
        

Citation for published version:
Doak, A, Baardink, G, Milewski, PA & Souslov, A 2023, 'Nonlinear shallow-water waves with vertical odd
viscosity', SIAM Journal on Applied Mathematics, vol. 83, no. 3, pp. 938-965.
https://doi.org/10.1137/22M149082X

DOI:
10.1137/22M149082X

Publication date:
2023

Document Version
Early version, also known as pre-print

Link to publication

University of Bath

Alternative formats
If you require this document in an alternative format, please contact:
openaccess@bath.ac.uk

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 07. Jun. 2024

https://doi.org/10.1137/22M149082X
https://doi.org/10.1137/22M149082X
https://researchportal.bath.ac.uk/en/publications/71b4a040-54b3-4b88-89dd-a90b8656ed3d


Nonlinear shallow-water waves with vertical odd viscosity∗

Alex Doak† Guido Baardink‡ Paul A Milewski § Anton Souslov‡

April 21, 2022

Abstract

The breaking of detailed balance in fluids through Coriolis forces or odd-viscous stresses has
profound effects on the dynamics of surface waves. Here we explore both weakly and strongly
non-linear waves in a three-dimensional fluid with vertical odd viscosity. Our model describes the
free surface of a shallow fluid composed of nearly vertical vortex filaments, which all stand per-
pendicular to the surface. We find that the odd viscosity in this configuration induces previously
unexplored non-linear effects in shallow-water waves, arising from both stresses on the surface
and stress gradients in the bulk. By assuming weak nonlinearity, we find reduced equations in-
cluding Korteweg-de Vries (KdV), Ostrovsky, and Kadomtsev-Petviashvilli (KP) equations with
modified coefficients. At sufficiently large odd viscosity, the dispersion changes sign, allowing for
compact two-dimensional solitary waves. We show that odd viscosity and surface tension have
the same effect on the free surface, but distinct signatures in the fluid flow. Our results describe
the collective dynamics of many-vortex systems, which can also occur in oceanic and atmospheric
geophysics.

1 Introduction

Fluids subject to internal rotations or magnetic fields can acquire exotic mechanics, which only re-
cently have started to be explored. These fluids have in common the so-called breaking of detailed
balance (that is, the absence of microscopic reversibility away from equilibrium), leading to the break-
down of Onsager reciprocal relations. As a consequence, even such familiar quantities as the viscosity
tensor can acquire new components prohibited in typical fluids. These new viscosity coefficients have
been collectively termed odd viscosity [5] (equivalently, Hall viscosity [6]).

Odd viscosity has a broad range of theoretical and experimental implications. Its physical man-
ifestations range from quantum Hall fluids [6, 9] to collections of point vortices [11, 42] and chiral
active fluids composed of self-rotating particles [8, 10, 21, 37]. In two dimensions, odd viscosity can
remain isotropic, for example when the particles all have rotation normal to the plane of the flow, or
anisotropic [20, 31, 39, 34]. By contrast, in three dimensions, odd viscosity must be anisotropic [5, 35].
The hydrodynamic consequences of odd viscosity in three-dimensional fluids have only recently began
to be explored. For example, Ref. [27] derived odd viscosity for a three-dimensional incompressible
fluid from a Hamiltonian model of dissipationless spinning particles. In the opposite limit of Stokes
flow dominated by dissipation, odd viscosity creates parity-violating flows under conditions as com-
mon as sedimentation [24]. For both sound [7, 38] and linear gravity waves [40, 41], odd viscosity
leads to topological boundary modes.

Odd viscosity has complex and profound effects on the behavior of surface waves even in two
dimensions, where the free surface is a one-dimensional curve. Experimentally, odd viscosity has
been measured through its effects on the linear dispersion of these waves [37]. In boundary layers at
fluid surfaces, odd viscosity can lead to effects akin to a surface tension, but with broken detailed
balance [1, 3]. In the nonlinear regime, these boundary layers interact with capillary effects [16] or
compressibility [2], and modify the coefficients of the Korteweg-de Vries (KdV) equation in shallow
water [29]. In all of these two-dimensional cases, odd viscosity has been assumed pointing out-of-plane
and tangentially to the surface. This geometry occurs experimentally, for example, when self-rotating
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particles in a layer spin around the axis which is out of plane [37]. By contrast, we focus on nonlinear
surface waves in three-dimensional geometries in which odd viscosity arises from rotations that point
normal to the surface. Our geometry with vertical odd viscosity occurs, for example, for a free surface
above a vortex fluid, see Fig. 1.

In contrast to odd viscosity, the effect of Coriolis forces on surface waves has been extensively
explored due to its importance in geophysics (see [14, 33], and references therein). Coriolis forces
result from the rotation of the Earth or, more generally, from considering waves in a rotating frame of
reference. Both Coriolis and odd-viscous terms break detailed balance, but Coriolis forces also violate
invariance under change of inertial reference frame, i.e., Galilean invariance. Although vortices are
prevalent in planetary oceans and atmospheres, the potential geophysical consequences of resulting
odd-viscous stresses remain unexplored.

For nonlinear surface waves, a common starting point is the so-called shallow-water approximation.
In this approximation, the three-dimensional fluid is described by the dynamics of its two-dimensional
free surface and the averaged horizontal velocities, assuming the depth of the fluid to be much
smaller than the typical surface wavelength. Leading order dispersive (i.e., non-hydrostatic) effects
can be added while keeping the system strongly nonlinear. For gravity waves, the resulting equations
(without odd viscosity) were first derived by Serre [36] and Green-Naghdi [17], and subsequently
extensively explored [15, 22].

In this paper, we derive the non-linear Serre equations with odd viscosity, which model the flow
of a 3D fluid composed of many vertical vortices, bounded above by a free surface (Fig. 1 and Section
2). We average quantities across the depth of the fluid and use the shallow-water approximation to
obtain two-dimensional non-linear equations describing the evolution of the fluid velocity and the
free surface (Section 3). We then use a hierarchy of weakly nonlinear approximations (see Fig. 2 and
Section 4) to find analytical solutions and compare them with numerical solutions to the odd-viscous
Serre equations (Section 5).

While we derive the general evolutionary equations for the wave motion, we focus particularly on
their solitary-wave solutions. Consistent with intuition, both odd viscosity and Coriolis forces induce
flows perpendicular to the propagation direction of a planar solitary wave. In the Serre equations,
odd viscosity induces new non-linear terms proportional to the stress tensor itself. In the reduced
equations, which include the one-dimensional Korteweg-de Vries (KdV), two-dimensional Kadomtsev-
Petviashvili (KP, [23]), and the rotating Ostrovsky-type equations [32, 18], odd viscosity only enters
as a parameter modifying the dispersion. At sufficiently large odd viscosity, the dispersion changes
sign, allowing for localised two-dimensional solitary waves in the KP equation. We show that, in
the weakly nonlinear regimes, odd viscosity and surface tension lead to identical free-surface shapes.
However, unlike surface tension, odd viscosity breaks both detailed balance and chirality, leading to
distinct fluid flows with a transverse component.

2 Formulation

In this paper, we will explore shallow-water nonlinear theories to model free-surface flows in an
incompressible vortex fluid of constant density ρ, for which the classical viscous dissipation term is
taken to be negligible. The vortex fluid contains a distribution of almost vertical vortices at the
smallest, microscopic scales. The fluid is bounded below by a flat bottom and above by a free surface.
The effect of the vorticity is assumed to enter the equations of motion via a modification to the
classical Cauchy stress tensor, arising from a coarse graining of the point vortices, and resulting in
what is known in literature as odd viscosity.

We follow the formulation for the problem and the coarse-graining approximation of Ref. [42],
where an effective Euler equation for a two-dimensional point-vortex flow is derived for a vortex
velocity and a vortex density. The vortex density is materially conserved and the vortex velocity
satisfies a momentum equation with a dispersive correction arising from the odd viscosity. We consider
the simpler case where the vortex density is constant when the free surface is undisturbed. Then, as
a consequence of the shallow-water conservation of potential vorticity, the vertical vorticity density as
defined by Ref. [42] is conserved, leaving only changes in the momentum equation to be considered.
Throughout this paper, horizontal velocities denote the coarse-grained vortex velocities.

We consider Cartesian coordinates (x, y, z), and denote the velocities in the x, y, and z direction
as u, v, and w, respectively. The surface of the fluid is denoted as z = h(x, y, t), and the fluid has an
undisturbed depth of H. We choose the wall bounding the fluid from below to be at z = 0. Gravity
acts in the negative z-direction, perpendicular to the undisturbed interface and the rotation is about
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Figure 1: Schematic of the model considered. The flow is bounded below by a flat wall at z = 0,
and above by a free surface z = h(x, y, t). The fluid is composed of a distribution of vortex filaments,
which remain perpendicular to both boundaries.

3D rotating
Euler equations

3D rotating Euler
with odd viscos-
ity, Eqs. (1–2)

2D Serre with
odd viscosity,

Eqs. (28–29)

2D Rotation-
modified

KP, Eq. (44)

2D KP,
Eq. (45)

1D Ostrovsky,
Eq. (47)

1D KdV,
Eq. (51)

1D NLS,
Eq. (50)

Distribution of vortices

Shallow water approximation, µ� 1
Depth averaging

Quasi-
monochromatic

planar wave
Uni-directional weakly nonlinear, h = 1 + εη

Weak rotation, f =
√
εf̂

Weak y variance, y =
√
εŷ

Boussinesq scaling, ε ∼ µ2, T = εt

No rotation, f̂ = 0

Plane waves

Plane waves

No rotation, f̂ = 0

Figure 2: Overview of the equations seen in the paper. The system is simplified via additional
assumptions as one moves along the arrows. The red, green, and yellow boxes represent 3D, 2D, and
1D systems of equations, respectively.
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the z-axis. The flow configuration is shown in Figure 1. For generality, we will consider the fluid
to be in a rotating reference frame and include the Coriolis effect. Throughout the paper, we find
it helpful to separate motion in the xy-plane and in the z-direction. For this purpose, we introduce
the vector u = [u, v], and the operator ∇x = [∂x, ∂y]. For compactness, we also introduce the vector
v = [u, v, w] and operator ∇ = [∂x, ∂y, ∂z]. The three-dimensional equations of motion are given by

∇ · v = 0, (1)

ρvt + ρ (v · ∇)v = ∇ · σ + βρv∗, (2)

Here, v∗ = [u∗, 0] and u∗ ≡ εijuj = [v,−u], where ε is the two-dimensional Levi-Civita symbol, β is
the Coriolis coefficient, and σ is the Cauchy stress tensor, given by

σ = −pId + ρνoT. (3)

Note that p is the pressure variation from hydrostatic pressure. One can recover the absolute pressure
pa via the equation pa = p − ρgz. The tensor Id is the identity matrix, while T is associated with
the distribution of vortex filaments. The constant νo is the kinematic odd viscosity, related to the
vortex density and strength. We assume that the microscopic vortex filaments induce additional
stresses which appear primarily as an odd viscosity in the xy-plane. The tensor T captures the effects
of odd viscosity, and can be decomposed in orders of the shallow water parameter µ (= H/L, see
Section 2.1). We denote by K the contribution induced by purely vertical filaments, which is given
by

K =

uy + vx vy − ux 0
vy − ux −(vx + uy) 0

0 0 0

 . (4)

The upper left 2×2 submatrix of K can be compactly expressed as a linear combination of strain-rate
components,

Kij = ∇∗iuj +∇iu∗j . (5)

It is shown in Appendix A that, when nondimensionalised, the strain rates K are identical to the
rates T up to leading order in µ (see equation (71)). There are small correction terms in the rela-
tionship between T and K, attributed to the bending of the vortex filaments such that they remain
perpendicular to the lower and upper boundaries.

Kinematic boundary conditions at the bottom wall and the free surface are given by

w = 0, at z = 0, (6)

w = ht + u · ∇xh, at z = h(x, y, t) (7)

Finally, the dynamical boundary condition on the free surface is given by

σijnj = −ρghni, at z = h(x, y, t), (8)

where n is the unit normal to the free surface. Noting that Tijnj = 0 at the surface (see Appendix A),
this reduces to

p = ρgh, at z = h(x, y, t). (9)

For simplicity we have not yet included the effect of surface tension. In later sections, we bring back
the surface tension to contrast its effects with those of odd viscosity.

2.1 Nondimensionalisation and scaling

We nondimensionalise the equations using the depth of the fluid H. In order to explore the shallow
water behaviour, we assume that the typical waves have a horizontal length scale L which will taken
to be much larger than H. In this vein, we denote the shallow water parameter µ = H/L � 1. We
denote by U =

√
gH a typical velocity scale in the xy-plane, which we take as a reference velocity.

This implies a time scale of H/U , and a pressure scale of ρU2. Under this scaling, partial derivatives
change according to

∂x ∼ µ∂x ∂y ∼ µ∂y ∂z ∼ ∂z ∂t ∼ µ∂t (10)
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It follows from the incompressibility condition (1) that the velocity in the z-direction is of dimension
µU . In dimensionless form, the system (1)-(2) becomes

∇x · u+ wz = 0, (11)

ut + (u · ∇x)u+ wuz = −∇xp+ fu∗

+νµ

(
∇x ·

[
T11 T12
T21 T22

]
+ ∂z

[
T31, T32

]T)
, (12)

µ2 (wt + (u · ∇x)w + wwz) + pz = νµ3
(
∇ ·
[
T13, T23, T33

]T)
. (13)

We have split the momentum equations into two horizontal momentum equations, given by (12), and
one vertical momentum equation (13). The orders of the stress tensor components Tij are obtained
from equation (73) in the Appendix, which followed assumptions about the form of T . Two non-
dimensional constants ν and f arise, given by

ν =
νo

UL
, f =

Lβ

U
. (14)

The nondimensional constant ν is the inverse odd Reynolds number, which is a ratio of inertia and
odd-viscous stresses as used in [8], while f is the Rossby number, the ratio of Coriolis to inertial
effects. The boundary conditions are unchanged except for (9) which becomes

p = h, at z = h(x, y, t). (15)

In the following section, we apply the shallow water approximation, and along with introducing depth
averaged quantities, derive a nonlinear long-wave approximation to the above system.

3 Shallow-water approximation and depth averaging

In this section, we will simplify the system of equations (11)-(13) by both truncating the model to order
O(µ3), and by exploiting depth averaged quantities. These simplifications results in a reduction in the
dimensionality of the system. Consider first the horizontal momentum equation (12). Substituting
in the stress tensor (75), the odd-viscous component of the equation is given by

µν

(
∇x ·

[
K11 K12

K21 K22

]
+ ∂z

[
(hxK11 + hyK12) q
(hxK21 + hyK22) q

])
+O(µ3). (16)

Here, q = z/h+O(µ) is an interpolating function (see equation (74) in the Appendix). It follows from
equations (16) that if uz = O(µ2) at t = 0, all terms with z-dependence occurring in the horizontal
momentum equation (12) will occur at O(µ2). In other words, assuming the flow initially satisfies
uz = O(µ2) at t = 0, it will do for all time. Imposing this condition, we write

u(x, y, z, t) = u(x, y, t) + µ2u(2)(x, y, z, t) +O(µ3), (17)

p(x, y, z, t) = p(0)(x, y, t) + µ2p(2)(x, y, z, t) +O(µ3), (18)

where we have introduced a depth-averaging operator on fluid variables, defined by

A(x, t) =
1

h(x, t)

∫ h

0

A(x, z, t) dz. (19)

From the above, it follows that hAs = (hA)s −A(x, h, t)hs, where s is any independent variable and
hAz = A(x, h, t)−A(x, 0, t).

Averaging the incompressibility condition (11), and making use of the kinematic boundary con-
ditions (6)-(7), we obtain the exact conservation of mass equation

ht +∇x · (hu) = 0. (20)

Our goal is to find a system of equations for ū and h. Next, therefore, we derive depth-averaged
momentum equations by first re-writing the horizontal momentum equation (12) in conservation
form, given by

ut +∇x · (u⊗ u) + (wu)z = −∇xp+ fu∗

+νµ

(
∇x ·

[
K11 K12

K21 K22

]
+∂z

[
(hxK11 + hyK12) q
(hxK21 + hyK22) q

])
+O(µ3). (21)
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Averaging and simplifying this equation results in

(hu)t +∇x · (hu⊗ u)− h∇xp− νµ
(
∇x ·

(
h

[
K11 K12

K21 K22

]))
− fhu∗

= − [htu+∇xh · (u⊗ u) + wu]z=h

+ νµ

[
−∇xh ·

[
K11 K12

K21 K22

]
+

[
hxK11 + hyK12

hxK21 + hyK22

]]
z=h

+O(µ3), (22)

where we have used that h and w are zero at z = 0, and we have included the upper boundary terms
in square brackets. Both of the boundary terms are in fact zero: the first follows from the kinematic
boundary condition (7), while the second follows from the original construction of the stress tensor.
Significantly, the odd-viscous contributions on the left-hand side in (22) can be rewritten as a sum of
two terms:

νµh∇x ·
[
K11 K12

K21 K22

]
+ νµ(∇xh) ·

[
K11 K12

K21 K22

]
. (23)

The first term in (23) has a typical viscous force due to a stress gradient in the bulk of the fluid.
Surprisingly, the second term is not a stress gradient, and depends instead on the “naked” stress K
as well as on the gradient of the surface profile h. This term highlights the effects of odd viscosity in
the presence of a free surface, and cannot be observed in the fluid bulk.

Recalling the z-independence of the leading order terms for u in equation (17), it can be shown
that

∇x · (hu⊗ u) = ∇x · (hu⊗ u) +O(µ3). (24)

We wish to find the pressure gradient ∇xp in terms of u and h. We do so by solving for the leading
order p(0) and O(µ2) correction p(2) to the pressure. Averaging the vertical momentum equation (13),
we find that at O(1), combined with the dynamic boundary condition (15), the leading order pressure
is given by

p(0) = h(x, y, t). (25)

To evaluate p(2), we must replace instances of w in the vertical momentum equation (13) with terms of
the form u, which is done by averaging the incompressibility condition (11) to find w = −z (∇x · u)+
O(µ2). It follows that

p(2) = (z − h)2
[
(∂t + (u · ∇))∇x · u− (∇x · u)

2
]
. (26)

Hence, using equations (25) and (26), we finally recover the Serre nonlinearity

h∇xp = h∇xh−
µ2

3
∇x
[
h3
[
(∂t + (u · ∇))∇x · u− (∇x · u)

2
]]

+O(µ3). (27)

Substituting this into (22), we recover the nonlinear system in conservation form for u and h, accurate
up to O(µ3), given by

ht +∇x · (hu) = 0, (28)

(hu)t +∇x · (hu⊗ u) = fhu∗ − 1

2
∇xh2 + νµ

(
∇x ·

(
h

[
K11 K12

K21 K22

]))
+
µ2

3
∇x
[
h3
[
(∂t + (u · ∇x))∇x · u− (∇x · u)

2
]]

+O(µ3). (29)

Equation (29) can be written in convective form as

ut + (u · ∇x)u = fu∗ −∇xh+ ν
µ

h

(
∇x ·

(
h

[
K11 K12

K21 K22

]))
+
µ2

3h
∇x
[
h3
[
(∂t + (u · ∇x))∇x · u− (∇x · u)

2
]]

+O(µ3). (30)

The above system approximates the equations in Section 2 with no assumption on the nonlinearity
of the system. It is an odd-viscous extension of the Serre or Green-Naghdi equations which govern
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dissipation-free single-layer free-surface flows. For simplicity, we have not included surface tension in
the derivation of the Serre equations. As seen in [15], surface tension would add the term

µ2B ∇x ∆xh, (31)

to the right hand side of equation (30), where B = σ/gH2 is the nondimensional Bond number and
σ is the coefficient of surface tension. In some of the weakly nonlinear models below, we compare the
effects of surface tension and odd viscosity on the solutions.

4 Linear and weakly nonlinear theory

In this Section, we will discuss the linear dispersion relation of this system, and derive weakly nonlinear
theories to describe solitary waves one would expect for different parameter values.

4.1 Linear theory

Linearising the system, we seek wave-like solutions with wavenumbers kx and ky in the x and y-
direction. Denoting k = [kx, ky]T , we write[

h
u

]
= Aei(k·x−wt) + c.c., (32)

where c.c. stands for complex conjugate. Solving the linear system, one recovers the isotropic
dispersion relation

c2 =
1 + µ2(ν|k| − f̂/|k|)2

1 + 1
3µ

2|k|2
, |k| 6= 0, or w = 0, (33)

where the phase velocity is c = w/|k|, and the rescaled Coriolis parameter f̂ is given by

f̂ =
f

µ
. (34)

The branch w = 0 are the so-called inertial waves, with solutions given by

[
h
u

]
=

(f − νµ|k|2)iky
−ikx

 ei(k·x−wt) + c.c. (35)

Inertial waves require either the Coriolis effect or the odd-viscous contribution to exist. Next, consider
the other two branches. Figure 3 shows the dispersion relation for different values of the parameters.
We plot only the positive root of the dispersion relation. In panel (a), we remove the Coriolis effect

by setting f̂ = 0, and vary ν. The odd-viscous term does not affect the phase velocity for long
wavelengths (that is, limk→0 c). There is a critical value of ν = ν∗ = 1/

√
3 at which the dispersion

relation changes from monotonically decreasing for ν < ν∗ to monotonically increasing for ν > ν∗.
The case ν = ν∗ results in the curious situation that c = 1, and the system is no longer dispersive
to the order considered. In this case, the dispersive effects of odd viscosity balance the finite-depth
corrections to the dispersion at O(µ2), a case similar to shallow-water gravity-capillary waves when
the Bond number is 1/3 [28].

When the model is considered in the short-wavelength limit, the waves are non-dispersive to
leading order, for arbitrary parameters. To see this, one may take the limit |k| → ∞ above or
follow the derivation of so-called Avron waves [5] in fluids with odd viscosity, but including the
dispersive correction to hydrostatic pressure. Coincidentally, the dispersion of Avron waves exactly
cancels the leading-order gravitational dispersion at short wavelengths. For plane waves travelling
uni-directionally in the x-direction, this results in a non-dispersive wave equation,

htt = 3ν2hxx, (36)

with wave speed c =
√

3ν. The absence of dispersion at short wavelengths enhances the possibility
of shock solutions [25]. In panel (b), we fix ν = 1 and vary the Coriolis parameter f̂ . The effects of

7



(a)

(b)

|k|

|k|

c

c

f̂ = 0

f̂ = 1

f̂ = 2

ν = 0

ν = 1√
3

ν = 1

ν = 2

Figure 3: Dispersion relation (33) with µ = 0.1, and variable f̂ and ν. In panel (a), we fix f̂ = 0,
and vary ν, as shown on the curves. Curiously, for ν = 1/

√
3, the speed c is constant. In panel (b)

of figure 3, we fix ν = 1, and vary f̂ . From equation (33), it can be seen that non-zero values of f̂
introduce singularity at |k| = 0. The plot in Figure (b) uses a logarithmic scale for the |k|-axis.

Coriolis forces dominate long wavelengths, such that equation (33) is singular as |k| → 0 with the

scaling c ∼ µf̂ |k|−1.
Except for the special case of embedded solitary waves [12], solitary waves are typically found

outside the linear spectrum. Furthermore, they bifurcate from points where the phase and group
velocities are equal. When f̂ = 0, such a point exists at |k| = 0, where c = 1. Hence, one may expect
to find long-wave solitary waves bifurcating from zero amplitude at c = 1, and the speeds of the waves
will be greater than unity for ν < ν∗, and less than unity for ν > ν∗. On the other hand, when the
Coriolis force is taken into account, the singular behaviour of c at |k| = 0 removes the possibility of
finding a solitary wave bifurcation about this point. However, there is another candidate for solitary
wave bifurcations, at a global minimum of the dispersion relation at |k| = km, denoted cm. These are
called wavepacket solitary waves. It can be checked by direct calculation that the group and phase
velocities are equal at this point [4], and that there is a gap in the linear spectrum for speeds c < cm.
Seeking solutions to dc/dk = 0, we find that km satisfies(

1− 3ν2 − 2µ2νf̂
)
k4m + 2µ2f̂2k2m + 3f̂2 = 0. (37)

For a minimum to exist, we require real solutions for km, which occurs under the condition

3ν2 − 1 + 2µ2νf̂ > 0, (38)

which to leading order requires ν > ν∗. The bifurcation of wavepacket solitary waves from zero
amplitude requires the additional condition that the corresponding nonlinear Schrödinger equation
for modulations of monochromatic waves at km is of focusing type. The bifurcation structure described
above can be predicted by weakly nonlinear theories, which we present in the following section.

4.2 Weakly nonlinear theory

Weakly nonlinear, weakly dispersive systems can be recovered by suitable scalings. We seek unidirec-
tional models, and without loss of generality choose the waves to travel in the positive x-direction.
To consider weakly nonlinear theory, we rescale the system as follows

u = εû h = 1 + εη (39)
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with ε� 1. We consider the classical Boussinesq scaling relating the shallow-water parameter to the
amplitude, given by µ2 = ε. Furthermore, we take a frame of referencing moving with the long wave
speed via a Galilean transform, given by X = x − (1 − f̂νµ2)t, and consider a slowly varying time
variable T = εt. To consider slow variance in the y-direction, we introduce a new y-scaling, given by

Y =
√
εy. (40)

We seek the prefactors in a power series of
√
ε, that is

η = η0 +
√
εη1 + εη2 + · · · , (41)

û = û0 +
√
εû1 + εû2 + · · · . (42)

At leading order, one recovers the linear dispersion relation. At O (
√
ε), one recovers the solution v̂1.

At O (ε), one recovers a solvability condition for η0. The leading order solutions are then given by

η0 = û0, v̂0 = 0, v̂1X = η0Y + νη0XX + f̂η0, (43)

where the function η0 satisfies the equation[
2η0T + 3η0η0X +

(
1

3
− ν2

)
η0XXX

]
X

= f̂2η0 − η0Y Y . (44)

Equation (44) is the rotation-modified Kadomtsev-Petviashvil (KP) equation or Melville-Grimshaw
equation [18]. The odd viscosity has the effect of modifying the coefficient of the dispersive term
in the direction of travel. In this sense, it is similar to the effects of surface tension, for which the
prefactor ν2 is replaced by the Bond number, denoted B. Seeking linear perturbations of the form
η0 ∼ ei(kxX+kyY−cT ), the dispersion relation c(kx, ky) for equation (44) is singular at kx = ky = 0, in
agreement with the full system (33). Therefore, one does not expect to find solitary waves bifurcating
from zero amplitude about |k| = 0.

Removing the Coriolis effect, we recover the KP equation[
2η0T + 3η0η0X +

(
1

3
− ν2

)
η0XXX

]
X

= −η0Y Y . (45)

Depending on the sign of the dispersive term, it is known as the KP1 equation (for ν > 1/
√

3) or the
KP2 equation (for ν < 1/

√
3). The KP1 equation has travelling wave solutions which are localised in

both dimensions, and which are known as lump solitons. These solutions bifurcate from |k| = 0 [26].
Denoting the speed of propagation by c, lump soliton solutions are given by

η0 = A

 3A
8(3ν2−1)X

2 + 9A2

64(3ν2−1)Y
2 + 1(

− 3A
8(3ν2−1)X

2 + 9A2

64(3ν2−1)Y
2 + 1

)2
 , c = 1 +

3

16
A, (46)

where A < 0 is a free constant. A KP1 soliton with ν = 2/3 is shown in panel (a) of Figure 4.
We now consider plane waves, that is solutions with invariance in the y-direction. We denote k ≡

kx as the wavenumber along the direction of propagation. The governing equation is the Ostrovsky
equation, given by [

2η0T + 3η0η0X +

(
1

3
− ν2

)
η0XXX

]
X

= f̂2η0. (47)

(a)

η0

Y X

(b)

η0

Y X

Figure 4: Panels (a) and (b) show the solitary wave solutions (46) and (52) with A = −0.4, ν = 2/3,
and f = 0.
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Like the rotation-modified KP equation, the Ostrovsky equation does not admit soliton solutions
about k = 0, due to the singular nature of c there. The work of Ref. [19, 30] found solitary wave
solutions bifurcating about the minimum of the dispersion relation when the dispersive term is neg-
ative (ν > ν∗). The linear dispersion relation for the Ostrovsky equation in the original coordinate
system, which we denote co, is given by

co = 1− f̂νµ2 + µ2

(
f̂2

2k2
− 1

2

(
1

3
− ν2

)
k2

)
. (48)

with a minimum at k = kom, where

kom =

(
3f̂2

3ν2 − 1

)1/4

. (49)

Therefore, the existence of a minimum requires ν > 1/
√

3 = ν∗, in agreement with the condition for
the Serre system (38) when µ = 0. In fact, expanding (33) in powers of µ, we find that the linear
dispersion relation is equivalent to that of the Ostrovsky equation (48) at O(µ2). Therefore, given
µ � 1, one may expect good agreement between the models for weakly nonlinear solutions. This is
explored further in section 5.2.

The solitary wave bifurcation is described by a focusing one-dimensional nonlinear Schrödinger
(NLS) equation. One arrives at the NLS equation by seeking a slowly modulated one-dimensional
wavepacket with carrier wave of wavenumber k and wavepacket amplitude A. Denoting ε to be a
small parameter, and given the packet varies slowly in time (depending on τ = ε2t) and travels with
group velocity cg (depending on ξ = ε(x−cgt)), the governing equation for the wavepacket amplitude
A(ξ, τ) is given by

iAτ + αAξξ = β|A|2A, (50)

where α and β are given by equations (96)–(97). A derivation of the above equation is found is
Appendix B. It is known that the NLS admits ‘bright’ solitary wavepackets when of the focusing
type (that is, αβ < 0) and ‘dark’ solitary waves with oscillatory tails when of the defocussing type
(that is, αβ > 0), when the linear group and phase velocity are equal at the chosen wavenumber
k. Numerical tests suggest that for the parameters corresponding to the minimum of the dispersion
relation, equation (50) is of the focusing type.

Finally, considering plane waves without the Coriolis effect, we recover the celebrated Korteweg-de
Vries (KdV) equation. In the case of vertical odd viscosity that we consider, this equation has the
form

2η0T + 3η0η0X +

(
1

3
− ν2

)
η0XXX = 0. (51)

-0.6

-0.4

-0.2

Direction of propagation

y

x

x

y

Figure 5: Particle path for a KdV solitary wave with odd viscosity (ν = 2/3, blue curve) and surface
tension (B =

√
2/3, black curves). The solution has parameters A = −2 and ε = 0.3. Panel (a)

shows the particle path after a solitary wave has passed through, where the start and the end of the
path are given by the circle and the cross, respectively. Panel (b) shows the wave in the xy-plane,
where the colour bar corresponds to the value of u.
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-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

Direction of propagation

y

x

x

y

y

y

y

y

Figure 6: Particle paths for a KP solitary wave (46) with odd viscosity (ν = 2/3, blue curves) and
surface tension (B =

√
2/3, black curves). The solution has parameters A = −2 and ε = 0.3. Five

particle paths are shown in the left-hand panels. The particles start at the circle, and end at the
cross. Their position in relation to the solitary wave is shown in the right-hand panel, where the
colour bar corresponds to the value of u.
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The KdV equation admits the famous sech2 soliton solutions about k = 0 for all parameters where
the dispersive coefficient is non-zero (i.e. ν 6= ν∗). These solutions are given explicitly by

η0 = A sech2

[(
A

12(1− 3ν2)

)1/2

X

]
, c = 1 +

A

2
µ2. (52)

When ν < ν∗, the solitons are waves of depression (A < 0), while for ν > ν∗ the solutions are waves
of elevation (A > 0). One such soliton is shown in Figure 4(b). Monteiro et. al. [29] recently derived
the KdV equation for two-dimensional surface water waves with odd viscosity. In their geometry,
odd viscosity is induced via vortex filaments with axes of rotation which are parallel with the bottom
wall and perpendicular to the direction of propagation. They find a dispersive coefficient due to odd
viscosity which is linear in ν, instead of the quadratic prefactor ν2 in equation (51).

We note here that the weakly nonlinear equations discussed above can be derived for gravity-
capillary surface waves, where as mentioned earlier the term ν2 is replaced by the Bond number B.
Hence, the profile of the leading order solution η0 for the weakly nonlinear theory is the same for
gravity-capillary waves and odd-viscous waves with ν = B1/2. However, an interesting difference
is found in the structure of the flow. In particular, the leading order velocity perpendicular to the
direction of wave propagation is v̂1 (given by equation (43)) has a contribution due to the odd viscosity.

In Figure 5, we plot a particle path for an x-dependent KdV soliton (52) with ν = 2/3. The
particle path is shown in blue, while the black curve corresponds to a particle path for a gravity-
capillary KdV soliton with B =

√
2/3. We note that the interfaces are identical and the particle

trajectories end in the same position. However, unlike the gravity-capillary wave, the flow arising
from the KdV solution with odd viscosity has non-zero velocity perpendicular to the direction of wave
propagation.

In Figure 6, we plot particle paths for an xy-dependent KP1 soliton (46) with ν = 2/3 and
B =

√
2/3. While for gravity-capillary waves, the trajectories are reflected about y = 0, this

symmetry is violated for the odd-viscous waves. In particular, particle paths for the odd-viscous wave
above y = 0 have a stronger perpendicular velocity in the positive y-direction, while the perpendicular
velocities due to the KP η0Y term in equation (43) compete with those of odd viscosity for y < 0.
The odd viscosity enters the weakly nonlinear equations in the form ν2 (see equation (44)), and hence
changing the sign of ν does not affect the profile of the solitary wave. However, it does change the sign
of the contribution to the perpendicular velocity v̂1 in equation (43). Hence, the weakly nonlinear
system retains symmetry under overall time reversal when signs of both the direction of propagation
and the odd viscosity are flipped, that is under c→ −c and ν → −ν.

5 Fully nonlinear computations

In the previous section, weakly nonlinear reductions of the Serre system (28–30) were discussed. As a
check on the range of validity of these approximations, in this section we compute travelling solitary
wave solutions to the odd-viscous Serre equations, and compare the results with those of Section 4.
We restrict our attention to one-dimensional plane waves. We impose invariance in the y-direction
and find that the system reduces to

ht + (uh)x = 0, (53)

ut + uux = −hx + νµ

(
hxvx
h

+ vxx

)
+
µ2

3h

[
h3
(
uxt + uuxx − u2x

)]
x
− µf̂v, (54)

vt + uvx = −νµ
(
hxux
h

+ uxx

)
+ µf̂u. (55)

We seek solutions travelling to the right with constant speed c (∂t → −c∂x) which decay at infinity,
that is

h→ 1, u→ 0, v → 0, as x→ ±∞. (56)

We integrate the conservation of mass equation (53) to find the constraint

h =
c

c− u
. (57)
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(d) (e)(b)

(c)

(d)

(e)

A

c

x x

x x

h h

h h

Figure 7: Panel (a) shows two solitary wave branches with µ = 0.1 and f = 0. The parameter A is
given by equation (62). The depression (A < 0) and elevation (A > 0) branches have ν = 0.25 and
ν = 1, respectively. The solid curves are solutions to the Serre equations, while the dashed curves are
steady KdV travelling waves (52). The dotted curves are given by A = 0 and c = 1. Both branches
bifurcate from zero amplitude at c = 1. The solid and dashed lines in panels (b)–(e) correspond to
the Serre and KdV solutions highlighted with a cross and circle respectively in panel (a).

Furthermore, the momentum equation in the direction perpendicular to wave propagation (55) be-
comes

vx =
νµ

c− u

(
hxux
h

+ uxx

)
+ µf̂ (h− 1) . (58)

Integrating (58), and using (57), we find that

v(x) = µν
hx
h

+ µf̂

∫ x

−∞
(h− 1) dx. (59)

Having solved the conservation of mass and the y-momentum equation to recover h and v explicitly
in terms of u and its derivative, we proceed to solve the x-momentum equation (54). The integral in
the expression for v (59) is numerically approximated using the trapezoidal rule. We take a periodic
domain, and discretise the space into N equally spaced meshpoints. Derivatives are computed using
pseudospectral approximations. We choose a domain size sufficiently large such that the solutions
become domain-independent. The computations are performed in MATLAB, and a typical number
of meshpoints is N = 211. The system is solved using the Newton-Raphson method, and we say a
solution is converged once the L∞-norm of the residuals is of the order ∼ 10−11.

5.1 Solitary waves for f = 0

When f = 0, the ordinary differential equation for u reduces to

−cux + uux = − ux
(c− u)2

+ ν2µ2

(
ux
c− u

+
∂

∂x

)(
u2x

(c− u)2
+

uxx
c− u

)
+
µ2

3h

[
h3
(
−cuxx + uuxx − u2x

)]
x
. (60)

We contrast this with the Serre equations governing gravity-capillary free surface waves, where the
equations of motion are given by

−cux + uux = − ux
(c− u)2

+Bµ2

(
u

c− u

)
xxx

+
µ2

3h

[
h3
(
−cuxx + uuxx − u2x

)]
x
. (61)

The difference in these systems highlights that, while the same interface displacements are recovered
via the relation B = ν2 for the weakly nonlinear theories discussed in Section 4 (since for weakly
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nonlinear theory both enter only as a correction to the linear dispersion), differences appear in the
nonlinear terms of order O(µ2ε).

Solitary plane waves in the system with f = 0 are approximated at small amplitudes by the KdV
equation (51), with an explicit form for the solitary wave given by (52). The KdV equation predicts
solitary waves of elevation when ν < ν∗ = 1/

√
3, and of depression when ν > ν∗. We find this is in

agreement with fully nonlinear computations, as presented in Figure 7. In panel (a), two branches of
fully nonlinear solitary waves are shown by solid black curves in speed-amplitude parameter space.
Here, we choose the amplitude parameter to be the interface perturbation at x = 0, given by

A = h(0)− 1 = η(0). (62)

We plot one elevation branch with ν = 0.25, and one depression branch with ν = 1. These branches bi-
furcate from the long-wave speed c = 1, and are found in the gap of the linear spectrum in Figure 3(a).
The branches are compared with the KdV prediction, shown by the dashed curves in Figure 7, which
are in good agreement for small amplitudes. As expected, as the amplitude increases, the weakly and
fully nonlinear systems deviate. Solutions indicated by crosses and circles in Figure 7(a) are plotted
in the respective panels of Figure 7(b)–(e). The dashed and solid curves correspond to KdV and Serre
solutions respectively. Along the depression branch, the KdV solutions can have amplitudes which
exceed the depth of the fluid, and are hence no longer physical. The code for the Serre equation, on
the other hand, becomes stiff for larger amplitudes. Solution (e) is as far as the code can compute
solitary waves while satisfying the convergence criterion.

5.2 Solitary waves for f 6= 0

Next, we consider the case when the Coriolis effect is included. Long waves of small amplitude for this
system are approximated by the Ostrovsky equation (47), which can be written in the same spatial
scale x and time scale t as the nonlinear system (53)–(55) as

ht +
(

1− f̂νµ2
)
hx +

3

2
(h− 1)hx +

µ2

2

(
1

3
− ν2

)
hxxx =

1

2
µ2f̂2 (h− 1) (63)

The far-field conditions are given by equation (56). Hence, we require the integral term in equa-
tion (59) over the whole domain to be zero, i.e.,∫ ∞

−∞
(h− 1) dx = 0. (64)

Therefore, we require the total volume of water to remain constant. We call the integral in (64) the

mass of the perturbation. When computing solitary waves for non-zero f̂ , we impose this additional
condition, replacing the x-momentum equation (54) at the first mesh point. We ensure that the
converged solution satisfies the x-momentum equation at the first mesh point to the same tolerance
as the rest of the domain. The form of v for the Ostrovsky equation is given by (43), and hence
free-surface perturbations also require zero mean mass. In fact, for the Ostrovsky equation, it can be
shown that for periodic and localised solutions, the mass of the perturbation is a conserved quantity
and equal to zero.

In Figure 8(a), we plot solitary wave branches for the Ostrovsky equation (dashed curves) and

the nonlinear system (53)–(55) (solid curves) with parameter values µ = 0.2, f̂ = 1, and ν = 1.
For the odd-viscous Serre equations, the minimum of the phase velocity is given by cm ≈ 0.9927
and the corresponding wavenumber is km ≈ 1.1046. For the Ostrovsky system, these values are
com = 0.9926 and kom ≈ 1.1067. The dotted-dashed curves are the bifurcation curves for the NLS
approximation (50) of the Serre system, with k = km. We note that the Ostrovsky solitary waves are
not known in explicit form, but are recovered numerically using a pseudospectral solver akin to the
one used to solve the strongly nonlinear system. There exists one branch of elevation solitary waves
and one branch of depression solitary waves bifurcating from the minimum of the linear dispersion
relation. The solutions corresponding to the points (b)–(e) are shown in their respective panels. For
small amplitudes, the solutions are solitary wavepackets, where the carrier wave has a wavenumber
approximately equal to the value of k at which the dispersion relation is a minimum. As the amplitude
goes to zero, the solution approaches a periodic wave train with this wavenumber. In the small
amplitude region, the NLS approximation accurately captures the wavepacket amplitude, as shown
in panel (b) of figure 8. Furthermore, the figure shows that the agreement between the Serre and
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Figure 8: Panel (a) shows branches of solitary wavepackets with µ = 0.2, f̂ = 1, and ν = 1. The solid
curves are solutions to Serre equations, the dashed curves are steady solutions of the corresponding
Ostrovsky equation (47), while the dotted-dashed curves are solutions to the NLS equation (50).
The dotted curves correspond to A = 0, and the minimum of the linear phase speed for the full
system (33) and the Ostrovsky system (48), which agree with each other to graphical accuracy. The
fully nonlinear system, the Ostrovsky equation, and the NLS equation all have two branches, one of
elevation waves and one of depression waves. The branches bifurcate from an infinitesimal periodic
wave train. The left hand panel shows a local bifurcation diagram near A = 0, while the right hand
panel shows the depression branch for larger amplitudes. The solutions (b)–(e) (represented with
crosses for Serre and circles for Ostrovsky) are shown in the remaining panels. In panel (b), the
dotted-dashed curve is the NLS wavepacket amplitude.
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Figure 9: The solution branches from Figure 8 shown for larger amplitudes. The solid curves are
for the Serre system, while the Ostrovsky solutions are shown by dashed curves. The bottom panels
show the surface displacement h and the horizontal velocity u for the solution given by the cross and
circle for the Serre and Ostrovsky equations, respectively.

Ostrovsky equations at small amplitudes is superb. As one follows the elevation branch, two large
depressions form, as seen in solution (b). Along the elevation branch, the code fails to converge beyond
the solution (c). On the other hand, along the depression branch, the value of A monotonically
decreases, with a single large depression at x = 0, as shown by the solutions (e). Figure 9 shows
the depression branch continued into strongly nonlinear regimes, where the deviation between the
Ostrovsky and Serre equations increases. In particular, the Ostrovsky equation admits solitary waves
with amplitudes larger than the depth of the channel, since this depth is not encoded in equation (47).
Numerical solutions for the Serre system become difficult to compute for solutions past the cross shown
in the figure. This is because the solutions begin to form a steep depression about x = 0, followed
by a slow decay to h = 1 at x → ±∞. This slow decay requires impractically large computational
domains to resolve.

6 Conclusion

We have derived nonlinear models describing 3D nonlinear shallow water waves in fluids with nearly
vertical odd viscosity, using the results for coarse-grained two-dimensional vortex fluids [42]. Our
long-wave isotropic model is an odd-viscous analogue to the Serre equations. Odd viscosity enters
these equations through typical stress-gradients and, more surprisingly, through terms containing
stresses without gradients. We further simplify the model using a hierarchy of weakly nonlinear
unidirectional approximations, leading to KP (as well as the rotation-modified KP), KdV, Ostrovsky,
and nonlinear Schrödinger equations with odd-viscous contributions. Surprisingly, in the odd-viscous
KP equation, odd viscosity acts analogously to a surface tension term and may lead to lump solitary
waves.

Odd viscosity is prevalent across many physical systems composed of rotating constituents. These
include electrons subject to a magnetic field in two-dimension quantum Hall probes [6, 9], and classical
chiral active fluids composed of self-rotating particles [8, 37, 21]. To fix a context, we have focused
on a classical vortex fluid, for which odd viscosity can be derived from microscopic models [42]. More
generally, many-vortex systems span from quantum states in superfluid helium and cold atomic gases
to planetary oceans and atmospheres. In all these cases, we envision exotic solitons on free surfaces,
whose specific dynamics remain to be explored.
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A Odd viscosity relative to vortex filament

Consider a vortex filament in the fluid, extending from the bottom wall to the interface at z = h.
We assume that the filament remains perpendicular with the boundaries at all times. Furthermore,
we assume that the vortex filament varies slowly in depth. Parameterising the vortex filament in arc
length s, we write its position in the form

r(s) = [X(s), Y (s), 1− Z(s)]T . (65)

Enforcing that the vortex filaments remains perpendicular to the boundaries implies that at the
bottom r′ = [0, 0, 1]T , while r′ is equivalent to the unit normal of the surface at z = h, where r′

denotes the s derivative of r. In nondimensional variables, this can be written as

X ′ = 0, Y ′ = 0, Z ′ = 0, at z = 0, (66)

X ′ = −µhx
dS

, Y ′ = −µ hy
dS

, Z ′ = − 1

dS
, at z = h(x, y, t). (67)

Here, dS =
√

1 + µ2h2x + µ2h2y, and µ� 1 is the shallow water parameter, introduced in Section 2.1.

Since dS = 1 +O(µ2), we have that at the surface, X ′, Y ′ ∼ O(µ) and Z ′ ∼ O(µ2).
We assume that, upon coarse graining, the contribution to the Navier-Stokes equations is an odd

viscosity acting in the plane normal to the curve r(s). The modified stress tensor T (s) along the
curve r(s) can be recovered by rotating the odd-viscous component of the stress tensor at s = 0 (that
is, at the bottom of the fluid), given by

T (s)|s=0 = µK, (68)

with K given by equation (4) after nondimensionalisation, to a new set of orthogonal co-ordinates
(x̃, ỹ, z̃) such that z̃ = r′. The tensor K is the odd-viscous stresses that would occur if the vortex
filament is purely vertical (i.e. X = Y = Z = 0 for all s), and has been derived for a two-dimensional
vortex fluid in [42]. We write

x̃ =

1− α1

α2

γβ3

 , ỹ =

 β1
1− β2
β3

 , z̃ =

 X ′

Y ′

1− Z ′

 . (69)

One can recover the values of αi and βi given X ′, Y ′ and Z ′ by demanding the three vectors are
orthogonal and have magnitude of unity. There is a degree of freedom to the orthogonal vectors x̃
and ỹ, corresponding to a rotation about the z̃ direction, which we keep general with the term γ
relating the z-component of x̃ and ỹ. We desire for this rotation to be small, and furthermore that the
vortex filaments do not experience large deflections within the fluid body. This is done by imposing
that αi � 1 and βi � 1. A consequence of this choice is that it introduces a constraint on γ, which
at leading order must be given by γ = X ′/Y ′. Hence, we introduce an O(µ2) correction, and write
γ = X ′/Y ′ + µ2γ̂. The rotation matrix R(s) for the mapping shown in Fig. 10 is then found to be

R =

1 0 0
0 1 0
0 0 1

+


X′2

2 µ2 (δ −X ′Y ′)µ2 X ′µ

−δµ2
(
−X

′2

2 + Z ′
)
µ2 Y ′µ

−X ′µ −Y ′µ Z ′µ2

+O(µ3), (70)

where δ is given by δ = (−γ̃+X ′Y ′/Z ′)/(1+X ′2/Y 2). One recovers the nondimensional stress tensor
along the vortex filament via the equation

T (s) = R(s) (µK)R−1(s). (71)

Resolving equation (71), we get

T (s) = µK +

O(µ3) O(µ3) −µ2 (X ′K11 + Y ′K12) +O(µ3)
O(µ3) O(µ3) −µ2 (X ′K21 + Y ′K22) +O(µ3)
O(µ2) O(µ2) O(µ3)

 , (72)

which is at O(µ) independent of s (i.e., the vortex filament bending). To describe the equations of
motion in full would require knowledge of the bending of the vortex filaments at all points inside the
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Figure 10: A figure showing a vortex filament and the rotated co-ordinates along the curve.

fluid (i.e., values of r′(s) must be known for all (x, y, z)). However, when deriving the depth-averaged
equations (29–30) in Section 3, it is found that to O(µ3) in the model, only the term K remains.
Therefore, the reduced system does not require explicit knowledge of vortex filament bending. Instead,
we introduce an interpolation function q(x, y, z, t) which takes the value q = 0 at the bottom and
q = 1 at the surface. The form of the stress tensor is then

T (s) = µK +

O(µ3) O(µ3) µ2 (hxK11 + hyK12) +O(µ3)
O(µ3) O(µ3) µ2 (hxK21 + hyK22) +O(µ3)
O(µ2) O(µ2) O(µ3)

 q. (73)

The order of each term is considered when nondimensionalising the system in Section 2.1, as in
equations (11–13). Due to the assumed slow variance in depth, it is sufficient to take the lowest order
approximation of q, given by a linear interpolation of the form

q(x, y, z, t) =
z

h(x, y, t)
+O(µ). (74)

We note that the induced stresses do not act along the direction of the vortex filament. This can
be shown by first noting that T (0)r′(0) = 0. To check it is true for arbitrary s, we make use of the
rotation matrix (70), to find that

T (s)r′(s) =
[
R(s)T (0)R−1(s)

]
[R(s)r′(0)] = 0. (75)

Therefore, at z = h(x, y, t), it is the case that

Tijnj = 0, at z = h(x, y, t). (76)

The above relation is used to reduce the dynamic boundary condition (8).

B Derivation of the NLS equation

Using the method of multiple scales, we introduce slowly varying spatial and time variables:

X = εx, T = εt, τ = ε2t, ξ = X − cgT. θ = kx− wt. (77)

Here, cg = dw/dk is the linear group velocity. The unknowns ψ = [h, u, v]
T

are sought as a pertur-
bative expansion with small parameter ε

ψ = ψ1ε+ψ2ε
2 + · · · . (78)
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At leading order, we seek a slowly varying modulated wavepacket propagating with speed cg in the
x direction, with a carrier wave of wavenumber k and frequency w. This is written as

ψ1 = A11(ξ, τ)eiθ + c.c, (79)

where A11 is a function to be found, and c.c. stands for complex conjugate. The system at O(ε)
gives that

M1A11 = 0. (80)

where

Mn =


−inw ink 0

ink −inw
(
1 + 1

3n
2µ2k2

)
−µ
(
f̂ − n2νk2

)
0 µ

(
f̂ − n2νk2

)
−inw

 (81)

To ensure equation (80) has (infinitely many) non-trivial solutions, it must be that det(M1) = 0.
This gives rise to the linear dispersion relation w = w+, w = w−, or w = 0, where

w± =
k

±
√

1 + 1
3µ

2k2
. (82)

We choose the w+ branch, and write w = w+ for the rest of this Appendix. The vector A11 is chosen
to be

A11 =

 1
w
k

− iµ(f̂−νk
2)

k

A(ξ, τ), (83)

where A is the complex amplitude of h. Since det(M1) = 0, a system of the form

M1F = G, (84)

for any non-zero vectorG will have non-trivial solutions F if the left eigenvector L1 = [1, w/k, i(−νk+

f̂/k)]T of M1 is orthogonal to the vector G. This solvability condition will be used at higher order
to recover the NLS equation, as shown below.

We seek a second order solution of the form

ψ2 = A20 +

2∑
n=1

[
A2n(ξ, τ)einθ + c.c

]
. (85)

Substituting the above into the system of equations (28)-(29), we recover the system

MiA2i = Ci, i = 0, 1, 2, (86)

where

C0 =

 0
0

−2µw f̂
k |A|

2

 , (87)

C1 =


cg − w

k
w
k cg

(
1 + 1

3µ
2k2
)
− 1 + 2

3µ
2w2 − 2µ2kν

(
νk − f̂

k

)
cgµi

(
νk − f̂

k

)
− 2µνi

Aξ, (88)

C2 =


−2iw(

−w
2

k

(
1− 5

3µ
2k2
)
− µ2ν

(
νk3 − f̂k

))
i

µw
(

2νk − f̂
k

)
A2. (89)
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It can be checked that C1 is orthogonal to L1. Hence, there are infinitely many solutions A21, where
it is found that the choice has no effect on the NLS equation recovered. We take

A21 =
[
0, i

k

(
w
k − cg

)
, µ

(
ν + f̂

k2

)]T
Aξ. (90)

Solving for A22, we find

A22 =


1 + µ2

(
f̂2

k2 − 2νf̂
)

w
k

(
2w

2

k2 − 1 + µ2
(

2νf̂ − 3
2
f̂2

k2

))
iµ
2k

(
4w2ν − f̂ + µ2

(
f̂2ν − f̂3

k2

))
 A2

2− 2w
2

k2 + µ2
(

5
2
f̂2

k2 − 4νf̂
) . (91)

Unlike M2, M0 has a zero eigenvalue, with a corresponding left eigenvector L0 = [1, 0, 0]T , which is
orthogonal to C0. Therefore, there are infinitely many solutions for A20. We write

A20 =
[
P (ξ, τ),− 2wµ

k |A|
2, 0
]T
, (92)

where the function P is recovered from the oscillation-free terms at the next order. We note here
the curious fact that the NLS we derive for non-zero f̂ is does not reduce to the Coriolis-free NLS
equation in the limit as f̂ → 0, such as the one derived in Ref. [13]. The difference stems from
second-order contributions to the mean flow. The linear operator for k = 0, w = 0 in the Coriolis-free
case is the zero matrix, while for non-zero f̂ , it is M0. For f̂ = 0, the vector A20 would take the
form A20 = [P,Q,R] with P , Q, and R being functions of ξ and τ recovered from the oscillation-free
terms at O(ε3). To find solitary wavepackets, which require a minimum in the dispersion relation

(see discussion in section 4), we focus on the case of non-zero f̂ .
At O(ε3), we seek a solution of the form

ψ3 = A30 +

3∑
n=1

[
A3n(ξ, τ)einθ + c.c

]
. (93)

This results in a system of equations given by

MiA3i = Di, i = 0, 1, 2, 3, (94)

where

D0 =


Pξ

−Pξ +
(
k2ν2 + f̂ν − w2

k2

(
1− 1

3µ
2k2
)
− 2cg

w
k

(
1 + 1

3µ
2k2
)) (
|A|2

)
ξ

f̂
k2 (cgk − w)

(
A∗Aξ −AA∗ξ

)
 ,

D1 = −A11Aτ +

 −iw
2
3 ikµ

2w2

0

PA+

 − i
k

(
w
k − cg

)
i
(

3kν2 + f̂ν
k + 1

3kµ
2w2 − 4

3cgµ
2w + cgγ

w
k2 −

1
k c

2
gγ
)

νw
k + cg

λ
k2

Aξξ

+


3iw − 2iwδ

i
(
w2

k

(
3− 1

3µ
2k2
)
− f̂kν − k3ν2 +

(
−w

2

k2

(
1 + 1

3µ
2k2
)

+ 2k3ν2 + f̂kν
)
δ
)

w
(

3f̂
k − 2kν

)
+ w

(
kν − 2f̂

k

)
δ

 |A|2A,
where

γ = 1 +
1

3
µ2k2, δ =

[
1− 2νf̂ + f̂2

k2

]
2− 4νf̂ + 5

2
f̂2

k2 − 2w
2

k2

. (95)

The solvability condition requires both that D0 is orthogonal to L0, resulting in Pξ = 0, and that
D1 is orthogonal to L1, resulting in the celebrated NLS equation

iAτ +
1

2

d2w

dk2
Aξξ = β|A|2A, (96)

where

β = −w2µ4f̂2(f̂ − k2ν)(f̂ − 2k2ν) + µ2f̂(k2 + 2w2)(3f̂ − 4k2ν) + k4 + 4k2w2 − 8w4[
µ2f̂(5f̂ − 8k2ν) + 4k2 − 4w2

] [
µ2(f̂ − k2ν)2 + k2

] . (97)
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[36] F. Serre. Contribution à l’étude des écoulements permanents et variables dans les canaux. La
Houille Blanche, (6):830–872, 1953.

[37] V. Soni, E. S. Bililign, S. Magkiriadou, S. Sacanna, D. Bartolo, M. J. Shelley, and W. T. M.
Irvine. The odd free surface flows of a colloidal chiral fluid. Nature Physics, 15(11):1188–1194,
Sept. 2019.

[38] A. Souslov, K. Dasbiswas, M. Fruchart, S. Vaikuntanathan, and V. Vitelli. Topological waves in
fluids with odd viscosity. Physical Review Letters, 122(12):128001, 2019.

[39] A. Souslov, A. Gromov, and V. Vitelli. Anisotropic odd viscosity via a time-modulated drive.
Physical Review E, 101(5):052606, 2020.

[40] C. Tauber, P. Delplace, and A. Venaille. A bulk-interface correspondence for equatorial waves.
Journal of Fluid Mechanics, 868:R2, 2019.

[41] C. Tauber, P. Delplace, and A. Venaille. Anomalous bulk-edge correspondence in continuous
media. Physical Review Research, 2:013147, Feb 2020.

[42] P. Wiegmann and A. G. Abanov. Anomalous hydrodynamics of two-dimensional vortex fluids.
Physical Review Letters, 113:034501, Jul 2014.

22


	1 Introduction
	2 Formulation
	2.1 Nondimensionalisation and scaling

	3 Shallow-water approximation and depth averaging
	4 Linear and weakly nonlinear theory
	4.1 Linear theory
	4.2 Weakly nonlinear theory

	5 Fully nonlinear computations
	5.1 Solitary waves for f=0
	5.2 Solitary waves for f=0

	6 Conclusion
	A Odd viscosity relative to vortex filament
	B Derivation of the NLS equation

