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Abstract

The Bitcoin payment system involves two agent types: Users that transact with the
currency and pay fees and miners in charge of authorizing transactions and securing the
system in return for these fees. Two of Bitcoin’s challenges are (i) securing sufficient
miner revenues as block rewards decrease, and (ii) alleviating the throughput limitation
due to a small maximal block size cap. These issues are strongly related as increasing
the maximal block size may decrease revenue due to Bitcoin’s pay-your-bid approach.
To decouple them, we analyze the “monopolistic auction” [16], showing: (i) its revenue
does not decrease as the maximal block size increases, (ii) it is resilient to an untrusted
auctioneer (the miner), and (iii) simplicity for transaction issuers (bidders), as the
average gain from strategic bid shading (relative to bidding one’s value) diminishes as
the number of bids increases.

1 Introduction

Bitcoin’s security relies on its ability to attract honest miners and to incentivize them to
invest large amounts of computational power [25]. This is done by rewarding miners for
the creation of new blocks. The payment comprises a block reward that is a fixed amount
per block, and a fee that each transaction pays for its inclusion in the block. Since the
block reward is cut in half approximately every 4 years, transaction fees gradually become
the miners’ main incentive to participate. The decision on which transactions to include
in the block is made using a “pay-your-bid” auction: each transaction contains a fee for
its inclusion in the block. A miner, in turn, includes the highest bidding transactions that
fit in the block. In this auction, larger block sizes imply smaller transaction fees, since all

∗A preliminary extended abstract of this paper appeared in [21].
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transactions will aim to pay the lowest possible fee for their inclusion in the block. The
Bitcoin block size therefore significantly influences miners’ revenue. Indeed, one of the main
arguments against a block-size increase in Bitcoin has been that it may cause transaction fees
to drop significantly (see, e.g., [17]). Thus, two of the Bitcoin system’s main problems, i.e.,
obtaining sufficient revenue for the miners as the block reward gradually decreases and the
throughput limitation as a result of the maximal block size, are in fact strongly related. This
connection, however, is a major obstacle to their resolution. Our motivation in this paper
is to decouple the issues of revenue and maximal block size (which should be determined
according to other technical considerations, like block propagation times) and to provide
scalability from the economic perspective of the fee market.

While most of auction theory assumes a trusted auctioneer that honestly follows the
protocol, a miner (the auctioneer of the block) cannot be trusted. If adding fake bids can
increase profit, a miner can add transactions by moving funds from one of its accounts
to another. Similarly, a miner can ignore bids. An untrusted miner can manipulate a
2nd price auction, for example, by adding a fake bid that is very close to the highest bid.
Users will realize that and shade down their bids. Though cryptography can, in general,
help resolve some of these issues, as far as the authors are aware, cryptographic techniques
are not applicable to Bitcoin: they assume a trusted setup, that the miner is known in
advance, or multiple communication rounds between all parties as in secure multi-party
computation [26, 23, 1, 6].

We analyze here a potential solution to these issues, the monopolistic auction [16].1 We
observe that in the Bitcoin setting, the monopolistic auction is immune to untrusted miners,
on the one hand, and it decouples the revenue issue from the maximal block size issue, on
the other. In this auction, given bids b1, ..., bn, the miner chooses which transactions to
include in the block. All chosen transactions pay the same fee – the lowest bid in the block
(as must be verified by the protocol). The maximal revenue resulting from this method
cannot be increased by adding fake bids or by ignoring true bids. Other manipulations like
side payments between miners and users are also not beneficial. In fact, we are not aware
of any beneficial miner manipulation that can be exploited in the frame of this auction.
Additionally and in contrast to a pay-your-bid auction, increasing the maximal block size
does not decrease the revenue of the monopolistic auction. Choosing a threshold price is
conceptually similar to dynamically choosing the block size – the miner chooses the size of
the block it creates as a function of the bids received. In some bid instances, blocks will be
small, while in others they will be large.

In a pay-your-bid auction, a user must strategically determine the lowest bid it can submit
such that it will be included in the block (“bid shading”). Indeed, Bitcoin wallets use various
fee estimation techniques. It is not clear how to do this optimally, and in any case, it requires
some non-trivial computational effort (data gathering, statistical analysis, etc). Bid shading
can also help in worst-case instances of the monopolistic auction, and as a result, [16] do not
analyze its strategic properties but suggest it only as a benchmark for other truthful auctions

1Termed the “optimal single price omniscient auction” in [16], this auction was suggested as a benchmark,
and as far as we know, its game-theoretic properties have not been analyzed in the Bitcoin context.
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they define. These other truthful auctions from [16] are less applicable vis-á-vis our needs
(see Section 6). Although the approach is not truthful, in the monopolistic auction, a user,
rather than paying her bid, pays some threshold value (a function of all bids) which w.h.p is
only remotely related to one’s bid. The main technical novelty of this paper is to show that
the expected gain from optimal bid shading relative to truthfully bidding the user’s value
(which is her maximal willingness to pay) decreases to zero as the number of bids grows.
On average, all users will benefit very little, if at all, from bid shading in the monopolistic
auction. Since a near optimal strategy is to bid the user’s value, bidding in the monopolistic
auction is simpler. Section 2 defines the formal framework used and proves this statement,
and Section 4 verifies it via simulations using synthetic and actual Bitcoin bid distributions.
The greater simplicity of the monopolistic auction is another one of its advantages over the
pay-your-bid auction.

Our work analyzes a single block creation, and ignores “patient users”, who are willing to
wait for future blocks. These users might lower their bids if they anticipate less competition
in the future. Two important issues that remain to be investigated in future research are (1)
how patient users shade down their bids and (2) how non-myopic users who create persistent
transactions affect the bid distribution. Note that these issues affect the revenue not only of
the monopolistic auction, but also of the pay-your-bid auction. We do not know, however,
which of the two auctions is more strongly affected. Our analytical results suggest that
the monopolistic auction collects at least as much revenue from impatient users as Bitcoin’s
current mechanism. We discuss temporal considerations further in Section 6.1.

Subsequent Work. After the preprint version of this manuscript was published, Andrew
Chi-Chih Yao [34] further analyzed the monopolistic price as a fee mechanism for Bitcoin,
in the process resolving our main conjecture, Conjecture 1 – see the discussion there. In
addition, Mark Friedenbach [14, 15] proposed an implementation of our proposed fee market
as a Bitcoin soft-fork (i.e., an upgrade which is compatible with older version of the Bitcoin
client, see [27] for details regarding a soft-fork).

Basu, Easley, O’Hara and Sirer [5] used a modified monopolistic price auction to deter-
mine inclusion in the block. They penalize miners if the blocks are not full, and additionally,
they average the reward from blocks between different miners. Their goal is to maximize
social welfare rather than the miners’ revenue. The main analytical difference between their
work and ours is that theirs is based mostly on simulations while ours is proved for the most
part formally. Perhaps surprisingly, even though their design goal and their mechanism is
different than ours, in terms of abstract conclusions, our results agree with theirs: they also
establish that the incentive of miners and users to manipulate diminishes as n grows.

Additional Related Work. There are relatively few works devoted to analyses of the
Bitcoin fee market and fewer still that suggest modifications to the basic mechanism. [19]
provided an early analysis of the economics of Bitcoin mining, including a game theoretic
analysis of the incentives to mine on the longest chain. [4] considered the incentives of miners
to distribute transactions to each other and designed ways to share the fees in exchange for
distribution. [10] explored the security of Bitcoin and the incentive to mine blocks properly
when block rewards diminish and fees dominate the revenue of miners. They showed that
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variance in fees may undermine the security of the protocol and subject it to different forms
of deviations and attacks. [7] explored related bribery attacks on the protocol that are paid
for through promises of higher rewards for attackers that construct blocks off the longest
chain. [29] considered the removal of the block limit altogether, arguing that delays in
large block propagation times, which, in turn, imply a higher likelihood that the block is
abandoned (often referred to as an orphaned block), will cause miners to restrict their own
block sizes. The paper analyzed the resultant fee market that emerges. [18] modeled the
transaction fee market and assumed that users benefit less if their transactions are delayed.
They showed that such delays together with the congestion that may naturally occur in
blocks due to queuing effects can lead to non-zero bids for transacting users even if blocks
are not completely full. As far as we are aware, no previous work has explored a different
mechanism for the fee market in crypto-currencies.

The paper [2] shows that a class of auctions that includes the monopolistic auction is
“strategy-proof in the large”, when values are i.i.d. from some distribution with a finite
support. Strategy-proofness in the large means that truthfulness is an epsilon BNE and
epsilon goes to zero as the number of bidders goes to infinity. Our limit results on the
monopolistic auction are similar, although we prove this for a different, stronger, notion –
the discount ratio. See a more detailed discussion in Section 2.

Two recent papers [22, 11] take the axiomatic approach to characterize good block reward
schemes, i.e., schemes that satisfy sets of axioms, and show that the proportional selection
rule is the unique selection rule satisfying several reasonable axioms.

Several surveys that discuss the state-of-art of integrating game theoretic considerations
with cryptocurrencies are given, e.g., in [9, 24, 3].

Terminology In general, we use Bitcoin’s terminology (e.g., users, transactions and min-
ers). In some rare cases (especially when citing seminal auction theory results) we use the
standard auction theory terminology instead (bidders, auctioneer, etc.).

Structure of this paper. Section 2 lays out the basic model, and further studies the
properties of the monopolistic auction. Section 3 further generalizes the monopolistic auction
to account for multiple strategic bids submitted by the same user. Section 4 conducts an
extensive empirical evaluation of our theoretical claims and conjectures. This is especially
useful since our theoretical bounds holds in the large n limit. Section 5 conducts a theoretical
and experimental analysis of the suitability of the RSOP auction in our setting. Section 6
gives concluding remarks and suggestions for future research directions. Appendices A to F
provide full proofs, and Appendix H lists the main notations and symbols we use.

2 The Monopolistic Auction

There are n transactions, each of which has a privately known value vi for its inclusion in
the block. This is the maximum fee that the transaction is willing to pay. The value can
be deduced, e.g., by comparing to an alternative transaction cost via a bank, credit card,

4



etc. Transactions submit bids, and based on these, the miner decides which transactions to
include in the block. The bid vector is sorted so that b= (b1, . . . , bn) satisfies b1 ≥ . . . ≥ bn.
Let k∗(b) be the index k that maximizes k ·bk. In case of ties, k∗ is chosen to be the maximal
such index. Define:

R(b) ≡ k∗(b) · bk∗(b) , pM(b) ≡ bk∗(b), (1)

where R(b) is termed the “monopolistic revenue” and pM(b) is termed the monopolistic
price. In the monopolistic auction, the miner includes in the block the k∗(b) transactions
who submitted the highest bids and charges a payment of pM(b) = bk∗(b) from each of these
transactions. The miner’s revenue from this block is therefore R(b).

An untrusted miner that can add fake bids does not have any incentive to do so in this
auction. Specifically, the Bitcoin protocol can verify that all transactions in the same block
pay the same price. However, it cannot prevent miners from adding fake bids by exploiting
transactions that move funds between two accounts of the same miner. These fake bids
can affect the payments of the “real” bids and increase the revenue of the miner, as is the
case in a second-price auction. In the monopolistic auction, in contrast, the addition of fake
bids cannot increase the revenue: given any vector of real bids b, since all transactions in
the block pay the same price, the maximal revenue is R(b) if the miner does not create
another block in the near future. However, a user might benefit from submitting bi < vi, as
demonstrated by the following examples:

Example 1. Suppose n users that have the same value vi = 1. If all bids are bi = vi,
then R(b) = n, k∗(b) = n, and pM(b) = 1, i.e., all transactions get accepted to the block
and they all pay 1. A strategic user, say 1, can reduce her payment by reducing her bid to
b1 = n−1

n
. With this bid, the monopolistic price decreases to n−1

n
: if all transactions that bid

1 are accepted, the revenue is n − 1, and if all transactions that bid at least b1 = n−1
n

are
accepted, the revenue is still n− 1.

The gain from bid shading in this example vanishes as the number of transactions (and
the block size) increases. In other cases, gains do not vanish even when the number of
transactions grows:

Example 2. v1 = . . . = vn
2
+1 = 2, vn

2
+2 = . . . = vn = 1, given some even n. If user 1 is

truthful and bids 2, her transaction will get accepted to the block and the price will be 2. A
careful look reveals that she can reduce her price to 1 by bidding 1 instead.

However, if the values for this example are taken from realistic distributions, then the
probability that it will be realized will usually be very small.

Therefore, rather than allege that there are no profitable deviations from truth-telling, we
will only claim that the expected gain from any non-truthful bid diminishes as n grows. For
example, if the distribution of values has a finite support, bidding the next lower value in the
support weakly dominates truth-telling. More pronounced bid shading may be beneficial; We
will show, however, that the expected gain from such a deviation or from any other deviation
becomes extremely small as n grows. Therefore, we believe that it makes sense to conclude
that no deviations will likely happen.
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Example 3. Consider the distribution F with finite support: Pr(v = 1) = 0.5,Pr(v = 2) =
0.5. For simplicity, assume that users can only submit bids of 1 or 2. Every user with v = 2
has a weakly dominant strategy to bid 1, since she derives 0 utility when the monopoly price
is set to be 2, and by bidding 1 she increases the chance that the monopoly price will be
1. However, the probability that bidding 1 instead of 2 will actually make a difference is
vanishingly small. Specifically, a user with v = 2 can improve the outcome (i.e., change the
empirical monopoly price from 2 to 1) by bidding b=1, when the number of users is 2n, only
in the event that there are exactly n+ 1 users with value equals to 2. The probability of this

event is
( 2n
n+1)
22n

= Θ
(

1√
n

)
. We note that this is the most extreme example – as the support

size increases, the bid shading suggested in this example becomes negligible.

We validate this intuition more generally via both theoretical and empirical analyses.
First we define some terms. Fix a user i and a vector of bids b−i ≡ (b1, . . . , bi−1, bi+1, . . . , bn)
of the other users. Define the “strategic price”:

pS(b−i) ≡ inf{bi ∈ R | pM(bi, b−i) ≤ bi} = min{bi ∈ R | pM(bi, b−i) ≤ bi}. (2)

The equality is proven in Appendix A. In words, pS(b−i) is the lowest possible bid for i
to be included in the block, when the other bids are b−i. Figure 1 gives an example. This
definition does not capture a case where a user can provide false-name bids (i.e., can split
her transaction into several transactions), which is discussed in Section 3.

Figure 2 presents the strategic prices in an example with n = 256 users. In this exam-
ple, pS is monotonically decreasing among winning users (higher winning bids imply lower
strategic prices) but not among all users. This property is formally proved in Claim 9 in
Appendix B. Additionally, here and in most other simulations, almost all winning bids have
the same strategic price, the exception being the very few lowest winning bids (i.e., those
with prices slightly higher than the monopolistic price). The strategic price of these bids is
higher, i.e., they gain less from being strategic.

While pS(b−i) is the minimal price that user i must pay to be included in the block,
she will pay pM(vi, b−i) if she bids her true value. This possible gain from bid shading is
captured by the notion of the “discount ratio”:

δi(vi, b−i) ≡

{
1− pS(b−i)

pM (vi,b−i)
if vi ≥ pS(b−i)

0 otherwise.

Clearly, 0 ≤ δi(vi, b−i) ≤ 1. If vi < pS(b−i), every bid of at most vi loses. Hence, the gain
from bid shading is 0. If vi ≥ pS(b−i), user i can win and pay pS(b−i). With an honest bid,

she will pay pM(vi, b−i). She can thus save a percentage of 1 − pS(b−i)
pM (vi,b−i)

from her price by

strategic bid shading.
Example 2 above shows that the discount factor does not vanish in the worst case, even

as n grows. In this example, the discount factor is 1
2

for all possible values of n. We therefore
conduct an average-case analysis. Assume that all true values are drawn i.i.d. from some
distribution F on R>0. The average discount ratio is then ∆average

n = E(v1,...,vn)∼F [δ1(v1,v−1)]
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○

Figure 1: The function pM(b1, 1) as a function of b1, demonstrating that pM is neither
monotone nor continuous. As can be seen, the strategic price of the first user is 0.5.

(the choice of user 1 is arbitrary since all are symmetric a-priori). Note that this definition
implicitly assumes that b−1 = v−1. This is similar to the usual logic in equilibrium analysis
– assume all others are truthful and show that user i does not have a reason to deviate from
truthfulness as well. Indeed, we will show that all discount ratios go to zero as n goes to
infinity. We therefore rely on this logic in all our definitions.

We also consider two stronger notions. In the first, for each realization v1, ..., vn, we
consider the maximal discount ratio among all users:

δmax(v) ≡ max
i
δi(vi,v−i) , ∆max

n ≡ E(v1,...,vn)∼F [δmax(v)]

Clearly, for all n, ∆max
n ≥ ∆average

n since for every v and every i, δmax(v) ≥ δi(vi,v−i).

Theorem 1. For any distribution F with a finite support size, limn→∞∆max
n = 0.

Section 2.1 proves this theorem.
In the second extension, defined only for distributions with a finite bounded support, we

fix player 1 and assume that she deterministically has a value that maximizes her discount
ratio (the worst possible value for her, from our perspective) while all other values are prob-
abilistic. This depicts a situation commonly assumed in game theory wherein a user knows
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Figure 2: An example with n = 256 bids sampled i.i.d. from the uniform distribution on
[0, 1]. For each user, the x-axis shows her values and the y-axis shows her strategic price.
Winning bids, which are marked with “x”, must be at least as high as their respective
strategic price, i.e., to the right of the black line.

her own value and (only) the distribution of the other values. Let vmax ≡ max Support(F).

δGTn (b−1) ≡ max
v1∈Support(F )

δ1(v1, b−1) = δ1(vmax, b−1). (3)

The equality is proven in Claim 10.

∆GT
n ≡ E(v2,...,vn)∼F [δGTn (v−1)] (4)

Theorem 2. For any distribution F with a finite support size, limn→∞ ∆GT
n = 0.

The proof of this theorem is very similar to that of Theorem 1, as explained in Section 2.1.
Our empirical analysis focuses on ∆max

n , since it is well-defined even for distributions with
unbounded support.

While limn→∞ |∆GT
n − ∆max

n | = 0, the relation between ∆GT
n and ∆max

n depends on the
distribution, i.e., one term is not always larger than the other. For example, consider the
distribution Pr(vi = 1) = p and Pr(vi = ε) = 1− p, where 0 < ε < 1. In this case, if p < 0.5,
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then ∆GT
n=2 > ∆max

n=2 , and if p > 0.5, then ∆GT
n=2 < ∆max

n=2 , since:

∆GT
n=2 =Ev2∼F [δ1(1, v2)] = pδ(1, 1) + (1− p)δ(1, ε) = p · 1

2
+ (1− p) · (1− ε

2
)

∆max
n=2 =E(v1,v2)∼F [max

i
δi(v1, v2)]

= p2δ1(1, 1) + (1− p)2δ1(ε, ε) + 2p(1− p) max
i
δi(1, ε)

= p2δ1(1, 1) + (1− p)2δ1(ε, ε) + 2p(1− p)δ1(1, ε)

= (1− 2p(1− p)) · 1

2
+ 2p(1− p) · (1− ε

2
)

We believe that our theorems can be further generalized:

Conjecture 1 (Nearly Bayesian-Nash Incentive-Compatibility).

1. For any distribution F , limn→∞∆average
n = 0. In particular, ∆average

n = O
(

1√
n

)
, where

the constant in the O(·) notation may depend on F .

2. If F has a bounded support (still possibly with an infinite cardinality) limn→∞∆max
n = 0.

In particular, ∆max
n = O

(
1√
n

)
. The same holds for ∆GT

n .

3. There exists a distribution F with unbounded support such that
limn→∞∆max

n > 0. The same holds for ∆GT
n .

The O
(

1√
n

)
in the above conjecture can be achieved by Example 3.

Recently, Andrew Chi-Chih Yao resolved many issues that were left open in this work.
Indeed, “The main purpose [of Yao’s paper] is to settle the Nearly IC Conjecture for the
monopolistic price in the positive” [34]. Specifically, the first sentences in items 1 and 2 in the
conjecture above were proved, and a slightly weaker claim was shown than the “in particular”
claims in these items. This was proved also when accounting for multiple strategic bids –
see Section 3. Item 3 was proved for the inverse distribution (see Eq. (8)), which was our
primary candidate for this conjecture based on numerical data – see Section 4.

Game Theoretic Equilibrium Analysis. In a Bayesian-Nash equilibrium (BNE),
user i’s utility is ui(vi, bi, b−i) = vi − pM(b) if bi ≥ pM(b) and 0 otherwise. A strategy
si : R+ → R+ gives i’s bid si(vi). (s1(·), ..., sn(·)) is an ε-BNE if ∀i and vi, bi ∈ Support(F ):
Ev−i

[ui(vi, si(vi),v−i)] ≥ Ev−i
[ui(vi, bi,v−i)] − ε. The “truthful” strategy si(vi) = vi is an

ε-BNE if for all i,

max
vi,bi∈Support(F )

Ev−i
[ui(vi, bi,v−i)− ui(vi, vi,v−i)] ≤ ε (5)

Our discount-ratio analysis is similar but formally different. In fact, our approach is stronger.
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Theorem 3. Assume that F is bounded, with vmax being the maximal point on the support
of F . For any n, si(vi) = vi is an ε-BNE with ε = vmax · ∆GT

n in the monopolistic auction
with n users.

The proof is given in Appendix E.
If F has a finite support, Theorem 2 states that limn→∞∆GT

n = 0. Therefore, there exists
a function N(ε) such that, for every ε > 0, n ≥ N(ε), truthfulness is an ε-BNE in the game
with n users. The opposite direction is not true; if truthfulness is an ε-BNE, this does not
imply that the discount ratio is at most ε. This is because the deviation bi in the BNE
analysis is fixed before taking the expectation, while in our analysis bi is a best response to
a specific v−i and we take the expectation over these possibly different best responses. In
this respect, the discount-ratio analysis is stronger.

2.1 Proof of Theorem 1

Recall that F is the distribution over true values. Given v, define: i∗≡ argmaxi=1,...,nvi, k
∗

≡ k∗(v−i∗), and pS ≡ pS(v−i∗) (‘S’ stands for ‘Strategic’).

Lemma 1. For any F with finite support size, there exists a constant c > 0 (which may
depend on F but not on n) s.t. limn→∞ Pr(k∗ < c · n) = 0.

Proof. Let vmax = max Support(F ), kmax be the number of users in v whose value is vmax,
and pmax = Prvi∼F [vi = vmax]. By linearity of expectation, E[kmax] = pmax · n. A Chernoff
bound implies that limn→∞ Pr

(
kmax <

9npmax

10

)
= 0. Users who bid vmax win; therefore,

k∗ + 1 ≥ kmax. Thus, limn→∞ Pr
(
k∗ + 1 < 9npmax

10

)
= 0. Choosing c = 8pmax

10
completes the

proof of the lemma.

Appendix B shows three useful properties:

Property 1. ∀v, i, pM(pS(v−i),v−i) = pS(v−i).

Property 2. Let y be the smallest element in the support of F that is at least pS. Then,
y = pM(v) implies pS ≥ k∗

k∗+1
· pM(v).

Property 3. ∀v, i, j: vi ≥ vj implies δi(vi,v−i) ≥ δj(vj,v−j).

With these, we prove a second lemma:

Lemma 2. limn→∞ Pr(pS < k∗

k∗+1
pM(v)) = 0.

Proof. Define A as the event where pS < k∗

k∗+1
pM(v). The proof defines an event B s.t. (i)

limn→∞ Pr(B) = 0, and (ii) A ⊆ B. This implies limn→∞ Pr(A) = 0 as claimed.
Define num(v, z) ≡ |{vi|vi ≥ z}| and the random variables nz = num(v, z) for any

real number z. Let B be the event in which ∃x, y ∈ Support(F ) s.t. x > y and nx · x >
ny · y ≥ (nx − 1)x. Since the support is of finite size, there is a fixed number of such pairs
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x > y ∈ Support(F ). By Claim 16 in Appendix D and the union bound over these finite set
of pairs, we conclude that limn→∞ Pr(B) = 0. We show that A ⊆ B, i.e., pS < k∗

k∗+1
pM(v)

implies ∃x > y ∈ Support(F ) s.t. nx · x > ny · y ≥ (nx − 1)x. Let x = pM(v) and let y
be the smallest element in the support of F which is at least pS. By Property 2, the event
pS < k∗

k∗+1
pM(v) implies x > y. Since pM(vi∗ ,v−i∗) = x, it follows that nx · x > ny · y.

Furthermore,

ny ·y ≥ npS ·pS = num(v, pS)·pS = num((pS,v−i∗), p
S)·pS ≥ num((pS,v−i∗), x)·x = (nx−1)x

where the first step follows since ny = npS and pS ≤ y, the third step follows since vi∗ ≥ x >
y ≥ pS, the fourth step follows from Property 1 that shows that pM(pS,v−i∗) = pS, and the
fifth step follows since vi∗ ≥ x > y ≥ pS.

Let the “bad” event E1 be the case where k∗ < c · n (c is taken from Lemma 1) and
the “bad” event E2 be the case where pS < k∗

k∗+1
pM(v). By Property 3, δmax(v) = δi∗(v).

Therefore, ∆max
n = Ev[δi∗(v)]. If E2 does not hold then pS ≥ k∗

k∗+1
pM(v) and therefore

δi∗(v) ≤ 1
k∗+1

. To conclude:

lim
n→∞

∆max
n = lim

n→∞

[
Pr(E1 ∪ E2)Ev[δi∗(vi∗ ,v−i∗)|E1 ∪ E2]

+ Pr(Ec
1 ∩ Ec

2)Ev [δi∗(vi∗ ,v−1)|Ec
1 ∩ Ec

2]
]

≤ lim
n→∞

[
Pr(E1) + Pr(E2) + Pr(Ec

1 ∩ Ec
2) · Ev[

1

k∗ + 1
|Ec

1 ∩ Ec
2]

]
≤ lim

n→∞

[
Pr(E1) + Pr(E2) + Pr(Ec

1 ∩ Ec
2) ·

1

c · n

]
≤ lim

n→∞

[
Pr(E1) + Pr(E2) +

1

c · n

]
= 0,

implying Theorem 1. The proof of Theorem 2 is very similar. The main difference between
the two theorems is that in the latter, we need to set the value of the first player to the
maximal value in the support of F . All statements of the above proof then hold with respect
to the first player, instead of player i∗.

3 Multiple strategic bids

In some cases it is beneficial to split one’s bid to several separate transactions with several
separate bids. In fact, such a strategy sometimes enables a losing transaction to be included
in the block, as the following example demonstrates:

Example 4. Let v = (5, 2, 1, 1). With bids b = v, the monopolistic price is 5 and the
second user loses. However, if she submits two separate transactions with a bid of 1 each,
the monopolistic price will be 1 and all transactions will be included.
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Our empirical evaluation below accounts for such situations, showing that the benefit
from using multiple bids also goes to zero as n increases. For this purpose, we generalize pS

to capture the possible benefit of splitting a single bid to u different bids. Formally, define
pmultibid(b−i) as the minimum of u · b(u)i over all u ∈ N+ and all b

(1)
i ≥ . . . ≥ b

(u)
i ∈ R such

that b
(u)
i ≥ pM(b

(1)
i , . . . , b

(u)
i , b−i). Choosing u = 1 gives us pS, hence pS(b−i) ≥ pmultibid(b−i).

Example 4 shows that there are cases in which the inequality is strict. It is easy to show
that pmultibid(b−i) can be written as:

pmultibid(b−i) ≡ min{u · bi | u ∈ N+, bi ∈ R, bi ≥ pM(

u times︷ ︸︸ ︷
bi, . . . , bi, b−i)}. (6)

The minimum is well defined using an argument similar to that used for pS. In particular,
for any positive integer u, use fu(bi) = pM(bi, ..., bi, b−i) (where bi appears u times). By
Claim 11, u ∈ {1, ..., n}. Since for every u, the infimum is contained in the set, then so is
the infimum over the union over u ∈ {1, ..., n}.

We believe that Theorem 1 and Conjecture 1 hold in the case of multiple bids, where in the
definition of δ, pmultibid replaces pS. In our empirical evaluation we use pmultibid instead of pS.
In all the distributions we examined, except the discrete distribution, we never encountered
a case in which the strategic player has an advantage placing multiple bids. Even in the
discrete case, the effect of such multiple bids was negligible.

The definition of pmultibid gives little information on its algorithmic computation, since
the optimization is done on an infinite set. We provide an alternative definition which yields
a polynomial-time algorithm. We use this algorithm in our simulations. Fix a player i and
w = v−i. Assume w.l.o.g. that w is sorted, w1 ≥ w2, . . . ,≥ wn−1. For every k∗(w) ≤ j ≤
n− 1, define

f(j) ≡ max

{⌈
R(w)

wj

⌉
, j + 1

}
.

Intuitively, if user i (the strategic user) adds f(j)− j additional bids to w, all equal to R(w)
f(j)

,
then this will be the new monopolistic price, and user i will win. It is thus clear that these
manipulations should be considered in order to determine the optimal solution of Eq. (6).
While a-priori it may be possible to consider other manipulations as well, the next theorem
shows that considering this type of manipulations is sufficient.

Theorem 4.

pmultibid(w) = min
k∗(w)≤j≤n−1

R(w)

f(j)
(f(j)− j).

Furthermore, if j∗ is the index that minimizes this term, then b∗ = R(w)
f(j∗)

and u∗ = f(j∗)− j∗

minimizes the r.h.s. of Eq. (6).

For intuition, we refer the reader to Example 4. Indeed, in that example, w =
(5, 1, 1), k∗(w) = 1, R(w) = 5. We can calculate f(1) = 2, f(2) = 5, f(3) = 5. There-
fore, j∗ = 3, resulting in b∗ = 1, u∗ = 2 as described in the example above.

Proof. To prove this theorem, we begin with a useful Lemma:

12



Lemma 3. Let b, u be the arguments which minimize Eq. (6), j be the integer which satisfies
wj ≥ b > wj+1 and u∗ = f(j)− j. Then, u∗ ≥ 1 and u ≥ u∗.

Proof. Since f(j) ≥ j+1, u∗ ≥ 1. If f(j) = j+1, u∗ = 1 and the claim immediately follows.

Thus assume that f(j) = dR(w)
wj
e. Suppose towards a contradiction that u ≤ u∗ − 1. Then,

R(

u times︷ ︸︸ ︷
b, . . . , b,w) = b · (u+ j) ≤ wj · (u∗ − 1 + j) = wj · (f(j)− 1) < R(w) (7)

where the first step follows since by Claim 12

b = pM(

u times︷ ︸︸ ︷
b, . . . , b,w)

and since there are exactly j bids in w that are at least b; and the last inequality follows
from f(j) < R(w)

wj
+ 1.

However Eq. (7) shows a contradiction since adding bids can only increase the monopo-
listic revenue. This completes the proof of Lemma 3.

We now prove Theorem 4. Let b, u be the arguments that determine pmultibid(w) (i.e.,
(b, u) minimizes Eq. (6)). Let j be the integer that satisfies wj ≥ b > wj+1 (where j = n− 1

if wn−1 ≥ b). By Claim 13, j ≥ k∗(w). Let u∗ = f(j)− j and b∗ = R(w)
f(j)

. Then,

b · (u+ j) = R(

u times︷ ︸︸ ︷
b, . . . , b,w) ≥ R(w) = b∗ · (u∗ + j)

where the first step is the same as the first step in Eq. (7) above. Thus, b·u ≥ b∗·u∗+j ·(b∗−b).
By Lemma 3, u ≥ u∗, which implies b · u ≥ b∗ · u∗ (since b · u < b∗ · u∗ and u ≥ u∗ implies
b < b∗ and b · u < b∗ · u∗ + j · (b∗ − b), a contradiction). Thus,

pmultibid(w) = b · u ≥ b∗ · u∗ ≥ min
k∗(w)≤j≤n−1

R(w)

f(j)
(f(j)− j),

and the first part of the theorem follows. The second part follows in a straight-forward way
from the first part.

4 Empirical Evaluation

We provide empirical evidence to support the above conjectures and to supply greater detail
on the rate at which the discount ratio converges to zero. We use both synthetic data as well
as transaction data taken from the Bitcoin blockchain. The synthetic data are generated
using four distributions:

1. A uniform discrete distribution over the integers 1, . . . , 100. This distribution has a
finite support size and therefore satisfies the requirements of Theorem 1.
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Figure 3: A histogram of the sum-of-outputs on the x-axis (in log scale) and its frequency
in the collected data (on the y-axis).

2. The uniform distribution over [0, 1]. Notice that here the support size is infinite.

3. The half normal distribution.2 Here, the probability for value x decreases exponentially
with x, hence, even though arbitrarily high transaction values will be seen, they are
highly unlikely.

4. The inverse distribution

F (x) = 1− 1

x
, x ∈ [1,∞). (8)

Here, the probability for a value x decreases polynomially with x.

The uniform distribution has no tail, the half normal distribution has a light tail (it decreases
exponentially fast), and the inverse distribution has a heavy tail.

Bitcoin blockchain data was collected from 1000 consecutive blocks, which constitute
roughly one week of activity ending on October 28th, 2016. Figure 3 shows a histogram of
the collected data. The data obviously do not contain the values, since this is not how Bitcoin
operates. The simulations estimate the value v, as a function v = v(x) of the transaction
size x (x is the sum of all outputs of the Bitcoin transaction). We use three alternative
functions: v(x) = log x, v(x) =

√
x, v(x) = x. Note that multiplying all bids by a scalar does

2Recall that the half normal distribution arises from taking the absolute value of a normal random
variable. This is needed in our setting since valuations are non-negative.
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Figure 4: The average discount ratio of a player from selfish bidding as a function of the
number of players that participate.

not change the discount ratio, which is the case when, e.g., the value is some percentage of
x.

We empirically evaluated ∆average
n and ∆max

n (where pmultibid replaces pS) as a function
of the number of bids, n. For each n ∈ {23, 24, . . . , 217}, we conducted 100 simulation runs.
Each run samples n bids and calculates the n empirical discount ratios. ∆average

n is the
average of the n individual discount ratios and ∆max

n is the maximum over the n individual
discount ratios. Each point in the graph is the average of 100 runs.

Figure 4 shows that ∆average
n behaves almost identically for all tested distributions. In

particular, as stated in the first part of Conjecture 1, ∆average
n decreases linearly with the

number of bids n and for all distributions, even those with an infinite and unbounded support
size.

Figure 5 shows that ∆max
n behaves differently for some of the tested distributions. For

the uniform distribution, ∆max
n decreases linearly with the number of bids, supporting the

second part of Conjecture 1. The half normal distribution behaves similarly (even though
it is not bounded). For the inverse distribution, ∆max

n does not seem to decrease with the
number of users, and we believe that this is in fact an example that supports the third part of
Conjecture 1. The three Bitcoin distributions behave as follows: the log of the sum decreases
the fastest, the square root of the sum decreases more slowly, and the sum decreases the
slowest. For example, for n = 2048 (roughly the current Bitcoin block-size), ∆max

n is about
0.2%, 5%, and 19% for the three distributions, respectively. When n = 217 ≈ 130, 000, ∆max

n

is about 0.0007%, 0.05%, and 1%.
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Figure 5: The maximal discount ratio of a player from selfish bidding as a function of the
number of players.

These findings show that there is a qualitative difference between ∆average
n and ∆max

n ,
mainly for the inverse distribution and for the Bitcoin distribution with v(x) = x. In these
distributions, although the average transaction will benefit very little from bid shading, some
transactions can nonetheless obtain significant benefit. This outcome can, in principle, result
from two different reasons. The first is that ∆average

n also accounts for the losing transactions,
whose discount ratio is zero. The second is that ∆max

n only accounts for the single winning
user with the maximal discount ratio. However, typical user behavior (as demonstrated in
Figure 2) shows that almost all winning bids have the lowest strategic price and, therefore,
the highest discount ratio. Thus, the explanation for the difference between the two discount
ratios seems to be the first.

Figure 6 shows all simulation points for the Bitcoin log-of-sum distribution. The x-axis
is the resulting block size of the simulation run (in the previous figures it was n) and the
y-axis is the maximal discount ratio of the simulation run. Three main conclusions can be
drawn from Figure 6. First, block sizes (number of winners) range from 1 to about 25,000
when v(x) = log x (recall that the total number of bids ranges from 23 to 217).3 Second,
this range in block sizes is the main reason why ∆max

n is smaller in the Bitcoin log-of-sum
distribution, as larger block sizes imply smaller discount factors. Third, the distribution of

3The throughput when v(x) = log x will therefore be about 0.1n (n is the number of all transactions).
For v(x) = x, block sizes range from 1 to about 1,500, implying a throughput of about 0.01n. This can be
compared to Bitcoin’s actual throughput in October 2016 which varied between 1300 and 1900 transactions
per-block (the variation is mostly due to variations in transaction sizes in bytes).
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Figure 6: A scatter plot of all simulation points for the Bitcoin distribution with v(x) = log x.

the simulation points, which include outliers, is not normal. We do not have an explanation
for this finding. The last two remarks apply to all tested distributions.

5 The Suitability of the RSOP Auction in Our Context

The monopolistic-price auction is miner-honest in the sense that a myopic miner cannot
increase her revenue by diverging from the suggested protocol (for example, add false bids
or delete existing bids). However, as discussed above, even impatient users can sometimes
benefit from submitting a strategic bid which is different than their true value.

In this section we discuss an alternative approach in which we use a well-known auction
which is truthful for impatient users. That is, an impatient user will maximize her gain by
simply submitting her value. On the other hand, in this second mechanism the challenge
is to show that miners will be honest and will not manipulate the protocol, as we further
discuss below. In particular, we will show empirical evidence suggesting that the profit for
the miners from such manipulations becomes negligible as the number of users increases.

More specifically, our second suggested mechanism uses the following RSOP (Random
Sampling Optimal Price) auction, defined by [16]. In the definition, the following notation
is used: For a subset A ⊆ [n] of users, and a bid vector b, let bA = (bi)i∈A. We define
pMA (b) ≡ pM(bA). When b is clear from the context, we simply write pMA .

Definition 1 (The RSOP auction [16]). Upon receiving n bids, b = b1, ...., bn, the miner
performs the following:
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1. Randomly partition the bids to two disjoint sets A and B (each bid is placed in A with
probability 1

2
, otherwise it is placed in B).

2. Compute the monopolistic price for each set: pMA , pMB . The monopolistic price of an
empty set is defined to be zero.

3. The set of winning bids is A′ ∪B′, where:

A′ = {i ∈ A : bi ≥ pMB } ; B′ = {i ∈ B : bi ≥ pMA }.

The transactions in A′ each pay pMB , and the transactions in B′ pay pMA each. The
revenue obtained in the auction is therefore

RSOP (b) = |A′| · pMB + |B′| · pMA .

For the RSOP mechanism, Goldberg et al. provide the following results that hold under
“the usual” auction theory assumptions, most notably that: (1) the auctioneer is honest; (2)
bidders do not collude; (3) each bidder can submit exactly one bid; (4) bidders are impatient,
i.e. they do not obtain utility from winning in future auctions (we discuss these assumptions
further below).

Theorem 5 ([16], Observation 6.2 and Theorem 6.4).

1. Truthfulness. The RSOP auction is truthful, i.e., a bidder maximizes her utility by
reporting her value, even when the other bidders do not reveal their value.

2. Maximal Revenue. Fix any parameter h. Let b be any bid vector of n bids with
bi ∈ [1, h] for all i. Then

lim
n→∞

max
b

R(b)

RSOP (b)
= 1.

To instantiate the RSOP-based mechanism, users must specify a bid that ideally repre-
sents their values for each transaction, and the miners are asked to create a block with all
transactions they wish to potentially include. Unlike the current Bitcoin protocol, here not
all transactions in a block are valid. After the block is mined, and propagated to the Bitcoin
nodes in the network, they determine which transactions are valid, by running Algorithm 1.
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Algorithm 1 RSOP block verification

1: A node receives a new block B.
2: Check validity of the block and of all the included transactions according to Bitcoin’s

current rules. When referring to transactions in previous blocks, consider only valid
transactions (as explained below).

3: Compute the sets A and B using the block hash as a seed to a Cryptographically Secure
Pseudo-Random Number Generator (CSPRNG).

4: The transactions that are considered valid are the ones in A′ and B′ as in Def. 1.
5: Transactions in A′ pay pMB and transactions in B′ pay pMA . A fraction 1 − α of that

revenue goes to the miner who mined the current block, and the rest goes to the future
miner who would mine the next valid block. Invalid transactions do not pay anything.
The parameter 0 ≤ α ≤ 1 needs to be specified as part of the protocol.

The algorithm has the following advantages. Since the source of the randomness (block
hash) used in line 3 is the same for all the Bitcoin nodes, all nodes will reach consensus on the
set of valid transactions. Notice that the block hash is determined by its contents including
the solution to a proof-of-work puzzle. A miner cannot easily manipulate the choice of the
sets A and B to maximize revenue4 (if she could, it could destroy the truthfulness of the
protocol). She can choose to forgo a block in which A and B were not set to her liking but
will need to generate the proof-of-work from scratch, which is extremely costly. There are
however several concerns with the proposed algorithm:

User truthfulness. The assumption that users cannot send multiple bids is unrealistic in the
Bitcoin setting. Therefore, we do not know whether the suggested protocol is truthful even
for impatient users and honest miners. Under the assumption that the user cannot control
which bids will be associated with subset A and which with subset B, we do not know how
to construct even tailored worst-case examples or if there exists an efficient algorithm to find
beneficial deviations.5

Miner honesty: adding false bids. Miners are able to manipulate the protocol by adding
false bids, especially if at step 5 of Algorithm 1, α = 0. The purpose of choosing α > 0 is to
mitigate this problem. The following example demonstrates this issue:

Example 5. Suppose α = 0. There are two users with b1 = h, b2 = ` where h > 2`. With
probability 1

2
both users will fall to the same set, and the revenue for the miner would be 0.

If they fall into different sets, only the h user will be included, and will pay `. Therefore, the
expected revenue is `

2
. A strategic miner can create many false transactions that bid h, by

this receiving a revenue of approximately h. The false bids clearly cannot create a profit for
the miner but also do not harm her because she pays them to herself. As α increases, the
profitability of this strategy decreases.

4A more careful cryptographic analysis is required to establish this statement, but is outside the scope of
this work. This statement is fairly simple to show in the random oracle model.

5For the monopolistic auction, we discuss this issue in Sections 3 and 4.
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Figure 7: ∆RSOP
n as a function of the number of players, for various distributions.

More generally, a dishonest miner can always use the following simple strategy to obtain
the revenue R(b): (1) Compute the monopolistic price over all bids; (2) Add sufficiently many
false transactions whose bids are equal to the monopolistic price. Adding sufficiently many
such false bids will change the RSOP revenue to that of the monopolistic price mechanism.

We conjecture that the strategy in the preceding paragraph is always beneficial to the
miner, when α = 0:

Conjecture 2. For every b and all choices of A and B, the RSOP revenue is at most the
monopolistic revenue. In particular, RSOP (b) ≤ R(b).

The right hand side (R(b)) is the revenue a manipulating miner can obtain with the
strategy above, and the left hand side is the RSOP revenue, for any allocation of the sets A
and B (even one chosen adversarially). When α = 0, this is the revenue of the miner which
uses Algorithm 1 honestly, i.e., without false bids.

In the empirical evaluation reported below, we have never encountered a counterexample
to Conjecture 2. To measure the expected “gain ratio” from performing this strategy, we
define

∆RSOP
n ≡ E(v1,...,vn)∼F

[
R(v)

RSOP (v)
− 1

]
.

For distributions with bounded support sizes Theorem 5 proves that ∆RSOP
n goes to zero

as n goes to infinity. Furthermore, Figure 7 demonstrates that this indeed happens in a
reasonably fast manner for almost all the distributions we considered in Section 4, with the
only exception being the inverse distribution. To summarize this issue:
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• Gaining from adding false bids when α = 0. In the RSOP mechanism the
miner can gain from adding false transactions with a bid equal to the monopolistic
price. This is an easy strategy to perform, and as far as we can tell, it never harms
the miner when α = 0. If the miner does so, the mechanism changes and becomes
similar to the monopolistic-price mechanism. This, in turn, may harm the bidder-
truthfulness property. However, the gain ratio from performing this strategy decreases
as the number of users increases (with the exception of the Inverse distribution) – see
Figure 7.

• Choosing α > 0 to eliminate the gain from adding false bids. We conjecture
that, for many bid distributions and when the number of users is fairly large, it is
possible to set α > 0 in a way that will eliminate the profitability of this strategy.
Note that if α > 0, the miner needs to pay some of her false bids to other miners. On
the other hand, setting α > 0, and especially high values (say, α = 0.9), introduces
risks of side-payments. A miner may provide the following service. She asks users to
submit transactions with 0 bid, and pay directly to the miner a fixed per transaction
fee. The miner will guarantee that she will eventually include these transactions in a
block which contain only other 0 bid transactions (which will then all be valid). In
such a case the miner gets all the revenue for herself, whereas if she follows the protocol
she will only receive a fraction 1− α of the payments. If α is low, this is less likely to
happen, as this requires non-trivial coordination between the miner and the user (e.g.,
trust regarding the transfer of payments, regarding inclusion in the block, etc).

Miner honesty: removing true bids. The miner might also be able to increase her profit by
removing true bids. The following example demonstrates this:

Example 6. There are n bids with value 2 and n bids with value 1. The miner can obtain
a revenue of 2n w.h.p. by removing all bids of value 1. The expected revenue for the honest
miner is always at most 2n, and in the limit of large n, the revenue is 2n −

√
n
π

+ o(
√
n),

see Appendix F Cor. 2.

Note that the maximal revenue that can be obtained in this example by removing bids
is exactly the monopolistic revenue. We do not know if this is true in general, however we
strongly suspect that this is the case. More specifically, we conjecture:

Conjecture 3. For any vector of bids b, maxb′⊆bRSOP (b′) ≤ R(b).

In fact, Conjectures 2 and 3 are equivalent: by choosing b′ = b, Conjecture 3 implies
2. To show the other direction, Conjecture 2 implies that RSOP (b′) ≤ R(b′) and by the
monotonicity of R(·), we reach RSOP (b′) ≤ R(b′) ≤ R(b), as required.

Note that under this conjecture, the gain ratio ∆RSOP
n goes to zero for any distribution

with finite support even if the miner can remove true bids, using Theorem 5. Note that
this form of the conjecture is harder to verify empirically as it requires considering different
subsets for removal. But the equivalence to Conjecture 2, and the empirical evaluation
performed above provides some supporting evidence for it.
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We do not know an efficient algorithm to find the best bids to remove, and therefore
the strategy for the miner is left open. We do not have any suggestions regarding how to
mitigate this case. Unlike the previous case (adding false bids) α is irrelevant to this strategy
by the miner. Perhaps it can be shown that removing true bids is rarely beneficial, under
some distributional assumptions.

Block size. Notice that in the RSOP mechanisms blocks may contain many transactions
that do not get accepted (their bid may be below the price that is eventually determined).
One possible way to prevent this is to commit to all transactions in the Merkle tree in some
canonical order of bid size and then eventually only reveal transactions that are needed to
establish the monopolistic price and transactions that win this bid. While we do not have a
fully fleshed out scheme, we do believe that clever use of data structures and cryptographic
schemes may help in reducing the amount of wasted space in blocks in this way.

6 Discussion

The simple pay-your-bid fee mechanism used in Bitcoin has several disadvantages: (i) A
fixed (hard-coded) maximal block size implies non-optimal revenue extraction when the pre-
fixed block-size is too small or too large for the current bid instance, (ii) Bitcoin wallets
must invest computational effort in bid shading, and (iii) deciding on the maximal block size
involves economic rather than purely technological considerations (e.g., block propagation
time [12, 31]). For single block creation, the proposed monopolistic auction effectively solves
all these issues while maintaining miner non-manipulability.

The monopolistic auction is ε-truthful (ε goes to zero as the number of users grows).
Alternatively, we can take a truthful auction where a user cannot influence its winning price,
e.g., the RSOP auction is truthful and its revenue RSOP (v) satisfies limn→∞maxv

R(v)
RSOP (v)

=

1 [16]. Section 5 describes an implementation in Bitcoin (e.g., the required randomness needs
to be verified by other miners) and discusses major drawbacks of it: First, to verify correct-
ness, the block must contain all rejected transactions, creating significantly larger blocks.
Second, truthfulness does not rule out beneficial bid splits. We do not know whether RSOP
is resilient to such a manipulation. We discussed the effect of bid splits in the monopolistic
auction in Section 3. Third, although R(v)

RSOP (v)
≈ 1, nonetheless R(v)− RSOP (v) still usu-

ally grows to infinity (e.g., if R(v) = O(n +
√
n) and RSOP (v) = O(n)). Thus, a miner

can significantly increase its revenue by engaging in manipulative behavior, for example, (i)
deletion of true bids (however, we do not know if there exists a polynomial-time algorithm
to find which bids to delete), (ii) adding many false bids, all of which are equal to the mo-
nopolistic price of the true bids (a possible solution to this attack is to split the block fees
between the miner that created the block and the miner that will create the next block).
In light of these shortcomings, we believe that the monopolistic auction is better suited to
implement improvements in Bitcoin’s fee market.
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6.1 Temporal considerations

An important issue we did not cover is how the current mechanism would behave in a
realistic setting where the interaction with miners is repeated. Just as in other mechanisms
(for example, the second price auction) moving from a single shot interaction to a repeated
one does not necessarily maintain the mechanism’s truthfulness. In our case, one could
consider a repeated setting, in which users who did not manage to have their transactions
included in a block still persist and request a transfer from the miners again (indeed, by
default, Bitcoin transactions persist in the miner’s queue if they were not already included
in a block). In this setting, the monopolistic mechanism, which clears the queue of its
highest value transactions will slowly cause the distribution of transactions in the queue to
be more skewed towards lower-bid transactions compared to the distribution of new incoming
transactions. We then expect that occasionally the mechanism will cause a price fluctuation,
when the weight of lower-bid transactions shifts the monopolistic price down. In this case,
the occasional drop in price may entice patient users (who we did not consider in our model)
to bid lower values and have their transactions accepted whenever such a drop occurs. The
mechanism is therefore not truthful if applied in this manner.

Another important aspect to consider if patient users are present is the effect on the
strategic behavior of miners. We have argued that in the one-shot monopolistic auction,
miners have no incentive to add false bids or delete true ones. We believe this will be the
case for small miners even when patient users exist, since small miners cannot anticipate to
mine blocks often. However, with large miners (or mining pools), a different analysis will
be required. Consider an example where at every round, 51% or new transactions are of
value 1, and 49% of transactions are of value 2. In this case, a myopic miner may include all
transactions in his block with a monopolistic price of 1. A more far-sighted miner that has
almost 100% of the hashing power6 may instead alternate between blocks that contain only
transactions with value 1 and blocks that only contain transactions with value 2, relying on
the ability to defer transactions by one block, and gaining in the process.

On the face of it, a simple posted-price technique could handle such temporal consid-
erations. Specifically, gather statistics about the underlying distribution and calculate an
optimal fixed price for transactions to be included in the block. However, since the true un-
derlying distribution is really unknown, such a method is not straight-forward and contains
several significant challenges. First, it is hard to learn the full distribution, since blocks only
contain information about accepted transactions, and therefore there is no consensus regard-
ing the tail of the bidding distribution. Second, the distribution itself may change as a result
of the mechanism’s own behavior if transactions that are not included in blocks persist and
attempt to enter future blocks. Third, such a statistical method is highly sensitive to miner
manipulations as they can easily alter sampled transactions and their transaction fees. One
recent quite sophisticated attempt to handle these issues is contained in Ethereum’s recent
proposal EIP1559 [8] which is examined thoroughly in [30] (which also assumes that users
are myopic with regards to their transactions, as we do) and in a related analysis in [13].

6Of course, such a miner could double-spend transactions, censor users, etc., so, in some sense, the
manipulation which we discuss is the least of our worries.
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A key idea used within EIP1559 proposes burning money to avoid the miners manipulating
the posted amount that transactions are charged. The analysis in [13] further shows that
EIP1559 is not always stable and a different posted price mechanism is proposed. All this
demonstrates that successfully handling such issues even in a myopic setting and we believe
that this is an open problem which deserves and requires significant further effort.

6.2 Future Work

The monopolistic auction can also be explored further via a careful equilibrium analysis.
The astute reader may notice that the current model allows for an equilibrium in which all
users bid 0. This is an unrealistic setting since in practice there exists a maximum limit
on the block size, and not all transactions can be included in the block. Still, an elaborate
game-theoretic analysis of all possible equilibria in our model is interesting.

One of the modeling uncertainties in this work regards the users’ values. We chose to
analyze various distributions (see, e.g., Figure 5) since we have little information regarding
the maximal willingness to pay of the users. This issue has been studied extensively in several
economic contexts [28, 20, 33] and we believe that studying it in Bitcoin will be beneficial.

The work in [32] shows that, given Bitcoin’s current reward scheme, it is beneficial to
miners to introduce a time gap between the time a miner observes the last block and the
time the miner starts mining the new block. It could be interesting to examine whether our
proposed new reward scheme eliminates this issue as well.
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Claim 1. Let f : <≥0 → <≥0 be any function that satisfies the following property: If x < f(x)
there exists δ > 0 such that for any 0 < ε < δ, f(x + ε) = f(x). Let A = {x ∈ <≥0 | x ≥
f(x)}. Then, if A is not empty, inf A ∈ A.

Proof. Note that if A is not empty than the infimum of A is well defined since A is bounded
from below by 0. Let x∗ = inf A. Assume towards a contradiction that x∗ /∈ A, i.e.,
x∗ < f(x∗). Thus, by the property of f , there exists ε > 0 such that x∗ + ε < f(x∗) and
f(x) = f(x∗) for every x∗ < x < x∗+ ε. Since x∗ = inf A there exists x ∈ A, x∗ < x < x∗+ ε.
For this x, f(x) ≤ x < x∗ + ε < f(x∗) = f(x), a contradiction.

Claim 2. Fix any b−i and any bi < pM(bi, b−i). Then there exists δ > 0 such that for any
0 < ε < δ, pM(bi + ε, b−i) = pM(b, b−i).

Proof. Let v = (bi, b−i) and assume w.l.o.g. that v is ordered, i.e., v1 ≥ v2 ≥ ... ≥ vn. Let k
be such that vk = pM(v). Let j be the minimal index of bid bi in v, i.e., vj−1 > vj = bi. Note
that j > k since vj < vk by assumption. Also note that vj · j < vk · k since the monopolistic
price is vk. Choose δ > 0 such that vj + δ < vj−1 and (vj + δ) · j < vk · k. By definition, for
any 0 < ε < δ, pM(vj + ε,v−j) = pM(v), and the claim follows.

B Auxiliary Technical Claims

This section proves multiple useful properties of the monopolistic auction. We recommend
that this section be read linearly. Recall that num(v, z) ≡ |{vi|vi ≥ z}|.
Claim 3. If pM(v−i) ≤ vi, then pM(v−i) ≤ pM(v). Furthermore, if pM(v−i) = vi, then
pM(v−i) = pM(v).

Proof. Let x = pM(v−i) and y = pM(v). Assume by contradiction that x > y. By definition
of the monopolistic price for v−i, x · num(v−i, x) > y · num(v−i, y). Since vi ≥ x > y,
num(v, x) = num(v−i, x) + 1 and num(v, y) = num(v−i, y) + 1. Thus, x · num(v, x) >
y · num(v, y)− y + x > y · num(v, y), contradicting y = pM(v).

For the second part of the claim, note that the monopolistic price cannot increase when
adding vi, otherwise vi will not be included in the optimal block and therefore it cannot make
a difference. The first part of this claim shows that the monopolistic price cannot decrease,
hence the equality.

Claim 4. For any v and any i, pS(v−i) < pM(v−i).

Proof. Let k∗ = k∗(v−i), and b∗ = k∗

k∗+1
pM(v−i). Suppose by contradiction that pM(b∗,v−i) >

b∗. This would imply that pM(b∗,v−i) = pM(v−i). But this is a contradiction since num((b∗, v−i), b
∗)·

b∗ ≥ (k∗+1)·b∗ = k∗·pM(v−i). Thus, pM(b∗,v−i) ≤ b∗. Therefore, pS(v−i) = minb p
M(b,v−i) ≤

pM(b∗,v−i) ≤ b∗ < pM(v−i), which concludes the proof.

Corollary 1. Fix v1, ..., vn and let i∗ ≡ argmaxi=1,...,nvi. Then,

pS(v−i∗) < pM(v−i∗) ≤ pM(v).
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This is an immediate consequence of Claims 4 and 3.

Claim 5. For any v and any i, let x = pM(v). Then, pM(x,v−i) ≤ x

Proof. Suppose towards a contradiction that y = pM(x,v−i) > x. Therefore y·num((x,v−i), y) >
x·num((x,v−i), x). Note that num(v, y) ≥ num((x,v−i), y) and num(v, x) ≤ num((x,v−i), x).
This implies y ·num(v, y) ≥ y ·num((x,v−i), y) > x ·num((x,v−i), x) ≥ x ·num(v, x). There-
fore y · num(v, y) > x · num(v, x) which contradicts the fact that x = pM(v).

Property 1. ∀v, i, pM(pS(v−i),v−i) = pS(v−i).

Proof. Recall the definition, pS(v−i) ≡ min{b | pM(b,v−i) ≤ b}. It immediately follows that
pM(pS(v−i),v−i) ≤ pS(v−i). Assume towards a contradiction that the inequality is strict,
and let x = pM(pS(v−i),v−i). But then Claim 5 implies that pM(x,v−i) ≤ x, which is a
contradiction since pS(v−i) is supposed to be the minimal such x.

Fixing any v, recall that i∗ ≡ argmaxi=1,...,nvi, k
∗ ≡ k∗(v−i∗), p

S ≡ pS(v−i∗).

Property 2. Let y be the smallest element in the support of F that is at least pS. Then,
y = pM(v) implies pS ≥ k∗

k∗+1
· pM(v).

Proof. By Corollary 1,

pS < pM(v−i∗) ≤ pM(vi∗ ,v−i∗) = pM(v). (9)

I.e., y ≤ pM(v−i∗) ≤ pM(v) (because pM(v−i∗) is in the support of F ). Thus, since pM(v) =
y,

pM(v−i∗) = pM(v). (10)

By definition of k∗, there exist k∗ values in v−i∗ that are at least pM(v−i∗). Overall,

num(v−i∗ , p
S) = num(v−i∗ , y) = num(v−i∗ , p

M(v)) = k∗. (11)

Therefore, R(v−i∗ , p
S) = (k∗ + 1)pS: this follows from Property 1, and Eq. (11). Thus,

for any number z,

(k∗ + 1)pS ≥ z · num((v−i∗ , p
S), z) ≥ z · num(v−i∗ , z). (12)

Take z ≡ pM(v). Note that num(v−i∗ , p
M(v)) = k∗ using Eq. (10). Using Eq. (12),

(k∗ + 1)pS ≥ pM(v) · k∗, and the claim follows.

Claim 6. For any v = (v1, ..., vn), and any v′i such that vi ≥ v′i ≥ pM(v), pM(v) ≥
pM(v′i,v−i).

We remark that pM(v) is not necessarily monotonically increasing as a function of vi, for
example, pM(2, 0) = 2 > 1 = pM(2, 1). Hence, the importance of the condition v′i ≥ pM(v).
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Proof. Denote x = pM(v) and y = pM(v′i,v−i). Assume towards a contradiction that x < y.
Therefore

y · num(v, y) ≥ y · num((v′i,v−i), y)

> x · num((v′i,v−i), x) = x · num(v, x)

where the first step follows since vi ≥ v′i, the second step follows since y is the monopolistic
price for (v′i,v−i) (the inequality is strict because y > x), and the third step follows since
vi ≥ v′i ≥ x. However y · num(v, y) > x · num(v, x) contradicts the fact that x is the
monopolistic price for v.

Claim 7. For any v = (v1, ..., vn), and any v′i such that vi ≥ v′i ≥ pM(v′i,v−i), pM(v) ≥
pM(v′i,v−i).

Proof. Assume towards a contradiction that pM(v) < pM(v′i,v−i). But then vi ≥ v′i ≥ pM(v)
and Claim 6 implies that pM(v) ≥ pM(v′i,v−i) which is a contradiction.

Claim 8. For any v = (v1, ..., vn), and any i, if vi < pM(v) then vi < pS(v−i).

Proof. Denote x ≡ pM(v) and y ≡ pS(v−i) = pM(y,v−i) (according to Property 1). Assume
towards a contradiction that x > vi ≥ y. Since x ≡ pM(v) and our assumption y < x,

x · num(v, x) > y · num(v, y) (13)

Furthermore, since y = pM(y,v−i)),

y · num((y,v−i), y) ≥ x · num((y,v−i), x). (14)

We also have
num(v, y) = num((y,v−i), y), (15)

since vi ≥ y, and similarly,

num(v, x) = num((y,v−i), x), (16)

since vi < x and y < x.
By plugging in Eqs. (15) and (16) in Eq. (14),

y · num(v, y) ≥ x · num(v, x). (17)

Combining Eqs. (13) and (17), we finally show that x · num(v, x) > x · num(v, x), which
proves the contradiction.

Claim 9. For any v1, ..., vn and i, j, vi > vj ≥ pS(v−j) implies that pS(v−j) ≥ pS(v−i).

We remark that the condition vj ≥ pS(v−j) is important as without it the claim is not
true. For example, take v = (2, 1, 0):

pS(v−2) = pS(2, 0) = 1 >
2

3
= pS(2, 1) = pS(v−3).
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Proof. Let b = pS(v−j). We will prove that b ≥ pM(b,v−i), which implies the claim since
pS(v−i) ≡ min{b | b ≥ pM(b,v−i)}.

By applying Claim 6 with respect to u = (v1, . . . , vj−1, b, vj+1, . . . , vn) and

u′ = (v1, . . . , vi−1, vj, vi+1, . . . , vj−1, b, vj+1, . . . , vn)

implies that pM(u) ≥ pM(u′) (note that vi ≥ vj ≥ b ≥ pM(b,v−j) = pM(u) where the last
inequality follows from the definition of pS(v−j); therefore ui ≥ u′i ≥ pM(u)). Thus

b ≥ pM(u) ≥ pM(u′) = pM(b,v−i).

The last equality holds since the monopolistic price is oblivious to the identities of the users.
The claim thus follows.

Property 3. ∀v, i, j: vi ≥ vj implies δi(vi,v−i) ≥ δj(vj,v−j).

Proof. If vj < pS(v−j), δj(vj,v−j) = 0 and the claim follows. Thus assume vj ≥ pS(v−j), and
we have vi > vj ≥ pS(v−j) ≥ pS(v−i) where the last inequality follows from Claim 9. Since
pM is the same in both terms, and pS(v−j) ≥ pS(v−i), we have δi(vi, v−i) ≥ δj(vj, v−j).

Claim 10. For any v−i and vi > v′i, δi(vi,v−i) ≥ δi(v
′
i,v−i).

Proof. If v′i < pS(v−i), δi(v
′
i,v−i) = 0 and the claim follows. Thus assume v′i ≥ pS(v−i).

Assume towards a contradiction that v′i < pM(v′i,v−i). Claim 8 then implies that v′i <
pS(v−i) which is a contradiction to our assumption above. Thus, vi > v′i ≥ pM(v′i,v−i).
Claim 7 then implies that pM(vi,v−i) ≥ pM(v′i,v−i). By the definition of the discount ratio
we have δi(vi,v−i) ≥ δi(v

′
i,v−i) as claimed.

C Additional Auxiliary Claims for the Multi-Bid Case

Claim 11. For any b−i and u ∈ N+, define7

pmultibidu (b−i) = min{u · bi | bi ∈ R, bi ≥ pM(

u times︷ ︸︸ ︷
bi, . . . , bi, b−i)}.

Then, for any u ≥ n+ 1, pmultibidu (b−i) > pmultibid1 (b−i).

Proof. Let b = pmultibid
u (b−i)

u
. Then, b · (u+ num(b−i, b)) ≥ k∗(b−i) · pM(b−i). Therefore,

pmultibidu (b−i) = b · u ≥ k∗(b−i) · pM(b−i)

u+ num(b−i, b)
· u (18)

If k∗(b−i) ≥ 2 then u
u+num(b−i,b)

· k∗(b−i) > 1 since u > n > num(b−i, b). Therefore Eq. (18)

implies that pmultibidu (b−i) > pM(b−i). Using Claim 4, pM(b−i) > pS(b−i), and since pS(b−i) =
pmultibid1 (b−i), we complete the proof in the case k∗(b−i) ≥ 2.

If k∗(b−i) = 1 then u
u+num(b−i,b)

·k∗(b−i) > 1
2
. Therefore Eq. (18) implies that pmultibidu (b−i) >

pM (b−i)
2

≥ pS(b−i) = pmultibid1 (b−i), implying the claim. (Here, in the second inequality we
used the fact that k∗(b−i) = 1, and bidding half of the highest bid will win in this case.)

7The minimum is well defined – see the argument next to Eq. (6).
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Claim 12. Fix any b−i and let b, u be the arguments which minimize Eq. (6). Then,

b = pM(

u times︷ ︸︸ ︷
b, . . . , b, b−i).

Proof. By definition b ≥ pM(

u times︷ ︸︸ ︷
b, . . . , b, b−i). Suppose towards a contradiction that the inequal-

ity is strict, and take some b′ such that

b > b′ ≥ pM(

u times︷ ︸︸ ︷
b, . . . , b, b−i).

Claim 6 implies that

b′ ≥ pM(

u times︷ ︸︸ ︷
b′, . . . , b′, b−i),

contradicting the minimality of (b, u) since b · u > b′ · u.

Claim 13. Fix any b−i and let (b, u) be the arguments which minimize Eq. (6). Then,

b ≤ pM(b−i).

Proof. Let b′ = pM(b−i). Then, the second part of Claim 3 implies that b′ = pM(b′, b−i).
Thus (b′, u′ = 1) satisfies the requirement of Eq. (6). Hence b·u ≤ b′ and the claim follows.

D Properties of the binomial and trinomial distribu-

tions

Claim 14. Let X ∼ B(n, p) be a binomial random variable where 0 < p < 1. For every i,

Pr(X = i) = O
(

1√
n

)
.

Proof. If np is an integer, the mode (most likely value of the distribution) is its mean np.8

The case where np is not an integer can be handled is a similar manner. Therefore, our goal

8This can be shown directly by computing Pr(X=i)
Pr(X=i+1) .
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is to show that Pr(X = np) = O
(

1√
n

)
. By using Stirling’s approximation9 n! ≈

√
2πn

(
n
e

)n
,

Pr(X = np) =

(
n

np

)
pnp(1− p)n(1−p)

≈
√

2πn(n
e
)n

√
2πnp(np

e
)np
√

2πn(1− p)(n(1−p)
e

)n(1−p)
pnp(1− p)n(1−p)

=
1√

2πnp(1− p)
= O

(
1√
n

)
.

Of course, this is only valid when p is treated as a constant.

Claim 15. Let (X1, X2, X3) ∼ Trinomial(n, p1, p2, p3) be a triple of trinomial random vari-

ables where p1, p2 > 0. For every function f , Pr(X1 = f(X1 +X2)) = O
(

1√
n

)
.

Recall that the trinomial distribution is the multinomial distribution restricted to the
case k = 3.

Proof. Our first goal is to prove a very weak bound Pr(X3 ≥ αn) = O( 1√
n
) for α = p3+1

2
.

Since this bound is so weak it could be proved using the Chrnoff bound, or even Chebyshev’s
inequality.

Lemma 4 (Chebyshev’s inequality). For every k ∈ R, and every random variable X with
expectation µ and standard deviation σ,

Pr(|X − µ| ≥ kσ) ≤ 1

k2
(19)

Recall that X3 ∼ Binomial(n, p3), and therefore, E[X] = np3 and has a standard devi-
ation

√
np3(1− p3). By observing that Pr(X − µ ≥ kσ) ≤ Pr(|X − µ| ≥ kσ) and plugging

in k =

√
n(1−p3)
2
√
p3

in Lemma 4,

Pr(X3 ≥ αn) ≤ 4p3
n(1− p3)

= O

(
1√
n

)
, (20)

where in the equality we use the fact that p3 < 1 (since p1, p2 > 0 and p1 + p2 + p3 = 1).

9One could take into account the error term, i.e., n! =
√

2πn
(
n
e

)n
(1 + O( 1

n )), and reach the same
conclusion.
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Conditioned that X3 = z, X1 has a Binomial distribution: X1 ∼ B(n− z, p1
1−p3 ) (here we

use the condition p1, p2 > 0 to conclude that 0 < p1
1−p3 < 1). Therefore,

Pr(X1 = f(X1 +X2)) =
n∑
z=0

Pr(X1 = f(X1 +X2)|X3 = z) Pr(X3 = z)

=
n∑
z=0

Pr(X1 = f(n− z)|X3 = z) Pr(X3 = z)

≤
bαnc∑
z=0

Pr(X1 = f(n− z)|X3 = z) Pr(X3 = z) +
n∑

z=bαnc+1

Pr(X3 = z)

≤
bαnc∑
z=0

Pr(X1 = f(n− z)|X3 = z) Pr(X3 = z) +O

(
1√
n

)

≤
bαnc∑
z=0

O

(
1√
n− z

)
Pr(X3 = z) +O

(
1√
n

)

≤
bαnc∑
z=0

O

(
1√

(1− α)n

)
Pr(X3 = z) +O

(
1√
n

)
= O

(
1√
n

)
,

where in the second inequality we use Eq. (20), and Claim 14 in the third inequality.

Claim 16. Let F be any distribution with a finite support size and v = (v1, ..vn) be n
i.i.d. draws from F . Define num(v, z) ≡ |{vi|vi ≥ z}| and random variables nz = num(v, z)
for any real number z. Then, for any arbitrary x, y ∈ Support(F ) such that x > y,

lim
n→∞

Pr(nx · x > ny · y ≥ (nx − 1)x) = 0.

Proof. The term nx ·x > ny ·y ≥ (nx−1)x is the same as nx >
y
x
ny ≥ nx−1, which is true if

and only if nx = b y
x
ny + 1c. The triple (nx, ny − nx, n− ny) is a trinomial distribution with

probabilities p1 = Prvi∼F (vi ≥ x), p2 = Prvi∼F (x > vi ≥ y), p3 = Prvi∼F (vi < y) (pi depends
on F but not on n). Denoting f(ny) = b y

x
ny + 1c, we conclude that Pr(nx = f(ny)) =

Pr(nx · x > ny · y ≥ (nx − 1)x). Claim 15 therefore implies the current claim.

E Proof of Theorem 3

We first show a lemma:

Lemma 5. For every v1, b1,v−1,

pM(vmax,v−1)− pS(v−1) ≥ u1(v1, b1,v−1)− u1(v1, v1,v−1)
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Proof. Assume first that v1 ≥ pM(v1,v−1). Then:

pM(vmax,v−1)− pS(v−1) ≥ pM(v1,v−1)− pS(v−1)

= [v1 − pS(v−1)]− [v1 − pM(v1,v−1))]

= u1(v1, p
S(v−1),v−1)− u1(v1, v1,v−1)

≥ u1(v1, b1,v−1)]− u1(v1, v1,v−1)

where the first transition follows by Claim 7 and the third transition follows by Property 1.
Therefore if v1 ≥ pM(v1,v−1) the claim holds. Now assume v1 < pM(v1,v−1). In this case,
u1(v1, v1,v−1) = 0 and u1(v1, b1,v−1) ≤ 0 (since by Claim 8 in this case v1 < pS(v−1)). Thus,
pM(vmax,v−1))− pS(v−1) ≥ 0 ≥ u1(v1, b1,v−1)− u1(v1, v1,v−1) hence the claim holds in this
case as well.

We now prove the theorem:

∆GT
n = Ev−1∼F

[
max

v1∈Support(F )
δ1(v1,v−1)

]
= Ev−1∼F [δ1(vmax,v−1)]

= Ev−1∼F

[
1− pS(v−1)

pM(vmax,v−1)

]
≥ 1

vmax
Ev−1∼F

[
pM(vmax,v−1)− pS(v−1)

]
≥ max

v1,b1∈Support(F )

{
1

vmax
Ev−1∼F [u1(v1, b1,v−1)− u1(v1, v1,v−1)]

}
.

Here the second step follows from Claim 10, the third step follows since a user with the highest
possible valuation vmax will necessarily win, the forth step follows from pM(vmax,v−1) ≤ vmax,
and the fifth step follows from Lemma 5. Eq. (5) directly follows for ε = vmax ·∆GT

n , which
completes the proof of the theorem.

F Analysis of Example 6

Claim 17.

lim
n→∞

RSOP (

n times︷ ︸︸ ︷
2, . . . , 2,

n times︷ ︸︸ ︷
1, . . . , 1)− 2n√
n

= − 1√
π

(21)

Proof. Let Xi be the indicator variable whether the i’th 2-bidder is in group A, and similarly
Yi for the i’th 1-bidder. Let Zi = Xi−Yi. Let X =

∑n
i=1Xi, Y =

∑n
i=1 Yi and Z =

∑n
i=1 Zi.

Note that the revenue for any realization of the coin toss is exactly 2n−|Z|. Suppose first
that Z ≥ 0, i.e., X ≥ Y . In this case, the price offered to set A (which is the monopolistic
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price computed on set B) is 1, and similarly the price offered to set B is 2. Thus, the revenue
is 1 · (X + Y ) + 2 · (n−X) = 2n−Z. Similarly, if Z < 0, the revenue is 2n+Z. This shows
that in all cases, the revenue is 2n− |Z|.

Since E[Zi] = 0 and Var(Zi) = 1
2
, by the central limit theorem, 1√

n
Z converges in dis-

tribution to N(0, σ2 = 1
2
) as n goes to infinity. Recall that for a normal random vari-

able X ′ ∼ N(0, σ), the distribution of Y ′ = |X ′| is called half-normal, and E[Y ′] = σ
√
2√
π

.

Therefore, E[ |Z|√
n
] = σ

√
2√
π

= 1√
π
. This completes the proof, since RSOP (

n times︷ ︸︸ ︷
2, . . . , 2,

n times︷ ︸︸ ︷
1, . . . , 1) =

2n− E[|Z|].

An immediate consequence of Claim 17 is the following:

Corollary 2. RSOP (

n times︷ ︸︸ ︷
2, . . . , 2,

n times︷ ︸︸ ︷
1, . . . , 1) = 2n−

√
n
π

+ o(
√
n).

G Desiderata

In this appendix we provide the desired properties of a fee mechanism in Bitcoin. We note
that some of the properties mentioned below may conflict with others, and it may well be
that no single mechanism provides them simultaneously.

High social welfare The sum of valuations of accepted transactions should be large. In
this sense, the system is providing a high level of utility to its users. In particular, an efficient
allocation is warranted: transactions with higher values should be included before those with
lower values (assuming both are available at the same time) as this clearly improves the social
welfare.

Revenue extraction The amount of money transferred to the miners is high, which would
buy more security for the system. Stated another way: the revenue of miners should be part
of the social welfare measure of the system.

Truthful bidding An ideal mechanism would allow users to state their preferences clearly
and would encourage honest reporting. The main advantage would be that users do not
need to “overthink” how they should act. Furthermore, this removes computational burdens
associated with such strategies: there is no need to monitor the network to obtain statistics
on past bids, perform estimates of the threshold bid needed to get accepted into a block, and
no need to perform bid updates for the transaction. Note that truthfulness should imply
that various, more technical, manipulations, should not be profitable. For example, such
manipulations include splitting a single transaction into two transfers of smaller amounts,
adding more transactions between two bitcoin addresses of the same client, etc. A desired
property that such manipulation would not be profitable.
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Resistance to manipulation by miners The mechanism should be resistant to selfish
behavior by the miners. Such behavior can include miners adding transactions of their own
into their own blocks, miners withholding transactions and selecting other sets of transac-
tions, etc.

Resistance to manipulation via side payments Some mechanisms may appear well
at first sight, but in fact may encourage miners and users to circumvent the fee system
altogether. For example, if a miner has to give half of the revenue from his block to the
miner that creates the next block in the chain, then he can offer users a deal: The miner
will include transactions with 0 fees in his block in exchange for a side payment that will
be given to him via a separate and direct transaction. In this manner, he does not need to
share the rewards with others. Of course, since Bitcoin provides a natural payment channel
from the users to the miners, the mechanism should be resistant to such side payments.

Adaptivity to changing demand, network conditions, block sizes, etc. It is impor-
tant to avoid hard-coded magic numbers (such as hard-coded minimal fees) in the protocol
as much as possible. Given that the protocol is hard to update, as it requires wide adoption
of new code, any hard-coded number is difficult to adjust. A minimal fee, for example, which
may need adjusting from time to time (e.g., when the exchange rate fluctuates, or demand
increases) would insert inefficiency when it is not set in accordance with market conditions.

Accounting for temporal considerations Users may have different levels of urgency for
their transactions. A good fee mechanism will take into account the willingness of users to
delay the acceptance of their transactions, e.g., in exchange for paying lower fees. In Bitcoin,
transactions that were not added to the blockchain persist with the same bid and may be
included in other blocks (without a discount). Our own analysis in this paper considers only
impatient users who only desire that their transactions will be included in the next block.
We believe that such temporal considerations are an important issue to tackle in future work.

Consensus based mechanism One of the key features of cryptocurrencies such as Bitcoin
is that it can be assumed that data that is part of the longest blockchain is agreed upon all
miners and users. Therefore, the mechanism could make decisions based on previous blocks.
On the other hand, there is no consensus between the miners regarding data which is not
part of the blockchain. For example, different miners might have different views regarding
the mempool (which is the set of transaction waiting to be included in the next block). In
particular, it is impossible to take the statistics of all bids in previous rounds into account,
since the bids that were not included in the block are not part of the consensus.

H Nomenclature

b The bid vector b = (b1, . . . , bn) satisfying b1 ≥ . . . ≥ bn, page 5
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∆average
n = E(v1,...,vn)∼F [δ1(v1,v−1)], page 6

δi(vi, b−i) The discount ratio, page 6

δmax(v) δmax(v) ≡ maxi δi(vi,v−i), page 7

∆GT
n ∆GT

n ≡ E(v2,...,vn)∼F [δGTn (v−1)], page 8

∆max
n ∆max

n ≡ E(v1,...,vn)∼F [δmax(v), page 7

∆RSOP
n ∆RSOP

n ≡ E(v1,...,vn)∼F

[
R(v)

RSOP (v)
− 1
]
, page 20

ε-BNE An ε-Bayesian Nash Equilibrium, page 9

F All true values are drawn i.i.d. from some distribution F on R>0, page 6

inverse distribution F (x) = 1− 1
x
, x ∈ [1,∞), page 14

i∗ i∗ ≡ argmaxi=1,...,nvi, page 10

k∗(b) The index k that maximizes k · bk. In case of ties, k∗ is chosen to be the
maximal such index, page 5

k∗ k∗ ≡ k∗(v−i∗), page 10

pM(b) The monopolistic price, page 5

pmultibid(b−i) A generalization of pS to capture the possible benefit of splitting a single bid
to u different bids, page 12

pS pS ≡ pS(v−i∗), page 10

pS(b−i) The strategic price: The lowest possible bid for i to be included in the block,
when the other bids are b−i, page 6

R(b) The monopolistic revenue, R(b) ≡ k∗(b) · bk∗(b)., page 5

RSOP The Random Sampling Optimal Price Auction, Definition 1, page 17

vmax vmax ≡ max Support(F), page 8
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