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Abstract- The modularity of a modular multilevel dc converter 

(MMDC) makes it attractive for medium voltage distribution 

systems. Inherent balance of submodule (SM) capacitor voltages 

is considered as an ideal property which avoids a complex sorting 

process based on many measurements thereby reducing costs and 

enhancing reliability. This paper extends the inherent balance 

concept previously shown for square-wave modulation to a 

multilevel version for MMDCs. A switching duty matrix dU is 

introduced: it is a circulant matrix of preset multi-level switching 

patterns with multiple stages and multiple durations. Inherent 

voltage balance is ensured with a full-rank dU. Circulant matrix 

theory shows that this is equivalent to a simplified common factor 

criterion. A non-full rank dU causes clusters of SM voltage rather 

than a single common value, with the clusters indicated by the 

kernel of the matrix. A generalized co-prime criterion is 

developed into several deductions that serve as practical guidance 

for design of multilevel circulant modulation. The theoretical 

development is verified through full-scale simulations and down-

scaled experiments. The effectiveness of the proposed circulant 

modulation in achieving SM voltage balance in an MMDC is 

demonstrated.  

Index Terms- Multilevel circulant modulation, inherent 

balance, submodule capacitor voltage, modular multilevel dc 

converter (MMDC) 

 

I.  INTRODUCTION 

Medium voltage dc (MVdc) technology is a promising 

solution that can supplement and enhance existing AC grids 

and thereby enable integration of greater volumes of 

distributed renewable energy sources, energy storage and large 

industrial loads. MVdc is also a way to link and coordinate 

existing low voltage dc (LVdc) distribution [1]-[3]. The 

modular multilevel dc converter (MMDC) has already become 

a competitive candidate among various options for dc-dc 

transformers that interface between the dc systems with 

different voltages because of its superior flexibility, scalability, 

and reliability [4], [5]. As an extension from an isolated dual-

active bridge (DAB) or an LLC structure, the MMDC contains 

a medium frequency transformer as part of internal ac stage 

that provides isolation and facilitates high step-down ratios 

with enhanced power density[6], [7]. The primary, MV, side 

of the MMDC comprises series submodules (SMs) whereas 

the secondary, LV, side is either a controllable active full-

bridge or a diode-based uncontrolled rectifier bridge. 

Therefore, the MMDC inherits the merits of both the modular 

multilevel converter (MMC) and the DAB (or LLC) 

topologies including high modularity and high efficiency. 

A fundamental requirement for stable operation for an 

MMDC, and indeed a whole dc system, is that the SM 

capacitor voltages are well balanced at all times [8]. This can 

be achieved by allocating the SM insertion based on their 

position when ranked by voltage as is typically the case in 

MMC dc-ac conversion [9]. However, the sampling and 

switching frequency should be higher than the ac stage 

frequency to obtain a positive or negative arm current within 

an ac fundamental period for charging or discharging the SM 

capacitors, which would limit the internal ac stage frequency 

and decrease the power density of MMDCs. In recent studies, 

the SM capacitor voltages in MMDCs are regulated by the 

reassignment of gating signals according to the double-sorting 

process for both the SM capacitor voltages and their net 

increments during last period [10]-[13]. The ac frequency 

could reach the switching frequency, but it is still strictly 

limited by the time of sensor data communication and 

complex sorting computation. For both methods, the central 

controller should be equipped with high computing 

performance to realize the real-time SM capacitor voltages 

sampling, storing and sorting. Besides the dilemma between 

operating frequency and computational complexity, on the 

other hand, the sorting and reassigning process makes it 

unpredictable for the SM switching actions. Switching 

frequency and current stress are different for each SM, which 

indicates the lack of operating uniformity and leads to 

deviation of lifespans. 

Inherent balance capability for the SM capacitor voltages 

is expected as an ideal characteristic to improve the operating 

frequency and reduce the control burden, which helps to curtail 

the converter implementation costs with enhanced reliability 

[14]. Compared with the aforementioned balance scheme 

basing on common sorting algorithms, the computational 

complexity of the inherent balance modulation significantly 

reduces from O(n2) to O(1) where n is the SM number in one 

arm, which allows decentralized control with much cheaper 

local controllers and simplifies the expansion of SM for higher 

voltage application. High-speed communications, real-time SM 

voltage feedback and sorting-reassigning process would be 

unnecessary since the SM capacitor voltages are self-balanced 

and self-regulated. The fast but expensive field programmable 

gate arrays (FPGAs) can be avoided, that is always equipped in 

typical MMCs as the part of central controller for satisfying the 

high computational complexity of sorting process [15]. Further, 

a high ac stage frequency can be achieved without increasing 

any computational burden for control system and the converter 

could even keep working in open-loop control if some of the 

SM voltage sensors fail. 

The balanced SM voltages under open-loop control have 

been observed in both MMCs [16]-[19] and MMDCs [20], [21] 
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Fig. 1 Schematics of the MMDC 

with rotated switching patterns. Firstly, by analyzing the 

steady-state operation under the pure sinusoidal ac output, the 

arm current of MMC is considered as the superposition of 

fundamental component and dc component, then SM voltages 

could be estimated step-by-step. The switching patterns of 

each SM is then decided to keep SM voltages stable with 

additional demands on fundamental switching frequency 

operation for each SM [16] or reducing the SM capacitor 

voltage ripple by adding switching actions [17]. However, 

these works could not explain the dynamic phenomena that the 

SMs initially with different voltages could converge to 

balance with switching pattern rotation [18] and the SM 

voltage balance would not be affected by changing operating 

condition or circuit parameter variation [16], [17]. Moreover, 

unbalanced cases have appeared in MMDC operation [22] 

since the waveform of arm voltage is more flexible in 

MMDCs aiming at soft-switching or increasing dc voltage 

utilization rather than simply tracing a sinewave like MMCs, 

which leads the harmonics in arm current non-negligible and 

the SM voltage estimation very complex. 

Capturing the circulant feature of switching patterns, the 

circulant modulation is specified in [23] that each SM 

circularly repeats the preset switching patterns every circulant 

cycle, and the later SM refers the former one with a 

fundamental cycle lagging. The circulant matrix is then 

introduced to deduce the steady-state inherent balance 

criterion [23] and clarify the inherent converging dynamics 

[24] for square-wave operation. The matrix allows a more 

generalized and theoretical way to analyze the circulant 

modulation regardless of the operation condition, which 

effectively simplifies the SM voltage balance prediction. 

However, the square-wave modulation is hardly applied 

in practice, for the voltage with high dv/dt is generated as the 

input of the internal passive ac stage. The arm inductors and 

the primary winding of the transformer share dv/dt stress when 

several SMs are simultaneously inserted or bypassed, which 

would shorten the lifespans of magnetic elements. Thicker 

insulation materials are demanded that decrease the power 

density and limit the heat dissipation [25]. The power losses of 

the transformer increase due to high-frequency harmonics, 

which lowers the total efficiency and further complicates the 

thermal design at the same time [26]. Electromagnetic 

interference (EMI) performance tends to deteriorate, that is 

also the crucial issue for the reliability and safety of MMDCs 

[27]. To reduce dv/dt stress for the transformer, modulation 

with more voltage levels is expected for the primary winding. 

Trapezoidal, sinusoidal and quasi-square modulation are 

proposed in literature for MMDCs to realize multi-level stack 

output [28]-[30].  

So far, few studies have discussed the inherent SM 

voltage balance for MMDCs with multi-level operation. In this 

paper, a generalized multilevel circulant modulation is 

presented for MMDCs and proven to possess inherent balance 

capability under certain criteria. The preset stack switching 

patterns over a fundamental cycle are described state by state 

for a three-level circulant modulation as the simplest case, and 

then abstracted as a switching duty matrix dU for a full 

circulant cycle. A full-rank dU is revealed to promise the 

inherent balance capability, and a simplified common factor 

criterion is deduced through circulant matrix theory to make 

the condition more applicable. A non-full rank dU is indicated 

causing clusters of SM voltage rather than a single common 

value, with the clusters identified by the kernel of the matrix. 

A generalized coprime criterion with several deductions is 

further illustrated as practical guidance for multilevel circulant 

modulation. Full-scale simulations and down-scaled 

experiments are presented for both inherently balanced cases 

and unbalanced cases, that validate the theoretical analysis and 

deduced criterion. 

 

II. BASIC DESCRIPTION FOR  

MODULAR MULTILEVEL DC-DC CONVERTER 

As shown in Fig.1, two dc systems with different voltage 

levels of ±VM and +VL are linked by the MMDC. The MVdc 

side of the MMDC is a single-phase MMC bridge, which 

contains an arm inductor and a stack with n half-bridge SMs in 

both the upper and the lower arm. The LVdc side is a full-

bridge with a smoothing capacitor CL connected to the LVdc 

bus. An ac passive stage including a medium-frequency 

transformer with a step-down ratio of rT=N1/N2 is applied to 

link and isolate between the MVdc side and the LVdc side. 

The primary winding of the internal transformer is connected 

between the midpoint of the MMC arms and the neutral point 

created by the dc-link capacitor CCU and CCL, while the 

secondary winding is connected to the full bridge in the LV 

side. LU and LL are the equivalent arm inductors of the MMC 

arm inductor and the transformer leakage inductor, that act as 

the phase-shift inductor in DAB-based MMDC, while act as 

the resonant inductor in LLC-based MMDC. An additional 

resonant capacitor Cr is equipped between the midpoint of the 

MMC part and the transformer for the LLC-based MMDC to 

form the resonant tank with the equivalent arm inductors and 

the magnetizing inductor, that is shown in dashed box in Fig.1.  
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Fig. 2 Three-level voltage generation within one fundamental cycle. (a) Three-level stack voltage output (b) SM switching patterns (For each SM, S=1 means 

inserting the SM capacitor into the circuit, while S=0 means bypassing it from the circuit). (c) Circuits of the voltage loop of upper arm (Colored SMs means being 

inserted, while grey SMs means being bypassed).  
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Fig. 3 Switching patterns with circulant modulation. 

The ac voltage for exciting the internal ac passive stage is 

generated by the MMC part according to the variation of the 

inserted SMs in the upper and the lower arms. The ac current 

is equally distributed in both arms, which leads the potential of 

point U and point L to be the same, vU=vL. The upper and 

lower arm inductors can be considered as parallel connected 

from the ac side’s point of view. For the DAB-based MMDC, 

the MMC bridge and the active full bridge should operate at 

the same frequency and the power flow is controlled by the 

phase-shift angle φ, which is the lagging angle between the 

primary winding voltage vLm and the stack midpoint voltage 

vUO (or vLO). For the LLC-based MMDC, the MMC bridge 

should work around the resonant frequency of the resonant 

tank to control the output power. 

 

III. THREE-LEVEL CIRCULANT MODULATION 

As the simplest case of the multilevel modulation, the 

three-level circulant modulation is firstly illustrated as a clear 

example as follow. The three-level ac voltage is generated by 

the MMC stacks and applied to the passive stage of the 

MMDC. It halves dv/dt stress for the ac passive components 

compared with the square-wave voltage, since the maximum 

voltage step is less than half of dc bus voltage.  

The upper stack operation within an ac fundamental cycle is 

shown in Fig. 2. One fundamental cycle, denoted as TFC, can 

be divided into four stages with different inserted SM numbers. 

Firstly, all the n SMs are inserted in the upper arm, the stack 

voltage is higher than the clamping capacitor voltage. The 

negative stage is hence defined for vUO being negative. Then, 

the zero stage is defined as (n+m)/2 SMs being inserted 

[1≤m<n-1, (n+m)/2∈N*] in both the upper and lower stack. 

The stack voltage equals the dc-link capacitor voltage, which 

leads vUO to be zero. After that, in the positive stage, n-m SMs 

are bypassed and the remaining m SMs are inserted in the 

upper stack, resulting the stack voltage being lower than the 

dc-link capacitor voltage and vUO being positive. Finally, 

another zero stage is added to form a symmetrical voltage 

wave. The summation of the inserted SMs in both arms is a 

constant to keep the dc bus voltage and the SM capacitor 

voltages stable. It means that when m SMs are inserted in the 

upper arm during the positive stage, n SMs are inserted in the 

lower arm. Conversely, n SMs are inserted in the upper arm 

and m SMs are inserted in the lower arm during the negative 

stage. 

Different time durations are designed for stages 

considering the generalization and symmetry. The length of 

the negative stage and the positive stage are the same, which 

are a times the zero stage length, where a can be an arbitrary 

positive value. With a larger a under a given n, m value set, 

the fundamental component of the MMC generated three-level 

voltage is magnified to improve the dc voltage utilization. 

According to the switching pattern and the insertion duration 

within one fundamental period, n SMs within one stack can be 

divided into 3 groups. The switching duty of the ith (i≤n) SM 

is known as the ratio between its inserted-state duration and 

the whole fundamental period, that is denoted by di. As shown 

in Fig. 2(b) and Fig. 2(c), (n-m)/2 SMs in purple are only 

inserted during negative stages, thus d=a/(2a+2). Another (n-

m)/2 SMs in orange are bypassed during positive stages with 

d=(a+2)/(2a+2). The remaining m SMs in blue are inserted for 

the whole TFC, and their switching duties are d=1. 

Circulant modulation is applied to evenly distribute power 

losses and uniform all SMs. As shown in Fig. 3, the driving 

signal for each SM circularly lags behind the former SM for 

TFC. In other words, the driving signal of the ith (i=2,3,⋯,n) 
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SM for the jth (j=2,3,⋯,n) fundamental cycle respects to that 

of the (i-1)th SM for the (j-1)th fundamental cycle, and the 

first SM follows the last SM. For a specific SM, the driving 

signal of the (j+n)th fundamental cycle is same as the jth one, 

which shows the circularity of the circulant modulation. Full 

circulant cycle is hence defined as TCC=nTFC, which is the 

cycle for a SM rotating back to the initial switching state.  

For the n SMs in one stack within each fundamental cycle, 

m SMs keep inserted and the other n-m SMs should switch 

once. Thus the average switching period for the SM is defined 

as TSW =
n

n m− TFC, which means that the switching frequency is 

lower than the fundamental frequency.  

Take the upper arm as an example for detailed analysis. 

According to the Kirchoff voltage law (KVL), the voltage 

loop of the upper arm can be expressed as (1) during each of 

the stages for the first fundamental cycle 

  ( , , )UO CCU sU CCUv v v v x n z p= − = −  =T

x1U CU
S v   (1) 

where vCCU, vsU and vUO are the instantaneous voltage of the 

upper dc-link capacitor, the upper stack and the ac passive 

stage. Considering that the ac passive stage consists of the 

equivalent arm inductors and the transformer for the DAB-

based MMDC, vUO=vLU+vLm. For the LLC-based MMDC, 

vUO=vLU+vLm+vCr with an additional resonant capacitor 

included. vCU=[vCU1 vCU2 ⋯ vCUn] and Sx1U=[Sx11 Sx12 ⋯ Sx1n] are 

both n-dimensional vector, whose elements indicate the 

instantaneous capacitor voltages and the switching states of 

each SM in the upper stack, respectively. Sn1U, Sz1U and Sp1U 

are defined as the switching vector of the upper stack for the 

negative stage, the zero stage and the positive stage for the 

first fundamental cycle, respectively.  
The voltage loop of the upper arm is show in Fig. 2(c) for 

each stage of the first fundamental cycle. The corresponding 

switching vector is shown in (2) respectively as 

 

( ) / 2 ( ) / 2

( ) / 2 ( ) / 2

( ) / 2 ( ) / 2

[1 1 1 1 1 1 1 1 11 11]

[00 00 1 1 1 1 11 11]

[00 00 00 00 11 11]

n m n m m

n m n m m

n m n m m

− −

− −

− −

=

=

=

1

1

1

n U

z U

p U

S       

S     

S   

  (2) 

The element of 1 or 0 in Sx1U denotes that the SM 

capacitor is inserted into or bypassed from the conducting 

circuit, respectively. For the first fundamental cycle, Sn1U 

denotes that all the n SMs are inserted for the negative stage. 

Sz1U indicates that the first (n-m)/2 SMs are bypassed for the 

following zero stage, while the last (n+m)/2 SM keep their 

inserted state. Sp1U represents that another (n-m)/2 SMs are 

bypassed for the positive stage, while the remaining last m 

SMs are inserted. For the final zero stage, the switching vector 

is back to Sz1U. 

According to the definition of SM’s switching duty 

mentioned above, the switching duty vector of the upper stack 

for the first fundamental cycle can be derived as  

 
( ) / 2 ( ) / 2

1 1 1 1 2 2 2 2 3 3 3 3

2

2 2 2 2 2 2

[ ]

n m n m m

a a

a a a

D D D D D D D D D D D D

− −

= + +
+ + +

=

1 1 1 1U n U z U p Ud S S S

        

  (3) 

where D1=a/(2a+2), D2=(a+2)/(2a+2) and D3=1. It should be 

emphasized that with the proposed modulation method, the 

switching duty vector can not only indicate the SMs’ insertion 

duration but also fully represent the switching patterns of the 

stack, since SMs with same switching duty share the 

completely identical switching actions within the fundamental 

cycle.  

For the following n fundamental cycles within a full 

circulation cycle, the voltage relationship for the upper arm 

can be always expressed as (1) but with different switching 

vectors denoted as SxiU (i=1,2,⋯,n). The preset switching 

sequence is determined by the circulant modulation as 

illustrated in Fig. 3.  

For the second fundamental cycle, the switching vectors 

Sx2U can be derived from Sx1U with a circular shift of each 

element, which means that the switching state (1 or 0) of the 

former SM in Sx1U is assigned to the later SM in Sx2U, and the 

first element in Sx2U is same with the last element in Sx1U, i.e., 

Sn2U is still an all-one vector, 
( )/2 ( )/2

[10 00  00 00  01 11]

mn m n m− −

=
2p U

S  and 

( )/2 ( )/2

[10 00  01 11 11 11]

mn m n m− −

=
2z U

S . The switching duty vector for the 

second fundamental cycle can be calculated according to its 

definition, or it can be also derived by rotating the elements in 

d1U, that is 

 
( ) / 2 ( ) / 2

3 1 1 1 1 2 2 2 2 3 3 3[ ]

mn m n m

D D D D D D D D D D D D

− −

=2Ud         
  (4) 

Since the stack contains n SMs and correspondingly, 

switching vectors contain n elements, the nth fundamental 

cycle is the last one within a full circulation. The switching 

vectors of it can be obtained by shifting the elements in Sx1U 

for n-1 times, that can be written as [1 1  1 1]

n

=nnUS for the 

negative stage,
( )/2 ( )/2

[00 00  00 01 11 10]

mn m n m− −

=pnUS  for the positive 

stage and 
( )/2 ( )/2

[00 01 11 11 11 10]

mn m n m

znU

− −

=S  for the zero stage. Thus, 

the switching duty vector of the last fundamental cycle is 

obtained as 
( )/2 ( )/2

1 1 1 2 2 2 2 3 3 3 3 1[         ]

mn m n m

D D D D D D D D D D D D

− −

=nUd . With 

another shift, the switching vectors and the switching duty 

vector will be back to the initial state as Sx1U and d1U, and a 

new circulation starts then. 

In steady-state operation, the fundamental cycle is the 

operating cycle for the internal ac stage, thus the integral of 

vUO over TFC is zero. Furthermore, compared with their normal 

value, the voltage fluctuation is fairly small for the dc-link 

capacitor CCU and CCL, thus the instantaneous voltage values 

vCCU in (1) can be approximated by the average value 

VCCU=VM at any time. The SM capacitor voltage difference 

between stages within one fundamental cycle can be also 

neglected since the stage periods are quite short. Thus, it can 
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be derived from (1) that SM capacitor voltages are regulated 

by the switching patterns and the bus voltage, which is written 

as 

 
0

1
=

2
( )
2 2 2 2 2 2

TFC

M
FC

V dt
T

a a

a a a




= + +  = 
+ + +

 1 1

1 1 1 1 1

T
x U C U

T T
n U z U p U C U U C U

S v

S S S v d v

 (5) 

where 1 1 1 2 1=[  ]C U C U C Unv v v
1C U

v is the vector of average SM 

capacitor voltages for the first fundamental cycle. For the 

following fundamental cycles, similar voltage equations can 

be obtained with a corresponding switching duty vector. 

The circulant cycle is the operation cycle for the SM 

capacitors. The average SM capacitor voltages over each 

circulant cycle, denoted as 1 2[  ]CU CU CUnv v v=
CU

v , keep 

constant in steady state. Considering that the fundamental 

frequency of the MMDC reaches several kilohertz and the 

number of the total SMs in a stack are usually no more than 

dozens, the circulant cycle is short and the SM capacitor 

voltage ripple within TCC is also small, 1C U
v  in (5) can be 

further approximated by CU
v . Thus, all the voltage equations 

for each fundamental cycle can be integrated by a linear 

equation set as  

 [  ]M M MV V V =T T

U CU
d v   (6) 

where dU is the switching duty matrix for the circulant cycle, 

which fully represents the stack switching patterns determined 

by the circulant modulation and is written as 
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  (7) 

CU
v  can be calculated by the linear equation set in (6). 

The solution of CU
v  represents the steady state average 

voltage of each SM capacitor. If the elements in CU
v  are the 

same, it means that the capacitor voltages are inherently 

balanced relying on the preset circulant modulation. Otherwise, 

capacitor voltages stand at different values and additional 

feedback control is demanded at any time to keep SM voltage 

balanced.  

 

 

IV. INHERENT BALANCE CAPABILITY 

The switching patterns for the circulant modulation and 

the steady-state SM capacitor voltages are abstracted by the 

set of linear equations in (6). According to the theory of linear 

algebra, the solution of variable vector is determined by the 

coefficient matrix, which means that CU
v  is decided by the 

switching duty matrix dU here. If the solution is unique with 

equal elements, the MMDC is said to have inherent balance 

capability. By investigating the rank of dU, the condition of 

inherent balance capability for the circulant modulation is 

revealed as follow.  

A. Full Rank and Complete Circulation 

For a n-dimensional linear equations set expressed as 

Ax=b, where A is an n×n coefficient matrix, x is a column 

vector involving n variables and b is a given column vector, 

the unique solution can be gotten if and only if the coefficient 

matrix A is full rank [31]. This full-rank condition promises 

the linear independence for all the n row vectors in A, which 

gives a complete constraint for the n variables.  

For the voltage equation set in (6), the sufficient and 

necessary condition for the n-dimensional variable vector CU
v  

to get a unique solution is that the rank of the switching duty 

matrix equals n, which can be expressed as 

 rank( ) n=
U

d   (8) 

Since each row vector of dU represents the switching 

pattern for one fundamental cycle, a full-rank dU indicates that 

n switching patterns for n fundamental cycles within one full 

circulation cycle are linearly independent and irreplaceable. 

None of them is the repetition or linear combination of each 

other, which guarantees the steady-state SM capacitor voltages 

are fully constrained by the switching actions. 

Furthermore, noting that dU determined by circulant 

modulation is a circulant matrix, whose elements of each row 

are identical to those of the previous row but are moved one 

position to the right and wrapped around, the solution of SM 

capacitor voltages should be rotationally symmetrical. Thus, 

as long as the unique solution exists, elements in the capacitor 

voltage vector CU
v  should be the same 

 1 2

2
= M

CU CU CUn

V
v v v

m n
= = =

+
  (9) 

It means that the inherent balance of average capacitor 

voltages is realized. The full-rank dU provides a complete 

rotation of the SMs, thus the SM voltages would be inherently 

balanced by the circulant modulation if the balance criterion is 

satisfied, which could be considered that the SM capacitors 

are equally and separately clamped by the dc bus capacitor. 

The circulant modulation directly and strongly constrains the 

SM voltages with open-loop control, while voltage feedback, 

sorting and choosing are unnecessary.  

On the contrary, if rank( ) nUd , precisely rank( ) nUd , 

dU has linearly dependent row vectors. Although there are still 

n switching patterns within a circulation cycle, one or some of 

them can be replaced by others. The rotation is not complete 

and the energy cannot be evenly shared between SMs. The SM 

capacitor voltages in steady state are decided by the initial 

state and hardware parameters, that will not be well balanced 

by circulant modulation. 

 

B. Simplified Mathematical Criterion  

The inherent balance condition based on the circulant 

modulation is theoretically described by (8), but a simpler 

criterion is expected to guide the practical design. Since dU is 

determined by n and m, the full-rank property can be 

reclarified by the relationship between n and m. 
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According to the circulant matrix theory [32], an n-

dimensional circulant matrix C can be expressed by the full-

rank Vandermonde matrix V as 
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where
1

1,  0,1, , 1
q

n q
k q ka k n 

=

−
= = − , which are n eigenvalues of 

C; 
2

k

k
ni

e





= , which are the nth roots of unity ( 1n

k = ) and i 

is the imaginary unit (i2=−1). Since V is a full-rank matrix, C 

is similar to diag(λ0, λ1,⋯, λn-1) and has the same rank with this 

diagonal matrix. Thus, C will be a full-rank matrix if and only 

if all eigenvalues are nonzero, otherwise, the rank of C equals 

the number of nonzero eigenvalues among λ0, λ1, ⋯, λn-1. 

For the circulant matrix dU, the eigenvalues can be 

expressed as  
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For the first eigenvalue, it can be always calculated that 
02π

1k

k
ni

e e


= = = , then λ0 = (m+n)/2 ≠ 0, which is a nonzero 

eigenvalue. When k≠0, ωk≠1, other eigenvalues can be 

calculated as 
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 (12) 

If a k can be found to make 2
n m k

n
+

 and 
m kn  being integer 

at the same time, the corresponding eigenvalue λk could be 

zero, and the rank of switching duty matrix is less than n. The 

inherent balance capability is absent with this circulant 

modulation. 

The greatest common divisor of n, m and 2
n m+

, denoted 

as g=gcd(n, m, 2
n m+

), is introduced here to identify the 

existence of zero eigenvalue. If g>1, the eigenvalue λn/g equals 

0 since 2
n m k

n
+

=
( )/2n m

g
+

and 
m kn =

m
g  are integers together, 

which leads rank(dU)<n. On the contrary, if g=1, although k1 

can be found as gcd(n, 2
n m+

) or its prime factors and k2 can be 

found as gcd(n, m) or its prime factors to let the former or 

latter part in (12) to be zero separately, k1 and k2 have no 

intersection set to get a zero eigenvalue.  

Therefore, the full-rank condition in (8) of inherent 

balance can be simplified as  

 gcd( , , ) 1
2

n m
n m

+
=   (13) 

Since the condition in (13) only relates to n and m, while a is 

irrelevant to the matrix rank, it indicates that the specific 

switching duty length has no effect on the balance feature. As 

long as the number of the inserted SMs during each of the 

stages have no common factor larger than 1, n independent 

switching patterns are completely circulated and energy 

equally flows among each SM. The circulant modulation 

guarantees the inherent balance capability of SM capacitor 

voltages. It promises a self-regulated open-loop control 

instead of feedback and sorting processes by the central 

controller.  

 

C. Kernel and Cluster 

The inherent balance property is lost for the circulant 

modulation with a non-full rank switching duty matrix. To 

obtain the whole picture of the circulant modulation, how the 

capacitor voltages splitting in steady state for these 

unbalanced cases is revealed as follow by further exploring the 

kernel of switching duty matrix. 

Generally, the complete solution of a linear equation set 

Ax=b can be expressed as x=xg+x∗, where xg is the general 

solution satisfying the corresponding homogeneous equation 

set Ax=0, while x∗ is the particular solution satisfying Ax=b. 

The set of all the general solutions is defined as the kernel of 

A, which can be expressed as ker(A)={x: Ax=0}. The rank-

nullity theorem [33] is introduced here to clarify the 

relationship between the rank of A and the dimension of its 

kernel, which is  

 rank( ) nullity( ) n+ =Α Α   (14) 

where nullity(A)=dim(ker(A)), i.e., the nullity of A is the 

dimension of ker(A).  

Therefore, for the equation set with a full-rank coefficient 

matrix, nullity(A) equals 0. The general solution can be only 

the zero vector, namely, xg=0, hence the particular solution x∗ 

is the single solution to Ax=b. For rank(A)<n and nullity(A)>0, 

numerous nonzero general solution vectors exist for Ax=0. 

Then the complete solution losses the uniqueness and 

numerous solutions can be found for this equation set with the 

constrain of A. 

Focus back on the SM capacitor voltages solved by the 

linear equations in (6). If the switching duty matrix is full-rank, 

the voltages are fully regulated by the switching patterns and 

the dc bus. From the equation set’s point of view, the general 

solution to 
T

U CUd v = 0  only contains the zero vector. The 

particular solution can be always obtained as (9), which is also 

the complete solution that indicates the inherent balance 

capability. On the contrary, with g=gcd(n, m, 2
n m+

)>1, (g-1) 
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zero eigenvalues can be found as λn/g, λ2n/g, ⋯, λ(g-1)n/g for dU, 

while other eigenvalues are nonzero. Thus, rank(dU)=n-(g-1) 

and nullity(dU)=g-1≠0, the switching patterns expressed by 

dU can only provide n-(g-1) independent constraints for n SM 

in one stack, which implies that (g-1) independent solution 

vectors can be found for 
T

CUv satisfying  = 0
T

U CUd v . The 

switching patterns provide incomplete constrains for the SM 

capacitor voltages, which leads to the SM voltages clustering. 

A group of independent general solution vectors can be 

readily obtained for (6) according to the circulant feature of 

the switching duty matrix and the rotational symmetry of the 

solution, that are expressed by the kernel of dU in (15) as an 

n×(g-1) matrix. Since the nullity of dU is (g-1), all of other 

possible solution vectors can be represented by the linear 

combination of the column vectors in ker(dU), that indicate the 

same relation of the voltage variables. 
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z1, z2, ⋯, zg-1 are independent constants. The general solution 

to T

U CUd v = 0  is obtained according to the column vectors of 

the kernel in (15) as 
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Finally, the complete solution of the voltage equation set 

in (6) is shown in (17), that has a similar structure with its 

general solution but is amended by the particular solution 

correlated with the bus voltage. 
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where v1, v2, ⋯, vg-1 are also a group of independent constants. 
2

i i Mn mv z V+= +  (i=1, 2, ⋯ , g-1), which is the summation of the 

general solution zi and the particular solution 2
Mn m V+ . Although 

these independent constants could be v1=v2=⋯=vg-1 = 2
Mn m V+  by 

chance indicating that the SM voltages are balanced at the 

same value, theoretically, v1, v2, ⋯, vg-1 could be arbitrary 

value only with the limit of DC bus voltage if the inherent 

balance criteria are unsatisfied. The steady-state SM voltages 

of each cluster would vary, which are affected by their initial 

voltages, the SM capacitance variation and the operating point 

including switching frequency and load condition, et. al. The 

lack of uniformity of SMs would lead to over-voltage for the 

SM with a higher voltage and shorten the lifespan of the whole 

converter. 

Therefore, for the number of inserted SMs in the positive 

stage, the zero stage and the negative stage being m, 2
n m+

 and 

n, as long as the greatest common devisor g of m, 2
n m+

 and n 

is larger than 1, the g-1 dimensional kernel of dU indicates that 

(g-1) independent solution vectors can be found for the steady-

state capacitor voltages. Considering the circulant switching 

patterns and the practical circuits, the SM would evenly split 

into g clusters. Only the n/g SMs included in one cluster are 

fully circulated and equally share the energy flow, which leads 

the voltages of them to be the same. The SMs in different 

clusters may have different voltages and the inherent balance 

capability is absent in steady state with these preset circulant 

switching patterns.  

 

D. Examples 

According to the previous analysis, by introducing the 

circulant switching duty matrix dU to describe the circulant 

switching patterns, a series of inherent balance criteria are 

derived for arbitrary total SM number or operating condition 

by analyzing the rank of dU, and the clustering feature is also 

clarified for unbalanced cases by the matrix kernel. The 

switching patterns of all the SMs in one stack for a circulant 

cycle could be considered as a whole to generate the desired 

voltage with the inherent balance capability identified, which 

avoids complicated arm current estimation and switching 

pattern calculation one-by-one for each SM and case-by-case 

for each operating point. 

For example, the inherent balance feature of the SM 

capacitor voltages can be predicted in the specific cases as 

follow. For an upper stack with 6 SMs, the number of inserted 

SM in the positive stage can be assigned as m=2 or m=4 to 

obtain an integer for (m+n)/2.  

If n=6, m=4 and (n+m)/2=5, the SM capacitor voltage 

equation set for a circulant cycle can be written as (18). The 

switching duty matrix is calculated with a=4 in this specific 

case as a representative, while the value of a has no effect on 

the inherent balance feature as analysis above.  
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  (18) 
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Fig. 4 Multilevel circulant modulation.  (a) Multilevel stack voltage within one fundamental cycle.  (b) Switching patterns of SMs within one fundamental cycle. 

(c) Switching patterns of SMs with switching state circulation within one circulant cycle 

Since no common factor other than 1 can be found for n, 

m and (n+m)/2, all the n eigenvalues of dU are nonzero, hence 

rank(dU)=6. The switching patterns for each fundamental cycle 

within one circulant cycle are linearly independent. Thus, the 

SM capacitor voltages are inherently balanced by the circulant 

modulation. Clamped by the upper capacitor CCU and 

calculated from (9), the steady-state average voltages of upper 

stack SM capacitors equally settle at the value of  

 1 2 6

1
= 

5
CU CU CU Mv v v V= = =   (19) 

However, with n=6, m=2, (n+m)/2=4 and a=4, the voltage 

equation set for a circulant cycle can be given as 
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The greatest common devisor of n, m and (n+m)/2 is 2. 

The eigenvalue λ3 of the switching duty matrix equals 0 and 

thus rank(dU)=5<n, nullity(dU)=1. Linear dependent switching 

patterns exist in the circulant modulation and the energy 

circulates incompletely between SMs. The steady-state 

voltages of SM capacitors vary according to different initial 

states or circuit parameters, but it can be concluded that the 

SM capacitor voltages will split into 2 clusters with 3 SMs in 

each cluster as  
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where v1 is an arbitrary value within the range of 0 to
1
2 M

V . 

Although v1 could be 
1
4 M

V  to make all SM capacitor voltages 

settling at the same value, the balance relies on the equal 

initial state of each SM and the perfectly consistent circuit 

parameters. The SM capacitor voltages cannot converge 

automatically with the circulant modulation. The inherent 

balance capability should be also considered as absence. 

V. MULTILEVEL CIRCULANT MODULATION AND  

GENERALIZED COPRIME CRITERION 

The L-level (1<L≤n+1) circulant modulation is illustrated 

in Fig. 4. For a fundamental cycle TFC, the stack voltage and 

the corresponding SM switching patterns are shown in Fig. 4(a) 

and Fig. 4(b), respectively. For a full circulant cycle TCC 

including n fundamental cycles, the circulant switching 

patterns for each SM are shown in Fig. 4(c). Colors are used 

for identifying the specific switching patterns within the 

fundamental cycle in each subgraph. 

Taking the upper stack as an example, the stack generates 

the L-level voltage within one fundamental cycle. For the first 

level, all the n SMs in the upper arm are inserted into the 

circuit. For the second level, N1 SMs are bypassed from the 

circuit, and for the following lth (2<l<L) level, another Nl-1 

SMs are bypassed successively. Finally, for the Lth level, after 

NL-1 SMs are bypassed, the remaining m SMs (m≥1) are still 

inserted while n-m SMs are bypassed. The lower stack works 

complementarily with the upper stack to keep the summation 

of inserted SMs in both arm being a constant. 

To generate the L-level stack voltage, n SMs in the upper 

arm operate with L kinds of switching patterns within a 

fundamental cycle. N1 SMs sharing the switching pattern 1 in 

purple are only inserted during the first level with the 

switching duty d=D1. For the another N2, N3, ⋯, NL-1 SMs 

respectively sharing the identical switching pattern 2, pattern 3, 



IEEE POWER ELECTRONICS REGULAR PAPER 

⋯, pattern L-1, they are bypassed from the circuit at the end of 

the 2nd, 3rd, ⋯, (L-1)th level and inserted back into the circuit 

at the beginning of corresponding level within one 

fundamental cycle. Thus, the switching duty of them are D2, 

D3, ⋯, DL-1, respectively. The remaining NL=m SMs in blue 

are inserted for the whole fundamental cycle, namely their 

switching duty d=DL=1. It should be noted that the switching 

duty d here can fully represent the switching pattern, since the 

SM with the same d shares the same switching pattern. 

Although it can be set that N1≠N2≠⋯≠NL-1 and D1≠D2≠⋯≠DL-1 

to generate an arbitrary L-level wave, considering the 

symmetry of the voltage output, the first and the (L-1)th level, 

the second and the (L-2)th level and so on usually share the 

same SM number and have the complementary switching duty, 

namely, Nl = NL-l, Dl + DL-l = 1 (l =1,2, ⋯, L-1).  

The presented multilevel circulant modulation shows its 

generality that the preset switching patterns are generated only 

according to the stack voltage command. This feature well 

adapts to MMDCs that the internal ac stage voltage could be 

more flexible than that in MMCs. Typical operation mode of 

MMDC including quasi-square-wave, trapezoidal, triangle and 

sinusoidal operation can be freely implemented with self-

regulated SM voltage under open-loop control. According to 

the driving signal allocation of each SM in Fig.4, for example, 

adding the following constraints to the patterns can realize 

trapezoidal operation for the MMDC: N1 = N2 = ⋯ = NL-1, 

D1=1-DL-1, Dl - Dl-1 = Dl+1 - Dl  (l =2, ⋯, L-2) and the mid-point 

of bypassed (or inserted) duration for each SM are the same. 

Moreover, if further restrict that Dl+1 - Dl (l =1, ⋯, L-2) is much 

shorter than D1 or 1-DL-1, it can be viewed as quasi-square-

wave operation. Then, the following analyses and criteria can 

be applied to identify that the SM capacitor voltages would be 

inherently balanced or not under the circulant modulation.  

As shown in Fig. 4(c), circulant modulation is applied to 

allocate the stack switching patterns for fundamental cycles. 

For each fundamental cycle, the stack keeps generating this   

L-level voltage as long as there are N1 SMs operating with 

switching pattern 1, N2 SMs operating with switching pattern 

2, ⋯, NL-1 SMs operating with switching pattern L-1 and m 

SM operating with switching pattern L. In the first 

fundamental cycle TFC1, the first N1 SMs colored in purple 

operate with switching pattern 1, the (N1+1)th to the (N1+N2)th 

SM colored in green operate with switching pattern 2, and the 
1
1( 1)l

ii N−
= + th to the 1( )l

ii N= th SM colored in red operate 

with switching pattern l and so on. The last m SMs are colored 

in blue, which represents that they operate with switching 

pattern L and d=1. Thus, similar to the analysis for three-level 

modulation, the switching duty vector of the upper stack for 

the first fundamental cycle can be written as  

 
1 2

1 1 2 2[ 1 1 ]

l

l l

NNN m

D D D D D D=1Ud       
  (22) 

The driving signal of the later SM refers the former SM with 

one TFC lagging according to the circulant modulation. The 

switching duty vectors for each following fundamental cycle 

can be obtained by shifting the line elements of that of the 

former TFC. Since there are n SMs in one stack and n elements 

in one switching duty vector, the full circulant cycle contains n 

fundamental cycles, namely TCC=nTFC. Within one circulant 

cycle, each SM operates with pattern L for mTFC and operates 

with other patterns for (n-m)TFC. Thus, the SM switch n-m 

time within TCC, namely TSW =
n

n m− TFC. It means that the SM 

switching frequency is fSW =
n m

n

−
fFC, which is always lower 

than (or equal to, if and only if m=0) the fundamental 

frequency. All the switching actions are necessary for stack 

voltage shaping and balancing without any ineffective actions. 

Considering that the internal stage frequency in MMDCs is 

much higher than that in MMCs, the reduced switching 

frequency would contribute a lot to improve the efficiency. 

The switching duty matrix of the L-level modulation for 

the full circulant cycle can be obtained as an n×n matrix as  

1 2

1 1 1 1 2 2 2 2

1 1 1 1 2 2 2 1

             1 1 1 1

 1                1 1 1
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  (23) 

With the rational simplification of neglecting the voltage 

ripple of dc-link capacitors and SM capacitors within one 

circulant cycle, the average SM capacitor voltage CU
v  is 

constrained by the linear voltage equation set in (6). The 

inherent balance capability is still guaranteed by the circulant 

modulation with a full-rank switching duty matrix dU as 

clarified in (8), and the balanced capacitor voltages keep 
2 MV

n m+  

as (9).  

To obtain the inherent balance capability for the L-level 

circulant modulation, namely a full-rank dU, n non-zero 

eigenvalues are expected. Simplification and practical 

guidance can be derived basing on the circulant matrix 

theories. The eigenvalues of the circulant matrix dU can be 

calculated as 

1 1 1 2

1 1 1 1 1

1 1
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1 1
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 (24) 

The first eigenvalue must a non-zero eigenvalue since 

ω0=1, 0 1= 0L
i ii D N =  . Regardless of the specific value of D1, 

D2, ⋯, DL, it can be always obtained that D1<D2<⋯<DL 

according to the modulation design. Therefore, when k≠0, 

ωk≠1, other eigenvalues can be calculated as 
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  (25) 

Similar to the analysis for the three-level circulant 

modulation, it can be derived from (25) that if the greatest 

common divisor of n, n-N1, ⋯, 
1

1

L

i iNn −

=−  is 1, no zero 

eigenvalue exists and the switching duty matrix is full-rank, 

then the SM capacitor voltages are inherently balanced. 
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TABLE I 
EXAMPLE CASES OF INHERENT BALANCE CAPABILITY FOR MULTILEVEL CIRCULANT MODULATION  

Case n m L Nh (NL1, NL2, ⋯, NLL) Rank of dU Balanced or not Description 

1 5 1 4 N/A (5,4,2,1) 5 Balanced Example of (26), gcd(NL1, NL2, ⋯, NLL)=1 

2 10 2 4 N/A (10,8,4,2) 9 Unbalanced Contrasting example of (26), gcd(NL1, NL2, ⋯, NLL)=2 

3 6 4 3 1 (6,5,4) 6 Balanced Example of (28), gcd(n,Nh)=1, Nh=1 

4 6 2 3 2 (6,4,2) 5 Unbalanced Contrasting example of (28), gcd(n,Nh)=2 

5 6 0 7 1 (6,5,4,3,2,1,0) 6 Balanced Example of Nh=1, m=0 

6 6 0 3 3 (6,3,0) 4 Unbalanced Example of Nh≠1, m=0 

 

Considering the practical meaning of above values, the 

inherent balance criterion of the L-level circulant modulation 

can be concluded that the numbers of inserted SMs in each 

stack voltage level have no common factor larger than 1, and 

is expressed as 

 1 2gcd( , , , ) 1L L LLN N N =   (26) 

where NL1, NL2, ⋯, NLL are the number of inserted SMs in the 

first, second, ⋯, Lth voltage level, and NL1=n>0, NL2=n-N1>0, 

⋯, NLL=
1

1

L

i iNn −

=− =m>0. Since the criterion is only related to 

the inserted numbers rather than the switching duty D1, D2, ⋯, 

DL, the duration of each level have no effect on the inherent 

balance capability. 

On the contrary, if the greatest common divisor 

g=gcd(NL1,NL2,⋯,NLL) is larger than 1, (g-1) zero eigenvalues 

can be found as λn/g, λ2n/g, ⋯, λ(g-1)n/g for dU. Thus, dU would be 

a non-full rank matrix with rank(dU)=n-(g-1) and 

nullity(dU)=g-1. The voltage equation set for multilevel 

modulation would get the same solution with three-level 

modulation as (17), which illustrates that the SMs would split 

into g clusters with different average capacitor voltages in 

steady state. Specifically, only the ith, (g+i)th, (2g+i)th, ⋯, (n-

g+i)th (i=1,2,⋯,g) SM in the same cluster would be fully 

circulated and equally share the energy flow to promise the 

same capacitor voltage, while the SMs in different clusters 

may have different voltages. That is to say, the circulant 

modulation losses its inherent balance capability in these cases.  

According to (26), balanced example and unbalanced 

contrasting example are listed as case 1 and case 2 in TABLE I, 

respectively. With the equal dc bus voltage, the stack output 

voltages are identical for case 1 and case 2. But for case 1, the 

inserted SM numbers of each level have no common factor 

other than 1, the rank of the switching duty matrix is equal to 

the total SM number of the stack. Thus, the SM capacitor 

voltages are inherently balanced. For case 2, 2 is the greatest 

common divisor of each voltage level, thus rank(dU)=9<n. The 

SM capacitor voltages tend to split into 2 clusters with the 1st, 

3rd,5th, 7th and 9th SM in the same cluster while other SMs in 

another cluster with different steady-state voltage. The 

inherent balance capability of the circulant modulation is 

absent. 

As the analysis for the three-level modulation above, the 

height of each voltage level usually sets to be identical to keep 

the symmetry, namely, N1=N2=⋯=NL-1=Nh, where Nh is the 

height of the voltage level. Nh can be represented by n, m and 

L as  

 
*,   

1
h h

n m
N N

L

−
= 

−
N   (27) 

Then, the inserted SM numbers of each level are NL1=n, 

NL2=n-Nh, ⋯, NLL=n-(L-1)Nh=m, that are an arithmetic 

progression with common difference of -Nh. Thus, the greatest 

common divisor of NL1, NL2, ⋯, NLL equals that of n and Nh. 

The L-level inherent balance criterion in (26) can be further 

simplified as a generalized coprime criterion  

 gcd( , ) 1hn N =   (28) 

As long as the height of voltage level and the total SM number 

are coprime, the inherent balance capability is obtained for the 

L-level circulant modulation. This criterion concludes the 

solutions in [23] and (13) for two-level and three-level 

circulant modulation. In [23], n and m should be coprime, 

where n and m are the inserted SM number of negative stage 

and positive stage for the square-wave stack voltage, 

respectively. The height of the voltage level is n-m. Since 

gcd(n, n-m)=gcd(n, m), if n and n-m are coprime, the inherent 

balance capability is guaranteed. In (13), n, (n+m)/2 and m are 

the inserted SM numbers of each stage, and the height of 

voltage level is (n-m)/2. The inherent balance capability or the 

voltage clustering characteristic can be also predicted by 

gcd(n, 2

n m−
), since it is equal to gcd(n,

+

2

n m
,m). Balanced 

example and unbalanced contrasting example of (28) are listed 

as case 3 and case 4 in TABLE I, respectively. The detailed 

analyses from the rank’s point of view have been conducted in 

Part D, Section IV. The same conclusion can be drawn 

according to this coprime criterion. 

If only one SM is inserted into or bypassed from the 

circuit at the same time, namely Nh=1, the dv/dt stress of the 

passive stage is minimized and the MMC part fully takes its 

advantage of multilevel voltage output ability. For this specific 

case, the SM capacitor voltages are inherently balanced with 

the circulant modulation, since the height of voltage level is 1, 

and gcd(n, Nh)=gcd(n,1)=1 with any D1, D2, ⋯, DL, or m. Case 

3 in TABLE I can be also considered as an balanced example 

of this conclusion. 

Another special case is that all the n SMs in the stack are 

bypassed during the Lth level. Although there are still L levels 

for the stack voltage, only (L-1) switching patterns exist while 

the pattern L is lost. NLL=m can be considered as 0, which 

makes it inapplicable for (26) to identify the inherent balance 

capability, since 0 is not coprime with any value. In fact, it 

should be back to (25), and the final term of the right 

polynomial is zero. The inherent balance capability is 
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identified by the inserted SM number of other levels. For the 

heights of each level are identical, (28) is still applicable with 

the missing pattern L. In fact, it can be concluded that for 

cases of m=0, the inherent balance capability only exists when 

Nh=1. Otherwise, gcd(NL1,NL2,⋯,NLL)=gcd(n,Nh)=Nh>1, which 

leads to unbalancing and clustering. For the case 5 and case 6 

in TABLE I, they shares the same n and m=0. When Nh=1 in 

case 5, the switching duty matrix is full-rank and the SM 

capacitor voltages are fully regulated by the circulant 

switching patterns. The inherent balance capability of the 

circulant modulation is present. When Nh=3 in case 6, 

gcd(NL1,NL2)=gcd(n,Nh)=Nh=3, rank(dU)=4, which leads to the 

SM capacitor voltages splitting into 3 clusters. The inherent 

balance capability of the circulant modulation is lost. 

In conclusion, a series of criteria are exposed to identify 

the inherent balance capability of the multilevel circulant 

modulation for MMDC in this section. Beginning with the 

full-rank criterion in (8), it is applied to any circulant 

modulation since the switching duty matrix dU is directly 

derived from the voltage equations. Then, the full-rank feature 

of dU is specified as (26) by calculating the matrix eigenvalues 

that the inserted SM number in each voltage level have the 

common factor larger than 1. This criterion is more intuitive 

for guiding design than relying on the rank, but it specifies the 

SM inserting sequence as Fig. 4. Finally, The generalized 

coprime criterion in (28) may provide the direction of optimal 

design with both practicability and flexibility. For the cases 

with equal magnitude of each voltage level, so long as the 

number of inserted SMs in each voltage step is coprime with 

the total SM number in one stack, the circulant modulation 

promises the inherent balance of all SM voltages. Two 

deductions are also provided for Nh=1 and m=0 cases as a 

more specified footnote. Considering from the converter 

design, another approach is to choose a prime number as the 

total SM number in an arm. The inherent balance criteria in (8), 

(26) or (28) will be always satisfied regardless of the inserted 

SM number of each voltage level. 

 

VI. SIMULATION RESULTS 

Both the LLC-based and DAB-based MMDC simulation 

models are built in the MATLAB/Simulink environment with 

the parameters listed in TABLE II to verify the multilevel 

circulant modulation and the inherent balance criterion. To 

indicate the balancing capability that is independent to the 

circuit topology, hardware parameters or initial state, the SM 

capacitances are set with 10% variation and the initial voltages 

of each SM capacitor are set to be unbalanced for all cases in 

both models. The theoretical predictions of case 3 to case 6 in 

TABLE I are respectively validated by simulation results in 

Fig. 5 to Fig. 8 with LLC-based MMDC and Fig. 9(a) to (d) 

with DAB-based MMDC.  

Simulation results of operating with n=6, m=4, L=3 and 

Nh=1 are presented in Fig. 5. The upper stack voltage and the 

6 SM driving signals are shown in Fig. 5(a). All SMs equally 

switch with a preset circular pattern yet the latter SM action 

lags behind the former one for one fundamental cycle TFC. For 

                                           TABLE II 

SIMULATION PARAMETERS OF MMDCS 

 

Parameters Descriptions Values 

n SM number per stack 6 

2VM MV side bus voltage 11kV 

VL Minimum LV side bus voltage 300V 

CCU, CCL Medium-side dc-link capacitance 550μF 

CL Low-side output capacitance 5mF 

LP,LL Equivalent arm inductance 3.2mH 

Cr Resonant capacitance 1μF 

Lm Magnetizing inductance 60.8mH 

CSM SM capacitance 
500μF (±10% 

variation) 

rT Transformer turns-ratio 3:1 

fac AC stage frequency 4kHz 

S Power devices FF450R33T3E3 

 

each TFC, only 2 SMs switch once while the remaining 4 SMs 

keep inserted in the circuit. Within one circulant cycle 

TCC=6TFC, each SM is bypassed twice. Thus the switching 

frequency fsw of each SM equals 
1
3 FCf , where fsw equals 1/Tsw. 

The upper stack voltage in Fig. 5(b) is generated according to 

this preset switching patterns. For the positive stage, two SMs 

are bypassed from the circuit and for the zero stage, one SM is 

bypassed. The lower stack operates complimentarily with half 

fundamental cycle shift of SM switching patterns. In Fig. 5(c), 

it shows that a three-level voltage is generated by the MMC 

part as the excitation of ac passive stage. Each voltage step is 

half of the peak-to-peak value of stack voltage. The resonant 

current flows through the transformer and will be rectified by 

the diode bridge in LVdc side. As shown in Fig. 5 (d), the 

proposed circulant modulation shows its robustness that the 

SM voltages can converge to balance even if the SM voltages 

begin with the severe unbalance. The inherent balance 

capability for SM capacitor voltages is obtained since the 

inserted SM numbers of each voltage level, i.e., n, m, (n+m)/2 

have no common factor other than 1 in this case, or it can be 

directly decided by Nh=1. Although the SM voltages are 

different at the beginning, they all equally settle at 1.1kV as 

VM/5 in steady-state due to the circulant modulation, which 

verifies the prediction in (19). The LV side output dc voltage 

can be controlled by adjusting the fundamental frequency as 

typical LLC convertors or changing the stage length ratio a in 

this three-level modulation. The inherent balance capability 

will not be affected by these operating parameters. In this case, 

the fundamental frequency is set as 4kHz that is near the 

resonant frequency, and a is set as 4. 

Simulation results of operating with n=6, m=2, L=3, Nh=2 

and n=6, m=0, L=3, Nh=3 are respectively presented in Fig. 6 

and Fig. 7 as unbalanced cases but with different clustering 

characters. It illustrates in Fig. 6(a) that for the case of m=2, 4 

SMs switch once within one fundamental cycle. Each SM 

switches 4 times within one circulant cycle and the SM 

switching frequency can be calculated as 
2
3 FCf . For the m=0 

case, all SM switch once within each TFC as shown in Fig. 7(a), 

thus fSW=fFC. The upper and lower stack voltages and currents 

are shown in Fig. 6(b) and Fig. 7(b), and the three-level 

voltage in Fig. 6(c) and Fig. 7(c) excites the ac passive stage 
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Fig. 5 Simulation results of n=6, m=4, L=3, Nh=1 as a balanced case for LLC-based MMDC. (a) Steady-state upper stack voltage and upper stack SM driving 

signals. (b) Steady-state voltages and currents of upper and lower stack. (c) Steady-state voltages and currents of input and output side of ac passive stage. (d) 

Dynamic SM capacitor voltages of upper stack. 
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Fig. 6 Simulation results of n=6, m=2, L=3, Nh=2 as an unbalanced case with SM capacitor voltages splitting into 2 clusters for LLC-based MMDC. (a) Steady-

state upper stack voltage and upper stack SM driving signals. (b) Steady-state voltages and currents of upper and lower stack. (c) Steady-state voltages and 

currents of input and output side of ac passive stage. (d) Dynamic SM capacitor voltages of upper stack. 
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Fig. 7 Simulation results of n=6, m=0, L=3, Nh=3 as an unbalanced case with SM capacitor voltages splitting into 3 clusters for LLC-based MMDC. (a) Steady-

state upper stack voltage and upper stack SM driving signals. (b) Steady-state voltages and currents of upper and lower stack. (c) Steady-state voltages and 

currents of input and output side of ac passive stage. (d) Dynamic SM capacitor voltages of upper stack. 
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Fig. 8 Simulation results of n=6, m=0, L=7, Nh=1 as a balanced case for LLC-based MMDC. (a) Steady-state upper stack voltage and upper stack SM driving 
signals. (b) Steady-state voltages and currents of upper and lower stack. (c) Steady-state voltages and currents of input and output side of ac passive stage. (d) 

Dynamic SM capacitor voltages of upper stack. 

as the former case. However, because gcd(m, 2
n m+

,n)>1 for 

these two cases, SM capacitor voltages cannot be inherently 

balanced by the preset circulant modulation. For the m=2 case, 

the greatest common factor equals Nh as 2. Fig. 6(d) illustrates 

that the SM capacitor voltages split into 2 clusters as the 

theoretical prediction in (21). The voltage difference among 

SM capacitors is about 30% of their average reference value. 

For the m=0 case, Fig. 7(d) indicates that the SM capacitor 

voltages split into 3 clusters since Nh=3. The highest SM 

capacitor voltage is 60% higher than that of the lowest one. 

Simulation results of operating with n=6, m=0, L=7, Nh=1 

are shown in Fig. 8. Each SM is inserted and bypassed one by 
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Fig. 9 Simulation results of DAB-based MMDC. (a) and (b) with n=6, m=4, L=3, Nh=1. (c) and (d) with n=6, m=2, L=3, Nh=2. (e) and (f) with n=6, m=0, L=3, 

Nh=3. (g) and (h) with n=6, m=0, L=7, Nh=1. (a), (c), (e) and (g) shows the steady-state voltages and currents of upper stack, and input and output side of ac 

passive stage. (b), (d), (f) and (h) shows the dynamic upper stack SM capacitor voltages. 
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Fig. 10 Simulation results of dynamic robustness with load step-up and single 

faulty SM bypassed. 

one within a fundamental cycle, thus fSW=fFC. A seven-level 

voltage is generated by the stacks to excite the passive ac stage, 

and the dv/dt stress is minimized. Since the height of the 

voltage level equals 1, namely Nh=1, all the SM capacitor 

voltages are inherently balanced by the circulant modulation, 

that shares the voltage of 1.7kV. The length of each voltage 

level are different in this simulation, which has no effect on 

the inherent balance capability. 

The same cases are conducted on the DAB-based MMDC 

model as shown in Fig. 9. The phase-shift angle, that is the 

lagging angle of the transformer voltage u2 and stack output 

voltage vLO, can be adjusted to control the power flow as 

typical DABs, is set as φ=π/2 to reach the maximum power 

output in this system. Same switching patterns are respectively 

allocated to the SMs for each case on this DAB-based MMDC, 

and the stack voltages are the same for the both topologies. 

However, the stack currents and the ac stage currents vary for 

different circuit topology. It slightly effects the dynamic 

response of SM capacitor voltages from the initial state, but it 

has no effect on the convergence or the clustering characters 

of their steady-state average values. As illustrated in Fig. 9(b), 

(d) and (f), the SM capacitor voltages converge to the 

balanced value for Nh=1 case, split into 2 clusters for Nh=2 

case and split into 3 clusters for Nh=3 case, respectively. For 

the seven-level modulation with Nh=1 in Fig. 9(h), the inherent 

balance capability is also guaranteed.  

To provide a broader validation of the dynamic robustness 

for the inherently balanced circulant modulation, simulation 

results of the SM voltage response after load step-up on LVdc 

side and single SM bypassed for fault are shown in Fig. 10. 

An LLC-based MMDC begins operating with n=6, m=4, L=3, 

Nh=1 as the balanced case in Fig. 5. The load steps at t=0.1ms 

and it can be observed that the LV side output current 

increases with a transient process, while all the SM capacitor 

voltages keep well balanced for the whole period. The SM 

voltage ripple tends to enlarge after the load step-up since it is 

proportional to load current. But all the SMs evenly share the 

energy fluctuation regardless of the load condition, which 

keeps limiting the capacitor voltage ripple within a reasonable 

range. Considering the fault-tolerant design of MMDC, the 

converter could keep operating with a single bypassed SM for 

fault. As shown in Fig. 10 at t=0.25ms, the first SM in stack is 

bypassed and the remaining 5 SMs could keep operation with 

the circulant modulation. The converter would operate with 

n=5, m=3, L=3, Nh=1 that is still a balanced case. Since there 

are less SM sharing the dc bus voltage, the capacitor voltages 

of working SM tend to increase together from 1.1kV to 1.4kV 

while the bypassed faulty SM keeps the capacitor voltage 
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Fig. 11 Experimental results with n=6, m=4, L=3, Nh=1 as an inherently balanced case (a) SM output voltages in upper stack. (b) Voltages and currents of upper 

and lower stack. (c) Voltages and currents of input and output side of ac passive stage. (d) SM capacitor voltages of upper stack. 
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Fig. 12 Experimental results with n=6, m=2, L=3, Nh=2 as an unbalanced case (a) SM output voltages in upper stack. (b) Voltages and currents of upper and lower 

stack. (c) Voltages and currents of input and output side of ac passive stage. (d) SM capacitor voltages of upper stack. 
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Fig. 13 Experimental results with n=6, m=0, L=7, Nh=1 as a balanced case (a) SM output voltages in upper stack. (b) Voltages and currents of upper and lower 

stack. (c) Voltages and currents of input and output side of ac passive stage. (d) SM capacitor voltages of upper stack. 

TABLE III 

EXPERIMENTAL PARAMETERS OF LLC-BASED MMDC 

 

Parameters Descriptions Values 

n SM number per stack 6 

2VM MV side bus voltage 800V 

VL Minimum LV side bus voltage 20V 

CCU, CCL Medium-side dc-link capacitance 20μF 

CL Low-side output capacitance 2.4mF 

LP,LL Equivalent arm inductance 4mH 

Cr Resonant capacitance 0.33μF 

Lm Magnetizing inductance 60.8mH 

CSM SM capacitance 
60μF 

(±10% variation) 

rT Transformer turns-ratio 3:1 

fac AC stage frequency 4kHz 

S Power devices IKW40N65H5 

 

unchanged, which illustrates the great robustness of the 

proposed circulant modulation. 

 

VII. EXPERIMENT RESULTS 

In order to further validate the theoretical analysis for the 

multilevel circulant modulation and the inherent balance 

criterion, experiments are conducted on a down-scaled LLC-

based MMDC prototype. The detailed parameters are listed in 

TABLE III. The control frequency is set as 4kHz, that is also 

the as stage fundamental frequency. 

Experimental results with n=6, m=4, L=3, Nh=1 and a=4 

are shown in Fig. 11 as an inherently balanced case. The SM 

output voltages in Fig. 11(a) show the preset circular patterns. 

The upper and lower stack voltage in Fig. 11(b) generate a 

three-level voltage in Fig. 11(c) to excite the ac passive stage. 
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Since there is no common factor other than 1 for n, m 

and(n+m)/2, SM capacitor voltage are inherently balanced at 

79V in this system as shown in Fig. 11(d), which verifies the 

prediction in (19).  

Experimental results with n=6, m=2, L=3, Nh=2 and a=4 

are shown in Fig. 12 as an unbalanced case. The SM output 

voltages also show the circulant switching patterns in Fig. 12 

(a). The stack and ac stage voltage and current are shown in 

Fig. 12(b) and (c). The SM capacitor voltages are illustrated in 

Fig. 12(d). It shows that the inherent balance capability is lost 

and capacitor voltages tend to split into 2 clusters with the 

maximum deviation of 30% of their reference voltage. 

Finally, experimental results with n=6, m=0, L=7 and 

Nh=1 are shown in Fig. 13. Seven-level voltage is generated 

by the stacks with the SMs inserting and bypassing one by one. 

The SM capacitor voltages all settle at 132V, that identifies 

the inherent balance capability of the circulant modulation 

with Nh=1. 

 

VIII. CONCLUSION  

A circulant modulation method for multi-level operation 

of MMDCs has been proposed and proven to possess inherent 

balance of SM capacitor voltages if certain criteria are met. 

The stack switching patterns over a circulant cycle are 

composited into a switching duty matrix dU. If dU is full-rank, 

inherent balance is guaranteed. In practical terms it means that 

each SM capacitor is clamped by the dc-link capacitor to an 

equal extent. A simplified criterion has also been deduced 

through circulant matrix theory and provides practical design 

guidance. So long as the numbers of inserted SMs in each 

voltage level have no common factor other than 1, the SM 

capacitor voltages can be inherently balanced. Otherwise, the 

SM capacitor voltages divide into several clusters and the 

circulant modulation loses its inherent balance feature. These 

clusters can be identified from the kernel of dU. Furthermore, a 

generalized co-prime criterion is identified for multilevel 

circulant modulation for the cases with equal magnitude of 

each voltage level. The validity of the theoretical analysis and 

of the deduced criterion have been confirmed through 

simulation and an experimental prototype.  
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