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 2 

ABSTRACT 1 

Introduction: Biomedical research has grown increasingly cooperative, with several large consortia 2 

compiling and sharing epigenomic data. Since data are typically preprocessed by consortia prior to 3 

distribution, the implementation of new pipelines can lead to different versions of the same dataset. 4 

Analytic frameworks also constantly evolve to incorporate cutting-edge methods and shifting best 5 

practices. However, it remains unknown how differences in data and analytic versions alter the results 6 

of epigenome-wide analyses, which has broad implications for the replicability of epigenetic 7 

associations. Thus, we assessed the impact of these changes using a subsample of the Avon 8 

Longitudinal Study of Parents and Children (ALSPAC) cohort.  9 

Methods: We analyzed two versions of DNA methylation data, processed using separate preprocessing 10 

and analytic pipelines, to examine associations between childhood adversity and prenatal smoking 11 

exposure on DNA methylation at age 7. We performed two sets of analyses: (1) epigenome-wide 12 

association studies (EWAS); (2) Structured Life Course Modeling Approach (SLCMA), a two-stage 13 

method that models time-dependent effects. We also compared results from the SLCMA using more 14 

recent methodological recommendations.  15 

Results: Differences between ALSPAC data versions impacted both EWAS and SLCMA analyses, 16 

yielding different sets of associations at conventional p-value thresholds. However, the magnitude and 17 

direction of associations was generally consistent between data versions, regardless of significance 18 

thresholds. Updating the SLCMA analytic version similarly altered top associations, but time-19 

dependent effects remained concordant.   20 

Conclusions: Changes to data and analytic versions influenced the results of epigenome-wide studies, 21 

particularly when using p-value thresholds as reference points for successful replication and stability. 22 

Keywords:  ALSPAC, epigenetic data versions, analytic versions, updates/revised, adversity, DNA 23 

methylation, reproducibility.   24 
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INTRODUCTION  25 

Biomedical science has become increasingly cooperative over the past decade. The emergence of large 26 

datasets, combined with the small effects of biological measures on complex traits, has fueled such 27 

cooperation, making global collaboration with researchers more important now than ever. Access to 28 

large-scale data has emphasized the importance of identifying both replicable and stable findings, both 29 

across and within research studies. As such, large consortia, including birth cohorts, have become an 30 

integral part of these collaborative efforts, generating and compiling large amounts of research data 31 

ranging from behavioral and clinical markers to molecular and genetic measures. These data are often 32 

made available to collaborators and other researchers worldwide, facilitating the interrogation of 33 

broader research questions and enabling replication efforts.  34 

Epigenetic data are one key data type collected within these consortia. Epigenetics refer to mechanisms 35 

that can result in heritable changes to gene expression without altering genetic sequences 1. DNA 36 

methylation (DNAm) is the most common type of epigenetic mechanism measured in human studies. 37 

DNAm occurs when a methyl residue is added to cytosine residues, typically in the context of cytosine-38 

guanine dinucleotides (CpG). DNAm is both stable over time and responsive to external signals in 39 

certain genomic contexts, which highlights its potential as a biomarker and mechanism for the 40 

biological embedding of environmental factors 2. As such, epigenome-wide association studies 41 

(EWAS) have exploded in popularity, with over 1,600 papers on EWAS published since 2015.   42 

To facilitate the sharing of DNAm data, datasets are often processed by the individual cohorts prior to 43 

distribution. However, due to both technological and conceptual developments over time, the data 44 

available from large cohorts will sometimes become outdated, requiring the distribution of revised 45 

versions to collaborators. In addition, individuals in longitudinal studies occasionally withdraw consent 46 

to share their data, reducing the overlap of samples between different data versions. At the same time, 47 

analytic frameworks are constantly updated and improved upon, resulting in newer cutting-edge 48 
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methods and shifting analytic best practices 3. Yet, the extent to which differences in data versions and 49 

analytic pipelines lead to meaningful differences in analytic results remains unclear. This raises an 50 

important question as to the replicability and stability of findings across and within studies, which may 51 

influence our interpretation of epigenome-wide associations in biomedical research.  52 

Here, we explored the impact of changes in data versions and analytic methods on the consistency of 53 

epigenome-wide findings (Fig 1). We analyzed two versions of epigenetic data collected from children 54 

at age 7 from the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort, a longitudinal 55 

birth cohort near Bristol, England. We first characterized the difference between these versions with 56 

respect to the distributions of DNAm at the CpG- and individual-level to illuminate the discrepancies 57 

that can arise between data versions. Second, we performed two analyses to ascertain the impact of data 58 

version changes at the level of CpG-associations, using classical EWAS and a more nuanced analytic 59 

method called the Structured Life Course Modeling Approach (SLCMA) 4. We performed these 60 

analyses using two different types of exposures, contrasting the results from psychosocial (childhood 61 

adversity) and physical (maternal smoking during pregnancy) exposures 5,6. Finally, we compared 62 

results derived from SLCMA between two analytic versions, as more recent guidelines have emerged 63 

on its use in big data settings 3. Overall, these analyses provide insight into the reproducibility of 64 

epigenome-wide associations and highlight the features of epigenetic data that are more reproducible 65 

and robust.  66 

 67 

MATERIALS AND METHODS 68 

ALSPAC cohort 69 

ALSPAC is a large prospective cohort study that recruited 14,541 pregnancies in Avon, UK, with 70 

expected dates of delivery between 1 April 1991 and 31 December 1992 7,8. Further details of the study 71 

and available data are provided on the study website through a fully searchable data dictionary 72 
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(http://www.bris.ac.uk/alspac/researchers/data-access/data-dictionary/). Please note that the study 73 

website contains details of all the data that is available through a fully searchable data dictionary and 74 

variable search tool (http://www.bristol.ac.uk/alspac/researchers/our-data/). Ethical approval for the 75 

study was obtained from the ALSPAC Law and Ethics Committee and the Local Research Ethics 76 

Committees. Consent for biological samples has been collected in accordance with the Human Tissue 77 

Act (2004). Informed consent for the use of data collected via questionnaires and clinics was obtained 78 

from participants following the recommendations of the ALSPAC Ethics and Law Committee at the 79 

time. All data are available by request from the ALSPAC Executive Committee for researchers who 80 

meet the criteria for access to confidential data (http://www.bristol.ac.uk/alspac/researchers/access/). 81 

 82 

Epigenetic data generation 83 

DNAm profiles at birth, 7, and 15 years of age are part of the Accessible Resource for Integrated 84 

Epigenomic Studies (ARIES), a subsample of 1018 mother–child pairs from the ALSPAC cohort 9. In 85 

this study, we focus on the samples collected at age 7. Briefly, DNA was extracted from peripheral 86 

blood samples according to established procedures. DNAm was then measured at 485,577 CpG sites 87 

across the genome using the Illumina Infinium Human Methylation 450K BeadChip microarray 88 

(Illumina, San Diego, CA). We received two versions of the DNAm data, which were processed using 89 

different pipelines by ALSPAC, as described below.  90 

 91 

Epigenetic data versions 92 

In the first version, which we refer to as the old data (2015 version), DNAm data were processed using 93 

the pipeline developed by Touleimat and Tost 9,10. This pipeline involved performing background 94 

correction and quantile normalization using the R-package wateRmelon. DNAm values for all 485,577 95 

CpGs were provided in the old data version.  96 
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In the second data version, which we refer to as the new data (2018 version), DNAm data were 97 

processed using the pipeline developed by Min and colleagues 11. In this version, background 98 

correction and functional normalization of DNAm data were performed using the R-package meffil. In 99 

addition, samples with > 10% of CpG sites with a detection p-value > 0.01 or a bead count < 3 in > 100 

10% of probes were removed. As such, there were fewer CpGs available for analysis (482,855) in the 101 

new data compared to the old data (Fig 2A). Furthermore, due to data processing and potential removal 102 

of consent for some individuals, only 948 participants overlapped between both data versions (Fig 2A). 103 

Only singleton birth participants present in both data versions were analyzed (n=946).  104 

For the current analyses, we further removed cross-hybridizing probes, polymorphic probes, and probes 105 

located in sex chromosomes, as well as those probes that did not overlap between both data versions. 106 

These filtering steps resulted in a list of 440,257 CpGs that were present in each data version. To 107 

remove possible outliers, we winsorized the beta values (i.e., values that represent % methylation) at 108 

each CpG site, setting the bottom 5% and top 5% of values to the 5th and 95th quantile, respectively.  109 

Measures of childhood adversity  110 

We investigated seven types of childhood adversity assessed between birth and age 7: experiences of 111 

sexual/physical abuse, caregiver physical/emotional abuse, maternal psychopathology, financial stress, 112 

family instability, one-adult households, and neighborhood disadvantage. These variables were coded 113 

the same way between both the old and new datasets. For a full description of these variables, please 114 

refer to Dunn and colleagues (2019), which described their coding in depth 5. 115 

Analyses 116 

Epigenome-wide association study (EWAS) of childhood adversity 117 

To determine how data versions can influence the results of traditional epigenome-wide methods, we 118 

performed EWAS for each of the childhood adversities described above using the old and new data 119 

versions. Here, we categorized children as ‘exposed’ or ‘unexposed’ to adversity on whether they 120 
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experienced a given adversity between ages 0 to 7. We performed these epigenome-wide associations 121 

using the limma package in R 12. Consistent with previous work on these exposures 5, we included the 122 

following covariates to account for potential confounding: sex, race/ethnicity, maternal age at birth, 123 

maternal education, birth weight, number of previous pregnancies, maternal smoking during 124 

pregnancy, and cell type proportions estimated using the Houseman method 13. We accounted for 125 

multiple-testing using the Benjamini-Hochberg method and set the false discovery rate (FDR) at 5% 14.  126 

 127 

Structured Life Course Modeling Approach (SLCMA) of childhood adversity 128 

The SLCMA is a two-stage method that compares different life course hypotheses that describe the 129 

relationship between time-dependent exposures and an outcome of interest 4,15,16. This method 130 

simultaneously compares a set of a priori-specified life course hypotheses encoding time-varying 131 

exposure-DNAm relationships, such as the timing of exposure (sensitive periods), or a cumulative 132 

count of exposures over time (accumulation of risk). Therefore, it provides more nuanced insights 133 

about exposure mechanisms beyond the traditional analyses of exposed versus unexposed individuals. 134 

Importantly, the SLCMA has been applied in multiple contexts to determine whether the timing of 135 

certain exposures can influence outcomes, including psychometric measures and DNAm 3,17. To 136 

summarize SLCMA briefly, in the first stage, variable selection (LARS-LASSO) is used to select the 137 

life course hypothesis that explains the greatest proportion of outcome variation. In the second stage, 138 

post-selection inference is performed to obtain point estimates, confidence intervals, and p-values for 139 

the hypothesis selected from the first stage, accounting for multiple testing burden associated with 140 

testing several life course hypotheses simultaneously for each locus.  141 

To assess the impact of data version changes on SLCMA results, we tested the association between 142 

childhood adversity and epigenetic patterns, as previously reported by Dunn and colleagues (2019), in 143 

both data versions. adjusted for the same covariates as the EWAS analyses above. We tested five 144 
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different life course hypotheses, including three sensitive periods hypotheses encoding exposures 145 

during the following three time periods: 1) very early childhood (0-2), 2) early childhood (3-5), 3) 146 

middle childhood (6-7); and two additive hypotheses: 4) total number exposures across childhood 147 

(accumulation), and 5) number of exposures weighted by time (recency). Post-selection inference was 148 

performed using the covariance test (covTest) method 18. We accounted for multiple-testing at the 149 

epigenome-level using the Benjamini-Hochberg method and set the FDR at 5% 14. 150 

 151 

Analytic version updates of the SLCMA of childhood adversity 152 

To determine how updates to analytic versions influence the SLCMA results, we compared the results 153 

from the new data using the analysis described above, which we refer to as the standard analysis, to the 154 

latest recommendations for the SLCMA as described by Zhu and colleagues (2020), which we refer to 155 

as the updated analysis. This approach differed in three major ways. First, post-selection inference was 156 

performed using the selective inference method, which reduces p-value inflation compared to the 157 

covariance test in high dimensional analyses 3,19. Second, we adjusted for covariates using the Frisch-158 

Waugh-Lovell (FWL) theorem (partitioned regression) 20. This method has been used in penalized 159 

regression analyses and can improve the statistical power to detect differences between groups 3,21. 160 

Third, we updated the covariates to reflect best practices in the ALSPAC cohort, swapping parental 161 

occupation-based social class for maternal education. Maternal education is not only a better predictor 162 

of health and DNA methylation patterns, but also has better availability and comparability in other birth 163 

cohorts, allowing for more direct comparisons and integration into future meta-analyses 22,23.   164 

 165 

Sensitivity analyses of prenatal exposure to maternal smoking. 166 

Given that the associations between smoking and DNA methylation are some of the best replicated 167 

findings in the EWAS field, we performed additional sensitivity analyses to contrast this physical 168 

exposure to the psychosocial exposures described above. We assessed the impact of data versions on 169 
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the association between exposure to maternal smoking during pregnancy and epigenetic patterns, as 170 

previously reported by Richmond and colleagues (2018). Following the same approach as the analyses 171 

of childhood adversity, we performed an EWAS of prenatal exposure to maternal smoking in the old 172 

and new data versions. Maternal smoking exposure was ascertained repeatedly in all three trimesters, 173 

wherein smoking at any point was considered prenatal smoking exposure 6. For the SLCMA analysis, 174 

we tested five separate life course hypotheses of prenatal smoking exposure: first trimester, second 175 

trimester, third trimester, accumulation across all trimesters, and recency of exposure. 176 

 177 

RESULTS 178 

Old and new versions of the ALSPAC data differed by several key descriptive features 179 

We first assessed the CpG- and individual-level differences between the ALSPAC data normalized 180 

using the Tost pipeline (old) and the meffil pipeline (new). The genome-wide distribution of DNAm 181 

values from the old data were generally shifted towards the center in the new data (Fig 2B and 2C). 182 

CpG-level variability, assessed by the standard deviation of each CpG, was generally higher in the old 183 

data (Fig 2D). In addition, we detected higher individual-level variability (across all CpGs) in the new 184 

data than in the old data, which showed no individual-level variability due to the use of quantile 185 

normalization (Fig 2E). Nevertheless, individual-level data were generally highly correlated between 186 

data versions (mean r=0.981, SD=0.003), with no clear biases being detected in specific chromosomes 187 

(Fig 2F). However, CpGs located in 3’UTRs showed slightly lower correlations between versions (Fig 188 

2G). Estimated cell-type proportions showed only slight differences between data versions but were 189 

mostly similar (Fig 2H).  190 

 191 

Epigenome-wide association study results differed between data versions  192 

To determine how data versions may impact the results from traditional EWAS, we analyzed the 193 

association between each of the seven childhood adversity exposures and DNA methylation at age 7 in 194 
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both ALSPAC DNAm data versions. Overall, we found little concordance between data versions for 195 

psychosocial exposures. In the old data, we identified one CpG at an FDR <0.05 for the abuse 196 

exposure, but no significant associations for the other adversities. By contrast, using the new data, we 197 

identified five CpGs at an FDR <0.05, but those were associated with exposure to financial stress. 198 

Moreover, no significant CpGs overlapped between the old and new data versions (Fig 3A). Indeed, 199 

beyond significance thresholds, the overlap of CpGs by p-value rank was somewhat low for most 200 

adversities (10-40%) but remained higher than by random chance (Fig 3B).  201 

However, for each set of top CpGs (ranked by p-values), those that overlapped between data versions 202 

showed relatively good rank correlation, suggesting that some signal may be retained between data 203 

versions (Fig 3C). Importantly, top CpGs also showed high concordance in the direction and 204 

magnitude of differences in DNAm between exposed and unexposed groups (Fig 3D). As such, it 205 

appeared that the differences introduced by changing data versions caused fluctuations in the results at 206 

the level of p-value thresholds, but the results from the EWAS of childhood adversity were more 207 

similar when considering p-value ranks, as well as the direction and magnitude of associations.  208 

 209 

Data versions also changed the results from the SLCMA  210 

To determine how data versions can influence more sensitive or complex methods beyond an EWAS, 211 

we assessed the impact of data versions on the SLCMA results. Here, we identified 372 CpGs in the 212 

old data and 664 CpGs in the new data at an FDR<0.05 across all seven adversities, with 52 CpGs 213 

overlapping between data versions (Table 1; Fig 3E; Tables S1, S2). The most selected hypotheses for 214 

significant CpGs were different between data versions (Fig 3F), as were the adversities with the most 215 

hits (Table 1). The old data showed more associations with very early childhood and neighborhood 216 

disadvantage, whereas the new data showed more associations with early childhood and financial 217 

stress. However, significant CpGs generally had the same hypothesis selected across data versions, 218 
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with little changes in the CpGs significant in the analyses of both versions (Fig 3G). In addition, top 219 

hits generally showed the same direction of change and similar magnitude between data versions (Fig 220 

3H). These results highlight the brittleness of p-value thresholds, which result in few overlaps between 221 

data versions, despite the general characteristics of these CpGs and their associations being similar 222 

between data versions.  223 

 224 

Analytic versions altered the results from the SLCMA of childhood adversity 225 

Finally, we assessed the impact of updates to analytic versions on the results from SLCMA, as per the 226 

recommendations of Zhu and colleagues (2020) using only the new data version. We first performed 227 

the SLCMA analysis of the childhood adversities with the standard covariates and adjustment strategy 228 

but using the selective inference method in the second stage, rather than the covariance test. However, 229 

only one CpG was significant at an FDR<0.05 in this analysis. As such, we performed a comparison 230 

between the standard analytic version and the fully updated pipeline, which uses FWL correction and 231 

updated covariates. We identified 48 CpGs at an FDR<0.05 in this updated analysis, with 44 232 

overlapping with results from the original pipeline in the new dataset (Fig 4A; Table S3). The majority 233 

of significant CpGs in this new analysis were association with early childhood exposure to family 234 

instability, a pattern that differed slightly from the standard version of the analysis in the new data 235 

(Table 1; Fig 4B). All significant CpGs between analytic versions showed the same hypothesis 236 

selected (Fig 4C). These results suggested that the reduction in power of the selective inference method 237 

can potentially be offset by the use of the FWL theorem and that updates to covariates only cause 238 

minor changes to the results. We also note that 4 CpGs overlapped between all analyses (old data with 239 

standard analysis; new data with standard analysis; new data with updated analysis), representing the 240 

associations that survived technical replication across both data and analytic versions (Table S4).  241 

 242 
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Sensitivity analyses of prenatal smoke exposure showed similar results to psychosocial exposures 243 

To determine whether the impact of data and analytic version changes were limited to psychosocial 244 

exposures, we performed secondary analyses of prenatal smoking exposure (supplemental materials). 245 

While the EWAS of smoking showed more overlap and consistency between data versions than 246 

psychosocial exposures (Fig S1), we again observed differences in terms overall concordance at the 247 

level of p-values and magnitude of change. These results suggested that p-value thresholds remain 248 

relatively arbitrary, even with “gold-standard” epigenetic associations. Our secondary analysis of 249 

prenatal smoking exposure using the SLCMA also found some overlapping CpGs at an FDR<0.05 and 250 

major changes to selected hypotheses between data versions (Fig S2). These results further suggest that 251 

SLCMA was more sensitive to fluctuations between data versions than EWAS, particularly during the 252 

second step of the approach when significance was assessed. We also found few overlaps between the 253 

standard and updated analytic versions of the SLCMA of prenatal smoking, suggesting that updates to 254 

covariates may have different effects on the results from SLCMA depending on analysis-specific 255 

confounding structures, since these effects were not observed with the childhood adversity analyses 256 

(Fig S2).  257 

 258 

DISCUSSION 259 

A major challenge in conducting epigenetic analyses centers around the replicability of findings across 260 

cohorts, particularly when standard practices are constantly evolving.  In this study, we quantified these 261 

differences, showing that even within the same dataset, updates to preprocessing pipelines and analytic 262 

frameworks altered the DNA methylation loci that were associated with psychosocial and physical 263 

exposures at standard p-value significance thresholds, while the magnitude of differences at these loci 264 

tended to remain the same.  265 
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The major differences between the data versions arose from two main sources: 1) individuals added or 266 

removed from the analyses due to preprocessing and withdrawal of consent for certain individuals, and 267 

2) changes to the preprocessing pipeline for DNAm data. Although we accounted for this first factor by 268 

only analyzing overlapping samples, we found broad differences in both CpG-level and individual-269 

level DNAm patterns that must therefore be caused by preprocessing differences. One particularly 270 

striking difference was observed at the individual level, wherein the new dataset showed increased 271 

variability across individuals due to the use of functional normalization, rather than quantile 272 

normalization in the old dataset. Such normalization techniques provide a major technical and 273 

conceptual difference in the preprocessing of DNAm data, as quantile normalization assumes that all 274 

individual samples have identical distributions of DNAm across the genome 24. Bulk differences 275 

between data versions were also apparent at the level of estimated cell-type proportions. Given that cell 276 

types are estimated from the DNAm data, they may reflect broader differences between data versions, 277 

which may, in turn, broadly influence the results of epigenetic analyses. Overall, no single facet of the 278 

data fully reflected the changes between datasets, suggesting that a combination of sample differences 279 

and normalization techniques likely leads to different results between versions.  280 

As such, it is perhaps unsurprising that updates to data versions resulted in broad changes to the results 281 

of both our EWAS and SCLMA of psychosocial exposures. Although these exposures may have 282 

subtler effects on the epigenome, we found little reproducibility at the level of p-value thresholds and 283 

ranking. By contrast, the magnitude of change between exposed and unexposed individuals was highly 284 

reproducible across all CpGs in both types of analyses. For the SLCMA, we also found that hypothesis 285 

selection was stable across data versions (i.e., the first stage of SLCMA), but p-values obtained from 286 

post-selection inference were different (i.e., the second stage of SLCMA), further highlighting the 287 

fragility of inference based on p-values across our analyses. Numerous recent reports have already 288 

urged the scientific community to move away from p-values as a measure of significance and 289 
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reproducibility since p-values can be less than informative and sometimes misleading 25-28. In 290 

particular, the American Statistical Association recently outlined six important principles to avoid the 291 

misuse of p-values in scientific analyses 29. They note that p-values are not a good measure of evidence 292 

on their own, nor do they measure the size or importance of an effect. Our results show these 293 

statements hold true in epigenome-wide analyses. Building from our findings and prior 294 

recommendations, we urge researchers to supplement standard analyses (e.g., reporting of p-values) 295 

with metrics that provide additional insight into the reproducibility and strength of associations, such as 296 

their magnitude and direction of effect, and allow for better understanding of both mean and variance 297 

differences within a sample30.   298 

When we updated the SLCMA analytic version, we observed a not only a loss of p-value significance 299 

for several CpGs, but also several new associations. Given that we changed three main factors between 300 

analytic versions, there are at least three possible causes for these observed differences. First, selective 301 

inference is more stringent than the covariance test, which can produce inappropriately small p-values 302 

3. This initial difference resulted in a total loss of FDR-significant CpGs, without any changes to the 303 

magnitude of associations, thus explaining the reduction in the number of significant CpGs. Second, 304 

the application of the FWL theorem alongside selective inference resulted in more FDR-significant 305 

CpGs. However, since the FWL theorem improves statistical power without influencing the effect 306 

estimates of associations 3, no new associations should arise from its application in the updated analytic 307 

version, which would explain the overlapping FDR-significant CpGs between the standard and updated 308 

analytic versions. Thus, the third difference – updates to covariates in the statistical model – is likely 309 

responsible for the emergence of four new FDR-significant CpGs in the SLCMA of psychosocial 310 

exposures. Although these differences were minor, they reflect the potential effect of moving towards 311 

more appropriate covariates in epigenome-wide analyses, such as the use of maternal education rather 312 

than occupation-based social class in the ALSPAC cohort. This result is contrasted in the secondary 313 
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analyses of prenatal smoking, where changes to covariates greatly influenced the results of the 314 

analyses, highlighting that careful consideration of potential confounding is required for different types 315 

of analyses.  316 

In contrast to the analyses of psychosocial exposures, the EWAS of prenatal smoking, a physical 317 

exposure, was relatively reproducible when using p-value thresholds. This finding was expected 318 

considering that cigarette smoke has the most reproduced findings from epigenome-wide studies 31,32. 319 

However, the overall ranking and overlap of CpGs beyond FDR-significance remained relatively low 320 

in the EWAS, resulting in similar levels as psychosocial exposures across the top 5,000 CpGs. These 321 

results could potentially highlight the mechanisms by which such exposures become biologically 322 

embedded. Whereas smoking exposure has not just well defined, but also targeted cellular processes 323 

(i.e., implicated pathways that clear toxins from the organism), psychosocial exposures may have more 324 

systemic influences, impacting a broader set of CpGs with smaller effects 33,34. In addition, it is 325 

possible that psychosocial exposures may be have greater influences in central nervous system, rather 326 

than peripheral tissues, resulting in more moderate signals from blood samples 35. Of note, SLCMA 327 

analyses of smoking were not well reproduced across data and analytic versions. Although these results 328 

may be due to a variety of factors, a potential explanation is that smoking may not be a time-dependent 329 

exposure. Life course modeling approaches lose power when hypotheses are highly correlated, 330 

reducing their ability to make statistical inferences 16. As such, these broad differences between 331 

versions may indicate that the SCLMA is not appropriate for an exposure such as prenatal smoking, 332 

which may influence epigenetic patterns equally throughout development.  333 

 334 

The inevitable fluctuations in epigenome-wide associations highlight the importance of tracking data 335 

and analytic versions across epigenetic analyses to improve both the reproducibility and replicability of 336 

findings. As a field, we should endeavor to use the most up-to-date data versions and analytic models 337 
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before performing analyses. This approach is particularly relevant for subtler exposures, such as 338 

childhood adversity, where the epigenetic signal may require more nuanced methods due to limited 339 

sample sizes. Our investigation has shown the benefit of comparing data and analytic versions in a 340 

stepwise manner (i.e. that the observed differences in results can be explained step by step). Moving 341 

beyond p-values as a single metric for significance appears to be a necessary first step towards 342 

replicability, but p-values remain an important feature of biomedical research 28. We propose that 343 

researchers consistently report the magnitude and direction of effects alongside p-values to provide 344 

insight into their findings. Furthermore, as CpGs tend to be highly correlated, nuanced approaches that 345 

go beyond statistical and effect size cutoffs can be used to gain broader insight into the biological 346 

mechanisms influenced by a given exposure or disease. Such methods include those assessing 347 

differentially methylated or co-methylated regions 36,37, or genome-wide effects, such as WGCNA and 348 

other network analyses 38.   349 

 350 

CONCLUSIONS 351 

Changes to both data and analytic versions do impact results derived from epigenome-wide studies 352 

using both traditional and more nuanced methods. As differences not only depend on the robustness of 353 

associations, but also nuances and complexities of the analyses, our results highlight the challenges in 354 

making direct comparisons between and within datasets, stressing the importance of transparency in 355 

reporting these differences.  356 
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TABLES 476 

Table 1. Summary of analyses and significant CpGs 477 

  Data version changes Analytic version changes 
Analysis details 

 
    

 Analytic approach EWAS SLCMA SLCMA 

 
Inference method Ordinary least squares Covariance test Selective inference 

  Covariate adjustment Standarda Standarda Standarda FWLb 

 Data version Old New Old New New 

Adversity hitsc   
 

  
 

  
 

 
Abuse (sexual or physical) 1 0 66 35 0 2 

 
Financial stress 0 5 75 294 0 2 

 
Family instability 0 0 25 225 0 43 

 
Maternal psychopathology 0 0 31 73 0 0 

 
Neighborhood disadvantage 0 0 129 20 0 0 

 
One adult household 0 0 28 7 0 0 

 
Parental cruelty 0 0 18 10 1 1 

a Covariate adjustment was performed using standard methods. 

b Frisch-Waugh-Lovell (FWL) theorem applied for covariate adjustment and socioeconomic position replaced 

with maternal education.  

c Number of associated CpGs at a false-discovery rate <0.05. 

 478 
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Figure 1. Overview of analyses. Steps 1-3 outline the impact of data version differences. Step 4 outlines the effect of analytic version 

differences. Here, childhood adversity refers to the seven different types of adversity that were assessed in these analyses. Step 5 

outlines the sensitivity analyses of exposure to maternal smoking during gestation, which performed like steps 2-4. *FWL = Frisch-

Waugh-Lovell theorem (covariate adjustment methods).   
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Figure 2. Differences between data versions of the ARIES cohort.  
A) 948 participants overlapped between versions of the data. The new dataset had slightly less probes due to filtering procedures.  
B) Both the old and the new data showed typical bimodal distributions. However, the density of genome-wide DNA methylation was 
shifted towards the left in the new data, suggesting that the setpoint of hypermethylated CpGs was lower in the new data.  
C) Mean values for each CpG were shifted towards more middling values in the new data.  
D) The standard deviation (SD) of each CpG was generally higher in the old data. 300,839 CpGs had higher variability in the old data 
(dark grey) and 182,016 CpGs had higher variability in the new data (light grey).  
E) Individual-level mean DNA methylation (across all CpGs) varied substantially between data versions. The new data were highly 
variable, whereas the old data showed no variability between participants.  
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F) Individual-level DNAm data were generally highly correlated between data versions (r=0.98, red line), with no clear biases detected 
for specific chromosomes.  
G) Individual-level DNAm from specific genomic regions were generally highly correlated between data versions (r=0.98, red line). 
However, CpGs located in 3’UTRs showed slightly lower correlations between datasets.  
H) Estimated cell type proportions showed slight differences between the old and new datasets (differences were calculated by 
subtracting old data proportions from new data proportions).  
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Figure 3. Updates to data versions change the results of epigenetic analyses, for both EWAS and SLCMA.  
A) Overlap of the hits at FDR<0.05 between the old and new data for all seven different EWAS of childhood adversity.  
B) Few CpGs overlapped between the old and new data versions at different p-value rank thresholds (top 10, 50, 100, 1000, 5000, and 
50000 CpGs ranked by p-value).  
C) The Spearman’s rank correlation between CpGs (in old versus new data) that overlapped at a given rank (i.e., top N CpGs ordered 
by p-value) was relatively low across both data versions.  
D) The direction of DNAm differences between exposed/unexposed groups was generally consistent across overlapping CpGs at a 
given rank (i.e., top CpGs ranked by p-value).  
E) Overlap of the hits at FDR<0.05 between the old and new data for all seven different SLCMA of childhood adversity.  
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F) Both the hypotheses selected most frequently, and the adversities identified as having the most hits varied between data versions 
with the SLCMA for CpGs significant at FDR<0.05.  
G) The selected hypothesis from all top hits (shown in E) were generally consistent across data versions. Each line depicted 
corresponds to a specific CpG and shows whether its selected hypothesis differs between analyses.  
H) The difference in DNAm values between exposed and unexposed participants across all top SLCMA hits from E was generally 
consistent between data versions, regardless of statistical significance. Only shown here are the CpGs associated with sensitive period 
hypotheses, as a the difference between exposed and unexposed individuals is not calculated for the accumulation and recency 
hypotheses. 
*Maternal psych = maternal psychopathology; Neighborhood dis = neighborhood disadvantage. 
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Figure 4. Updates to analytic versions change the results of SLCMA.  
A) Overlap of the hits at FDR<0.05 for all seven different SLCMA of adversity between the standard and updated analytic versions 
(analyses performed with the new data).  
B) The pattern of hypotheses selected were similar across both analytic versions, though not all adversities had statistically significant 
associations in the updated analytic version.  
C) The hypothesis selected across all significant CpGs from A was consistent across analytic versions.   
*Maternal psych = maternal psychopathology; Neighborhood dis = neighborhood disadvantage. 
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