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Improving Robot Transparency: Real-Time Visualisation of Robot AI
Substantially Improves Understanding in Naive Observers

Robert H. Wortham1, Andreas Theodorou2 and Joanna J. Bryson3

Abstract— Deciphering the behaviour of intelligent others is
a fundamental characteristic of our own intelligence. As we
interact with complex intelligent artefacts, humans inevitably
construct mental models to understand and predict their
behaviour. If these models are incorrect or inadequate, we run
the risk of self deception or even harm. Here we demonstrate
that providing even a simple, abstracted real-time visualisation
of a robot’s AI can radically improve the transparency of
machine cognition. Findings from both an online experiment
using a video recording of a robot, and from direct observa-
tion of a robot show substantial improvements in observers’
understanding of the robot’s behaviour. Unexpectedly, this
improved understanding was correlated in one condition with
an increased perception that the robot was ‘thinking’, but in
no conditions was the robot’s assessed intelligence impacted. In
addition to our results, we describe our approach, tools used,
implications, and potential future research directions.

I. INTRODUCTION

The fourth of the five EPSRC Principles of Robotics asserts
that Robots are manufactured artefacts. They should not be
designed in a deceptive way to exploit vulnerable users;
instead their machine nature should be transparent. [1]. Why
is transparency important, and how does it impact AI system
design? There has been considerable previous research to
investigate ways in which robots can understand humans [2].
However transparency is the converse. Here we are interested
in how robots should be designed in order that we can
understand them.

Humans have a natural if limited ability to understand
others, however this ability has evolved and developed in the
environment of human and other animal agency, which may
make assumptions artificial intelligence does not necessarily
conform to. Therefore it is the responsibility of the designers
of intelligent systems to make their products transparent to
us [3][4].

It is generally thought that many forms of effective
interaction, whether cooperative or coercive, rely on each
party having some theory of mind (ToM) concerning the
other [5][6]. Individual actions and complex behaviour
patterns can be more easily interpreted within a pre-existing
ToM framework, often created through modelling from one’s
own expectations by projection to the others’ identity. Whether
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that ToM is entirely accurate is unimportant, provided that
it is sufficiently predictive to inform one’s own action
selection [7]. Ideally such ‘good enough’ modelling should
include an accurate assessment of how inaccurate our model
might be. However, in the case of AI humans have been
repeatedly shown to over-identify with machines, even to
their own detriment [8]. This holds true for 6-month-old
babies, so cannot be attributed to or easily solved by implicit
enculturation [9].

In robot-human collaborative scenarios, transparency has
been shown to improve the quality of teamwork [10]. It is also
a key factor when humans attribute credit and blame in these
collaborative scenarios [11]. Increased robot transparency is
associated with reduced assignment of credit or blame to the
robot, and increased assignment to humans. This increased
focus on and facilitation of human agency in collaborative
robot-human tasks is a desirable outcome, because it allows
automation to empower and enhance its human users.

Writers such as Mueller [12] and Cramer [13] suggest that
as intelligent systems become both increasingly complex and
ubiquitous, it becomes increasingly important that they are
self explanatory, so that users can be confident about what
these systems are doing and why. Robot designers have long
recognised that any complex autonomous control strategy,
combined with the complex real-world environment that
differentiates robotics from ordinary AI, necessarily results
in non-repeatable behaviour and unexpected conditions [14].
Whilst many authors have recently focussed on dialogue and
explanation as a solution to transparency, such systems are
not appropriate to every circumstance, both because of the
computational overhead for AI natural language systems, and
the cognitive and temporal costs of dialogue.

Note that the need for users to form a useful model
of a robot is orthogonal to issues of verification of robot
behaviour. Whilst others have concentrated their research on
making a robot safe and predictable [15][16], here we are
interested here in the models that observers of a robot use
to understand and predict its behaviour. The novelty of our
experiments is that unlike other transparency studies in the
literature which concentrate on human-robotics collaboration,
our study focuses on unplanned robot encounters, where
human interactors were not necessarily anticipating working
with an artificial system at all, let alone a particular system
they may have been trained to use.

Here we demonstrate that even abstracted and unexplained
real-time visualisation of a robot’s priorities can substantially
improve human understanding of machine intelligence, in-
cluding for naive users. Subjects watch a video of, or directly



observe, a robot interacting with a researcher, and report their
theories about what the robot is doing and why. Some of
these reports are wildly inaccurate, and interestingly many
conclude that the robot’s objectives and abilities are far more
complex than they in fact are. Nevertheless and importantly,
we find that simply showing the runtime activation of the
robot’s action selection along with the its behaviour results
in users building significantly more accurate models. To our
knowledge, this is the first real-time visual presentation of
reactive robot plans using a graphical plan representation.

II. TECHNOLOGIES USED: REACTIVE PLANNING
& ROBOT TRANSPARENCY

Here we use reactive planning techniques to build trans-
parent AI for an autonomous robot. We have deployed the
Instinct reactive planner [17] as the core action selection
mechanism for the R5 robot, shown in Figure 2. The R5
robot is named in reference to the Rover 5 tracked platform
on which it is based. Instinct is deployed in the context of the
Behaviour Oriented Design (BOD) development methodology,
as a replacement and extension of Parallel-rooted, Ordered
Slip-stack Hierarchical (POSH) action selection1 [18]. Instinct
includes several enhancements taken from recent papers
extending POSH [19], [20], together with some ideas from
other related planning approaches, notably Behaviour Trees
(BT) [21]. A POSH plan consists of a Drive Collection (DC)
containing one or more Drives, which can be thought of as
possible goals for the system. Each Drive (D) has a priority
and a releaser. When the Drive is released as a result of
sensory input, a hierarchical reactive subplan follows, but this
subplan can be interrupted before completion if the situation
changes and a higher-priority goal is triggered.

The Instinct Planner has been specifically designed for low-
power processors and has a tiny memory footprint. Written
in C++, it runs efficiently on both ARDUINO (ATMEL AVR)
and MICROSOFT VC++ environments and has been deployed
within a low-cost ARDUINO-based maker robot for this study
of AI transparency. Plans may be authored using a variety
of tools including a visual design language iVDL, currently
implemented using the DIA drawing package. The Instinct
Planner and iVDL are available on an open source basis2.

A. The Transparent Planner

The Instinct Planner includes significant capabilities to
facilitate plan design and runtime debugging. It reports the
execution and status of every plan element in real time,
allowing us to implicitly capture the reasoning process within
the robot that gives rise to its behaviour. The planner has the
ability to report its activity as it runs, by means of callback
functions to a monitor class. There are six separate callbacks
monitoring the Execution, Success, Failure, Error and In-
Progress status events, and the Sense activity of each plan
element. In the R5 robot, the callbacks write textual data to
a TCP/IP stream over a wireless (WiFi) link. A JAVA based
Instinct Server receives this information and logs the data to

1http://www.cs.bath.ac.uk/∼jjb/web/posh.html
2http://www.robwortham.com/instinct-planner/

disk. This communication channel also allows for commands
to be sent to the robot while it is running. Figure 1 shows
the overall architecture of the planner within the R5 robot,
communicating via WiFi to the logging server.
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Fig. 1. R5 Robot Software Architecture. The arrows represent the primary
data flows between the various modules.

B. Robot Drives and Behaviours

The robot’s overall function is to search a space looking for
humans. Typical real world applications would be search and
rescue after a building collapse, or monitoring of commercial
cold stores or similar premises.

The robot reactive plan has six Drives. These are (in order
of highest priority first):

• Sleep — this Drive has a ramping priority. Initially the
priority is very low but it increases linearly over time
until the Drive is released and completes successfully.
The Drive is only released when the robot is close to
an obstacle and is inhibited whilst the robot confirms
the presence of a human. This is to prevent the robot
sleeping in the middle of an open space where it may
present a trip hazard. The sleep behaviour simply shuts
down the robot for a fixed interval to conserve battery
power.

• Protect Motors — released when the current drawn by
the drive motors reaches a threshold. This might happen
if the robot encounters a very steep incline or becomes
jammed somehow. The Drive invokes an Action Pattern
that stops the robot, signals for help and then pauses to
await assistance.

• Moving So Look — simply enforces that if the robot is
moving, it should be scanning ahead for obstacles. This
has a high priority so that this rule is always enforced
whatever else the robot may be doing. However, it is
only triggered when the robot is moving and the head
is not scanning.

http://www.cs.bath.ac.uk/~jjb/web/posh.html
http://www.robwortham.com/instinct-planner/


• Detect Human — released when the robot has moved a
certain distance from its last confirmed detection of a
human, is within a certain distance of an obstacle ahead,
and its Passive Infrared (PIR) detects heat that could
be from a human. This Drive initiates a fairly complex
behaviour of movement and coloured lights designed
to encourage a human to move around in front of the
robot. This continues to activate the PIR sensor thus
confirming the presence of a human (or animal). It is
of course not a particularly accurate method of human
detection.

• Emergency Avoid — released when the robot’s active
infrared corner sensors detect reflected infrared light
from a nearby obstacle. This invokes a behaviour that
reverses the robot a small distance and turns left or
right a fixed number of degrees. Whether to turn left
or right is determined by which direction appears to be
less blocked, as sensed by the active infrared detectors.

• Roam — released whenever the robot is not sleeping. It
uses the scanning ultrasonic detector to determine when
there may be obstacles ahead and turns appropriately to
avoid them. It also modulates the robot’s speed and the
rate of scanning depending on the proximity of obstacles.

C. Real-Time Plan Debugger

We use the new version of the ABODE plan editor for
POSH plans, ABOD3, as seen in Figure 3 [22]. This is the
first version of ABODE to support real-time visualisation.
We modified ABOD3 to directly read Instinct plans, and also
to read a log file containing the real-time transparency data
emanating from the Instinct Planner, in order to provide a
real-time graphical display of plan execution. ABOD3 is also
able to display a video and synchronise it with the debug
display. In this way we can explore both runtime debugging
and wider issues of AI Transparency. This facility is used
in our first experiment. ABOD3 is also able to process and
display a real-time feed of transparency data directly from
the R5 robot as it runs. This facility is used in our second
experiment.

III. METHODS: THE ROBOT EXPERIMENTS

Two separate experiments are described. The first uses a
video recording of the R5 robot and a web based online
questionnaire. The second experiment involves participants
directly observing the robot in a public space.

A. Experiment One — Online Video

The robot in the video runs within an enclosed environment
where it interacts with various objects and walls made of
different materials. A researcher also interacts with the robot.
The robot’s action selection governs the behaviour of the robot
by applying the reactive plan. As mentioned earlier, a reactive
plan encodes the (proactive) priorities of an autonomous robot,
and the conditions when actions can be applied. A record
of transparency data in the form of a log of which plan
components are triggered at what time is collected by a
remote server running on a laptop PC via a wifi connection.

Fig. 2. The R5 Robot used in the experiments. This is a low cost tracked
maker robot based on the Arduino platform. It has infrared proximity sensors
and a moving ‘head’ with two degrees of freedom. The head carries ultrasonic
range finding and a PIR sensor to detect humans. R5 uses wifi to send
transparency data back to the ABOD3 realtime plan visualisation tool.

Using its built-in real time clock, the robot tags the
transparency datastream with the start time of the experiment.
It also includes the elapsed time in milliseconds with every
datastream event. In this way the ABOD3 debugger is
able to subsequently synchronise the datastream with video
recordings taken during the experiment.

Fig. 3. ABOD3 display of part of the Instinct plan described in the text.
Note the element labels are readable on the original display.

1) Robot Videos: For our initial study, we chose to video
the robot rather than have participants interact with the robot
directly. This research method has recently been chosen by
others [23] with good results. Video has the benefit of ensuring
all subjects share identical stimuli.

The interaction is recorded from two positions at each end
of the robot pen, and a camera mounted on a post attached to
the robot also captures a ‘robot’s eye’ view, providing a third
perspective. The resulting composite video is approximately
five minutes long. Figure 4 is a single frame from the video.
It shows the researcher interacting with the robot. This video
was shown to half of our group of test participants.

Using the ABOD3 tool, we created a second video. A



Fig. 4. Video of interaction with the robot with noc plan visible (stimulus
for Group One in the first experiment).

frame from this video is shown in Figure 6. The six Drives
described above are clearly visible. As each Drive is released
and the associated behaviours are executed, the plan elements
constituting the behaviours are highlighted. This highlighting
is synchronised with the behaviour of the robot visible in
the video. This gives the viewer access to a great deal more
information from the robot than is available by watching the
robot alone. ABOD3 conveniently allows us to collapse the
lower levels in the hierarchy, and position the visible plan
elements for ease of understanding. For the purpose of clarity
in the video, we chose to display only the highest levels of
the reactive plan, primarily the Drives.

2) Demographic & Post-Treatment Questionnaires: For
the Online video experiment, the participants were initially
sent an email questionnaire to gather basic demographic data:
age, gender, educational level, whether they use computers,
whether they program computers and whether they have ever
used a robot. Based on this information they were then divided
into two groups that were matched as nearly as possible for
participant mix. Each group received an identical email asking
them to carefully watch a video and then answer a second
questionnaire. Group One was directed to the composite video
(Fig 4), and Group Two to the debug video (Fig 6).

TABLE I
POST-TREATMENT QUESTIONS

Question Response Category

Is robot thinking? Y/N Intel
Is robot intelligent? 1-5 Intel
Feeling about robot? Multi choice Emo
Understand objective? Y/N MM
Describe robot task? Free text MM
Why does robot stop? Free text MM
Why do lights flash? Free text MM
What is person doing? Free text MM
Happy to be person? Y/N Emo
Want robot in home? Y/N Emo

Table I summarises the questions asked after the participant
had seen the video. These questions are designed to measure
various factors: the measure of intelligence perceived by the
participants (Intel), the emotional response (if any) to the

robot (Emo), and—most importantly—the accuracy of the
participants’ mental model of the robot (MM). For analysis,
the four free text responses were rated for accuracy with
the robot’s actual Drives & behaviours and given a score
per question of 0 (inaccurate or no response), 1 (partially
accurate) or 2 (accurate). The marking was carried out by
a single researcher for consistency, without access to either
subject identities or knowledge of which group the subject
was in. No special vocabulary was expected. The questions
used in the questionnaire are deliberately very general, so as
not to steer the subject. Similarly, the marking scheme used
was deliberately coarse grained because we are looking for a
significant effect at the general level of understanding, not
for a nuanced improvement in the subject’s model. Question
3 was found to be ambiguous and so is not included in the
scores, see below. By summing the scores, the accuracy of
the participant’s overall mental model is scored from 0 to 6.

B. Experiment Two — Directly Observed Robot

This subsequent experiment took place over three days
at the At-Bristol Science Learning Centre, Bristol, UK.
This context was chosen because of available subjects in
a controlled setting.

Fig. 5. The arrangement of the Directly Observed Robot experiment at
At-Bristol. Obstacles visible include a yellow rubber duck and a blue bucket.
The position and orientation of the transparency display is shown.

The robot operated within an enclosed pen as a special
interactive exhibit within the main exhibition area, see Fig 5.
Visitors, both adults and children, were invited to sit and
observe the robot in operation for several minutes whilst
the robot moved around the pen and interacted with the
researchers. Subjects were expected to watch the robot for at
least three minutes before being handed a paper questionnaire.
They then completed the questionnaire, which contained the
same questions as for the Online Video experiment above.
During this time subjects were able to continue to watch the
robot in operation.

A large computer monitor was positioned at the front of
the pen displaying the ABOD3 real-time visualisation of plan
execution. This display was either enabled or disabled for



Fig. 6. More transparent video showing the ABOD3 plan representation; sub-trees have been hidden from view (stimulus for Group Two). Note that the
drive labels were legible to the subjects, and can be seen clearly in the printed version of this paper, or by zooming the postscript version. The Drives are
also explained above in Section II-B

periods as the days progressed to create the Group 2 and
Group 1 datasets. Only adult data (age eighteen and above)
is included in the results presented in this paper.

IV. RESULTS

The demographics of each group of participants is shown
in Table II and Table III. For the Online Video experiment it
was possible to match the groups prior to watching the video.
Priority was given to matching the number of programmers in
each group, and to having an equal gender mix. This was not
possible in the Directly Observed Robot experiment, however
Table III shows the groups were nevertheless well-balanced.

TABLE II
ONLINE VIDEO EXPERIMENT: DEMOGRAPHICS OF PARTICIPANT GROUPS

(N = 45)

Demographic Group One Group Two

Total Participants 22 23
Mean Age (yrs) 39.7 35.8
Gender Male 11 10
Gender Female 11 12
Gender PNTS 0 1

STEM Degree 7 8
Other Degree 13 13

Ever worked with a robot? 2 3
Do you use computers? 19 23
Are you a Programmer? 6 8

TABLE III
DIRECTLY OBSERVED ROBOT EXPERIMENT: DEMOGRAPHICS OF

PARTICIPANT GROUPS (N = 55)

Demographic Group One Group Two

Total Participants 28 27
Mean Age (yrs) 48.0 40.0
Gender Male 10 10
Gender Female 18 17

STEM Degree 5 9
Other Degree 11 8

Ever worked with a robot? 7 6
Do you use computers? 20 22
Are you a Programmer? 6 5

A. Main Findings

The primary results obtained from the experiments are
outlined in Table IV and Table V. Data is analysed using the
unpaired t test. First and most importantly, in both experiments
there is a marked difference in the participants’ mental model
accuracy scores between Group One (just observe robot)
and Group Two (observe robot and debug display). This
confirms a significant correlation between the accuracy of the
participants’ mental models of the robot, and the provision of
the additional transparency data provided by ABOD3. Online
Video experiment; t(43)=2.86, p=0.0065, Directly Observed
Robot experiment t(55)=3.39, p=0.0013.

Secondly, there is no significant difference in perceived



TABLE IV
ONLINE VIDEO EXPERIMENT: MAIN RESULTS. BOLD FACE INDICATES

RESULTS SIGNIFICANT TO AT LEAST p = .05.

Result Group One Group Two

Is thinking (0/1) 0.36 (sd=0.48) 0.65 (sd=0.48)
Intelligence (1-5) 2.64 (sd=0.88) 2.74 (sd=1.07)
Understand objective (0/1) 0.68 (sd=0.47) 0.74 (sd=0.44)
Report Accuracy (0-6) 1.86 (sd=1.42) 3.39 (sd=2.08)

TABLE V
DIRECTLY OBSERVED ROBOT EXPERIMENT: MAIN RESULTS. BOLD FACE

INDICATES RESULTS SIGNIFICANT TO AT LEAST p = .05.

Result Group One Group Two

Is thinking (0/1) 0.46 (sd=0.50) 0.56 (sd=0.50)
Intelligence (1-5) 2.96 (sd=1.18) 3.15 (sd=1.18)
Understand objective (0/1) 0.50 (sd=0.50) 0.89 (sd=0.31)
Report Accuracy (0-6) 1.89 (sd=1.40) 3.52 (sd=2.10)

robot intelligence between the two groups in each experiment,
although across experiments the data indicates a slightly
higher level of perceived intelligence when the robot was
directly observed.

Thirdly, in the Online Video experiment, a substantially
higher number of participants in Group Two (ABOD3) report
that they believe the robot is thinking; t(43)=2.02, p=0.050.
However, this effect is not significantly repeated when the
robot is directly observed; t(55)=0.680, p=0.500.

Finally, for participants directly observing the robot, the
ABOD3 display significantly affects their report that they un-
derstand what the robot is trying to do; t(55)=3.44, p=0.0011.
This is not the case in the Online Video experiment, where
the Group 2 data shows no significant affect; t(43)=0.425,
p=0.673.

B. Qualitative Outcomes

Participants also select from a list of possible emotional
states: Happy, Sad, Scared, Angry, Curious, Excited, Bored,
Anxious, No Feeling. For the Online Video experiment the
data indicate very little emotional response to the robot in
either group, with most participants indicating either ‘No
Feeling’, or only ‘Curious’. However, in the Directly Observed
Robot experiment, participants indicate a higher level of
emotional response, summarised in Table VI; t(98)=2.63,
p=0.0098.

We had predicted the robot might be more emotionally
salient when it was experienced directly. However, from
Table VI it can be seen that curiosity dominates the results.
Nevertheless, the addition of the transparency display may
well increase the emotions reported; t(53)=1.91, p=0.0622.
This may be a topic for future investigation.

In the first Online Video experiment, from the answers
to the question ‘why does the robot stop every so often’ it
appears that this question is ambiguous. Some understand this
to mean every time the robot stops to scan its environment
before proceeding, and only one person took this to mean the

TABLE VI
DIRECTLY OBSERVED ROBOT EXPERIMENT: SELF REPORTED EMOTION

(N = 55)

Reported Emotion Group One Group Two

Curious 23 23
Excited 5 10
Happy 5 12
No Feeling 4 2
Anxious 0 1
Bored 1 0
Scared 1 0

sleep behaviour of the robot that results in a more prolonged
period of inactivity. The question was intended to refer to the
latter, and was particularly included because the Sleep Drive
is highlighted by ABOD3 each time the robot is motionless
with no lights flashing. However only one member of Group
Two identified this from the video. Due to this ambiguity,
the data related to this question was not considered further
in this dataset. This question was subsequently refined in the
second, Directly Observed Robot experiment to ‘Why does
it just stop every so often (when all its lights go out)?’. Six
participants then correctly answered this question and so it
is included in the analysis.

Despite the improved performance of Group Two, many
members, even those with a Science, Technology Engineering
or Maths (STEM) degrees, still form a poor mental model
of the robot. Here are some notable quotes from STEM
participants:

• [the robot is] Trying to create a 3d map of the area? At
one stage I thought it might be going to throw something
into the bucket once it had mapped out but couldn’t quite
tell if it had anything to throw.

• [the robot is] aiming for the black spot in the picture.
[we are unsure of the picture to which the participant
refers]

• is it trying to identify where the abstract picture is and
how to show the complete picture? [picture visible in
Figure 4]

• [the robot] is circling the room, gathering information
about it with a sensor. It moves the sensor every so often
in different parts of the room, so I think it is trying to
gather spacial information about the room (its layout
or its dimensions maybe).

• [the robot] maybe finding certain colours.
These comments indicate that in the absence of an accurate
model, environmental cues and possibly previous knowledge
of robots are used to help create a plausible narrative.

V. DISCUSSION

Across both experiments, there is a significant correlation
between the accuracy of the participants’ mental models of
the robot, and the provision of the additional transparency
data provided by ABOD3. We have shown that a real-time
display of a robot’s decision making produces significantly
better understanding of that robot’s intelligence, even though



that understanding may still include wildly inaccurate over-
estimation of the robot’s abilities.

Strikingly, there was one further significant result besides
the improved mental model. Subjects in Experiment 1 (Online
Video) who observed the real-time display did not think
the robot was more intelligent, but did think it ‘thought’
more. This result is counter-intuitive. We had expected that if
ABOD3 resulted in increased transparency, that there would
be a corresponding reduction in the use of anthropomorphic
cognitive descriptions. However at least in this case the data
suggests the reverse is true. When taken with the significant
improvement in understanding of the robot’s actual drives
and behaviours, this result implies that an improved mental
model is associated with an increased perception of a thinking
agent. Most likely this reflects the still pervasive belief that
navigating in the real world is not a difficult task, so the
amount of different planning steps employed by the robot
during the process may come as a surprise. Notably, with the
immediate presence of the robot in the shared environment
in the second experiment, assessments of thinking under both
conditions moved towards ‘50–50’ or complete uncertainty,
though the trend was still in the same direction.

Unlike thinking, intelligence seems to be a term that in
ordinary language is often reserved for conscious decision
making. Notably, even where subjects exposed to the ABOD3
visualisations of the robot’s decision making considered
the robot to be thinking more, they did not consider it
to be more intelligent. In fact, the middling marks for
intelligence in either condition may reflect a society-wide lack
of certainty about the definition of the term rather than any
cognitive assessment. The relatively large standard deviations
for intelligence in Tables IV and V provide some evidence of
this uncertainty. Comparing results from the two experiments,
it might be that the immediacy of the directly observed robot
makes the objective more confusing without transparency and
more apparent with transparency. Further investigation would
be required to confirm whether this is repeatable.

In the first experiment, the lack of emotion with respect to
the robot was unexpected, and conflicts with the spontaneous
feedback we frequently receive about the R5 robot when
people encounter it in our laboratory or during demonstrations.
In these situations we often hear both quite strong positive
and negative emotional reactions. Some find the robot
scary or creepy [24], whilst others remark that it is cute,
particularly when it is operational. We hypothesise that
the remote nature of the video, or the small size of the
robot on screen, reduce the chance of significant emotional
response. Indeed this is confirmed by the higher levels
of emotional response measured when participants directly
observe the robot. Lack of creepyness (Anxious, Scared)
may be due to the more controlled setting of the experiment,
or the presence of ‘experts’ rather than peers. It is also
interesting that the transparency display appears to further
solicit positive emotional responses. Perhaps this reflects a
delight or satisfaction that the robot behaviour is ‘explained’
by the display.

VI. CONCLUSION & FURTHER WORK

We have demonstrated that subjects can show marked
improvement in the accuracy of their mental model of a
robot observed either directly or on video, if they also see
an accompanying display of the robot’s real-time decision
making. In both our pilot study using online video (N = 45)
and our subsequent experiment with direct observation (N =
55), the outcome was strongly significant. The addition of
ABOD3 visualisation of the robot’s intelligence does indeed
make the machine nature of the robot more transparent.

The results of the Online Video experiment imply that an
improved mental model of the robot is associated with an
increased perception of a thinking machine, even though
there is no significant change in the level of perceived
intelligence. However, this effect is not seen when the robot is
directly observed. The relationship between the perception of
intelligence and thinking is therefore not straightforward.
There is clearly further work to be done to unpack the
relationship between the improved mental model of the robot
and the increased perception of a thinking machine.

Experiment 1 confirms that the approach of using online
video with Web based questionnaires is both effective and
efficient in terms of researcher time, and it has enabled
us to quickly gather preliminary results from which further
experiments can be planned. However, we did not gather any
useful data about the emotional response of the participants
using this methodology. This may possibly be due to the lack
of physical robot presence. Therefore, in situations where the
emotional engagement of users to robots is of interest, the
use of video techniques may prove ineffective. We intend to
explore this further in future work. We also intend to use
the Godspeed questionnaire [25] in subsequent studies to
facilitate comparison with the future work of others.

The technology used to construct the experimental system
was found to be reliable, robust and straightforward to use.
The Instinct Planner combined with the iVDL graphical
design tool enabled us to quickly generate a reliable yet
sufficiently complex reactive plan for the R5 robot to allow us
to conduct this experiment. The robot and real-time ABOD3
operated reliably over three days without problems despite
some unexpected participant physical handling. Given the
low cost of the platform, we would recommend its use for
similar low cost research robot applications.

The fact that good results were achieved with a pre−α

version of ABOD3 gives us high hopes for its utility not
only for visualisation but also for real-time plan debugging.
Certainly it proved able to provide transparency information
to untrained observers of an autonomous robot.

This paper reports substantial significant impact of simply
exposing the real time control state of a robot in two
experiments involving lay subjects. A lay observer and
technical specialist need different levels of detail. Future
work could include varying the design of the visualisation
dependent both on the robot task and user type.
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