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Spatial Information Guided Convolution for
Real-Time RGBD Semantic Segmentation

Lin-Zhuo Chen, Zheng Lin, Ziqin Wang, Yong-Liang Yang, and Ming-Ming Cheng

Abstract— 3D spatial information is known to be beneficial
to the semantic segmentation task. Most existing methods take
3D spatial data as an additional input, leading to a two-stream
segmentation network that processes RGB and 3D spatial infor-
mation separately. This solution greatly increases the inference
time and severely limits its scope for real-time applications.
To solve this problem, we propose Spatial information guided
Convolution (S-Conv), which allows efficient RGB feature and
3D spatial information integration. S-Conv is competent to infer
the sampling offset of the convolution kernel guided by the 3D
spatial information, helping the convolutional layer adjust the
receptive field and adapt to geometric transformations. S-Conv
also incorporates geometric information into the feature learning
process by generating spatially adaptive convolutional weights.
The capability of perceiving geometry is largely enhanced without
much affecting the amount of parameters and computational
cost. Based on S-Conv, we further design a semantic segmen-
tation network, called Spatial information Guided convolutional
Network (SGNet), resulting in real-time inference and state-of-
the-art performance on NYUDv2 and SUNRGBD datasets.

Index Terms— Spatial information, receptive field, RGBD
semantic segmentation.

I. INTRODUCTION

W ITH the development of 3D sensing technologies,
RGBD data with spatial information (depth, 3D coor-

dinates) is easily accessible. As a result, RGBD semantic
segmentation for high-level scene understanding becomes
extremely important, benefiting a wide range of applications
such as automatic driving [1], SLAM [2], and robotics. Due to
the effectiveness of Convolutional Neural Network (CNN) and
additional spatial information, recent advances demonstrate
enhanced performance on indoor scene segmentation tasks
[3]–[5]. Nevertheless, there remains a significant challenge
caused by the complexity of the environment and the extra

Fig. 1. The network architecture of different multi-modal fusion approaches.
(a) The conventional two-stream structure [6]–[10]. (b) The proposed SGNet.
It can be seen that the approach in (a) largely increases parameter number
and inference time due to processing spatial information, thus less suitable
for real-time applications. We replace the convolution with our S-Conv in
(b) where the kernel distribution and weights of the convolution are adaptive to
the spatial information. S-Conv greatly enhances the spatial awareness of the
network with few additional parameters and computations, thus can efficiently
utilize spatial information. Best viewed in color.

efforts for considering spatial data, especially for applications
that require real-time inference.

A common approach treats 3D spatial information as
an additional input, followed by combining the features
of RGB images to fuse multi-modal information [6]–[10]
(see Fig. 1(a)). This approach achieves promising results at
the cost of significantly increasing the parameter number and
computational time, thus being unsuitable for real-time tasks.
Meanwhile, several works [3], [6], [9], [11], [12] encode raw
spatial information into three channels (HHA) composed of
horizontal disparity, height above ground, and norm angle.
However, the conversion from raw data to HHA is also time-
consuming [9].

It is worth noting that indoor scenes have more complex
spatial relations than outdoor scenes. This requires a stronger
adaptive ability of the network to deal with geometric transfor-
mations. However, due to the fixed structure of the convolution
kernel, the 2D convolution in the aforementioned methods
cannot well adapt to spatial transformation and adjust the
receptive field inherently, limiting the accuracy of semantic



segmentation. Although alleviation can be made by revised
pooling operation and prior data augmentation [13], [14], a
better spatially adaptive sampling mechanism for conducting
convolution is still desirable.

Moreover, the color and texture of objects in indoor scenes
are not always representative [15]. Instead, the geometry
structure often plays a vital role in semantic segmentation. For
example, to recognize the fridge and wall, the geometric struc-
ture is the primary cue due to the similar texture. However,
such spatial information is ignored by 2D convolution on RGB
data. The depth-aware convolution [16] is proposed to address
this problem. It forces pixels with similar depths as the center
of the kernel to have higher weight than others. Nevertheless,
this prior is handcrafted and may lead to sub-optimal results.

It can be seen that there is a contradiction between the
fixed structure of 2D convolution and the varying spatial trans-
formation, along with the efficiency bottleneck of separately
processing RGB and spatial data. To overcome the limitations
mentioned above, we propose a novel operation, called Spatial
information guided Convolution(S-Conv), which adaptively
changes according to the spatial information (see Fig. 1(b)).
Specifically, this operation can generate convolution kernels
with different sampling distributions adapting to spatial infor-
mation, boosting the spatial adaptability and the receptive field
regulation of the network. Furthermore, S-Conv establishes
a link between the convolution weights and the underlying
spatial relationship with their corresponding pixel, incorporat-
ing the geometric information into the convolution weights to
better capture the spatial structure of the scene. Due to the
input of spatial information in S-Conv, the scale and spatial
transformation of objects can be directly analyzed to generate
spatially adaptive offsets and weight.

The proposed S-Conv is light yet flexible and achieves
significant performance improvements with only few addi-
tional parameters and computation costs, making it suitable for
real-time applications. It can be seen as a novel and efficient
method for multi-modal fusion task. Concretely, compared
with other two-stream methods, we guide the convolution
process by utilizing spatial information to achieve the purpose
of multi-modal fusion. It performs better than other methods
relying on two-stream network, and greatly reduces the amount
of parameters and calculation compared with two-stream
methods, enabling real-time application. We conduct extensive
experiments to demonstrate the effectiveness and efficiency
of S-Conv. We first design the ablation study and compare
S-Conv with two-stream methods, deformable convolution
[13], [14] and depth-aware convolution [16], exhibiting the
advantages of S-Conv. We also verify the applicability of
S-Conv to spatial transformations by testing its influence
on different types of spatial data with depth, HHA and 3D
coordinates. We demonstrate that spatial information is more
suitable to generate offset than RGB feature which is used
by deformable convolution [13], [14]. Finally, benefiting from
the adaptability to spatial transformation and the effective-
ness of perceiving spatial structure, our network equipped
with S-Conv, named Spatial information Guided convolu-
tional Network (SGNet), achieves high-quality results with

real-time inference on NYUDv2 [17] and SUNRGBD [18],
[19] datasets.

We highlight our contributions as follows:
• We propose a novel S-Conv operator that can adaptively

adjust receptive field while effectively adapting to spa-
tial transformation, and can perceive intricate geometric
patterns with low cost.

• Based on S-Conv, we propose a new SGNet that
achieves competitive RGBD segmentation performance
in real-time on NYUDv2 [17] and SUNRGBD [18], [19]
datasets.

II. RELATED WORK

A. Semantic Segmentation

The recent advances of semantic segmentation benefit a
lot from the development of convolutional neural network
(CNN) [20], [21]. FCN [3] is the pioneer of leveraging
CNN for semantic segmentation. It leads to convincing results
and serves as the basic framework for many tasks. With
the research efforts in the field, the recent methods can
be classified into two categories according to the network
architecture, including atrous convolution based methods [4],
[22]–[24], and encoder-decoder based methods [25]–[30].

1) Atrous Convolution: The standard approach relies on
stride convolutions or poolings to reduce the output stride of
the CNN backbone and enables a large receptive field. How-
ever, the resolution of the resulting feature map is reduced [4],
and many details are lost. One approach exploits atrous
convolution to alleviate the conflict by enhancing the receptive
field while keeping the resolution of the feature map [4], [22],
[26], [31]. We use atrous convolution based backbone in the
proposed SGNet.

2) Encoder-Decoder Architecture: The other approach uti-
lizes the encoder-decoder structure [25]–[30], [32], which
learns a decoder to recover the prediction details gradually.
DeconvNet [28] employs a series of deconvolutional layers
to produce a high-resolution prediction. SegNet [27] achieves
better results by using pooling indices in the encoder to guide
the recovery process in the decoder. RefineNet [25] fuses
low-level features in the encoder with the decoder to refine
the prediction. [29], [30] propose a scheme of gated sum,
which can control the information flow of different scale in the
encoder-decoder architecture. While this method can achieve
more precise results, it requires longer inference time.

B. RGBD Semantic Segmentation

How to effectively use the extra geometry information
(depth, 3D coordinates) is the key of RGBD semantic seg-
mentation. A number of works focus on how to extract
more information from geometry, which is treated as addi-
tional input in [7]–[10], [33]. Two-stream network is used
in [6], [8]–[10], [12] to process RGB image and geometry
information separately, and combines the two results in the
last layer. These methods achieve promising results at the
expense of doubling the parameters and computational cost.
3D CNNs or 3D KNN graph networks are also used to take



geometry information into account [34]–[36]. Besides, various
deep learning methods on 3D point cloud [37]–[42] are also
explored. However, these methods cost a lot of memory and
are computationally expensive. Another stream incorporates
geometric information into explicit operations. [43] pro-
poses to perform 3D object detection based on depth-guided
convolution, whose weights are location-variant and depth-
adaptive. Cheng et al. [44] use geometry information to build
a feature affinity matrix acting in average pooling and up-
pooling. Lin et al. [45] splits the image into different branches
based on geometry information. Wang and Neumann [16]
propose Depth-aware CNN, which adds depth prior to the con-
volutional weights. Although it improves feature extraction by
convolution, the prior is handcrafted but not learned from data.
Other approaches, such as multi-task learning [7], [46]–[50] or
spatial-temporal analysis [51], are further used to improve seg-
mentation accuracy. The proposed S-Conv aims to efficiently
utilize spatial information to improve the feature extraction
ability. It can significantly enhance the performance with high
efficiency due to using only a small amount of parameters.

C. Dynamic Structure in CNN

Using dynamic structure to deal with varying input
of CNN has also been explored. Dilation Convolution
is used in [4], [22] to increase the receptive field size
without reducing feature map resolution. Spatial transformer
network [52] adapts spatial transformation by warping
feature map. Dynamic filter [53] adaptively changes its
weights according to the input. Besides, self-attention
based methods [54]–[57] generate attention maps from the
intermediate feature map to adjust response at each location
or capture long-range contextual information adaptively.
Focusing on the understanding of contextual semantics,
shape-variant convolution [57] confines its contextual region
by location-variant convolution based on semantic-correlated
region. Some generalizations of convolution from 2D image to
3D point cloud are also presented. PointCNN [42] is a seminal
work that enables CNN on a set of unordered 3D points.
There are other improvements [39]–[41] on utilizing neural
networks to effectively extract deep features from 3D point
sets. Deformable convolution [13], [14] can generate different
distribution with adaptive weights. Nevertheless, their input is
an intermediate feature map rather than spatial information.
Our work experimentally verifies that better results can be
obtained based on spatial information in Sec. IV.

III. S-CONV AND SGNET

In this section, we first elaborate on the details of Spatial
information guided Convolution (S-Conv), which is a general-
ization of conventional RGB-based convolution by involving
spatial information in the RGBD scenario. Then, we discuss
the relation between our S-Conv and other approaches. Finally,
we describe the network architecture of Spatial information
Guided convolutional Network (SGNet), which is equipped
with S-Conv for RGBD semantic segmentation.

A. Spatial Information Guided Convolution

For completeness, we first review the conventional convolu-
tion operation. We use Ai (j), A ∈ R

c×h×w to denote a tensor,
where i is the index corresponding to the first dimension,
and j ∈ R

2 indicates the two indices for the second and third
dimensions. Non-scalar values are highlighted in bold for
convenience.

For an input feature map F ∈ R
c×h×w . We describe it

in 2D for simplicity, thus we note X as input feature map.
X ∈ R

1×h×w . Note that it is straightforward to extend to the
3D case. The conventional convolution applied on X to get Y
can be formulated as the following:

Y(p) =
K∑

i=1

Wi · X(p + di ), (1)

where W ∈ R
K represents the weight of convolution kernel

with kernel size kh × kw, and K = kh × kw. p ∈ R
2 is the 2D

convolution center, d ∈ R
K×2 denotes the kernel distribution

around p. For 3 × 3 convolution, d is defined as Equ. (2):

d = {[−1,−1], [−1, 0], . . . , [0, 1], [1, 1]}. (2)

From the above equation, we can see that the convolution
kernel is constant over X. In other words, W and d are fixed,
meaning the convolution is location-invariant and spatially-
agnostic.

In the RGBD context, we want to involve 3D spatial infor-
mation efficiently by using adaptive convolution kernels. We
first generate the offset according to the spatial information,
then use the spatial information corresponding to the given
offset to generate new spatially adaptive weights. Our S-Conv
requires two inputs. One is the feature map X which is the
same as conventional convolution. The other is the spatial
information S ∈ R

c′×h×w . In practice, S can be HHA (c′ = 3),
3D coordinates (c′ = 3), or depth (c′ = 1). The method of
encoding depth into 3D coordinates and HHA is the same
as [36]. Note that the input spatial information is not included
in the feature map.

As the first step of S-Conv, we project the input spatial
information into a high-dimensional feature space, which can
be expressed as:

S′ = φ(S), (3)

where φ is a spatial transformation function, and S′ ∈
R

64×h×w, which has a higher dimension than S.
Then, we take the transformed spatial information S′ into

consideration, perceive its geometric structure, and generate
the distribution (offset of pixel coordinate in x− and y−axis)
of convolution kernels at different p. This processes can be
expressed as:

�d = η(S′), (4)

where �d ∈ R
K×h′×w′×2, For the sake of simplicity, we do

not show the reshaping process of �d in Equ. (4). �d ∈
R

2K×h′×w′
before reshaping. h′, w′ represent the feature map

size after convolution. K = kh × kw, which kh and kh are the
kernel size. For 3 × 3 convolution, �d ∈ R

9×h′×w′×2. η is a



Fig. 2. The illustration of the Spatial information guided Convolution (S-Conv). Firstly, the input 3D spatial information is projected by the spatial projector
to match the input feature map. Secondly, the adaptive convolution kernel distribution is generated by the offset generator. Finally, the projected spatial
information is sampled according to the kernel distribution and fed into the weight generator to generate adaptive convolution weights.

non-linear function which can be implemented by a series of
convolutions.

After generating the distribution of kernel for each possible
p using �d(p), we boost its feature extraction ability by
establishing the link between the geometric structure and
the convolution weight. Due to the shifting of convolution
kernel in Equ. (4), the corresponding depth information of
the convolution kernel has also changed. We want to collect
the depth information corresponding to the convolution kernel
after shifting for generating spatially adaptive weight. More
specifically, we sample the geometric information of the pixels
corresponding to the convolution kernel after shifting:

S∗(p) = {S′(p + di + �di (p))|i=1,2,...,K }, (5)

where �d(p) is the spatial distribution of convolution kernels
at p. S∗(p) ∈ R

64K is the spatial information corresponding to
the feature map of the convolution kernel centered on p after
transformation.

Finally, we generate convolution weights according to the
final spatial information as the following:

W∗(p) = σ( f (S∗(p))) · W, (6)

where f is a non-linear function that can be implemented as
a series of fully connected layers with non-linear activation
function, σ is sigmoid function, · is element-wise product,
W ∈ R

K indicates the convolution weights, which can be
updated by the gradient descent algorithm. W∗(p) ∈ R

K

denotes the spatially adaptive weights for convolution after
shifting centered at p.

Overall, our generalized S-Conv is formulated as:

Y(p) =
K∑

i=1

W∗
i (p) · X(p + di + �di (p)). (7)

We can see that W∗
i (p) establishes the correlation between

spatial information and convolution weights. Moreover, con-
volution kernel distribution is also relevant to the spatial
information through �d. Note that W∗

i (p) and �di (p) are not
constant, meaning the generalized convolution is adaptive to
different p. Also, as �d is typically fractional, we use bilinear

Fig. 3. The illustration of weights W in 2D convolution and W∗ in S-Conv.
The yellow dot indicates the point whose spatial position changes along the
arrow. Illustration of 2D convolution is on the top, and S-Conv is on the
bottom. The conventional 2D convolution operation orderly places local points
in a regular grid with fixed weights, while ignoring the spatial information.
We can see that the spatial position variation of the yellow point can not
be reflected in the weight. Our S-Conv can be regarded as placing a local
patch into a weight space, which is generated by the spatial guidance of
that patch. Hence the weight of each point establishes a link with its spatial
location, effectively capturing the spatial variation of the local patch. The
spatial relationship between the yellow point and other points can be reflected
in the adaptive weights.

interpolation to compute X(p + di + �di (p)) as in [13], [52].
The main formulae discussed above are labeled in Fig. 2.

B. Relation to Other Approaches

2D convolution is the special case of the proposed S-Conv
without geometry information. Specifically, without geometry
information, if we remove the W∗

i (p) and �di (p) which are
generated by geometry information in Equ. (7), this process
degenerates to 2D convolution. While for the RGBD case, our
S-Conv can extract feature at the point level and is not limited
to the discrete grid by introducing spatially adaptive weights as
shown in Fig. 3. Deformable convolution [13], [14] also allevi-
ates this problem by generating different distribution weights.
Nevertheless, their distributions are inferred from 2D feature
maps instead of 3D spatial information as in our case. We will
verify through experiments that our method achieves better
results than deformable convolution [13], [14]. Compared with
shape-variant (SV) convolution [57], SV convolution confines



Fig. 4. The network architecture of SGNet equipped with S-Conv for RGBD semantic segmentation. The SGNet consists of a backbone network and a
decoder. The deep supervision is added between layer 3 and layer 4 to improve network optimization.

TABLE I

THE RESULTS OF REPLACING CONVOLUTION (OF 3 × 3 FILTER) OF DIFFERENT LAYERS WITH S-CONV ON NYUDV2 DATASET. “LAYERX_Y” MEANS

THE 3 × 3 CONVOLUTION OF Y-TH RESIDUAL BLOCK IN X-TH LAYER

its contextual region by location-variant convolution based on
semantic-correlated region. It implements a location-variant
convolution operator whose weights are location-variant and
generated by feature map, focusing on the understanding of
contextual semantics. Our S-Conv utilizes depth map rather
than feature map to generate spatially adaptive offsets and
weights. And the weights and offset of S-Conv are defined by
spatial information (depth map). This helps the convolutional
layer to adjust the receptive field and adapt to geometric
transformation according to the spatial information. Compared
with the 3D KNN graph-based method, our S-Conv selects
neighboring pixels adaptively instead of using the KNN graph,
which is not flexible and computationally expensive.

C. SGNet Architecture

Our semantic segmentation network, called SGNet,
is equipped with S-Conv and consists of a backbone and
decoder. The structure of SGNet is illustrated in Fig. 4. We
use ResNet101 [58] as our backbone, and replace the first and
the last two conventional convolutions (3 × 3 filter) of each
layer with our S-Conv. We add a series of convolutions to
extract the feature further and then use bilinear up-sampling
to produce the final segmentation probability map, which
corresponds to the decoder part of the SGNet. The φ in
Equ. (3) is implemented as three 3 × 3 convolution layers,
i.e. Conv(3, 64) - Conv(64, 64) - Conv(64, 64) with non-linear
activation function. The η in Equ. (4) and the f in Equ. (6)
are implemented as single convolution layer and two fully

connected layers separately. The S-Conv implementation is
modified from deformable convolution [13], [14]. We add
deep supervision between layer 3 and layer 4 to improve
the network optimization capability, which is the same as
PSPNet [59].

IV. EXPERIMENTS

In this section, we first validate the performance of S-Conv
by analyzing its usage in different layers; conducting ablation
study/comparison with its alternatives; evaluating results of
using different input information to generate offset; and test-
ing inference speed. Then we compare our SGNet equipped
with S-Conv with other state-of-the-art semantic segmenta-
tion methods on NYUDV2 and SUNRGBD datasets. Finally,
we visualize the depth adaptive receptive field in each layer
and the segmentation results, demonstrating that the proposed
S-Conv can well exploit spatial information.

Datasets and Metrics: We evaluate the performance of
S-Conv operator and SGNet segmentation method on public
datasets:

• NYUDv2 [17]: This dataset has 1449 RGB images
with corresponding depth maps and pixel-wise labels.
795 images are used for training, while 654 images are
used for testing as in [17]. The 40-class settings are used
for experiments.

• SUN-RGBD [18], [19]: This dataset contains
10335 RGBD images with semantic labels organized



Fig. 5. Per-category IoU improvement of S-Conv on NYUDv2 dataset.

TABLE II

THE RESULTS OF REPLACING CONVOLUTION (OF 3 × 3 FILTER) OF DIF-
FERENT LAYERS WITH S-CONV ON NYUDV2 DATASET

in 37 categories. 5285 images are used for training, and
5050 images are used for testing.

• Cityscapes [60]: We split the dataset into training, vali-
dation and test. The training set, validation set, and test
set contain 2975, 500, and 1525 images respectively.

We use three common metrics for evaluation, including
pixel accuracy (Acc), mean accuracy (mAcc), and mean inter-
section over union (mIoU). The three metrics are defined as
the following:

Acc =
∑

i

pii

g
,

m Acc = 1

pc

∑

i

pii

gi
,

m IoU = 1

pc

∑

i

pii

gi + ∑
j p j i − pii

, (8)

where pi j is the amount of pixels which are predicted as class
j with ground truth i , pc is the number of classes, and gi is
the number of pixels whose ground truth class is i . g = ∑

i gi

is the number of pixels. The depth map is used as the default
format of spatial information unless specified otherwise.

Implementation Details: We use dilated ResNet101 [58] pre-
trained on ImageNet [61] as the backbone network for feature
extraction following [4], and the output stride is 16 by default.
The whole system is implemented based on PyTorch. The SGD
optimizer is adopted for training with the same learning rate
schedule (“poly” policy) as [4], [26], where the initial learning
rate is 5e-3 for ablation study, 8e-3 for NYUDv2 and 1e-3 for
SUNRGBD, and the weight decay is 5e-4. This learning policy

TABLE III

ABLATION STUDY OF SGNET ON NYUDV2 [17] DATASET. OG: OFFSET

GENERATOR OF S-CONV, WG: WEIGHT GENERATOR OF S-CONV, SP:
SPATIAL PROJECTION OF S-CONV

updates the learning rate for every 40 epochs for NYUDv2 and
ablation study and 10 epochs for SUNRGBD. We use ReLU
activation function, and the batch size is 8. Following [6],
we employ general data augmentation strategies, including
random scaling, random cropping, and random flipping. The
crop size is 480 × 640. During testing, we down-sample the
image to the training crop size (480 × 640), and its prediction
map is upsampled to the original size. We use cross-entropy
loss in both datasets, and reweight [62] training loss of each
class in SUNRGBD due to its extremely unbalanced label
distribution. We train the network by 480 epochs for the
NYUDv2 dataset and 200 epochs for the SUNRGBD dataset
on two NVIDIA 1080Ti GPUs.

A. Analysis of S-Conv

We design ablation studies on NYUDv2 [17] dataset. The
ResNet101 with a simple decoder and deep supervision is used
as the baseline.

1) Replace Convolution With S-Conv: We evaluate the
effectiveness of S-Conv by replacing the conventional con-
volution (of 3 × 3 filter) in different layers. We first replace
convolution in layer 3, then extend the explored rules to other
layers. The FPS (Frames per Second) is tested on NVIDIA
1080Ti with input image size 425 × 560 following [16]. The
results are shown in Tab. I.

We can draw the following two conclusions from the results
in the Tab. I. 1) The inference speed of the baseline network
is fast, but its performance is poor. Replacing convolution



TABLE IV

THE COMPARISON RESULTS ON NYUDV2 TEST DATASET. DCV2:
DEFORMABLE CONVOLUTION V2 [14], DAC: DEPTH-AWARE CONVO-

LUTION [16], SP: SPATIAL PROJECTOR IN S-CONV, WG: WEIGHT

GENERATOR IN S-CONV

TABLE V

COMPARISON OF USING DIFFERENT TYPES OF SPATIAL INFORMATION ON
NYUDV2 DATASET

with S-Conv can improve the results of the baseline network
with a little bit more parameters and computational time. 2)
In addition to the first convolution in layer 3 whose stride
is 2, the effect of replacing the later convolution is better.
The main reason would be that spatial information can better
guide down-sampling operation in the first convolution. Thus
we choose to replace the first convolution and the last two
convolutions of each layer with S-Conv. We generalize the
rules found in layer 3 to other layers and achieve better
results. The above experiments show that our S-Conv can
significantly improve network performance with only a few
parameters. It is worth noting that our network has no spatial
information stream. The spatial information only affects the
distribution and weight of convolution kernel. We also explore
the performance of S-Conv embedded into different layers.
The results are shown in Tab. II. We can observe that the
performance enhances with the number of layers equipped
with S-Conv.

We also show the IoU improvement of S-Conv on most
categories in Fig. 5. It’s obvious that our S-Conv improves IoU
in most categories, especially for objects lacking representative
texture information such as mirror, board and bathtub. There
are also clear improvements for objects with rich spatial
transformation, such as chairs and tables. This shows that our
S-Conv can make good use of spatial information during the
inference process.

2) Architecture Ablation: To evaluate the effectiveness of
each component in our proposed S-Conv, we design abla-
tion studies. The results are shown in Tab. III. By default,
we replace the first convolution and the last two convolutions

TABLE VI

INFERENCE SPEED TEST OF SGNET ON NYUDV2 DATASET WITH INPUT
IMAGE SIZE 480×640. OG: OFFSET GENERATOR OF S-CONV, †: WITH-

OUT APPLYING GENERATED LOCATION-VARIANT WEIGHT AND

OFFSET IN SGNET, HHANET: ADDITIONAL STREAM BACK-
BONE (RESNET101) TO UTILIZE SPATIAL INFORMATION

Fig. 6. FPS, mIoU, and the number of parameters of different methods
on NYUDv2. The input image size for all single-scale speed comparisons is
425 × 560 following [16]. The radius of the circle corresponds to the number
of parameters of the model. The results of DCNet [16] and 3DGNN [36] are
from [16]. Our SGNet can achieve fastest inference time and state-of-the-art
performance.

of each layer according to Tab. I. We can see that the offset
generator, spatial projection module, and weight generator of
S-Conv all contribute to the improvement of the results.

3) Comparison With Alternatives: Most methods [6], [9],
[33], [62] use a two-stream network to extract features from
two different modalities and then combine them. Our S-Conv
focuses on advancing the feature extraction process of the
network by utilizing spatial information. Here we compare
our S-Conv with two-stream network, deformable convolu-
tion [13], [14], and depth-aware convolution [16]. We use a
simple baseline which consists of a ResNet101 network with
deep supervision and a simple decoder. We add an additional
ResNet101 network, called HHANet, to extract HHA features
and fuse it with our baseline features at the final layer of a
two-stream network. To compare with depth-aware convolu-
tion and deformable convolution, similar to SGNet, we replace
the first convolution and the last two convolutions of each
layer. For “Baseline + DAC + DCV2”, we replace convolution
with depth-aware convolution [16] (DAC) in first two layers
and replace convolution with deformable convolution [13]
(DCV2) in last two layers, because DCV2 does not work for
the lower layers [13]. The results are shown in Tab. IV. We
find that our S-Conv achieves better results than two-stream
networks, deformable convolution [13], depth-aware convo-



                                                                                                     

TABLE VII

COMPARISON RESULTS ON NYUDV2 TEST DATASET. MS: MULTI-SCALE TEST; SI: SPATIAL INFORMATION. THE INPUT IMAGE SIZE FOR FORWARD
SPEED COMPARISON IS 425 × 560 USING NVIDIA 1080TI FOLLOWING [16]. WE ADD ASPP MODULE [4] AFTER THE FINAL LAYER OF SGNET,

NOTED AS“SGNET*”

Fig. 7. The visualization of relative receptive field in S-Conv.

lution [16], and their combination. This demonstrates that
our S-Conv can effectively utilizes spatial information. The
baseline equipped with weight generator can also achieve
better results than depth-aware convolution, indicating that
learning weights from spatial information is necessary.

4) Spatial Information Comparison: We also evaluate the
impact of different formats of spatial information on S-Conv.
The results are shown in Tab. V. We can see that depth
information leads to comparable results with HHA and 3D
coordinates, and better results than intermediate RGB features
which are used by deformable convolution [13], [14]. This
shows the advantage of using spatial information for offset and
weight generation over RGB features. However, converting

depth to HHA is time-consuming [9]. Hence 3D coordinates
and depth map are more suitable for real-time segmentation
using SGNet. It can be seen that even without spatial infor-
mation input (with RGB features), our S-Conv has more than
3.4% improvement than the baseline.

5) Inference Speed Test: To demonstrate the light weight
of S-Conv, we test the inference speed of SGNet in this part.
We also compare our S-Conv with two-stream methods. The
input size of image is 480×640. Results are shown in Tab. VI.
We can observe that S-Conv only requires a small amount of
additional computation compared with two-stream methods.
Our SGNet can also achieve real-time inference speed using
ResNet101 and ResNet50 [58] backbone.



Fig. 8. The qualitative semantic segmentation comparison results on NYUDv2 test dataset. SGNet-8s: output stride is 8.

TABLE VIII

COMPARISON RESULTS ON SUNRGBD TEST DATASET. MS: MULTI-SCALE TEST, SI: SPATIAL INFORMATION. WE ADD ASPP MODULE [4] AFTER THE
FINAL LAYER OF SGNET, NOTED AS “SGNET*”

B. Comparison With state-of-the-art
We compare our SGNet with other state-of-the-art methods

on NYUDv2 [17] and SUNRGBD [18], [19] datasets. The
architecture of SGNet is shown in Fig. 4.

1) NYUDv2 Dataset: The comparison results can be found
in Tab. VII and Fig. 6. We change the learning rate from
5e-3 to 8e-3. We down-sample the input image to 480 × 640
and upsample its predict map to get final results during test.
To compare inference speed with other methods, the input
image size for all single-scale speed comparisons in Tab. VII
is 425 × 560 following [16]. The inference speed results of
DCNet [16] and 3DGNN [36] are from [16]. We tested the

single-scale speed of other methods under the same conditions
using NVIDIA 1080Ti. Furthermore, inference speed test of
SGNet with input size 480×640 is shown in Tab. VI. Note that
some methods in Tab. VII do not report parameter quantities
or open source. So we just listed the mIoU of these methods.
We can draw the following conclusions from Tab. VI and
Tab. VII. Instead of using additional networks to extract spatial
features, our SGNet (ResNet50) can achieve competitive
performance and fastest inference with minimum number
of parameters. Our SGNet (ResNet101) can achieve more
competitive performance and real-time inference. This benefits
from S-Conv which can make use of spatial information



Fig. 9. The qualitative semantic segmentation comparison results on
SUNRGBD test dataset.

efficiently with only a small amount of extra parameters and
computation cost. Moreover, our S-Conv can achieve good
results without using HHA information, making it suitable for
real-time tasks. This verifies the efficiency of our S-Conv in
utilizing spatial information. At the expense of a little bit more
reasoning time by adding ASPP module [4] after SGNet noted
as SGNet*, the proposed SGNet can achieve better results
than other methods and RDFNet which uses multi-scale test,
HHA information and two ResNet152 backbones. After using
multi-scale test which is used by other methods, SGNet’s
performance can be further improved.

2) SUNRGBD Dataset: The comparison results on the
SUNRGBD dataset are shown in Tab. VIII. It is worth noting
that some methods in Tab. VII did not report results on the
SUNRGBD dataset. The inference time and parameter number
of models in Tab. VIII are the same as those in Tab. VII.
Our SGNet can achieve state-of-the-art results in real-time
compared with models that do not have real-time performance.

3) Cityscapes Dataset: We add ASPP [4] module after
SGNet and set output stride = 8. We training with
2975 images on training set for validation. We also provide
our test result on Cityscapes server. The comparison results on
the Cityscapes dataset are shown in Tab. IX. It is worth noting
that due to the serious noise of depth map in Cityscapes, most
of previous RGB-D based methods perform worse than RGB
based methods. We can observe that our network benefiting
from S-Conv can achieve better results than baseline and
achieve competitive results on Cityscapes.

C. Qualitative Performance

1) Visualization of Receptive Field in S-Conv: Appropriate
receptive field is very important for scene recognition. We
visualize the input adaptive receptive field of SGNet in

TABLE IX

COMPARISON RESULTS ON CITYSCAPES VALIDATION DATASET. ‡:
RESULTS ON TEST DATASET

different layers generated by S-Conv. Specifically, we get the
receptive field of each pixel by summing up the norm of their
offsets during the S-Conv operation, then we normalize each
value to [0, 255] and visualize the result using a gray-scale
image. The results are shown in Fig. 7. The brighter the pixel,
the larger the relative receptive field. We also use the radius of
circle to represent the size of the relative receptive field. We
observe that the receptive fields of different convolutions vary
adaptively with the depth of the input image. For example,
in layer1_1, the receptive field is inversely proportional to
the depth. The combination of the adaptive receptive field
learned at each layer can help the network better resolve
indoor scenes with complex spatial relations.

2) Qualitative Comparison Results: We show qualitative
comparison results on NYUDv2 test dataset in Fig. 8. For
the visual results in Fig. 8(a), the bathtub and the wall have
insufficient texture, which cannot be easily distinguished by
the baseline method. Some objects may have reflections such
as the table in Fig. 8(b), which is also challenging for the base-
line. SGNet, however, can recognize it well by incorporating
spatial information with the help of S-Conv. The chairs in
Fig. 8(c, d) are hard to be recognized by RGB data due to the
low contrast and confused texture, while they can be easily
recovered by SGNet benefiting from the equipped S-Conv.
In the meantime, SGNet can recover the object’s geometric
shape nicely, as demonstrated by the chairs of Fig. 8(e). We
also show qualitative results on SUNRGBD test dataset in
Fig. 9. It can be seen that our SGNet can also achieve precise
segmentation on SUNRGBD.

V. CONCLUSION

In this paper, we propose a novel Spatial information guided
Convolution (S-Conv) operator. Compared with conventional
2D convolution, it can adaptively adjust the convolution
weights and distributions according to the input spatial infor-
mation, resulting in better awareness of the geometric struc-
ture with only a few additional parameters and computation
cost. We also propose Spatial information Guided convolu-
tional Network (SGNet) equipped with S-Conv that yields
real-time inference speed and achieves competitive results
on NYUDv2 and SUNRGBD datasets for RGBD semantic
segmentation. We also compare the performance of using
different inputs to generate offset, demonstrating the advantage
of using spatial information over RGB feature. Furthermore,
we visualize the depth-adaptive receptive field in each layer to
show effectiveness. In the future, we will investigate the fusion



of different modal information and the adaptive change of
S-Conv structure simultaneously, making these two approaches
benefit each other. We will also explore the application of
S-Conv in different fields, such as pose estimation and 3D
object detection.
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