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Abstract Alzheimer’s Disease (AD) is believed to be
the most common type of dementia. Even though screen-
ing for AD has been discussed widely, there is no screen-
ing program implemented as part of a policy in any
country. Current medical research motivates focusing
on the preclinical stages of the disease in a modeling
initiative. We develop a partially observable Markov
decision process model to determine optimal screening
programs. The model contains disease free and preclin-
ical AD partially observable states and the screening
decision is taken while an individual is in one of those
states. An observable diagnosed preclinical AD state
is integrated along with observable mild cognitive im-
pairment, AD and death states. Transition probabili-
ties among states are estimated using data from Knight
Alzheimer’s Disease Research Center (KADRC) and
relevant literature. With an objective of maximizing ex-
pected total quality-adjusted life years (QALYs), the
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output of the model is an optimal screening program
that specifies at what points in time an individual over
50 years of age with a given risk of AD will be directed
to undergo screening. The screening test used to diag-
nose preclinical AD has a positive disutility, is imperfect
and its sensitivity and specificity are estimated using
the KADRC data set. We study the impact of a po-
tential intervention with a parameterized effectiveness
and disutility on model outcomes for three different risk
profiles (low, medium and high). When intervention ef-
fectiveness and disutility are at their best, the optimal
screening policy is to screen every year between ages
50 and 95, with an overall QALY gain of 0.94, 1.9 and
2.9 for low, medium and high risk profiles, respectively.
As intervention effectiveness diminishes and/or its disu-
tility increases, the optimal policy changes to sporadic
screening and then to never screening. Under several
scenarios, some screening within the time horizon is op-
timal from a QALY perspective. Moreover, an in-depth
analysis of costs reveals that implementing these poli-
cies are either cost-saving or cost-effective.

Keywords Alzheimer’s disease, Screening, Partially
observable Markov decision process, Optimal policy,
Operations research

Highlights

– We develop a partially observable Markov decision
process (POMDP) model to compute optimal screen-
ing policies for Alzheimer’s disease maximizing ex-
pected total quality-adjusted-life-years.

– Our POMDP model incorporates preclinical stages
of the disease and is built upon a biomarker-based
test.



2 1 INTRODUCTION

– We study the impact of the quality of a potential in-
tervention on model outcomes when applied to indi-
viduals with different risk profiles who are diagnosed
with preclinical AD.

– We find that an intervention with positive charac-
teristics leads to optimal policies that include mul-
tiple episodes of screening and is either cost-saving
or cost-effective.

1 Introduction

According to the World Alzheimer Report 2018 deliv-
ered by Alzheimer’s Disease International, there are
over 50 million people suffering from dementia in the
world, and the number is projected to increase to more
than 152 million by 2050 [1]. The total annual cost of
dementia is estimated to be a trillion US dollars per
year and is expected to double by 2030. Alzheimer’s
Disease (AD) is believed to be the most common type
of dementia, accounting for two-thirds of the total with
a greater proportion in the higher age ranges.

AD is a disease with an insidious onset. Difficul-
ties in retrieving information on recent experiences (im-
paired episodic memory), problems with finding loca-
tions and orientation (declining visuospatial skills), and
word-finding difficulties are among the early symptoms
of the disease. As AD progresses, there is a general de-
cline in multiple cognitive functions related to daily ac-
tivities. The Mini Mental State Examination (MMSE) [2],
a test that consists of thirty questions each worth one
point, is used widely in clinical practice to assess cogni-
tive abilities. Individuals scoring below a certain cut-
off point are likely to be demented. A questionable
MMSE score typically leads to further testing and stag-
ing. Clinical Dementia Rating (CDR) is a commonly
used instrument for the staging of AD and related de-
mentias. Assessments are made in six domains of cog-
nitive and functional performance: memory, orienta-
tion, judgment and problem solving, community affairs,
home and hobbies, and personal care, using informa-
tion obtained through a semi-structured interview of
the patient and a reliable informant [3]. The clinical
assessment of the patient may be accompanied by a di-
agnostic workup that involves neuroimaging techniques
such as Positron Emission Tomography (PET) scans
and Magnetic Resonance Imaging (MRI) as well as as-
sessment of biomarker levels observed in cerebrospinal
fluid (CSF) inspection.

At the time being, AD is not curable. As the disease
progresses through the CDR stages of mild, moderate
to severe, the patients become increasingly more de-
pendent on caregivers. There are two classes of medica-
tions approved for the treatment of symptoms. The first

class is acetylcholinesterase inhibitors (AChEIs) with
three members: donepezil, galantamine, and rivastig-
mine. The second class is the glutamate modulator with
a single member: memantine. The approved drugs have
positive effects on cognition, behaviour and activities of
daily living. Some studies indicate that medication use
may slow down disease progression. The reader may re-
fer to the reviews of Kaduszkiewicz et al. and Kirby et
al. for further details about the effectiveness of AChEIs
and memantine respectively [4, 5].

Despite its prevalence, there are currently no pop-
ulation screening policies in any country for AD, un-
like, for instance, certain types of cancer. Screening has
the goal of distinguishing individuals that may have a
condition so that early intervention can lead to bene-
fits. As there is no cure or established preventive mea-
sures for AD, benefits of screening have been difficult
to justify. The idea of screening for AD and its poten-
tial benefits are discussed in various platforms such as
in Leon Thal Symposium series [6] and the National
Alzheimer’s Project Act (NAPA) in the U.S. [7]. How-
ever these are only drafts of possible national plans.
The screening question has been investigated by re-
searchers using various modeling approaches. Two sim-
ulation based studies found screening beneficial [8, 9].
Weimer and Sager’s Monte Carlo simulation analyzes
the costs and benefits of screening using MMSE as the
indicator of cognitive decline [8]. Getsios et al. employ a
discrete event simulation framework using data from a
donepezil treatment research conducted in the U.K. [9].
They build an indicator that combines MMSE score for
cognition, Neuropsychiatric Inventory (NPI) score for
behavior and Activities of Daily Living and Instrumen-
tal Activities of Daily Living (ADL and IADL) scores
for function domains. Both studies find that screen-
ing results in cost-savings and health benefits for the
individual and the society. A cohort model with two
different treatment scenarios depending on the MMSE
course over time developed by Barnett et al. also pro-
poses early screening so that interventions can be cost
effective [10]. Dixon et al. compared the results of a hy-
pothetical one-time screening program with a no screen-
ing program on people aged 75 or older in England
and Wales and found that a screening program could
be cost effective if treatments and social care interven-
tions were to be more effective [11]. Yu et al. modeled
AD progression using a Markov model and investigated
cost-effectiveness of a screening program in Korea [12].
Based on a two-stage screening process where treatment
starts immediately once the individual is screened pos-
itive, the authors analyzed the sensitivity of the cost-
effectiveness of a nationwide screening program. Their
results suggest that the parameter having the most im-
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pact on cost-effectiveness is treatment effectiveness. In
a recent study, Michaud et al. develop a state-transition
model to project lifetime Quality Adjusted Life Years
(QALYs) and costs for a cohort of 65-year-old MCI pa-
tients in the U.S. [13]. They design and compare four
different test-and-treat policies based on the patient’s
risk level with two treatment policies (treat everyone
vs. no one). They find that testing and treating low-
risk MCI patients is the most cost-effective strategy
and the level of treatment effectiveness is the most crit-
ical parameter that affects the results. Finally, Önen
et al. build a Markov Decision Process (MDP) model
with the objective of optimizing a combination of costs
and QALYs where the screening decision is based on
the MMSE score [14]. Their model finds never screen-
ing as the optimal outcome under current and similar
treatment effectiveness levels. Through extensive sen-
sitivity analyses, they indicate the levels of treatment
effectiveness needed for a change in the optimal policy
in favor of screening.

The limitations associated with interventions con-
ducted after cognitive deficiencies associated with AD
become clinically observable have led researchers to fo-
cus on preclinical aspects of the disease. It is now known
that years long amyloid deposition lead to amyloid
plaques which, most of the time, precede neurofibril-
lary tangles that seem to lead to neurodegeneration.
In 2011, the joint workgroups of National Institute on
Aging (NIA) and the Alzheimer’s Association (AA) re-
vised and updated the diagnostic criteria and guide-
lines for diagnosis proposed by the National Institute of
Neurological and Communicative Disorders and Stroke
(NINCDS) and the Alzheimer’s Disease and Related
Disorders Association (ADRDA) in 1984 [15–19]. The
most crucial difference was the elimination of equat-
ing this decades-long disease with its terminal dementia
stage. New definition of AD is a continuum that can be
diagnosed with the help of biomarkers even before the
subtlest clinical symptoms appear. The introduction of
biomarker testing enabled this inevitable, though very
belated development.

The new criteria sets define three stages, starting
from the pre-clinical AD, progressing first to the ini-
tial clinical stage that is MCI due to AD, and then to
the late clinical stage that is AD dementia. The pre-
clinical AD stage is further subdivided into three as
Asymptomatic amyloidosis, which corresponds to amy-
loid positivity either on PET or in CSF; Stage 1 plus
neurodegeneration referring to either tau positivity or
hippocampal atrophy on MRI or hypometabolism on
PET; Stage 2 plus subtle cognitive decline referring to
subtle decline from the previous level of cognitive func-
tioning, not yet fulfilling MCI criteria [18]. Thus, in

addition to conventional neuroimaging biomarkers, the
three CSF biomarkers were also introduced: the first
is the amyloid-β fragment (Aβ1−42) of the membrane-
spanning amyloid precursor protein and the second and
third are two measures of the microtubule-associated
protein tau (MAP-τ): total tau (t-τ) and phospho-tau
(p-τ). The fibrillary form of the amyloid-β fragment is
the main constituent of parenchymal deposits known
as amyloid plaques (APs), while the paired helical fila-
ments composed of pathologically hyperphosphorylated
tau is the main constituent in the intraneuronal de-
posits known as the neurofibrillary tangles (NFTs). APs
are the result of years-long amyloid deposition, which is
a pre-clinical phenomenon and culminates in the NFT
formation still in the pre-clinical phase [16]. On the
other hand, NFTs seem to be the primary driver of
neurodegeneration, which in turn leads to earliest sub-
jectively reported cognitive symptoms in the third pre-
clinical stage and, finally, objectively documented ones
in the first clinical stage that is MCI. Figure 1 illus-
trates the relationship between biomarkers and clinical
stages by depicting progression from normal to abnor-
mal levels of biomarkers, cognition and clinical function
as a cascade.

The NIA-AA workgroup recently updated and uni-
fied their 2011 criteria sets and named the new pro-
posal as the “Research Framework” [19]. The major per-
spective change in this new set seems to be the almost
complete revocation of the syndromal approach to AD
and defining it as a pure biological construct instead.
Grouping the biomarkers into one of amyloid deposi-
tion (CSF Aβ1−42 or amyloid PET), τ deposition (CSF
p-τ or tau PET) or neurodegeneration (CSF t-τ , fluo-
rodeoxyglucose PET or anatomic MRI) they introduced
their biological construct of AD as the AT(N) system.
In this new system, amyloid positivity by itself auto-
matically includes the individual in the “Alzheimer’s
continuum,” regardless of the state of other biomarkers
and also regardless of the clinical stage, which are de-
fined as cognitively unimpaired (CU), MCI and demen-
tia. In this framework, only a CU individual with A-T-
(N)- state is called a “normal” individual. A+ qualifies
an individual for the “Alzheimer’s pathological change”
(APC) state even when T and (N) are both negative.
The A+T+ case is associated with AD state, regard-
less of the state of (N). The Alzheimer’s continuum
includes an “APC with Non-Alzheimer’s Pathology”
(NAP) state when the individual is A+T-(N)+. A- along
with a positive T and/or N marker is classified as NAP.
All these classifications are made regardless of the clin-
ical stage. This classification scheme is not intended for
clinical practice yet, hence the name “research frame-
work”. In [20], Frisoni et al. emphasize the necessity of
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using biomarkers in the diagnosis of AD. They describe
the barriers that hamper their widespread use in clin-
ical practice, such as difficulties in reimbursement and
describe a roadmap for adaptation of biomarkers-based
tests to improve their utilization in clinical practice.

Driving drug trials to a new type of research based
on biomarkers became a hope for discovering possible
treatment plans for AD before symptoms appear [21].
In other words, primary or secondary prevention strate-
gies for the emergence of the APC and AD in CU indi-
viduals and tertiary prevention and treatment for AD-
MCI and AD dementia are saught [18]. A large propor-
tion of these trials are based on the amyloid hypothesis
of AD which was introduced in [22] for the first time.
According to this hypothesis, if amyloid beta accumu-
lation is identified early and eliminated, the progression
to AD may be stopped. Furiak et al. put the hypothe-
sis to test by building a simulation model that is based
on screening asymptomatic individuals in the popula-
tion who are 55 years or older. Inevitably, they had
to make an assumption regarding treatment of posi-
tively screened individuals and they assumed that the
treatment slowed down disease progression by 50% [23].
They reported a decrease of 20 AD cases per 1000
screened. In another simulation study, Furiak et al. con-
sider rescreening options every five or ten years until age
80 or death [24]. In terms of number of cases avoided
in the population, screening every ten years forever de-
livers the best outcome.

In this paper, we take the Alzheimer’s continuum as
a basis and build a partially observable
Markov decision process (POMDP) model to determine
optimal screening programs for AD. The focus is on the
preclinical phase of the disease and biomarker-based
screening is considered. We use the Adult Children Study
longitudinal database from the Knight Alzheimer’s Dis-
ease Research Center of the Washington University School
of Medicine in St. Louis to estimate transition probabil-
ities that involve preclinical states. The sensitivity and
specificity of the screening test is also estimated using
the same data set. Our model incorporates a possible in-
tervention plan (medical and/or lifestyle modifications)
if an individual is preclinically diagnosed with APC.
The effect of this therapeutic or lifestyle intervention
on disease progression and model outcomes is investi-
gated parametrically because there are several studies
that report potential positive impacts of different inter-
vention plans on the progression of AD [10, 25].

The importance of formulating medical and health
care decision problems using the POMDP framework
was first discussed in Smallwood et al. [26] where the
unobservable states were used to indicate the patient’s
disease status. Since then, screening models for several

types of cancer, diabetes and infectious diseases have
been built using POMDPs [27–29]. The POMDP set-
ting is crucial in our modeling approach in order to ad-
dress the preclinical stages of the disease and our study
is the first one that optimizes expected QALYs and de-
termines screening policies for Alzheimer’s disease by
taking the preclinical phase of the disease into account.
We also provide evidence that implementing these poli-
cies may be cost-effective and even cost-saving while ex-
pected QALYs are optimized. Hence the results of our
work may be used to implement screening policies for
AD and ultimately improve societal health and health-
care costs. The organization of the paper is as follows.
We present our model and go over data requirements for
building an instance of the model in Section 2. Compu-
tational results and related analyses are given in Sec-
tion 3. Finally we conclude and give further research
directions in Section 4.

2 Methods

2.1 The Model

The objective of screening programs is to detect indi-
viduals with a specific disease at the earliest stage possi-
ble. Hence we focus on establishing screening programs
for individuals who have not encountered symptoms of
MCI or clinical AD, i.e CU individuals. We build a
discrete-time, finite-horizon POMDP model in which
the preclinical stage of the disease is captured by the
unobservable states (or core states). By definition, the
current (true) state of the process cannot be known as
far as the core states are concerned and there can only
be a belief associated with it based on observations.
Given the observation, the probability of being in a cer-
tain core state is assumed to be known. Thus there is an
information matrix representing the conditional prob-
abilities relating the observations to the possible true
states of the process. When POMDPs are applied to
medical decision making settings that involve diagnos-
tic tests, the test result becomes the observation that
leads to belief updates. Therefore the sensitivity and
specificity of the test are utilized in constructing the
information matrix.

Figure 2 illustrates our model framework where par-
tially observable states associated with CU clinical stage
are within the dashed box. Transitions from any state
to death state (absorbing state) are possible, we do not
illustrate transitions to this state in Figure 2 for read-
ability purposes.

We assume that a decision is made regarding whether
or not to give a screening test to an individual who is
in one of the core states at the beginning of each year.
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Cognitively Unimpaired MCI Dementia

Normal

Abnormal

Clinical Disease Stage

Amiloid β accumulation
τ mediated neuronal injury

Cognition
Clinical function

Fig. 1: Simplified hypothetical model of dynamic biomarkers of AD as presented by Jack et al. [16]

AD Free (0) Preclinical
AD (1) DPAD (2) MCI (3) AD (4)

Death (5)

Fig. 2: The POMDP Model Framework

The screening test is based on CSF inspection and de-
pending on the Amyloid beta biomarker Aβ1−42 level
observed, it is classified as either positive or negative.
The screening test is not perfect and its accuracy is
reflected by its sensitivity and specificity levels. If the
screening test result is positive, the individual moves
to a completely observable “diagnosed preclinical AD”
state, referred to as the “DPAD” state. If the test re-
sult is negative, the beliefs associated with the partially
observable states are updated. If a screening test is
not conducted, we assume no observation can be made
and the beliefs are updated accordingly. The individual
continues within normal course of aging and possible
disease progression. Throughout the whole process, an
individual can develop MCI, progress to clinical AD
or may die from all possible causes with non-negative
probability.

The notation used in the model is as follows:

– t: Decision epochs, t = 0, 1, ..., T < ∞. Our cycle
time is one year and t is the number of years above
a predetermined age.

– st: State of the individual at the beginning of de-
cision epoch t. st ∈ S = {0, 1, 2, 3, 4, 5} where 0
stands for the AD free normal state (correspond-

ing to A-T-N- in the research framework), 1 stands
for the preclinical stage of the disease, 2 refers to
DPAD, 3 refers to MCI, 4 is clinical AD and 5 is
the death state. The first two states are partially
observable whereas the rest of the states are fully
observable. The subset containing the partially ob-
servable states is denoted as SP O = {0, 1}.

– at: Action chosen at decision epoch t, at ∈ A =
{N, Y }, where N stands for not to screen and Y to
screen. These actions apply to an individual who
may be in either one of the partially observable
states.

– ON : Observation space when action is not to screen.
We assume that no observation is made when the
screening test is not performed, i.e. ON = {ø}.

– OY : Observation space when action is to screen. It
represents the space of screening test results. When
the individual undergoes screening, the possible out-
comes of the screening test are recorded as either
Aβ−

1−42 or Aβ+
1−42. Therefore we set OY = {−, +}.

– ot: Observation of the screening test at time t, ot ∈
OY .

– Πt: Belief vector where each entry πt(s) defines the
belief that the individual is in state s at the begin-
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ning of decision epoch t.

Πt = [πt(0), πt(1), πt(2), πt(3), πt(4), πt(5)]

with
∑
s∈S

πt(s) = 1.

– bt: Belief vector over partially observable states where

bt = [bt(0), bt(1)]

This vector represents the belief that the individ-
ual is in one of the partially observable states. It is
equal to the first two entries of πt. If bt ̸= [0, 0], then∑
s∈SP O

bt(s) = 1. Astrom et al. proved that bt(s) is

a sufficient statistic of the entire history of the indi-
vidual [30].

– P N
t : State transition probability matrix at the be-

ginning of time t when action is not to screen. Each
entry of this matrix pN

t (s′|s) represents the prob-
ability that the individual will be in state s′ ∈ S

at the beginning of decision epoch t + 1 given that
he/she was in state s ∈ S at the beginning of deci-
sion epoch t and a no screening action was taken.

– P
(Y,o)
t : State transition probability matrix at the be-

ginning of time t when action is to screen. Each en-
try p

(Y,o)
t (s′|s) represents the probability that the

individual will be in state s′ ∈ S at the beginning
of decision epoch t + 1 given that he/she was in
state s ∈ S at the beginning of decision epoch t and
a screening action was taken which resulted in ob-
servation o. For example p

(Y,−)
t (3|1) represents the

probability that an individual in state 1 at the be-
ginning of period t will be in state 3 at the begin-
ning of period t + 1 when the screening action is
conducted and Aβ−

1−42 is observed. Note that for
s ∈ S \ SP O, transition probabilities do not depend
on observations and will be the same for different
versions of transition probability matrices.

– Qt: Information matrix representing the probability
of observing a screening test result given the indi-
vidual is in state s ∈ SP O when the action chosen is
to screen. For example the entry qt(+|1) ∈ Qt rep-
resents the probability that the observation of the
test is o = + at decision epoch t and the individ-
ual’s true health state is s = 1. As such, this matrix
is derived from the sensitivity and the specificity of
the screening test.

– rN
t (s): Immediate reward gained between beginnings

of epochs t and t+1, when the individual is in state
s ∈ S and action a = N is chosen at the beginning
of decision epoch t. The reward is a function of an
individual’s QALY at that state.

– rY
t (s): Immediate reward gained between epochs t

and t + 1 when the individual is in state s ∈ S and

action a = Y is chosen at the beginning of decision
epoch t. For st ∈ S \ SP O, rY

t (s) = rN
t (s) = rt(s).

For s ∈ SP O, the reward is a function of an indi-
vidual’s QALY at that state and also QALY degra-
dation due to possible complications of the screening
test. It is computed via: rY

t (s) =
∑

o∈OY

qY
t (o|s)rY,o

t (s),

where r
(Y,o)
t (s) reflects the immediate reward re-

ceived at state s with an observation o at time t.
– h: Disutility of the screening test.
– l: Disutility of the intervention conducted while in

DPAD state.
– Vt(Πt): Value function that gives the expected re-

maining reward when the belief vector is Πt.
– Vt(s): Value function that gives the expected re-

maining reward when the individual is in state s

at the beginning of decision epoch t.
– γ: Discount factor, 0 ≤ γ ≤ 1.

The belief vector for all s′ ∈ SP O at the beginning of
epoch t + 1 is updated via Bayes rule:

b̃t+1(s′|Y, o) = b̃Y
bt,o(s′)=

∑
s∈SP O

bt(s)p(Y,o)
t (s′|s)qt(o|s)∑

s∈SP O

bt(s)qt(o|s)

b̃t+1(s′|N) = b̃N
bt

(s′) =

∑
s∈SP O

bt(s)pN
t (s′|s)∑

s∈SP O

bt(s)

=
∑

s∈SP O

bt(s)pN
t (s′|s) as

∑
s∈SP O

bt(s) = 1

We need to normalize b̃t+1(s′|Y, o) and b̃t+1(s′|N) be-
cause belief states are only defined over s ∈ SP O, hence:

bt+1(s|Y, o) = bY
bt,o(s) =

b̃Y
bt,o(s)∑

s′∈SP O

b̃Y
bt,o(s′)

bt+1(s|N) = bN
bt

(s) =
b̃N

bt
(s)∑

s′∈SP O

b̃N
bt

(s′)

The sequence of events of our model are summa-
rized in Figure 3.

Let V ∗
t (πt) represent the expected QALYs the in-

dividual can attain when the current belief vector is
πt. Because there is no action to be taken for s ∈
S \ SP O and no transitions exist from completely ob-
servable states to partially observable ones in our set-
ting, we can write the value functions of the completely
observable states as follows:

V ∗
t (s) = rt(s) + γ

∑
s′∈S\SP O

pt(s′|s)V ∗
t+1(s′)
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Decision epoch t Decision epoch t + 1

bt

bt+1 = bN
bt

MCI

Death

DPAD

Death

bt+1 = bY
bt,−

MCI

Death

Sc
ree

n,
a t

=
Y

Do not screen, a
t =

N

Positiv
e, ot

= +

Negative, ot = −

at+1 = Y

at+1 = N

at+1 = Y

at+1 = N

Fig. 3: Sequence of Events

For a given vector πt we have:

V ∗
t (πt) =



max{V ∗
t (bt, N), V ∗

t (bt, Y )}, for bt ̸= [0, 0]
V ∗

t (2), for Πt = [0, 0, 1, 0, 0, 0]
V ∗

t (3), for Πt = [0, 0, 0, 1, 0, 0]
V ∗

t (4), for Πt = [0, 0, 0, 0, 1, 0]
0, for Πt = [0, 0, 0, 0, 0, 1]

where

V ∗
t (bt, N) =

∑
s∈SP O

bt(s)
(

rN
t (s)

+γ
( ∑

s′∈SP O

pN
t (s′|s)V ∗

t+1(bN
bt

)

+
∑

s′∈S\SP O

pN
t (s′|s)V ∗

t+1(s′)
))

V ∗
t (bt, Y ) =

∑
s∈SP O

bt(s)
(

qt(−|s)
(

r
(Y,−)
t (s)

+γ
( ∑

s′∈SP O

p
(Y,−)
t (s′|s)V ∗

t+1(bY
bt,−)

+
∑

s′∈S\SP O

p
(Y,−)
t (s′|s)V ∗

t+1(s′)
)))

+
∑

s∈SP O

bt(s)
(

qt(+|s)
(

r
(Y,+)
t (s)

+γ
( ∑

s′∈SP O

p
(Y,+)
t (s′|s)V ∗

t+1(bY
bt,+)

+
∑

s′∈S\SP O

p
(Y,+)
t (s′|s)V ∗

t+1(s′)
)))

Since we assume that a person who is screened and has a
positive test result makes a transition to the completely
observable DPAD state (2), p

(Y,+)
t (s′|s) = 0, ∀s′ ∈ SP O.
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Then, V ∗
t (bt, Y ) becomes:

V ∗
t (bt, Y ) =

∑
s∈SP O

bt(s)
(

qt(−|s)
(

r
(Y,−)
t (s)

+γ
( ∑

s′∈SP O

p
(Y,−)
t (s′|s)V ∗

t+1(bY
bt,−)

+
∑

s′∈S\SP O

p
(Y,−)
t (s′|s)V ∗

t+1(s′)
)))

+
∑

s∈SP O

bt(s)
(

qt(+|s)
(

r
(Y,+)
t (s)

+γ
( ∑

s′∈S\SP O

p
(Y,+)
t (s′|s)V ∗

t+1(s′)
)))

Theoretically, these value functions can be computed
using dynamic programming techniques like backward
induction of value iteration. However, the number of
action-observation histories grows exponentially which
makes this problem difficult to solve. This phenomenon
is known as “the curse of history” [31]. Smallwood and
Sondik showed that the optimal value function is piece-
wise linear and convex for all t ≤ T and the value func-
tion V ∗

t (bt) can be represented using a finite set of vec-
tors called alpha vectors in a finite horizon model [26].
The result below states that this is valid for our model
as well.

Theorem 1 The optimal value function V ∗
t (bt) is piece-

wise linear and convex for all t ≤ T , and hence can be
expressed as the maximum of a finite number of linear
functions. That is, V ∗

t (bt) = max
0≤i≤|αt|

∑
s∈SP O

bt(s)αi
t(s)

for some αt = {α0
t , α1

t , ...} where αi
t = [αi

t(s)]s∈SP O are
called the α-vectors.

The proof of this theorem can be found in Appendix
A. Based on this result, then, finitely many α-vectors
help define the value function. Indeed, generating all α-
vectors and finding the one(s) that maximizes the value
function will be sufficient to solve the system of equa-
tions and find the optimal policy. The drawback of this
approach is the exponential growth in the number of
α-vectors as the problem size grows, leading to com-
putational intractability. In such cases, heuristic ap-
proaches may be necessary. In our case, our model is
small and simple enough to be solved optimally with
this approach with reasonable effort when reinforced
with a reduction technique developed by Eagle [32] and
as stated in Appendix D.

2.2 Building a Model Instance

In this section we describe how we build an instance to
implement our model. We choose our time horizon to

be 50 years, so T = 49, and discount factor is γ = 0.98.
When t = 0, the starting age of an individual is 50 years
as in the work of Jack et al. [33].

2.2.1 Transition probability matrices

There are different versions of transition probability
matrices based on the screening decision and resulting
observation. The general structure of the matrices is as
follows:

P .,.
t =

. . . . 0 .

0 . . . 0 .

0 0 . . . .

0 0 0 . . .

0 0 0 0 . .

0 0 0 0 0 1




The square on the lower right represents the transi-
tions among completely observable states, including the
death state. The double-lined rectangle in the upper
right represents transitions from partially observable
states to death. These transition probabilities do not
depend on actions and observations and they are taken
from the literature. The dashed lined rectangles repre-
sent the transitions from and to the DPAD state. This
state is also observable. We assume that some lifestyle
or therapeutic intervention takes place at this state.
However, there are no established interventions or asso-
ciated transition probabilities that we can borrow from
the literature. Therefore these probabilities will be pa-
rameterized to reflect varying effectiveness levels of pos-
sible interventions.

Transition probabilities from partially observable states
to state 4 are equal to 0. This means individuals may
not proceed from a CU state directly to clinical AD
within one year. Our data set supports this assump-
tion. The transition probability matrices have 0 values
on their lower triangles since AD is a disease that has
always a forward progression.

The rectangles with thick borders represent the tran-
sitions involving the core states. The transition prob-
abilities between the two core states and from these
states to the MCI state are estimated by applying a
multi-state Markov (MSM) model on a data set that
comes from the Adult Children Study of the Knight
Alzheimer’s Disease Research Center of the Washing-
ton University School of Medicine in St. Louis. 1 We

1 In the Adult Children Study, the Knight Alzheimer’s Dis-
ease Research Center of the Washington University School of
Medicine in St. Louis aimed to gather a cohort of cognitively
normal middle age individuals to observe the progression of
biomarkers before symptoms of AD appear. The project is
still recruiting volunteers to become a complete longitudinal
database for future promising research. The participants are
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denote the estimated matrix as MSMt. MSM models
are widely used in modeling disease progression [36–40].
An MSM model requires observing the state of indi-
viduals at particular points on a continuous time basis
from which a maximum likelihood transition intensity
matrix is estimated. MSM models may include covari-
ates. The intensity rates can then be translated into
transition probabilities. More detailed information on
MSM methodology can be found in [37]. Our data set
contains 169 participants, (112 women, 57 men) aged
between 43 and 82 years at their baseline. All baseline
CDR assessments of these participants are 0. For each
participant, there are up to 4 CSF test results with a
total of 412 observed Aβ1−42 values. Lumbar puncture
dates are usually 3 or 4 years apart for the same par-
ticipant. The MMSE score of participants is between
24 and 30 while the CDR is either 0 or 0.5 with 0.5
occurring 4 times. The most recent CSF record belongs
to 2013 while the first records are from 2003. We use
R’s MSM package [41] to estimate the transition inten-
sities. Each participant’s characteristics (APOE geno-
type, date of birth, gender) are recorded along with
Aβ1−42, t − τ and p − τ results. These were introduced
as potential covariates in the MSM model and only age
turned out to be significant. To simplify, we pool the
age in three ranges: the first range covering ages 50 to
64, the second range covering ages 65 to 79 and the
third range covering ages 80 to 99 by using the esti-
mates that correspond to the beginning of each range.
Table 1 summarizes the key parameters and their sources
that lead to the estimation of the transition probability
matrices.

Among the three transition probability matrices P N
t ,

P Y,+
t , P Y,−

t , we start by describing the non-zero entries

cognitively normal, community-dwelling research volunteers.
The inclusion criteria for the study are listed as positive or
negative family history of AD, normal cognition at study entry
(CDR=0), absence of a neurological, psychiatric, or systemic
illness that might affect cognition or interfere with longitudinal
follow-up among other criteria. Participants are asked to un-
dergo a personal interview, blood draw, brain scan, PET scan
and spinal fluid collection. A compensation of up to $425 for
time and effort is announced [34]. Details about recruitment
and assessment methods of CSF and imaging tests for the par-
ticipants have been published [35] and can be found in KADRC
website.

of P N
t . These are:

pN
t (0|0) = MSMt(0|0)(1 − dt)

pN
t (1|0) = MSMt(1|0)(1 − dt)

pN
t (3|0) = MSMt(3|0)(1 − dt)

pN
t (5|0) = pN

t (5|1) = pN
t (5|2) = dt

pN
t (1|1) = MSMt(1|1)(1 − dt)

pN
t (3|1) = MSMt(3|1)(1 − dt)

pN
t (2|2) = (1 − gt)(1 − dt)

pN
t (3|2) = gt(1 − dt)

pN
t (3|3) = (1 − yt)(1 − (dt + (1 − dt)wt))

pN
t (4|3) = yt(1 − (dt + (1 − dt)wt))

pN
t (5|3) = pN

t (5|4) = dt + (1 − dt)wt

pN
t (4|4) = 1 − (dt + (1 − dt)wt)

pN
t (5|5) = 1

When action is to screen and the observation is neg-
ative, the transition probability matrix is the same as
the one described for the no screening action. In other
words, p

(Y,−)
t (s′|s) = pN

t (s′|s) for all (s, s′) ∈ S × S.
When action is to screen and the observation is posi-
tive, individuals immediately move to the DPAD state.
Thus the transition probabilities associated with core
states are zero. The non-zero elements of the probabil-
ity transition matrix p

(Y,+)
t (s′|s) that are different than

p
(Y,−)
t (s′|s) are:

p
(Y,+)
t (2|0) = (1 − gt)(1 − dt)

p
(Y,+)
t (3|0) = gt(1 − dt)

p
(Y,+)
t (2|1) = (1 − gt)(1 − dt)

p
(Y,+)
t (3|1) = gt(1 − dt)

The numerical values of the parameters are as follows.

MSMt =

0.9932 0.0067 0.0001
0.000 0.9568 0.0432
0.000 0.000 1.000

 , ∀t ∈ [0, 14]

MSMt =

0.9699 0.0290 0.0011
0.000 0.93 0.07
0.000 0.000 1.000

 , ∀t ∈ [15, 29]

MSMt =

0.8728 0.1197 0.0075
0.000 0.8878 0.1122
0.000 0.000 1.000

 , ∀t ∈ [30, 49]

dt = 0.0041, ∀t ∈ [0, 4]
dt = 0.0086, ∀t ∈ [5, 14]
dt = 0.0180, ∀t ∈ [15, 24]
dt = 0.0448, ∀t ∈ [25, 34]
dt = 0.1273, ∀t ∈ [35, 49]
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Table 1: Description of parameters

dt Age dependent annual death rate from all causes except AD National Vital Statistics 2016 report [42]
wt Age dependent annual death rate from AD National Vital Statistics 2016 report [42]
yt Annual transition rate from MCI to AD Neumann et al. [43]
gt Annual transition rate from DPAD to MCI Assumed and parameterized

MSMt Age dependent transition probability matrix between states 0, 1 and 3 Estimated from Knight ADRC data using multistate model

wt = 0, ∀t ∈ [0, 24]
wt = 0.0172, ∀t ∈ [25, 34]
wt = 0.0930, ∀t ∈ [35, 49]
yt = 0.15, ∀t ∈ [0, 49]
gt ∈ [0, 0.10], ∀t ∈ [0, 49]

For MSMt matrices, the states represented in the rows
and columns are 0, 1 and 3. The corresponding transi-
tion probability matrices are given in Appendix B. A
matrix with a specific subscript remains the same un-
til the subscript value changes. For example, all pN

t (.|.)
matrices for t between 0-4 are equal to pN

0 (.|.).

2.2.2 Information matrix

The information matrix is estimated from Knight ADRC
data once the instances are classified as positive or neg-
ative based on their Aβ1−42 levels. The elements qt(−|0)
and qt(+|1) of the information matrix represent the
specificity and the sensitivity of the test respectively.
This results in the information matrix given below.

Qt =
(

qt(−|0) qt(+|0)
qt(−|1) qt(+|1)

)
=

(
0.75 0.25
0.133 0.867

)
Because there is no observation when action is not to
screen, there is no information matrix associated with
this action. If some sort of self detection becomes possi-
ble, the sensitivity and the specificity of that particular
mechanism can be used to build the associated infor-
mation matrix.

2.2.3 Initial belief

In POMDP-based screening models, the initial belief
vector is usually built via risk estimating models. Dif-
ferent demographic and genetic factors are known to
have an impact on the probability that an individual
may become an AD patient. Although there are studies
that estimate the risk of developing dementia based on
individual characteristics such as age, gender, level of
education or existence of APOE4 gene [44–46], estimat-
ing an individual’s risk of developing AD is not within
the scope of this research. Instead, we use three differ-
ent b0(1) values to reflect three different risk profiles.
The higher the value of b0(1), the higher the belief of

the decision maker about an individual to be in the pre-
clinical state of the disease. The baseline value for b0(1)
value is anchored at the prevalence of AD in a popula-
tion. In [47], the prevalence of the disease is estimated
at 11 %. We use b0(1) = 0.11 as the baseline value and
refer to this case as the low risk profile. We analyze two
other profiles for the initial belief vector that we refer
to as medium and high risk profiles. We associate the
values b0(1) = 0.4 and b0(1) = 0.7 with these profiles so
as to sample the interval at almost equal increments.

2.2.4 Rewards-QALYs

Our rewards consist of QALYs associated with being in
a particular state and if applicable, the disutility asso-
ciated with screening or a possible intervention. QALY
values for the clinical states of the disease come mainly
from Neumann et al. [48], where QALY values associ-
ated with CU, mild AD, moderate AD, severe AD are
given as 0.88, 0.68, 0.54 and 0.37 respectively. For MCI,
Neumann et al. report a QALY value of 0.73 [43]. An-
other reference for the QALY of MCI is the study of
Ready et al., where a Quality of Life rating of 3.6/5
can be translated to 0.72 QALYs [49]. The disutility of
the screening test is taken from Ward et al. [50]. The
disutility of the possible intervention plan (e.g. side ef-
fects of therapeutic intervention) is taken into account
as a parameter that decreases the QALY of the asso-
ciated state. All QALY values used in this paper are
summarized in Table 2.

2.3 Costs

When evaluating a screening policy, it is important
to establish the expected total cost associated with it
along with the expected total benefits. Our objective

Table 2: QALY values and their sources

Partially observable states, i.e. s ∈ SP O 0.88 Neumann et al. [43]
MCI 0.73 Neumann et al. [43]

Ready et al. [49]
AD 0.4 Robust estimation

from Neumann et al. [48]
Death 0 Convention

Intervention disutility, l [0, 0.15] Assumed
CSF test disutility, h 0.01 Ward et al. [50]
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Table 3: Costs in 2018 US dollars and their sources

Partially observable states, i.e. s ∈ SP O 14,999 Alemayehu and Warner [51]
DPAD 17,143 Arbitrarily chosen
MCI 23,143 Leon and Neumann [52]
AD 40,156 Leon and Neumann [52]

Death 0 Convention
Screening test 2,269 Wimo et al. [53]

function is QALY-based and does not include mone-
tary costs. We will now describe how we compute the
costs associated with a screening policy, starting with
a description of parameters.

The cost of being in a partially observable state is
taken from the work of Alemayehu and Warner [51].
They estimated health care costs for an elderly at age
65, which we took as the baseline average, to be $10,245
in year 2000 dollars. We use Leon and Neumann’s cost
estimates for MCI and AD states where total cost of
MCI, moderate and severe AD stages are $18,507, $23,931
and $32,112 respectively, in year 2006 dollars [52]. These
figures include treatment costs. Since we have a single
state that combines moderate and severe AD stages, we
associate a cost of $32,112 with our state in order not
to be underestimating total costs. The screening test
cost is taken from the work of Wimo et al. [53]. For
our model framework, the cost of screening is taken as
the cost of the combination of primary care (including
clinical examination, laboratory tests, computerized to-
mography scan and the MMSE), specialist clinical ex-
amination and CSF test. The amount is determined to
be 2, 130 in 2014 US dollars [53]. As a baseline value, we
assume the cost of intervention to be the same as that
of treatment for mild AD (5 dollars/day in 2009) [52].
Table 3 summarizes the cost values in 2018 US dollars
and their sources. To compute the expected cost of a
never screening policy, we first compute the expected
cost of an individual starting at state i ∈ SP O. The
expected total cost of an individual in state i at time
t = 0 is computed via:

TotalCost(i) = cost(i, N) +
T∑

t=1
γt

( ∑
j∈S

(pN
t−1(j|i))t

∗cost(j, N)
)

where cost(i, N) represents the cost of being at state i

and no screening action is chosen. As b0(s) ̸= [0, 0], we
have

E[TotalCost] = b0(0)TotalCost(0)+b0(1)TotalCost(1)

To compute the expected cost of implementing a
given (optimal) screening policy, we need to record the
number of screening occurances until time t. Let M ̸= 0
be the total number of screening periods provided by

a policy up to time t. Remember that an individual
with a positive test result will not be tested again be-
cause he/she will enter one of the completely observable
states. For an individual who is in either of the partially
observable states, there are M + 1 possible cases that
might be realized up to time t. These cases are as fol-
lows: the first test result is positive, the first test result
is negative and the second test result is positive, ...,
first M − 1 test results are negative and the M th test
result positive, all M test results are negative. Details
of the computations associated with the probabilities
of these cases can be found in Appendix C. Once the
probabilities for the possible cases are computed, these
are incorporated into the expected total cost computa-
tion of the screening policy similar to computation of
the expected total cost of a never screening policy.

3 Results

We solve our POMDP model using Monahan’s algo-
rithm with Eagle’s reduction based on eliminating strictly
dominated α-vectors [32]. The pseudo-code of the algo-
rithm is given in Appendix D. The expected costs as-
sociated with resulting optimal policies are computed
as described in the previous section. All computations
were done using MATLAB software [54] on a 2.6 GHz
8GB computer.

3.1 Model Results

The three factors that are analyzed in the computa-
tional study are as follows.

– The initial belief of being in state 1 is provided as
an input to the model. We experiment with three
distinct values of b0(1): 0.11, 0.4, 0.7 corresponding
to low, medium and high risk profiles respectively.

– A possible intervention may stop disease progres-
sion (gt = 0) or it may only slow it down (gt > 0).
We experiment with gt values between 0 and 0.05
at 0.01 increments. As discussed below, our find-
ings indicate that when gt = 0.05, never screening
becomes the optimal policy.

– The reward for the DPAD state may diminish due to
the disutility associated with the intervention. We
experiment with l ∈ [0, 0.15] and rt(2) ∈ [0.73, 0.88]
at 0.03 increments.

We compute the optimal policy for each combina-
tion of the levels, leading to 3 × 6 × 6 instances. The
resulting optimal policies and related outcomes can be
found in Tables 4-6. All tables have nine columns: ID
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of the instance, reward of DPAD state (rt(2)), inter-
vention effectiveness (gt), optimal screening policy, ex-
pected total discounted QALY (E[TQALY ]), difference
in terms of reward between the optimal policy and the
never screening policy (∆QALY ), difference in terms of
cost between the optimal policy and the never screening
policy (∆Cost). We also compute the cost per QALY
value of the optimal screening policy by dividing ∆Cost

by ∆QALY . Finally, we report the expected total cost
(E[TotalCost]) of the optimal outcome.

When we study the results associated with the low
risk profile given in Table 4, we observe several in-
stances where never screening is the optimal policy.
Instance 1, which is the most optimistic setting with
highest reward for the DPAD state and highest inter-
vention effectiveness suggests that the optimal policy is
to screen every year between ages 50 and 95, i.e. a total
of 46 times, leading to a QALY gain of 0.94. Keeping the
intervention effectiveness at its best, the occurrences of
screening tests diminish quickly as the the reward for
the DPAD state decreases. When rt(2) = 0.82, the op-
timal policy is to screen 8 times, most of them after age
80, leading to an expected QALY gain of 0.12. The op-
timal screening policy switches to never screening when
the reward of the DPAD state is 0.79.

Similarly, as the reward of the DPAD state remains
at its best but the effectiveness of the intervention de-
creases, the optimal policy contains less screening oc-
currences. For gt = 0.01, the optimal screening policy
is to screen 21 times, all taking place after the age of
60, leading to a 0.29 QALY gain. When gt = 0.04, the
optimal screening policy is never to screen.

Figures 4 (a), (b) and (c) depict most of the data
presented in Tables 4-6. The horizontal axis represents
the effectiveness of the intervention and the vertical
axis represents the reward associated with the DPAD
state. The legend is given in Figure 4 (d). The pat-
tern scale highlights QALY gains and geometric shapes
correspond to different levels of cost per QALY values.
When Figure 4 is studied at a high level, one observes
that optimality of a never screening policy is most com-
mon in Figure 4 (a). In addition, QALY gains beyond
1 are not present in this figure, whereas Figure 4 (c)
has the most combinations that lead to QALY gains of
1 or more. For instance 1 in Table 6 that corresponds
to the most optimistic setting of intervention effective-
ness and DPAD state reward for the high risk profile,
a QALY gain of 2.9 is possible by screening every year
until the age of 95. As intervention effectiveness or the
DPAD state reward declines, there are less screening oc-
currences in optimal policies and QALY gains decline.
Likewise, as the reward of the DPAD state decreases,
the optimal policy contains less screening occurrences

and QALY gains decline. It is possible to observe that
the medium risk profile is in between the two cases.
For example, when gt = 0 and rt(2) = 0.85, the op-
timal policy includes 19 screening occurrences for the
low risk profile and 20 for the medium and high risk
profiles, leading to 0.4, 1.3 and 2.3 QALY gains respec-
tively. When gt = 0.01 and rt(2) = 0.88, the optimal
screening policy is to screen 21, 22 and 22 times with
QALY gains of 0.3, 0.9 and 1.8 for the three profiles
respectively.

3.2 Cost Implications of Screening Policies

In Tables 4-6, we report cost figures associated with
the computed optimal policies. Specifically, we report
the expected total cost of the policy, a comparison with
a no screening policy and a change in costs to change
in QALYs ratio. We call a policy cost-saving if its ex-
pected total cost is less than that of a no screening pol-
icy. We call a policy cost effective if the change in costs
to change in QALYs ratio is positive, indicating a cost
increase, but the ratio is less than or equal to 50, 000.
For the low risk profile, when gt and rt(2) are at their
best, applying the optimal screening policy is costly but
highly cost effective since the spendings per QALY is
estimated to be $729 in Table 4. It is also important to
note that all optimal policies that are computed are ei-
ther cost-saving or cost-effective. While cost savings are
modest for the low risk profile, savings up to $52, 292
and $103, 126 may be possible for medium and high
risk profiles. An interesting observation is that when
the intervention effectiveness is at its best, implement-
ing the optimal screening policy results in a decrease of
expected total costs for all profiles.

All of these observations confirm the importance of
the factors that are subject to experimentation in this
Section. It is not only the optimal policy that depends
on the effectiveness and potential disutility of a possible
intervention that takes place in the DPAD state, but it
is also QALY gains and costs associated with it. This
effect becomes more significant as the initial belief of
an individual being in the preclinical AD state becomes
stronger.

4 Discussion

In this paper, we introduced a model to find optimal
screening policies for AD. Our model uses a POMDP
framework that includes the preclinical stage of the dis-
ease and is inline with the 2011 NIA-AA criteria. The
partially observable disease free and preclinical states
we introduce into our model help us capture the essence
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Table 4: Optimal policy and associated cost results for a low risk individual with b0(1) = 0.11, γ = 0.98, h = 0.01

ID rt(2) gt Optimal Policy E[TQALY] ∆ QALY ∆ Cost ∆Cost
∆QALY

E[TotalCost]
in U.S. $

1 0.88 0 Every year until 95 (included) 20.2 0.94 685 729 396,922
2 0.88 0.01 [60 67 70 73 76 78 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94] 19.6 0.29 6,514 22,462 402,751
3 0.88 0.02 [68 75 80 81 82 83 84 85 86 87 88 89 90 91 92 93 95] 19.4 0.13 4,806 36,969 401,043
4 0.88 0.03 [77 81 82 83 85 86 88 89 91 93 95] 19.3 0.05 2,176 43,520 398,413
5 0.88 0.04 Never Screen 19.3 0 0 – 396,237
6 0.85 0 [50 55 65 68 70 73 76 78 80 81 82 83 84 85 86 87 88 90 92] 19.7 0.39 -5,122 -13,133 391,115
7 0.85 0.01 [68 75 80 81 82 83 85 87 89 91] 19.4 0.11 902 8,200 397,139
8 0.85 0.02 Never Screen 19.3 0 0 – 396,237
9 0.82 0 [52 67 75 80 82 84 86 89] 19.4 0.12 -9,287 -77,392 386,950
10 0.82 0.01 Never Screen 19.3 0 0 – 396,237
11 0.79 0 Never Screen 19.3 0 0 – 396,237
12 0.76 0 Never Screen 19.3 0 0 – 396,237
13 0.73 0 Never Screen 19.3 0 0 – 396,237

Table 5: Optimal policy and associated cost results for a medium risk individual with b0(1) = 0.4, γ = 0.98,
h = 0.01

ID rt(2) gt Optimal Policy E[TQALY] ∆ QALY ∆ Cost ∆Cost
∆QALY

E[TotalCost]
in U.S. $

1 0.88 0 Every year until 95 (included) 20.2 1.9 -50,667 -26,667 397,388
2 0.88 0.01 [50 60 67 70 73 76 78 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94] 19.2 0.9 -6,781 -7,534 441,274
3 0.88 0.02 [50 68 75 80 81 82 83 84 85 86 87 88 89 90 91 92 93 95] 18.6 0.3 1,493 4,977 449,548
4 0.88 0.03 [65 75 81 82 83 85 86 88 89 91 93 95] 18.4 0.1 3,339 33,390 451,394
5 0.88 0.04 Never Screen 18.3 0 0 – 448,055
6 0.85 0 [50 51 60 66 68 70 73 76 78 80 81 82 83 84 85 86 87 88 90 92] 19.6 1.3 -52,292 -40,225 395,763
7 0.85 0.01 [50 68 75 80 81 82 83 85 87 89 91] 18.8 0.5 -2,528 -5,056 445,527
8 0.85 0.02 [50 75 81 83 85 87 90] 18.4 0.1 2,072 20,720 450,127
9 0.85 0.03 Never Screen 18.3 0 0 – 448,055
10 0.82 0 [50 55 73 80 82 84 86 89] 19.1 0.8 -32,779 -40,974 415,276
11 0.82 0.01 [50 74 81 84 87] 18.4 0.1 -22,313 -223,130 425,742
12 0.82 0.02 Never Screen 18.3 0 0 – 448,055
13 0.79 0 [50 71 84] 18.5 0.2 -2,863 -14,315 445,192
14 0.79 0.01 Never Screen 18.3 0 0 – 448,055
15 0.76 0 Never Screen 18.3 0 0 – 448,055
16 0.73 0 Never Screen 18.3 0 0 – 448,055

Table 6: Optimal policy and associated cost results for a high risk individual with b0(1) = 0.7, γ = 0.98, h = 0.01

ID rt(2) gt Optimal Policy E[TQALY] ∆QALY ∆Cost ∆Cost
∆QALY

E[TotalCost]
in U.S. $

1 0.88 0 Every year until 95 (included) 20.2 2.9 -102,021 -35,180 397,852
2 0.88 0.01 [50 51 65 69 72 75 78 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94] 19.1 1.8 -56,760 -31,533 443,113
3 0.88 0.02 [50 51 71 78 80 81 82 83 84 85 86 87 88 89 90 91 92 93 95] 18.3 1 -25,819 -25,819 474,054
4 0.88 0.03 [50 69 79 81 82 84 85 87 88 90 92 94] 17.6 0.3 -140 -467 499,733
5 0.88 0.04 [65 80 82 84 86 88 90 92 94] 17.4 0.1 156 1,560 500,029
6 0.88 0.05 Never Screen 17.3 0 0 – 499,873
7 0.85 0 [50 51 52 61 66 69 72 75 78 80 81 82 83 84 85 86 87 88 90 92] 19.6 2.3 -103,126 -44,837 396,747
8 0.85 0.01 [50 51 67 73 79 81 82 83 85 87 89 91] 18.6 1.3 -56,850 -43,731 443,023
9 0.85 0.02 [50 65 76 81 83 85 87 90] 17.8 0.5 -7,342 -14,684 492,531
10 0.85 0.03 [50 80 82 85 88] 17.4 0.1 1,798 17,980 501,671
11 0.85 0.04 Never Screen 17.3 0 0 – 499,873
12 0.82 0 [50 51 67 73 80 82 84 86 89] 19 1.7 -94,682 -55,695 405,191
13 0.82 0.01 [50 52 80 82 85] 18.1 0.8 -50,499 -63,124 449,374
14 0.82 0.02 [50 80 83 87] 17.4 0.1 1,370 13,700 501,243
15 0.82 0.03 Never Screen 17.3 0 0 – 499,873
16 0.79 0 [50 51 80 83] 18.4 1.1 -92,414 -84,013 407,459
17 0.79 0.01 [50 82] 17.6 0.3 1,467 4,890 501,340
18 0.79 0.02 Never Screen 17.3 0 0 – 499,873
19 0.76 0 50 17.8 0.5 2,268 4,536 502,141
20 0.76 0.01 Never Screen 17.3 0 0 – 499,873
21 0.73 0 Never Screen 17.3 0 0 – 499,873

of the Alzheimer’s disease continuum. To our knowl-
edge, this is the first study that seeks optimal screen-
ing policies at the preclinical stage. We used data from
Knight ADRC and estimated the transition probabili-
ties between partially observable states and from these
to MCI using hidden Markov models with a misclassi-
fication error matrix estimated as the sensitivity and
specificity values of the CSF test. Other parameter val-
ues were taken from different relevant sources in the
literature. Our model is designed to maximize the ex-

pected total QALYs for an individual. In addition, we
computed the costs associated with the optimal screen-
ing policies for generated optimal policies. We solved
different instances of this model depending on the risk
profiles of individuals and values of two different param-
eters: the effectiveness and the disutility of a potential
intervention that may take place in the DPAD state.
We find that developing screening policies may be ben-
eficial for individuals with different risk profiles depend-
ing on the characteristics of the planned intervention. A
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(b)

rt(2)

gt0 0.01 0.02 0.03 0.04 0.05

0.73

0.76

0.79

0.82

0.85

0.88

(c)

full ∆QALY ≥ 1
plus 0.5 ≤ ∆QALY < 1
empty 0 < ∆QALY < 0.5
cross Never screen
diamond ∆Cost

∆QALY < 0
square 0 < ∆Cost

∆QALY ≤ 50, 000

(d) Legend

Fig. 4: QALY gains and cost-effectiveness with respect to rt(2) and gt for a) a low risk individual, b) a medium
risk individual and c) a high risk individual

high quality potential intervention motivates screening
for all risk profiles. As the quality of the intervention
deteriorates, the screening occurrences in the optimal
policy decrease. Whenever screening is optimal, poli-
cies are either cost-effective or cost-saving, with more
significant gains in QALYs and costs for the high risk
profile.

Our model has limitations. The data used for es-
timation of transition probabilities is not very large
and censored. Costs and QALY values are mostly taken
from U.S. based studies. We did not consider a second
test (like biopsy for cancer) to make sure that there are
no false positive individuals who will transition into the
DPAD state and may possibly be placed under an in-
tervention. These limitations can be overcome with fur-
ther research. As more data accumulates from different
countries, the issues concerning censoring and valida-
tion can be addressed better. An extensive longitudi-
nal database would eliminate the necessity to use data
from different sources, which would improve the overall
consistency of the study. As more research is reported
on the onset and progression of AD and the related
biomarkers, our model can be modified accordingly and
can be tuned to the findings. An immediate modeling
extension would be to incorporate a secondary test with
the goal of decreasing the risk of “over treatment” if
and when a more reliable test that distinguishes false

positives from true positives at the preclinical stage be-
comes available.

A variation of this study could analyze the results
of the POMDP model by using a different test, for in-
stance a test that is based on imaging rather than CSF
inspection. Such a test may have different accuracy lev-
els and cost implications. Our model could help com-
pare different test alternatives from a screening policy
perspective. Another direction for future research is to
focus on building the initial belief required as input for
the POMDP model based on an individual’s charac-
teristics. Existing risk scoring studies may constitute
a starting point and a mechanism that converts risk
scores to beliefs can be built. Finally, it is possible to
envision our model as a means of assessing different
possible intervention plans. Policy makers may perform
a risk stratification of their population and estimate
the costs and benefits associated with implementing a
particular intervention plan. Since developing an inter-
vention plan has its own costs, our model may help
establish the value of an intervention by depicting its
benefits.
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A Proof of Theorem 1

Proof. (By induction) Step T: By definition, at t = T we have V ∗
T (bT ) =

∑
s∈SP O bT (s)rT (s). Since rT (s) is constant for all

s ∈ S, V ∗
T (bT ) can be expressed as one linear function of bT . Step t: Assume that V ∗

t+1(bt+1) is piecewise linear and convex ∀bt+1.
Then there exists a set of vectors αt+1 = {α0

t+1, α1
t+1, ...} where V ∗

t+1(bt) = max
0≤i≤|αt+1|

∑
s∈SP O

bt+1(s)αi
t+1(s). We define αa,o

bt,t+1 for

a = Y and αa
bt,t+1 for a = N as follows:

αY,o
bt,t+1(s) = α

ι(Y,o,bt)
t+1 (s) for s ∈ SP O and o ∈ OY

αN
bt,t+1(s) = α

ι(N,bt)
t+1 (s) for s ∈ SP O

where

ι(Y, o, bt) = arg max
i

∑
s∈SP O

bY
bt,o(s)αi

t+1(s), ι(N, bt) = arg max
i

∑
s∈SP O

bN
bt

(s)αi
t+1(s)

For a = Y , we replace V ∗
t+1(bY

bt,o(s)) with
∑

s∈SP O

(bY
bt,o(s))αY,o

bt,t+1(s) and bY
bt,o with the normalized Bayesian update formula:

Vt(bt, Y ) =
∑

s∈SP O

bt(s)rY
t (s) + γ

∑
o∈O

∑
s∈SP O

bt(s)qY
t (o|s)

( ∑
s′∈SP O

p
(Y,o)
t (s′|s)V ∗(bY

bt,o) +
∑

s′∈S\SP O

p
(Y,o)
t (s′|s)V ∗

t+1(s′)
)

=
∑

s∈SP O

bt(s)rY
t (s) + γ

∑
o∈O

∑
s∈SP O

bt(s)qY
t (o|s)

( ∑
s′∈SP O

p
(Y,o)
t (s′|s)

∑
s∈SP O

bY
bt,oαY,o

bt,t+1 +
∑

s′∈S\SP O

p
(Y,o)
t (s′|s)V ∗

t+1(s′)
)

=
∑

s∈SP O

bt(s)rY
t (s) + γ

∑
o∈O

∑
s∈SP O

bt(s)qY
t (o|s)

( ∑
s′∈SP O

p
(Y,o)
t (s′|s)

( ∑
s∈SP O

b̃Y
bt,o(s)∑

s′∈SP O

b̃Y
bt,o(s′)

)
αY,o

bt,t+1

+
∑

s′∈S\SP O

p
(Y,o)
t (s′|s)V ∗

t+1(s′)
)

Since
∑

s∈SP O

bt(s) = 1 we get:

Vt(bt, Y ) =
∑

s∈SP O

bt(s)rY
t (s) + γ

∑
o∈O
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s∈SP O

bt(s)qY
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Similarly, for a = N we have:
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Hence we can write the optimal value function as follows:

V ∗
t (bt) = max

a∈A
{Vt(bt, a)} = max

a∈A

∑
s∈SP O

bt(s)αa
bt,t(s)

where

αa
bt,t(s) =



ra
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, for a = N

⊓⊔
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B Transition probability matrices

pN
0 (.|.) =


0.9892 0.0067 0 0.0001 0 0.0041

0 0.9529 0 0.0430 0 0.0041
0 0 0.9959(1 − gt) 0.9959gt 0 0.0041
0 0 0 0.8465 0.1494 0.0041
0 0 0 0 0.9959 0.0041
0 0 0 0 0 1.0000



pN
5 (.|.) =


0.9847 0.0067 0 0.0001 0 0.0086

0 0.9486 0 0.0428 0 0.0086
0 0 0.9914(1 − gt) 0.9914gt 0 0.0086
0 0 0 0.8427 0.1487 0.0086
0 0 0 0 0.9914 0.0086
0 0 0 0 0 1.0000



pN
15(.|.) =


0.9753 0.0066 0 0.0001 0 0.0180

0 0.9396 0 0.0424 0 0.0180
0 0 0.9820(1 − gt) 0.9820gt 0 0.0180
0 0 0 0.8347 0.1473 0.0180
0 0 0 0 0.9820 0.0180
0 0 0 0 0 1.0000



pN
25(.|.) =


0.9265 0.0277 0 0.0011 0 0.0448

0 0.8884 0 0.0669 0 0.0448
0 0 0.9552(1 − gt) 0.9552gt 0 0.0448
0 0 0 0.8106 0.143 0.0464
0 0 0 0 0.9536 0.0464
0 0 0 0 0 1.0000



pN
30(.|.) =


0.8337 0.1143 0 0.0072 0 0.0448

0 0.8481 0 0.1072 0 0.0448
0 0 0.9552(1 − gt) 0.9552gt 0 0.0448
0 0 0 0.8106 0.1430 0.0464
0 0 0 0 0.9536 0.0464
0 0 0 0 0 1.0000



pN
35(.|.) =


0.7617 0.1045 0 0.0065 0 0.1273

0 0.7748 0 0.0979 0 0.1273
0 0 0.8727(1 − gt) 0.8727gt 0 0.1273
0 0 0 0.7349 0.1297 0.1354
0 0 0 0 0.8646 0.1354
0 0 0 0 0 1.0000



p
(Y,+)
0 (.|.) =


0 0 0.9959(1 − gt) 0.9959gt 0 0.0041
0 0 0.9959(1 − gt) 0.9959gt 0 0.0041
0 0 0.9959(1 − gt) 0.9959gt 0 0.0041
0 0 0 0.8465 0.1494 0.0041
0 0 0 0 0.9959 0.0041
0 0 0 0 0 1.0000



p
(Y,+)
5 (.|.) =


0 0 0.9914(1 − gt) 0.9914gt 0 0.0086
0 0 0.9914(1 − gt) 0.9914gt 0 0.0086
0 0 0.9914(1 − gt) 0.9914gt 0 0.0086
0 0 0 0.8427 0.1487 0.0086
0 0 0 0 0.9914 0.0086
0 0 0 0 0 1.0000



p
(Y,+)
15 (.|.) =


0 0 0.9820(1 − gt) 0.9820gt 0 0.0180
0 0 0.9820(1 − gt) 0.9820gt 0 0.0180
0 0 0.9820(1 − gt) 0.9820gt 0 0.0180
0 0 0 0.8347 0.1473 0.0180
0 0 0 0 0.9820 0.0180
0 0 0 0 0 1.0000



p
(Y,+)
25 (.|.) =


0 0 0.9552(1 − gt) 0.9552gt 0 0.0448
0 0 0.9552(1 − gt) 0.9552gt 0 0.0448
0 0 0.9552(1 − gt) 0.9552gt 0 0.0448
0 0 0 0.8106 0.1430 0.0464
0 0 0 0 0.9536 0.0464
0 0 0 0 0 1.0000



p
(Y,+)
30 (.|.) =


0 0 0.9552(1 − gt) 0.9552gt 0 0.0448
0 0 0.9552(1 − gt) 0.9552gt 0 0.0448
0 0 0.9552(1 − gt) 0.9552gt 0 0.0448
0 0 0 0.8106 0.1430 0.0464
0 0 0 0 0.9536 0.0464
0 0 0 0 0 1.0000
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p
(Y,+)
35 (.|.) =


0 0 0.8727(1 − gt) 0.8727gt 0 0.1273
0 0 0.8727(1 − gt) 0.8727gt 0 0.1273
0 0 0.8727(1 − gt) 0.8727gt 0 0.1273
0 0 0 0.7349 0.1297 0.1354
0 0 0 0 0.8646 0.1354
0 0 0 0 0 1.0000


p

(Y,−)
t (.|.) = pN

t (.|.), ∀t

C Probabilities associated with expected total cost computations of implementing screening policies

In order to compute the expected total cost of screening policies, transition probability matrices will need to be updated
taking into consideration the configuration of each case along with the sensitivity (ω) and specificity (σ) of the screening
test. Let M ̸= 0 represent the total number of screening periods provided by a policy up to time t and mk be the number
of ”No screen” epochs between k − 1st and kth screening epoch. There are M + 1 cases that might be realized at time t
with the following transition probability matrices for an individual in State 0 or State 1 at the beginning of the horizon:

– Case 1: First screening test result is positive. This means that from epoch 0 to epoch m − 1 the transitions are based
on pN

k (.|.) screening matrices, then there is a positive result at epoch m1 with related matrix pY,+(.|.) after which
the individual is in completely observable states.

State 0: (1 − σ)
m1−1∏
k=0

pN
k (.|.)pY,+

m1
(.|.)

t∏
k=m1+1

pN
k (.|.) (1)

State 1: ω

m1−1∏
k=0

pN
k (.|.)pY,+

m1
(.|.)

t∏
k=m1+1

pN
k (.|.) (2)

– Case 2: Second screening test result is positive. In this case the first screening test result is negative and the second
is positive.

State 0: (1 − σ)σ
m1−1∏
k=0

pN
k (.|.)pY,−

m1
(.|.)

m1+m2∏
k=m1+1

pN
k (.|.)pY,+

m1+m2+1(.|.)
t∏

k=m1+m2+2

pN
k (.|.) (3)

State 1: ω(1 − ω)
m1−1∏
k=0

pN
k (.|.)pY,−

m1
(.|.)

m1+m2∏
k=m1+1

pN
k (.|.)pY,+

m1+m2+1(.|.)
t∏

k=m1+m2+2

pN
k (.|.) (4)

– Case M: M th screening test result is positive. In this case the first M − 1screening test results are negative and the
last is positive.

State 0: (1 − σ)σM−1
m1−1∏
k=0

pN
i (.|.)pY,−

m1
(.|.)

m1+m2∏
k=m1+1

pN
i (.|.)pY,−

m1+m2+1(.|.)...

m1+m2+...+mM +M−2∏
k=m1+m2+...+mM−1+M−1

pN
k (.|.)pY,+

m1+m2+...+mM +M−1(.|.)
t∏

k=m1+m2+...+mM +M

pN
k (.|.) (5)

State 1: ω(1 − ω)M−1
m1−1∏
k=0

pN
i (.|.)pY,−

m1
(.|.)

m1+m2∏
k=m1+1

pN
i (.|.)pY,−

m1+m2+1(.|.)...

m1+m2+...+mM +M−2∏
k=m1+m2+...+mM−1+M−1

pN
k (.|.)pY,+

m1+m2+...+mM +M−1(.|.)
t∏

k=m1+m2+...+mM +M

pN
k (.|.) (6)

– Case M+1: All screening test results are negative.

State 0: σM

m1−1∏
k=0

pN
k (.|.)pY,−

m1
(.|.)

m1+m2∏
k=m1+1

pN
k (.|.)pY,−

m1+m2+1(.|.)...

m1+m2+...+mM +M−2∏
k=m1+m2+...+mM−1+M−1

pN
k (.|.)pY,−

m1+m2+...+mM +M−1(.|.)
t∏

k=m1+m2+...+mM +M

pN
k (.|.) (7)
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State 1: (1 − ω)M

m1−1∏
k=0

pN
k (.|.)pY,−

m1
(.|.)

m1+m2∏
k=m1+1

pN
k (.|.)pY,−

m1+m2+1(.|.)...

m1+m2+...+mM +M−2∏
k=m1+m2+...+mM−1+M−1

pN
k (.|.)pY,−

m1+m2+...+mM +M−1(.|.)
t∏

k=m1+m2+...+mM +M

pN
k (.|.) (8)

D Monahan’s algorithm with Eagle’s reduction

This algorithm proceeds as follows: first, all α-vectors are initialized, being equal to the reward vector for each belief-
action-observation tuple. At each decision epoch all possible α-vectors are generated. The idea of the reduction and
elimination phases is to eliminate dominated vectors as much as possible. Basically, the algorithm eliminates the vectors
depending on whether there exists a belief point where that specific vector is dominant or not. These vectors are identified
using a linear programming (LP) approach [32]. If the LP yields a feasible solution, then the corresponding vector is
dominated and hence can be eliminated. The pseudo-code of this algorithm as given in [27] is given below.

Algorithm 1 Monahan’s Algorithm with Eagle’s reduction
1: Step 1: Initialization: αι(b, a, o)(s) = r(s) ∀b, a ∈ A, and o ∈ O where A, O and r(s) for s ∈ SP O are defined as in 2.1.
2: Step 2: Generation: Generate all possible α-vectors. Mark each of the generated α-vectors and add them to a list.
3: Step 3: Eagle’s Reduction phase

– Selection: Choose a marked α-vector from the list. If none exists, then go to Step 4. Otherwise,
– Elimination: Unmark the selected α-vector and delete it from the list if it is components are completely dominated by any

other α-vector. Go to selection phase.
4: Step 4: Monahan’s Elimination phase

– Mark: Mark all of the remaining α-vectors in the list.
– Selection: Choose a marked α-vector from the list. If none exists, then terminate. Otherwise,
– LP construction: Unmark the selected α-vector and construct the LP for that vector.
– Elimination: If the LP yields a solution σ ≤ 0, then remove this α-vector from the list. Go to LP construction.


