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Abstract In this paper, we propose a parking allocation model that takes into account1

the basic constraints and objectives of a problem where parking lots are assigned to2

vehicles. We assume vehicles are connected and can exchange information with a3

central intelligence. Vehicle arrival times can be provided by a GPS device, and the 14

estimated number of available parking slots, at each future time moment and for each5

parking lot is used as an input. Our initial model is static and may be viewed as a 26

variant of the generalized assignment problem. However, the model can be rerun, and7

the algorithm can handle dynamic changes by frequently solving the static model,8

each time producing an updated solution. In practice this approach is feasible only if9

reliable quality solutions of the static model are obtained within a few seconds since10

the GPS can continuously provide new input regarding the vehicle’s positioning and11

its destinations. We propose a 0–1 programming model to compute exact solutions,12

together with a variable neighborhood search-based heuristic to obtain approximate13

solutions for larger instances. Computational results on randomly generated instances14

are provided to evaluate the performance of the proposed approaches.15

Keywords Parking allocation · 0–1 Programming · Variable neighborhood search16

1 Introduction17

Drivers equipped with a Global Positioning System (GPS) device usually enter their18

final destination into their device. However, they rarely park their vehicles exactly19

B Marko Mladenović

marko.mladenovic@univ-valenciennes.fr

1 UVHC, LAMIH UMR CNRS 8201, Mont Houy, 59313 Valenciennes, France

2 HEC Montréal, 3000, chemin de la Côte-Sainte-Catherine, Montreal H3T 2A7, Canada
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at this destination point, but more likely at the most convenient available parking20

slot they can find. The driving time between the desired destination and the actual21

parking is known to produce several undesirable consequences, such as air pollution,22

traffic congestion and stress. Detailed urbanization and transportation studies (e.g.23

Shoup 2006, 1997; Gantelet and Lefauconnier 2006; Caicedo et al. 2016; Davis et al.24

2010) further confirm the negative impact of massive unorganized (random) search25

for parking lots in urban areas.3 26

Research motivation One of the first authors who drew attention to the consequences27

of unorganized parking was Donald Shoup. In one of his studies (Shoup 2006) he28

revealed that the search for curb vacant parking slots, even thought they may be29

cheaper, does not pay off, because other criteria should be taken into consideration,30

such as the time spent searching for parking at the curb, fuel cost of cruising, the31

number of people in the car, parking duration, etc. He then proposed different pricing32

techniques and advocated the use of “off-street parking” as a better alternative to a33

random street search. In his other paper, (Shoup 1997), he claimed that, cumulatively34

for one year, in just one district of Los Angeles around 47,000 gallons of gasoline35

were burned producing 730t of CO2 and taking drivers 945,000 extra miles (for a36

total of 11 years) to find a vacant slot. These two papers based their observations37

on data collected from the USA. Another study by Gantelet and Lefauconnier (2006),38

based on European insights, reveals that drivers have a tendency to enlarge their search39

radius. For example, below 15 min, the average distance to the destination is less than40

200 m. When the search time exceeds 15 min, the distance becomes more and more41

significant and can extend beyond 500 m (550 m on average in Lyon for a searching42

time of 45 min). The authors conclude that searching for parking spaces causes traffic43

congestion: between 5 and 10% of the traffic in cities and up to 60% on small streets.44

Existing practical solutions Most cities have introduced some strategies to tackle this45

problem. One of the most frequent is the Parking Guidance and Information (PGI),46

which is displayed on roads and continuously updates neighboring parking availability.47

Thus, some indoor parking zones include adaptive lighting sensors, as well as parking48

space led indicators and Indoor Positioning System (IPS).49

There are also a variety of start-up applications that offer drivers guidance in order to50

ensure an available lot in the vicinity of their destination. For instance Parkopedia1
51

keeps its content up to date via its users, who get credits for every entry (update) they52

make. Smartphone location feature enables apps to locate the nearest parking (mainly53

public garages). If the driver desires, he can reserve a place at that parking via this54

application. An example of a successful project is the ZenPark mobile application,255

which embodies these characteristics and then estimates the quantity of saved CO2, as a56

mark of environmental benefit. The local authorities of Lille (France) have developed a57

smart phone application containing useful real-time information called MEL.3 Among58

1 http://www.parkopedia.com.

2 https://zenpark.com.

3 http://www.lillemetropole.fr/en/mel.html.
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The parking allocation problem for connected vehicles

other options the users can check the availability of most parking spaces (also public59

garages) in the city. However, guiding options are not included.60

More insights City authorities have, each in its own way, struggled with the conse-61

quences of massive unorganized search for available parking. Several studies show that62

in most cases there are sufficient parking slots for all vehicles and are concerned with63

the negative environmental impact of constructing more parking (Caicedo et al. 2016;64

Davis et al. 2010). Therefore, we focus our attention on their allocation to existing65

facilities in order to avoid traffic jams, reduce travel time, and so on. Furthermore, due66

to the availability of free slots data in public parking and the results presented in Shoup67

(1997), in this study we only consider public parking and not curb lots (street park-68

ing). Moreover, a GPS signal is available thought most modern devices with 3G/4G69

connections and the vehicles can exchange information with the central intelligence70

(server).71

Related work The solutions mentioned in the previous paragraph target a single vehi-72

cle and allocate to it the parking that suits it best, or serves as a general guideline for73

currently available parking slots. However, some studies also include other vehicles in74

the spatial and temporal vicinity and endeavor to allocate the “globally” best parking75

spot to each vehicle. For example, in Delot et al. (2013) the authors examine the fairness76

of parking allocation in vehicular networks. As in vehicular networks it is less clear77

which slot would be globally best, the authors propose dissemination protocols with78

an encounter probability parameter. It estimates the likelihood that a vehicle is going79

to meet a certain event, (Cenerario et al. 2008), and shares the available information80

according to the encounter probability parameter. In a more recent paper, (Toutouh81

and Alba 2016), the other aspects of sharing data in decentralized vehicular networks,82

such as congestion and hazardous road situations are investigated.83

A significant portion of articles addressing the parking issue is devoted to the84

problem of parking pricing. Other studies focus on Electric Vehicles (EVs) and on85

their specific parking needs. Some authors, such as Teodorović and Lučić (2006) and86

Delot et al. (2009), focus on reserving parking slots for only one vehicle at a time.87

Since the reservation of a parking slot is not applicable for most parking needs, we88

will not consider these papers. In our study, we exclusively focus on the most generic89

vehicle parking allocation, thus the following paragraph considers the papers that are90

dealing with the allocation of parking lots to a potentially very large set a vehicles.91

So far many researchers have addressed the parking allocation problem. However,92

there are no standardized mathematical programming models for it, be they deter-93

ministic or stochastic. This is probably due to the very large number of variables and94

parameters that would have to be approximated and would lead to ambiguous results.95

This is why several authors propose various ways of defining the problem at hand. For96

example, Ayala et al. (2012) opt for a game-theoretic approach and model the parking97

allocation problem in a similar way as the stable marriage problem, and name it the98

parking slot assignment game problem. In Verroios et al. (2011), propose a Travel-99

ing Salesman Problem (TSP) variant model—the time-varying TSP. The authors also100

propose a number of algorithms to tackle the proposed model and group vehicles into101

clusters in order to improve algorithm efficiency. Recently, Roca-Riu et al. (2015)102
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proposed a mathematical programming model for the Parking Assignment Problem103

(PAP) for delivery vehicles in urban distribution. The authors consider the limited104

availability of parking slots in urban areas for goods delivery. They model this prob-105

lem as a variant of the vehicle routing problem with time windows, because it can106

be assumed that vehicles have to arrive at their destination at a predefined time in107

order to satisfy the demand. The model proposed in Abidi et al. (2016) has the most108

resemblance with the model we develop in this paper. The authors allocate vehicles109

by taking into consideration the fact that different parking have different maximal110

parking time and propose an efficient heuristic.111

All previously mentioned articles consider in the objective function the distance112

(time) as the main optimization criterion. Furthermore, Verroios et al. (2011) and Delot113

et al. (2013) consider decentralized networks, i.e. networks in which information is114

partially accessible by vehicles within a certain radius (see Ilarri et al. 2015 for a115

detailed survey). Other papers consider that all the information is available to the116

administrator (centralized system), which can then be used to propose parking lots to117

vehicles. Several articles advocate the use of GPS data as input for parking guidance118

(e.g. Gahlan et al. 2016; Mendez et al. 2006). However, to the best of our capabilities,119

we could not find any contribution with a mathematical programming model.120

Contributions In this paper, we consider a potentially very large set of n vehicles,121

dispersed over a given area. The arrival time t ′i j (i = 1, . . . , n; j = 1, . . . , m) to m122

potential parking zones can be provided by the GPS. The GPS can also compute the123

walking time t ′′i j from each parking to the drivers final destination. These data were124

used to formulate a 0–1 integer programming model that allocates vehicles to parking125

lots, by optimizing total travel time (from current location to parking and from parking126

to destination) of all vehicles. The model is completed with the basic and necessary127

constraints for any parking assignment problem: capacity and allocation constraints.128

It can be regarded as a variant of the Generalized Assignment Problem (GAP), and as129

such is NP-hard in the general case. Our main contributions are the following:130

1. a new parking allocation LP model for a set of n connected vehicles, together with131

a discussion on how to include more realistic constraints for the static PAP;132

2. a complexity analysis of the proposed models; for example, it is shown that min–133

sum type model possesses the integrality property, and therefore is polynomial.134

However, the min–max static PAP is shown to be NP-hard;135

3. a heuristic based on Variable Neighborhood Search (VNS) for it;136

4. a discussion on how to extend the model to the dynamic case is provided; in fact137

we propose to iteratively rerun the static model, since it appears to provide results138

very fast;139

5. an extensive computational analysis of exact and heuristic methods is provided.140

Outline The remainder of this paper is organized as follows. Section 2 introduces both141

combinatorial and mathematical programming models; Sect. 3 presents a VNS-based142

heuristic for solving it. Section 4 offers comparative results between randomly parked143

vehicles and the proposed model, solved both exactly and heuristically. We close the144

paper with concluding remarks in Sect. 5.145
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The parking allocation problem for connected vehicles

2 Problem formulation146

We first present a combinatorial formulation of the static Parking Allocation Problem147

(PAP), which will be later used for developing a heuristic. We then propose a math-148

ematical programming formulation which is used to solve the problem with some149

commercial solver, such as CPLEX.150

2.1 Combinatorial formulation151

Assume that n connected vehicles, equipped with a GPS device, are searching for152

parking slots in an urban area at time t0. Also assume that there are m parkings j ,153

each with a known total capacity q j , j = 1, . . . , m. Once all drivers enter their final154

destinations, we are then able to determine two types of estimated times or distances155

(matrices):156

– t ′i j : estimated time needed by vehicle i to reach parking j , i = 1, . . . , n; j =157

1, . . . , m;158

– t ′′i j : estimated walking time from parking j to the final destination of driver i, i =159

1, . . . , n; j = 1, . . . , m.160

Additional input is required regarding the estimated number of free slots v j t at161

parking j , for each time t , t = 1, . . . , T j , where T j = maxi {t ′i j }. Note that time t = 1162

corresponds to t0 (see Fig. 1).163

Fig. 1 Graphical representation of the PAP; black circles in the parking column represent the occupied

slots, while dotted rectangles represent different times t , and the dotted circles the occupied (available) slots

at these time moments
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Objective function Let x(i) represent the index of the parking to which vehicle i is164

allocated, and let P be a feasible partition of x = (x(1), . . . , x(n)). Our goal is to165

determine an allocation variable x (or a partition of x into a number of groups less166

than or equal to m) that minimizes the cumulative traveling time of the vehicles from167

their initial position to their destination:168

min
x∈P

f =

n
∑

i=1

(t ′i,x(i) + t ′′x(i),i ). (1)169

Feasibility Denote by b j the number of used slots at parking j in the current solution170

x , and by u j,t the remaining number of free slots at parking j at time t , regarding the171

solution x . The following two properties state feasibility conditions. The first property172

gives conditions on valid input data which are easy to verify.173

Property 1 A problem instance has no feasible solution if one the following two174

conditions is met:175

∑m

j=1
q j < n176

v j t > q j , t = 1, . . . , T j , j = 1, . . . , m.177

Proof There is no feasible solution if the number of vehicles is larger than the number178

of parking lots. Besides, the capacity q j of each parking j should not be smaller than179

the available space for any period t . ⊓⊔180

The next property gives obvious feasibility conditions which depend on the solution181

x as well.182

Property 2 The feasibility of partition P is satisfied if the following two conditions183

are met:184

b j ≤ q j : the number of vehicles b j parked at parking j should be less than its185

capacity q j , for all j ;186

u j t ≤ v j t : the number of vehicles parked at time t at parking j should be less187

than or equal to the maximum allowed number v j t .188

Estimating the number of free parking lots over time We assume that the v j t values189

are known and deterministic. In other words, we assume that some statistical investi-190

gation has already been performed to determine these values at each minute (or every191

5 min) during the day. For example, it is well known that the random variable which192

represents the time between two consecutive arrivals or departures (of vehicles) to or193

from the parking is exponentially distributed ( f (t) = λe−λt , t ≥ 0). The parameter194

λ is estimated by known statistics which use data collected by measuring inter-arrival195

(or departure) times over several full days. Therefore, knowing the λ1, . . . , λm values196

for each parking lot j and for each time t , allows us to compute the number of free197

slots v j t . To conclude, the static PAP relies both on the arrival times at the parking198

and at the final destination, and the number of available slots at each future moment.199

The final result is an allocation variable xi : vehicle i should go to parking xi , and the200

GPS could guide the driver to its designated parking lot.201
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The parking allocation problem for connected vehicles

Dummy parking lot An obvious way to avoid infeasible solutions is to introduce a202

dummy parking lot j = 0. It should have a large capacity, and be very far, i.e. arrival203

times t ′i,0 are very large for all vehicles i . So whenever vehicle i cannot be parked at204

any parking lot j = 1, . . . , m, it will be allocated to the dummy lot j = 0.205

Note that the LP model, presented in the following section, incorporates by default the206

dummy parking lot, providing feasibility for any input. In this way, we avoid infeasible207

solutions and temporarily place vehicles in the dummy parking lot. Furthermore, the208

dummy lot can be seen as a buffer for future allocations. Throughout of this paper, if209

we refer to a solution as infeasible, this means that at least one vehicle is assigned to210

the dummy lot.211

2.2 Mathematical programming model212

It is clear that the principal purpose is to allocate the best parking j to each vehicle213

i , minimizing the total traveling time. We introduce the binary variable xi j equal to 1214

if and only if such an allocation is made. The objective is to minimize the total time215

traveled:216

minimize

n
∑

i=1

m
∑

j=0

[

t ′i j + t ′′i j

]

xi j (2)217

subject to218

m
∑

j=0

xi j = 1, (i = 1, . . . , n) (3)219

n
∑

i=1

xi j ≤ q j , ( j = 0, . . . , m) (4)220

n
∑

i=1

αi j t xi j ≤ v j t , ( j = 0, . . . , m, t = 1, . . . , T j ) (5)221

xi j ∈ {0, 1}, (i = 1, . . . , n, j = 1, . . . , m) (6)222

where223

αi j t =

{

1 if t = t ′i j

0 otherwise.
224

Constraints 3 require that every vehicle be parked, while constraints 4 ensure that225

the number of vehicles allocated to parking j does not exceed parking capacity q j .226

Constraints 5 guarantee that the capacity at each period t for each parking lot j will227

be respected.228

We introduce an additional parking lot j = 0 with a large capacity, q0 = n for229

example, with sufficient slots at every future time step v0,t = n,∀t , and with larger230

arrival times t ′i,0 > M , for all i and for some M . If a feasible solution exists, then the231

dummy parking will remain empty. Otherwise, some drivers would remain without232

a parking slot and would be temporarily rejected. Note again that only the allocation233
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constraint (3) and the objective function (2) are affected by the dummy facility j = 0,234

since the other constraints are always met.235

Properties of the static PAP model The static PAP may be presented as weighted236

bipartite graph with two types of vertices: vehicle vertices i = 1, . . . , n and parking237

vertices j = 1, . . . , m, having weights wi j = t ′i j + t ′′i j . We will now prove the property238

that makes the Boolean model (2)–(6) easy to solve.239

Property 3 The integer programming relaxation of the Boolean model (2)–(6) has240

integer solutions xi j ∈ {0, 1}, i = 1, . . . , n; j = 1, . . . , m.241

Proof Let A′ be the matrix defined by constraints (3) and (4):242

A′
(m+n)×(mn) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 · · · 1

1 · · · 1

. . .

1 · · · 1

1 · · · 1 · · · 1

. . .
. . . · · ·

. . .

1 · · · 1 · · · 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

.243

It is clear that A′ is totally unimodular (TU), since all xi j , when summed up over i =244

1, . . . , n and j = 1, . . . , m are 0 or 1 (with exactly two non-zeros coefficients in each245

column). Therefore, based on the well-known theorem from integer programming (see246

e.g. Schrijver 1986), the problem defined by (2)–(4) and (6) has the integrality property.247

This means that the Linear Programming (LP) solution (2)–(4) and 0 ≤ x j ≤ 1 is248

equivalent to the integer solution of the problem (2)–(4) and (6). In addition, if A′ is249

TU then, [A′|I ]T is also unimodular (Geoffrion 1974). Since the matrix A′′ defined by250

constraints (5) may be transformed into an identity matrix by permuting its rows, we251

conclude that the matrix defined by (2)–(5) is TU and thus possesses the integrality252

property. ⊓⊔253

Possible extensions of the static PAP From an integer programming standpoint, the254

basic mathematical programming model (2)–(6) is easy to solve. Here we discuss255

some possible extensions of the basic model.256

– A time limit for each driver from this allocated parking to its final destination could257

be introduced, rendering the model even lighter to solve.258

– If other transportation options are offered from the parking to the final destination,259

the problem will become a multimodal transportation problem. For example, drivers260

could consider taking a bicycle, an EV, or public transportation, as opposed to only261

walking to their destination.262

– Our model is of the min–sum–sum type. Probably a more realistic and fairer repre-263

sentation would be the following min–max–sum model: allocate each vehicle to its264

parking lot to minimize the maximum time a vehicle spends to arrive at its parking:265
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The parking allocation problem for connected vehicles

minimize f (x) = max
i=1,...,n

m
∑

j=1

[

t ′i j + t ′′i j

]

xi j (7)266

or267

minimize f (x, z) = z (8)268

subject to269

m
∑

j=1

[

t ′i j + t ′′i j

]

xi j ≤ z (i = 1, . . . , n), (9)270

and constraints (3)–(6). Note that, the min–max–max formulation271

minimize g(x) = max
i=1,...,n

max
j=1,...,m

[

t ′i j + t ′′i j

]

xi j (10)272

would yield the same solution as the min–max–sum formulation due to constraints273

(3). Indeed, the vehicle that spends the most time to reach its parking (which should274

be minimized—min–max–max model) is the same as the one identified in the min–275

max–sum model since all xi j when summed up over j are equal to 0, except for one276

vehicle. However the min–max–sum model should be considered, since it contains277

n additional constraints (9), and not n × m as for the min–max–max formulation.278

Note that the min–max–sum model does not possess the integrality property.279

2.3 Upgrade to a dynamic model280

Since the real-world problem is not static, our basic idea—to include time into con-281

sideration, consists of repeatedly running the static model, e.g., once every predefined282

time step (e.g., 1 min). By doing so, we can avoid many unpredictable situations that283

a static model cannot easily incorporate: (1) a driver already allocated to a parking284

finds free curb parking; (2) the driver decides to change his destination; (3) the GPS285

device stops functioning (loses signal) in some vehicles; (4) the time during which the286

vehicle stays at a parking lot is unpredictable, and using queuing theory in this case287

would be too unprecise and noisy; (5) vehicles outside of the system can occupy a288

previously allocated parking slot.289

An elegant way to cover many such unpredictable (random) circumstances is simply290

to solve the problem with the new current input. In 1 min some vehicles will reach the291

parking they were assigned to, while others will not. In the new solution, most vehicles292

will keep the same final parking as in the previous solution, but it can happen that some293

will be reallocated to other parking lots. This is why we need to have a high-speed294

solution method capable of handling the dynamic nature of the problem by providing295

solutions of the static model more frequently, since solving the new problem cannot296

start before the current problem has not been solved. This way, all vehicles appearing297

in the input are treated with equal priority. So for example, vehicles that would have298

been left without a parking lot with the current input would be reinserted in the next299

iteration, along with all other vehicles.300
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M. Mladenović et al.

3 Variable neighborhood search for parking allocation problem301

In this section, we develop a VNS-based heuristic for the PAP. We first discuss why302

a heuristic approach is useful, despite the fact that the min–sum static PAP model303

possesses the integrality property (see Property 3). Then we introduce the steps of our304

VNS-based heuristic, providing detailed pseudo-codes for most procedures. A survey305

paper on the VNS 0–1 MIP heuristic framework can be found in Hanafi et al. (2015).306

Another strong argument for developing a heuristic is the fact that in big cities there307

could be more than 100,000 vehicles on the streets looking for a parking place. In such308

cases, the model could have millions of variables and just transferring the data to the309

central server would be excessively time-consuming. In such cases, even a greedy310

heuristic followed by any local search heuristic could provide good quality solutions.311

Solution representation We present our solution as an array, already defined in the312

combinatorial formulation section:313

x = (x1, . . . , xn), where xi defines the parking lot to which vehicle i is allocated314

(xi ∈ {1, . . . , m}).315

In order to efficiently compute (update) objective function values associated to solu-316

tions in the neighborhood of x and to check their feasibility, we keep, along with the317

solution x , the following variables:318

– fcur : the objective function value of the current solution x ;319

– fv(i) : contribution of vehicle i to the objective function value ( fv(i) = t ′i,x(i) +320

t ′′i,x(i));321

– b( j) : the number of used parking slots at parking j in the current solution x ;322

– u( j, t) : the number of free parking slots at parking j at time t in solution x .323

Initial solution In order to construct an initial feasible solution we propose a Greedy324

add algorithm. For each vehicle i we find its closest parking o(i, 1); if not feasible325

(i.e., the parking is full at arrival time t ′io(i,1)
), the vehicle is allocated to its second326

closest o(i, 2), etc. Its steps are presented in Algorithm 1.327

In line 3, for each vehicle i , the parking places are ranked in non-increasing order of328

their distances from the vehicles. This defines the matrix O , where the element o(i, 1)329

represents the index of the parking lot closest to vehicle i , o(i, 2) is its second closest,330

etc. In line 4 we rank the vehicles based on the distance to their closest parking. This331

permutation of the set of vehicles is denoted by p(i). In line 5 we initialize arrays332

b, fv and fcur . The allocation of each vehicle starts from line 6, following the order333

obtained by the permutation p. The feasibility is checked in line 9: there should be334

an available slot at parking j at time t . If it is not feasible, we try to allocate to the335

next closest parking of vehicle i . If the allocation is feasible, we update the solution,336

as presented in lines 12 and 13.337

Property 4 The time complexity of the Greedy add algorithm is O(nm log m).338

Proof For each of the n vehicles, the order of all m parkings is found in line 3. Hence, its339

complexity is O(nm log m), since ordering of array with m elements is in O(m log m).340
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The parking allocation problem for connected vehicles

Algorithm 1 Greedy Add( fcur , x, b, u, o, fv)

1: procedure Greedy_Add

2: u ← v (u( j, t) ← v( j, t), ∀ j, t)

3: Get order matrix On×m = o(i, j)

4: Get order p(i) of vehicles o(i, 1), (o(p(1), 1) ≤ o(p(2), 1) . . . )

5: b( j) ← 0, ∀ j; fv(i) ← 0, ∀i; fcur ← 0; t t ← 0

6: for ii = 1 to n do

7: i ← p(i i);

8: t t ← t t + 1;

9: if (t t > m) then ‘No feasible solution’ stop

10: x(i) ← o(i, t t); j ← x(i); t ← t ′(i, j)

11: if (u( j, t) = 0 or b( j) + 1 > q j ) goto 8

12: fv(i) ← t + t”(i, j); fcur ← fcur + fv(i);

13: u( j, t) ← u( j, t) − 1; b( j) ← b( j) + 1; t t ← 0

14: end for

15: end procedure

The complexity of line 4 is then O(n log n). The complexity of the allocation loop341

from line 6 to 14 is in O(nm) since in the worst case the vehicles will be allocated342

to their furthest parking. Thus, the most time consuming operations are performed in343

line 3. ⊓⊔344

As mentioned earlier, we introduce a dummy parking lot to avoid generation of345

infeasible solutions. Basically, the model structure does not change. However, after346

introducing a dummy variable, the code would never stop in line 9 of Greedy_Add347

procedure, since feasibility in line 12 is always ensured by the dummy variable, if not348

before. Moreover, another interesting property may be observed.349

Property 5 The number of vehicles allocated to the dummy parking obtained by350

Greedy_Add is the same in the optimal solution.351

Proof Let us denote by α(Greedy) and α(Exact) the number of vehicles parked after352

the Greedy and the Exact procedures, respectively. Due to the large values of t ′i,0,∀i , we353

have α(Greedy) ≥ α(Exact). Suppose the opposite from the claim of this property,354

i.e., assume thatα(Greedy) > α(Exact). This means that there should be free parking355

slots derived by Greedy solution equal to the difference k = α(Greedy)−α(Exact) >356

0. Denote with i such a vehicle. The inner loop defined by lines from 8 to 11 of357

Greedy_Add excludes the possibility that i can be moved out from the dummy358

parking lot. Indeed, for such a vehicle i , variable t t = α(Greedy) in the pseudo-code359

increases until it reaches m (there is no parking slot j in time moment t for vehicle i).360

Therefore, k = 0, which is a contradiction. ⊓⊔361

This interesting property tells us that if the greedy solution includes vehicles allo-362

cated to the dummy parking lot, then its number cannot be reduced by trying to get a363

better solution. The better solution could possibly be obtained by allocating different364

vehicles to the dummy parking lot. So, if the objective is to minimize the number of365

vehicles without a parking slot, the greedy solution is optimal. This fact is another366

argument for using a heuristic approach in solving a relatively simple static PAP. An367

exact solution will not reduce the number of unassigned drivers.368
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M. Mladenović et al.

Neighborhood structures Obviously, there can be several neighborhood structures369

for this combinatorial optimization problem. Since our heuristic should be fast, in this370

paper we propose two neighborhoods:371

Allocation given a solution x and therefore (i, xi ) connections, for each vehicle i ,372

change its parking lot xi . The neighborhood N all
k (x), can be defined as373

repeating the reallocation move k times. Therefore, the distance between374

two solutions x and y is equal to k if and only if they differ in k allocations:375

xi 
= yi exactly for k vehicles; for the remaining n − k vehicles xi = yi ,376

holds.377

Interchange given a solution x , let (i1, j1) and (i2, j2) denote two vehicles parking378

pairs. Assume that vehicles i1 and i2 exchange their parking places, so379

that we have the pairs (i1, j2) and (i2, j1) in the new solution y. The380

1-interchange neighborhood N int
1 (x) consists of all solutions y obtained381

from x after performing such interchanges. It is clear that not all solutions382

are feasible since some vehicle could arrive when all parking slots are383

busy. We define the kth neighborhood of x , N int
k (x), with respect to the384

interchange structure as the solutions obtained by k interchanges.385

Shaking The shaking step in basic VNS consists of a random move from the current386

solution x to a solution x ′ ∈ Nk(x). We use both neighborhood structures, Allocation387

and Interchange for the shaking step, with the same probability. In addition, we imple-388

ment the so-called intensified shaking for Allocation neighborhood N all
k (x), where the389

vehicle is first chosen at random and then its best identified reallocation. This step is390

repeated k times to reach solution x ′ from N all
k (x). The complexity of this procedure391

is obviously O(m).392

Allocation Local search We perform local search using a reallocation neighborhood393

structure. Given a feasible solution x , every vehicle tries to change its parking to every394

other parking. It is clear that the cardinality of N all
1 (x) is n × m. However, we can395

significantly reduce it in the following way: reallocate vehicles just to rv (a parameter)396

their closest parking (rv < m).397

In the reduction strategy used during the preprocessing, we need to rank distances398

(or times) t ′i j + t ′′i j in non-decreasing order of their values, for each vehicle i and each399

parking j : we thus obtain the order of parking facilities o(i, j), j = 2, . . . , m, for each400

vehicle i . Note that the matrix O has already been introduced for the Greedy_Add401

algorithm. A detailed description of our local search is provided in Algorithm 2.402

The input variables in Reallocate_LS, beside those already introduced earlier403

in Greedy_Add are404

– f irst : a Boolean variable which defines whether the first or the best improvement405

strategy is implemented in the LS;406

– rv : an integer value that defines how many parking we will try to change with the407

current one, for any vehicle, following their distance order.408

The basic loop starts at line 3. It is repeated until no improvement can be obtained409

in the reallocation neighborhood N all
1 (x). For each vehicle i , its current parking j j (at410

time t t) is replaced with the parking j (at time t). The feasibility of this reallocation411
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The parking allocation problem for connected vehicles

Algorithm 2 Reallocate LS(x, fcur , fv, b, o, r, u, f irst)

1: procedure Reallocate_LS

2: improve ← true

3: while improve do

4: improve ← f alse

5: for i = 1 to n do

6: j j ← x(i); t t ← t ′(i, j j); fnew ← fcur − fv(i)

7: for j = o(i, 1) to o(i, r) do

8: t ← t ′(i, j);

9: if (u( j, t) > 0 & b( j) + 1 ≤ q j ) then

10: fnew ← fnew + t + t”(i, j)

11: if fnew < fcur then

12: fcur ← fnew ; improve ← true

13: x(i) ← j ; fv(i) ← t ′(i, j) + t ′′(i, j)

14: b( j) ← b( j) + 1; u( j, t) ← u( j, t) − 1

15: b( j j) ← b( j j) − 1; u( j j, t t) ← u( j j, t t) + 1

16: if (first) return

17: end if

18: end if

19: end for

20: end for

21: end while

22: end procedure

is checked in line 9; whether a better solution is found or not is checked in line 11.412

If the move is not feasible, or if there is no improvement, vehicle i remains at the413

same parking lot. Otherwise the solution x is updated, together with arrays fv , b j and414

matrix U . If the first improvement strategy is implemented, the procedure returns the415

improved values in line 16.416

The number of iterations of LS is not known in advance and thus we do not know417

the worst-case complexity of this algorithm. However, we can find the complexity of418

one iteration of Reallocate_LS. The following property is obvious:419

Property 6 The number of calculations of one Reallocate_LS iteration is420

bounded by O(rn).421

Interchange Local search This local search uses N int
1 (x) neighborhood described422

earlier. Detailed pseudo-code is given at Algorithm 3.423

Note that in Interchange_LS we have two vehicles (i1 and i2) and two corre-424

sponding parking ( j1 and j2), but four different times:425

t1 : the time at which vehicle i1 arrives at its current parking j1;426

t2 : the time at which vehicle i2 arrives at its parking j2;427

t3 : the time at which vehicle i1 arrives at parking j2, and428

t4 : the time moment at which vehicle i2 arrives at parking j1.429

We need to interchange the vehicle-parking pair (i1, j1) with (i2, j2) to obtain the430

(i1, j2) and (i2, j1) allocations for each feasible pair of vehicles i1 and i2. This move431

is not possible if both vehicles are already at the same parking in solution x (condition432

j1 
= j2 at line 9). Note that we do not need to include the capacity constraints ≤ q j433

here, since vehicles just exchange their parking lots. However, it can happen that at434
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M. Mladenović et al.

Algorithm 3 Interchange LS(i, j, t, j j, x, t ′′, t t, b, u, fv, f irst)

1: procedure Interchange_LS

2: improve ← true

3: while (improve) do

4: improve ← f alse

5: for i1 = 1 to n − 1 do

6: j1 ← x(i1); t1 ← t ′(i1, j1)

7: for i2 = i1 + 1 to n do

8: j2 ← x(i2)

9: if j1 
= j2 then

10: t2 ← t ′(i2, j2); t3 ← t ′(i1, j2); t4 ← t ′(i2, j1)

11: if (u( j2, t3) > 0 & u( j1, t4) > 0) then

12: fnew ← fcur − fv(i2) − fv(i1)

13: fv1 ← t ′(i1, j2) + t ′′(i1, j2); fv2 ← t ′(i2, j1) + t ′′(i2, j1)

14: fnew ← fnew + fv1 + fv2

15: if fnew < fcur then

16: fcur ← fnew ; improve ← true

17: u( j1, t1) ← u( j1, t1) + 1; u( j2, t2) ← u( j2, t2) + 1

18: u( j1, t4) ← u( j1, t4) − 1; u( j2, t3) ← u( j2, t3) − 1

19: x(i1) ← x(i2); x(i2) ← j1
20: fv( j1) ← fv1; fv(i2) ← fv2

21: if f irst return

22: end if

23: end if

24: end if

25: end for

26: end for

27: end while

28: end procedure

time t3 or t4 there will be no parking place. This condition is verified in line 11. The435

new solution is calculated in lines 12, 13 and 14, and if improved, it is updated in lines436

16–20.437

In terms of Interchange_LS time complexity of, the following property is438

obvious:439

Property 7 The number of calculations in one iteration of Interchange_LS is440

bounded by O(n2).441

Despite the theoretically large number of operations, the algorithm can be very fast442

due to the facts that many moves are not feasible, and that vehicles from the same443

parking do not interchange. Moreover, we have implemented the first improvement444

strategy, further reducing the search time.445

Sequential variable neighborhood descent Variable neighborhood descent (VND) is446

a deterministic variant of VNS. In its sequential version, neighborhoods are placed in447

a list and used sequentially in the search. The Basic VND (BVND) returns the search448

back to the first neighborhood, whenever an improvement has been detected in any449

neighborhood structure from the list. For the Static PAP, our list contains two neigh-450

borhood structures in the following order: reallocation and interchange. The BVND451

is implemented, since Interchange LS uses the first improvement strategy. In other452
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The parking allocation problem for connected vehicles

words, the first time interchange of parking lots between two vehicles is successful,453

the search resumes with reallocation. As in any other deterministic local search, VND454

stops when the solution is local minimum with respect to both neighborhood structures.455

General variable neighborhood search We also implemented VNS, in which the VND456

heuristic is used as a local search mechanism. This VNS variant is known as General457

VNS (GVNS). The basic loop contains the following tree steps: Shaking, VND local458

search and Neighborhood change. Since the VNS algorithm is well known, we will459

not describe it here (see Hansen et al. 2016 for a recent survey).460

4 Computational results461

The previously described heuristics were coded in Visual Studio 2012 C++. All tests462

were executed on Intel Core i7-4702MQ processor with 16GB RAM running on463

Windows 7 professional platform. CPLEX 12.6 was evoked via concert technology,464

coded in C++ on Visual Studio 2012 and ran in parallel on all cores, while the heuristics465

were sequential.466

4.1 Random test instances467

We have tested our model and the VNS-based heuristics on randomly generated test468

instances. We tried to cover real-world situations as well as possible. The number of469

vehicles n varies from 1000 to 90,000, while the number m of parkings is 10, 20,470

30 and 50. The maximum capacity Q of each parking is equal to [2n/m]. Then,471

the actual capacity q j is generated at random between 1 and Q, for each parking472

j . The drivers’ positions and their destinations are generated according to a discrete473

uniform distribution in the square S = [0, 200]×[0, 200] ∈ R2. The parking locations474

are also chosen at random within the same area S. Rectangular distances between all475

drivers locations to all parking locations are used to generate the t ′(i, j) distances. The476

distances between parking and destinations t ′′(i, j) are computed in the same way.477

The values of matrix V = (v j t ) are generated in the following way. The initial values478

for each parking j at time t1 are generated from a discrete uniform distribution v j t1 ∈479

[1, q j ]. In order to generate more realistic instances, we generate the values v j,t+1480

using the values v j t for t = 1, . . . , T (where T = maxi=1,...,n max j=1,...,m{t ′i j }):481

v j,t+1 = v j t + γ, γ ∈ [−3, 3].482

In other words, we do not allow the change in the number of free parking slots to be483

greater than 3, for all parkings j .484

Computational results are divided into two parts. We first compare the exact solu-485

tions with the heuristic on small and medium size instances (n = 1000, 3000, 5000,486

7000 and 9000), for cases where dummy lots are not needed (Table 1) and were487

the input does not produce feasible solutions (Table 2). We then switch to larger scale488
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instances, where the number of vehicles searching for a parking lot ranges from 10,000489

to 90,000.4490

4.2 Feasible small and medium size instances491

The feasibility of the instances is checked according to Properties 1 and 2. If an instance492

is not feasible, a new one is generated. In addition, if the greedy algorithm cannot find493

a feasible solution, we generate a new random instance as well. Thus, all the following494

instances have feasible solutions.495

For the number of vehicles we evaluate five possibilities: n = 1000, 3000, 5000,496

7000 and 9000. As mentioned previously, for each value of n, we consider three497

possible cases of parking: m = 10, 20 and 30. In addition, for the same (n, m) values,498

we generate 10 instances. Therefore, in total we generate 5 × 3 × 10 = 150 test499

instances.500

Comparison We compare the results in solving static min–sum PAP of the following501

methods:502

– CPLEX : exact method using CPLEX solver on model (2)–(6);503

– Greedy : greedy heuristic described in Algorithm 1;504

– SeqVND : sequential VND-based local search, as given in Sect. 3;505

– GVNS : general VNS, running maximally 10 additional seconds.506

Average results on 10 instances, for different pairs of n and m are presented at507

Table 1.508

The third column of Table 1 provides the optimal solutions of the problem. The509

next three columns report the percentage deviation from the optimal solution val-510

ues obtained by Greedy, SeqVND and GVNS, respectively. The next four columns511

show the corresponding running times of compared methods. Note that Greedy and512

SeqVND stop naturally since they are deterministic procedures and that GVNS starts513

once a solution is provided by SeqVND. Therefore, the total time GVNS spends is the514

sum of SeqVND and the time provided in the GVNS column. Also note that only ten515

additional seconds are allowed for GVNS.516

The following conclusions may be drawn from Table 1. The best method is obvi-517

ously the exact algorithm CPLEX. This is expected, since we intentionally propose518

the basic static PAP model to be fast and “integer friendly”. The results obtained by519

SeqVND local search, initialized by Greedy_add, are very close to the optimal520

ones (never larger than 0.22%), but for larger sizes this heuristic takes more time than521

CPLEX. It seems thatGVNS cannot easily escape from the deep local minima provided522

by SeqVND. In more than 50% of the cases it was not able to improve the solution523

within 10 s. The solutions provided by Greedy are obtained very fast, i.e., it never524

takes it more than 0.1 s. The solution quality of this algorithm depends heavily on the525

instance. If there are a lot of parking slots, which never occurs in our test instances,526

the solution provided by the greedy algorithm is optimal.527

4 The datasets are available on https://goo.gl/H3Nu5H.
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The parking allocation problem for connected vehicles

Table 1 Average results on ten instances for each n and m

Parameters Exact % Error Running time (s)

n m CPLEX Greedy seqVND GVNS CPLEX SeqVND GVNS

1000 10 158,203 4.09 0.10 0.08 0.90 0.33 4.71

20 147,250 4.43 0.16 0.14 1.21 0.55 6.43

30 144,064 4.66 0.22 0.19 1.55 0.60 7.40

3000 10 507,136 6.28 0.08 0.08 1.98 4.41 3.13

20 451,402 4.29 0.14 0.13 2.88 6.15 2.92

30 432,211 4.95 0.15 0.14 4.28 8.97 4.26

5000 10 822,996 5.78 0.07 0.06 2.64 19.12 1.58

20 728,954 3.22 0.10 0.10 4.99 29.76 2.62

30 729,491 5.51 0.12 0.12 7.76 54.06 1.73

7000 10 1,131,207 4.94 0.22 0.22 3.62 45.75 0.85

20 1,024,958 3.81 0.13 0.13 6.54 82.28 2.27

30 1,005,248 4.01 0.12 0.12 8.23 133.69 0.00

9000 10 1,453,969 5.86 0.05 0.05 4.61 75.96 1.24

20 1,329,617 4.75 0.09 0.09 9.20 120.09 0.85

30 1,286,264 3.92 0.12 0.12 10.90 161.47 0.00

4.3 Infeasible small and medium size instances528

We now consider instances of the same size as in the previous subsection, but allowing529

infeasible solutions. The vehicle number n does not exceed the total capacity of all530

the parking lots (n ≤
∑m

j=1 q j ), but may produce an infeasible input due to current531

availability v per time step t . Tests are conducted on four instances for each n and m =532

50. The running time of the Reduced VNS is fixed to 5 s, since in a dynamic version,533

the time between two runs of the static code should not be large or unpredictable.534

Note that RVNS does not use any local search. The neighborhood structure used for535

the perturbation or shaking phase is Swap, since Reallocation move has no sense in536

cases where there are more vehicles than parking place (see Property 5).537

The results are reported in Table 2. Its second column represents the number of vehi-538

cles without a parking slot, i.e., the number of vehicles that are parked at the dummy539

parking. Note that, due to the Property 5, this number is equal for all tested methods.540

The next three columns report the objective values obtained by CPLEX, Greedy and541

RVNS, respectively. Columns six to eight give the corresponding computing times542

spent by the three methods. The last two columns, as in the previous table, provide543

the percentage of error for two heuristics as ( fheur − fexact )/ fexact × 100.544

Comparing the results with and without the dummy facility, one can conclude the545

following: (1) there is no significant difference in effort for obtaining the exact solution546

for both sets of instances; (2) as expected, RVNS performs better than Greedy for547

small n. For larger instances, there is not enough time to reach a higher precision.548
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4.4 Infeasible large instances549

We also compared exact and heuristic methods on instances with n = 10,000, 30,000,550

50,000, 70,000 and 90,000, and for m = 50 parking lots. Again four instances are551

generated for each n and m = 50. The locations of vehicles and parking lots are taken552

from the square [1000 × 1000] and the location of dummy facility is set at the point553

with coordinates (1700, 1700). Since the solution should be obtained within less than554

5 s, among several VNS variants, we run only Reduced VNS after the Greedy initial555

solution (Table 3).4 556

It appears that the time it takes to achieve the exact solution on large instances557

is larger than the operator (dispatcher) can wait. For the number of vehicles ranging558

from 10 to 50 thousand, despite the polynomial complexity of min–sum–sum PAP,559

the time needed is in between 10 and 250 s. Moreover, for more than 70 thousand560

vehicles, our PC ran out of memory (16 GB). These results confirm the necessity of a561

heuristic approach for solving real-life problems, even though the problem is not NP-562

hard. In addition, min–max–max and mix–max–sum are not polynomial problems,563

and heuristic approach would be even more desirable.564

5 Conclusions565

Searching for available parking lots emerges as one of the major problems in urban566

areas. The massive unorganized pursuit of parking spaces causes traffic congestion,567

financial losses, negative environmental effects, among others. Most studies on this568

topic base their research on simulations, due to their mostly non-deterministic input.569

In this paper, we have proposed a new mathematical programming model that uses570

arrival times to parking and destinations as input. These data can be collected by GPS571

devices of a set of vehicles as input. We call it the Static Parking Allocation Problem572

(SPAP). We showed that our min–sum–sum parking allocation model is “integer573

friendly” and therefore not NP-hard. However, for very large and more realistic sizes574

(e.g., for n ≥ 30,000), reaching the optimal solution is not decisive, either because575

of the time to reach it is unpredictable and too long, or due to memory overflow. Our576

basic model is static, but it can cover the dynamic nature of the problem by repeating577

its execution very often, every 5 s, for example. Therefore, it is more important to578

compute an approximate solution fast within a fixed time limit, rather than an exact579

one in unpredictable time. To guarantee that a good quality solution is obtained in each580

time step, we developed a VNS-based heuristic. Computational results on randomly581

generated test instances demonstrate that the exact solution approach is better on582

smaller instances, but for larger ones, the heuristic approach is more reliable because583

its stopping condition is the maximum execution time for the search.584

Future work may follow the following directions: (i) to test our models on real park-585

ing data, including more elaborate dynamic variants; (ii) to develop a VNS heuristic586

and exact methods for the min–max–sum variant of PAP; (iii) to develop exact solution587

procedures for SPAP that would use more the problem specific knowledge and not588

be based on commercial solvers. In other words, trying to build a strictly polynomial589

exact method for SPAP, in order to reduce the time of the exact solution method.590
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