using ROS
and processed by the CNN model developed in MATLAB.

TABLE |
CLASSIFICATION ACCURACY FOR EACH CONTACT DEPTH AND
COMBINATION OF ALL CONTACT DEPTHS USING A CNN.

10 times trial 5-fold cross validation

Contact Depth Mean Standard Mean Standard

Accuracy | Deviation | Accuracy | Deviation
0.2 mm 84.7% 0.8% 86.9% 4.08%
0.4 mm 84.7% 1% 90.6% 4.04%
0.6 mm 89.5% 1.08% 95.4% 3.19%
0.8 mm 94.2% 1.07% 96.8% 2.22%
1.0 mm 95.9% 1.64% 97.9% 2.3%
1.2mm 97.7% 0.55% 98.4% 0.68%
1.4 mm 97.7% 0.69% 98.8% 1.11%
1.6 mm 98.9% 0.42% 99.4% 0.89%
All cases 93.1% 0.86% 89.6% 6.16%
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The recognition process achieved accuracy of 93% and the
recognition accuracy of each contact region is shown in the
confusion matrix in Figure 8D.

The capability of the tactile sensor for robot control is also
evaluated in real-time. In this experiment, the UR robot arm is
controlled to move to a specific position on a grid according
to the contact region of the tactile sensor touched by the user
(Figure 9B). For this process, the CNN model trained with
the data from all contact depths is used to recognise which
contact region has been touched. The user touched each of the
9 contact regions on the tactile sensor using a mini screwdriver
tool. Accelerometer and gyroscope data are collected when the
pressure output of the sensor resulting of the applied contact
exceeds a predefined threshold. This data is grouped into a
4x38 matrix as explained in Section IV-A. Once the data is
collected, it is sent to MATLAB via ROS to be processed
by the CNN model. The region recognised by the CNN is
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Fig. 9. (A) Contact location estimation in real-time. (B) Robot position
control based on the perception of contact location on the tactile sensor.

mapped to a predefined robot position on a grid displayed
in a screen. The steps of this experiment is as follows: 1)
the robot is set to home position and waits in its current
position until a contact is detected on the multimodal tactile
sensor, 2) when the user touches the sensor, the trained CNN
model processes the sensor data to recognise the contact region
being touched, and 3) this output is used to move the robot
to the corresponding position. For instance, if a contact on
the first sensor region is detected, the UR robot is controlled
to move from the current home position to position 1 on a
grid displayed in a screen (Figure 9B). This experiment was
completed successfully, demonstrating that the multimodal
tactile sensor can detect where it has been touched and use
this information for robot control.

V. DISCUSSION

A low-cost multimodal tactile sensor capable of providing
accelerometer, gyroscope and pressure data has been presented
in this paper. Multimodal data are obtained using only one
sensing element (ICM-20789 chip) for fabrication of the tactile
sensor. To our knowledge, this is the first work using this
chip for the development of a tactile sensor which contrast to
previous works commonly used MPL115A2, BMP280 chips.
The sensor was covered with a soft rectangular case after
systematically investigating, testing and validating different
design approaches to ensure accurate sensor response. In the
first design approach, the chip was cast in liquid rubber
Vytaflex 20 [20] to form a stiff contact surface. The chip
and rubber were placed in a vacuum chamber to extract
the air trapped in the chip through the ventilation orifice.
Even though the tactile sensor provided stable gyroscope and
accelerometer data, strong drift and saturation on pressure
data were observed, making the sensor unstable and unreliable
for touch sensing. In the second design approach, the lid
of the chip was removed to enlarge the ventilation orifice
from 0.3mm to 1.0mm to fix the signal drift and saturation
issues following the process in [23]. The lid was placed
back, glued it and cast in rubber. This approach did not
show improvement in the signal drift and saturation. In the
third design approach, the chip was covered with an empty
rectangular case made of Vytaflex 30 [33]. The case was
formed pouring rubber material in a plastic mould, curing
the rubber at room temperature, and gluing it on the PCB to
cover the chip. This approach provided a stable sensor signal,
fixing the issues of signal drift and saturation. However, the
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sensor did not show a sensitive response in accelerometer and
gyroscope data when force was applied on the rectangular
rubber case. Therefore, a fourth design approach was imple-
mented using Ecoflex 00-30 rubber to cover the PCB and chip.
This approach fixed the signal drift and saturation issues, and
showed a clear change in accelerometer and gyroscope signals
increasing the sensing area of the chip and improving the
spatial impulse response and sensitivity of the sensor. This
systematic analysis performed in this study offers the most
suitable design approach for the development of multimodal
tactile sensors using the ICM-20789 sensing element. The
experiments showed that the sandwich design provided higher
spatial impulse response compared to the barometric based
tactile sensors [20], [21], [22], [23], [25]. The use of one
chip in the soft bendable structure reduces the design and data
acquisition complexity reading data simultaneously from IMU
and barometric sensors compared to the works [25], [26] rely
on mechanical components such as springs for bending, and
multiple separate sensing elements to read multimodal data.

The sensitivity analysis showed that the centre of the tactile
sensor provides the highest sensitivity (force between 3.53 N
and 13N). This suggests that this tactile sensor might not
respond to contact force smaller than 3.53 N. However, this
contact detection threshold can be improved designing the
soft rectangular case of the sensor with different thickness,
size and rubber. Force values were calculated using the stress
results from the center of the sensor in the FEA under the
different contacts depths. Calculated force values from FEA
and force values obtained from the Equation 1 showed similar
behaviour for small contact depths (0.8 mm to 1.3 mm), and a
slight difference for larger contact depths (1.4 mm to 1.7 mm).

The tactile sensor data were segmented into 9 regions or
classes and used with CNN methods for recognition of contact
location in offline mode. The training and testing processes
showed that accelerometer and gyroscope data allowed the
CNN to achieve the highest recognition accuracy. The use of
pressure data did not show an improvement in the recognition
process, which relates to similarities in pressure data along
the sensor. The training results showed that the recognition
accuracy improved for large contact depths (98.9% and 99.4%
at 1.6 mm depth for 10 times trial and cross validation respec-
tively), which is related to larger changes in accelerometer and
gyroscope data. Contact location recognition in real-time was
performed using a robot arm and the CNN trained with data
from 1.2 mm contact depth, which achieved one of the high
accuracies in the offline analysis. The recognition accuracy
in real-time for all 9 regions was 93% and the accuracy for
each individual region is shown in the confusion matrix in
Figure 8D. The recognition errors mainly occurred at contact
locations close to the transition between regions, given that
data overlapped from two consecutive regions.

Our multimodal sensor is capable of providing tactile data
from a large surface using one chip or sensing element. We
have shown in [40] that the tactile sensor can be used to
cover larger areas with a robotic finger forming a multimodal
sensing area of 65 mm x 34.5 mm. The multiple data available
in these tactile sensors placed in the robotic finger have
been used for grasping objects and handover applications

in [41]. Our approach reduces the design and data collection
complexity and cost compared to sensing devices composed of
separate sensing elements used to cover large areas of robots.
Moreover, the use of this multimodal tactile sensor together
with machine learning allows the rearranging of the sensor
data layout to estimate a different number of contact locations
(e.g., 2x2, 3x3) compared to methods that require fixed arrays
of sensing elements [42], [43]. We have used accelerometer
and gyroscope signals with CNN models for detection of
contact location motivated by previous works on contact esti-
mation [35], [39]. In the current sensor configuration, only one
contact location can be detected at a time. Contact detection
and the estimation of the contact location using multimodal
data have been validated controlling the position of the UR
robot arm. This application is useful for other applications
such as teleoperation [44]. Other applications that we plan to
explore for the future work are the recognition of textures,
materials and objects, as well as covering larger surfaces
including robotic limbs and torso.

Overall, this paper has presented a novel tactile sensor
composed of a new sensing element, a systematic analysis
of sensor design based on a sandwich structure approach and
multimodal data processing using machine learning for contact
detection and location estimation for robot control in real-time.

VI. CONCLUSIONS

In this paper, we presented a low-cost multimodal tac-
tile sensor capable of providing pressure, accelerometer and
gyroscope data for robotic sensing, exploration, perception
and control. The sensor was built using a single sensing
element and soft rubber material. The spatial impulse re-
sponse, sensitivity and mechanical response of the sensor
were analysed systematically using a robot platform and
Finite Element Analysis. The tactile sensor was validated with
experiments in offline and real-time modes for detection of
contact, recognition of contact location and robot control using
a Convolutional Neural Network. The sensor demonstrated
to be capable of recognising contact location accurately for
control of a robot arm. Overall, this work offers an alternative
and low-cost approach for multimodal tactile sensing suitable
for applications in robot exploration, control and interaction.
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