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and other beta-lactam antibiotics.  Whilst it has been proposed that the urban water
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), were of equal dominance in the hospital wastewater, and four other  Klebsiella
species were present in low abundance in this sample. In contrast, despite being the
species most closely associated with health-care settings,  Kpne  was dominant
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chromosomal, resistance genes were significantly enriched in the hospital wastewater
sample. These data implicate hospital wastewater as an important reservoir for
antibiotic resistant  Klebsiella  , and point to an unsuspected role of species within the
Raoultella  group in the maintenance and dissemination of plasmid-borne  bla  OXA-48
.

Author Comments: NA

Suggested Reviewers: Kat Holt
Monash University
kathryn.holt@monash.edu
Expert in Klebsiella genomics

Sandra Reuter
University Medical Center Freiburg: Universitatsklinikum Freiburg
sandra.reuter@uniklinik-freiburg.de
Expert in Klebsiella genomics and AMR

Will Gaze
University of Exeter
w.h.gaze@exeter.ac.uk
Expert in environmental AMR

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation



  

Response to Reviewer

Click here to access/download
Response to Reviewer
Responses_final.docx

https://www.editorialmanager.com/mgen/download.aspx?id=82963&guid=d9ed8fe5-310b-4faa-ab7d-3dc9d5005872&scheme=1


A high prevalence of blaOXA-48 in Klebsiella (Raoultella) ornithinolytica and related species in 1 

hospital wastewater in South West England. 2 

 3 

Marjorie J. Gibbon1, Natacha Couto1, Sophia David2, Ruth Barden3, Richard Standerwick3, Kishore 4 

Jagadeesan4, Hollie Birkwood1, Punyawee Dulyayangkul6, Matthew B. Avison6, Andrew Kannan4, Dan 5 

Kibbey4, Tim Craft5, Samia Habib1, Harry A. Thorpe8, Jukka Corander2,7,8, Barbara Kasprzyk-Hordern4, 6 

Edward J. Feil1* 7 

 8 

1. The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath,  9 
Bath, UK 10 

2. Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK.  11 

3. Wessex Water, Bath, BA2 7WW, UK 12 

4. Department of Chemistry, University of Bath, Bath, BA2 7AY, United Kingdom 13 

5. Department of R&D, Royal United Hospitals Bath, NHS Foundation Trust, Bath, BA1 3NG, United 14 
Kingdom 15 

6. University of Bristol, School of Cellular and Molecular Medicine, University Walk, Bristol, BS8 1TD, 16 
UK 17 

7. Helsinki Institute for Information Technology, Department of Mathematics and Statistics, 18 
University of Helsinki, FIN-00014 Helsinki, Finland.  19 

8. Department of Biostatistics, University of Oslo, N-0317, Oslo, Norway.  20 

*Corresponding author: Edward J. Feil, email address: e.feil@bath.ac.uk 21 

 22 

Keywords: carbapenemase-producing Enterobacteriaceae (CPE); Raoultella ornithinolytica; one 23 

health; wastewater 24 

 25 

 26 

 27 

  28 

Manuscript (Word document) Click here to access/download;Manuscript (Word
document);revised revised text final.docx

https://www.editorialmanager.com/mgen/download.aspx?id=83472&guid=de9bd1f4-01b1-4023-aa2d-80aaeeee6950&scheme=1
https://www.editorialmanager.com/mgen/download.aspx?id=83472&guid=de9bd1f4-01b1-4023-aa2d-80aaeeee6950&scheme=1


Abstract 29 

Klebsiella species occupy a wide range of environmental and animal niches, and occasionally cause 30 

opportunistic infections that are resistant to multiple antibiotics. In particular, Klebsiella pneumoniae 31 

(Kpne) has gained notoriety as a major nosocomial pathogen, due principally to the rise in non-32 

susceptibility to carbapenems and other beta-lactam antibiotics.  Whilst it has been proposed that 33 

the urban water cycle facilitates transmission of pathogens between clinical settings and the 34 

environment, the level of risk posed by resistant Klebsiella strains in hospital wastewater remains 35 

unclear. We used whole genome sequencing (WGS) to compare Klebsiella species in 36 

contemporaneous samples of wastewater from an English hospital and influent to the associated 37 

wastewater treatment plant (WWTP). As we aimed to characterise representative samples of 38 

Klebsiella communities, we did not actively select for antibiotic resistance (other than for ampicillin), 39 

nor for specific Klebsiella species. Two species, Kpne and K. (Raoultella) ornithinolytica (Korn), were 40 

of equal dominance in the hospital wastewater, and four other Klebsiella species were present in 41 

low abundance in this sample. In contrast, despite being the species most closely associated with 42 

health-care settings, Kpne was dominant species within the WWTP influent. 29% of all isolates 43 

harboured the blaOXA-48 gene on a pOXA-48-like plasmid, and these isolates were almost exclusively 44 

recovered from the hospital wastewater. This gene was far more common in Korn (68% of isolates) 45 

than in Kpne (3.4% of isolates). In general plasmid-borne, but not chromosomal, resistance genes 46 

were significantly enriched in the hospital wastewater sample. These data implicate hospital 47 

wastewater as an important reservoir for antibiotic resistant Klebsiella, and point to an unsuspected 48 

role of species within the Raoultella group in the maintenance and dissemination of plasmid-borne 49 

blaOXA-48.  50 

Impact statement 51 

Klebsiella pneumoniae is recognised as a high priority health-care associated pathogen due largely to 52 

the rapid emergence and global spread of resistance genes encoding extended-spectrum beta-53 

lactamases (ESBLs) and, more recently, carbapenemases. These plasmid-borne resistance genes are 54 

readily transferred between other Klebsiella species and the Enterobacteriacae family that inhabit 55 

multiple animal and environmental niches. Effective management of antimicrobial resistance in the 56 

Klebsiella spp. therefore needs to incorporate both a broad epidemiological perspective (the “One-57 

Health” framework) and a broad phylogenetic perspective, as environmental Klebsiella species can 58 

act as important reservoirs of resistance, as well as directly causing serious infections.  We used WGS 59 

to characterise isolates of Klebsiella spp. from wastewater of a UK hospital and from the influent to 60 

the WWTP processing this wastewater. Although we did not select for carbapenem non-61 

susceptibility, the hospital wastewater yielded a high prevalence of the carbapenemase gene blaOXA-62 

48. This gene was carried on a stable and highly transferable pOXA-48-like plasmid within multiple 63 

species, and in particular Klebsiella (Raoultella) ornithinolytica. This observation warrants increased 64 

surveillance of hospital wastewater, and a greater recognition of the potential public health impact 65 

of resistant strains belonging to the Raoultella group, both in the environment and in the clinic. 66 

Data Summary 67 

Sequencing reads are available from the European Nucleotide Archive (ENA) under the study 68 
accession number, PRJEB39942 (ERP123516). Individual accession numbers for raw sequence data 69 
are available in Table S1. All supporting metadata and tree (Newick) files are available to explore and 70 
download via the Microreact project at https://microreact.org/project/Wastewater. Sixteen 71 
supplementary figures, two supplementary tables and three supplementary notes are available with 72 

https://microreact.org/project/Wastewater


the online version of this article. The authors confirm all supporting data, code and protocols have 73 
been provided within the article or through supplementary data files.  74 

Abbreviations 75 

CPE, carbapenemase producing Enterobacteriaceae; ESBL, extended-spectrum beta-lactamase; GTR, 76 

general time reversible; ICE, integrative conjugative element; Kmic, K. michiganensis; Korn, K. 77 

(Raoultella) ornithinolytica; Kpla, K. (Raoultella) planticola; Kpne, Klebsiella pneumoniae; Kqps, K. 78 

quasipneumoniae subspecies similipneumoniae; Kvar, K. variicola; SCAI, Simmons citrate agar with 79 

1% myo-inositol; SNP, single nucleotide polymorphism; ST, sequence type; WGS, whole genome 80 

sequencing; WWTP, wastewater treatment plant. 81 
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Introduction 89 

Klebsiella pneumoniae (Kpne) is recognised by the World Health Organisation as one of the most 90 

high priority bacterial pathogens due to its ability to cause life-threatening conditions that are 91 

increasingly difficult to treat with antibiotics [1]. Healthcare-associated clones of Kpne that are non-92 

susceptible to carbapenems are of particular concern. Genes encoding carbapenemases, that confer 93 

non-susceptibility to carbapenems, are typically plasmid-borne and are widely disseminated among 94 

multiple Klebsiella species, as well as within the broader Enterobacteriaceae family. The resultant 95 

public health burden is significant; the mortality of patients infected with carbapenamase-producing 96 

Enterobacteriacae (CPE) is 26–44% higher than in patients infected with carbapenem-susceptible 97 

isolates [2].  98 

Five major types of carbapenemase genes have been described; KPC, OXA-48-like, NDM, VIM and 99 

IMP, and these genes primarily disseminate through the healthcare network via the movement of 100 

healthcare workers or patient referral [3]. However, many Klebsiella species, including Kpne, are 101 

commonly carried asymptomatically in the human gut, and are also recovered from animals, plants, 102 

water or the rhizosphere. Environmental or animal reservoirs may play a role in the circulation of 103 

resistance strains or genes, and the urban water cycle in particular is implicated as a major “One 104 

Health” driver of resistance. However, direct transmission across different settings is very difficult to 105 

detect and monitor[4-6].  106 

In this study, we use whole-genome sequencing to compare isolates of Klebsiella spp. recovered 107 

from the wastewater of a hospital in South West England, with those isolated from a 108 

contemporaneous sample of the influent to the wastewater treatment plant (WWTP) serving the 109 

hospital and the local population. By profiling the Klebsiella communities at these two sites we 110 

sought to gauge the extent to which the bacterial strains or resistance genes present in hospital 111 

wastewater penetrate through the wastewater network. We used a selective culturing approach 112 

incorporating ampicillin to sample representative isolates belonging to the Klebsiella or Raoultella 113 

groups, but otherwise did not enrich for antibiotic resistance. Nevertheless, we observed a high 114 

prevalence of Klebsiella isolates harbouring plasmid-borne blaOXA-48 within the hospital wastewater 115 

sample (28/95; 29.5%). The pOXA-48-like plasmid is associated with multiple species, but most 116 

notably Klebsiella (Raoultella) ornithinolytica (Korn). In contrast, the WWTP influent sample 117 

contained very low levels of both Korn and the blaOXA-48 bearing plasmids, consistent with a 118 

moderate level of environmental impact from the hospital wastewater.  119 

Methods 120 

Sampling 121 

Wastewater samples were collected over 5 consecutive days (5-9 August 2019) from two main sites: 122 

a hospital outlet accounting for 60% of total wastewater originating from a large hospital in SW 123 

England (> 700 beds and a catchment of 500,000 people), and a WWTP serving 105,000 people, 124 

including the hospital. The WWTP influent is mostly of domestic origin, the contribution from 125 

industrial sources being only about 1%. There is approximately 10 km of pipe connecting the hospital 126 

to the WWTP.  WWTP influent was collected as flow proportional 24 h composites with average 127 

sample collection frequencies of approximately 15 min using an ISCO 3700 autosampler. 128 

Wastewater from the hospital outlet was collected as time proportional composites, 24 h 129 

composites with 50 ml collected every 15 min using an ISCO 3700 autosampler. In addition, a single 130 

sample was taken from the local river at a depth of 30 cm, approximately 8 km upstream of the 131 

WWTP in May 2019. All samples were packed on ice to maintain 4˚C and were transported to the 132 

laboratory within one hour. 133 



Recovery of Klebsiella isolates, DNA extraction and sequencing 134 

An aliquot (100 μl) of the samples from the hospital drains and WWTP influent were spread on 135 

Simmons citrate agar (Fisher) with 1% myo-inositol (Sigma), a culture medium that selectively 136 

favours the growth of Klebsiella spp without the use of antibiotics (SCAI media; [7]). The SCAI media 137 

was supplemented with 10 μg ml-1 ampicillin (Oxoid) in order to further select against Gram-positive 138 

bacteria and other susceptible species, as Klebsiella species are typically intrinsically resistant to this 139 

antibiotic owing to a chromosomally encoded SHV beta-lactamase. Plates were incubated at 37 °C 140 

for 24 h. Klebsiella / Raoultella colonies were identified as yellow/orange and shiny, sometimes 141 

mucoid. Discrete colonies were picked and streaked on fresh SCAI amp10 and incubated at 37 °C for 142 

48 h. Ninety-four isolates with large, yellow and shiny colonies were selected for DNA sequencing; 143 

49 from the hospital site (at least 7 from each of 5 days) and 45 from WWTP (at least 9 from each of 144 

four days). All of these colonies were confirmed as Klebsiella or Raoultella species by whole genome 145 

sequencing (WGS) without any other prior molecular characterisation.  The single river water sample 146 

(250 ml) was filtered through a 0.45 μm pore membrane (Millipore) then transferred to LB broth 147 

(Miller; Fisher) with ampicillin (10 μg ml-1) and incubated at 37 °C overnight with shaking before 148 

spreading on SCAI amp10 and incubating at 37 °C. A single yellow colony was selected for DNA 149 

sequencing, which was also subsequently confirmed as a Klebsiella species.  150 

A single colony of each isolate was picked from a fresh SCAI amp10 plate into LB broth (Miller) with 151 

ampicillin (10 μg ml-1) and incubated at 37 °C overnight with shaking. DNA was extracted using 152 

QIAamp DNA Mini Kit (Qiagen). Isolates were sequenced using the Illumina HiSeq platform (HiSeq 10 153 

X, 150 bp Paired End). Reads were trimmed with Trimmomatic v0.33 [8] and the trimmed reads were 154 

used to generate de novo assemblies using SPAdes 3.10.0 [9] using k-mer sizes of 41, 49, 57, 65, 77, 155 

85 and 93 and with the –cov-cutoff flag set to ‘auto’ as part of an in-house pipeline at the Wellcome 156 

Sanger Institute, Cambridge, UK. Genomes were annotated using Prokka v1.14.5 ([10]; 157 

https://github.com/tseemann/prokka). 158 

Phylogenetic analysis 159 

Short reads of all isolates were mapped to the genome of Kpne isolate 5Sd using Snippy v4.3.6 160 

(https://github.com/tseemann/snippy). This reference was chosen as a high quality short-read 161 

assembly consisting of 15 contigs. A core alignment of 5,100,718 nucleotides with 184,671 162 

polymorphisms was used to generate an approximate maximum-likelihood phylogenetic tree based 163 

on a general time reversible (GTR) model using FastTree v2.1.11 [11, 12]. We constructed an 164 

additional tree that also included the publicly available Kpne ST983 genome (ED01500733, accession 165 

number NZ_POWS00000000.1 [13], using the same reference, that contained 184,119 single 166 

nucleotide polymorphism (SNP) variants. We also constructed a larger Korn tree using Korn genomes 167 

generated as part of other studies from Italy (n=25), Pakistan (n=5) and two isolates from WWTP in 168 

the East of England described previously [14] by mapping to the Korn isolate SPARK_1635_C1 from 169 

Italy. This generated a core alignment of 6,004,523 nucleotides with 24,659 polymorphisms. These 170 

trees were combined with metadata and output from Kleborate and visualised using Microreact 171 

v23.0.0 [15]. Distance matrices of isolates in each tree were generated using snp-dists 172 

(https://github.com/tseemann/snp-dists). Phylogenetic analysis of the blaOXA-48 gene and ybt locus 173 

are described below. 174 

Identification of resistance and virulence determinants  175 

Genome assemblies produced using SPAdes 3.10.0 were assigned species and multilocus sequence 176 

type (in those species where schemes are available), as well as being screened for virulence and 177 

https://github.com/tseemann/prokka


resistance genes using Kleborate v0.4.0-beta (https://github.com/katholt/Kleborate). Recent 178 

phylogenetic analysis based on WGS data has revealed that the Raoultella species are unequivocally 179 

nested within the Klebsiella genus [16]; an observation further supported by the current data. We 180 

therefore follow Wyres et al [16] and refer to the ‘Raoultella’ species R. ornithinolytica and R. 181 

planticola as ‘Klebsiella’ ornithinolytica (Korn) and K. planticola (Kpla).  182 

Abricate v0.9.8 (https://github.com/tseemann/abricate) was used for further screening for 183 

resistance genes in the ResFinder database (downloaded 29 April 2020) and virulence factors in the 184 

virulence factors database VFDB (downloaded 19 April 2020). We scored the presence or absence of 185 

genes in our genomes according to a threshold of >80% nucleotide identity and coverage. In 186 

addition, we searched for virulence factors with lower thresholds (>40% nucleotide identity and 187 

coverage). In the very small number of cases where 2 copies of the same gene were noted in a single 188 

genome we simply scored the gene as present. 189 

In order to confirm the presence of the blaOXA-48 gene and the associated plasmid, assemblies 190 

identified as harbouring this gene were screened using BLAST v2.9.0+ to identify homologous 191 

sequences carried on plasmid pOXA-48 ([17]; accession number, JN626286). The contigs were 192 

aligned with pOXA-48 and Tn1999 ([18]; accession no AY236073.2) using Clustal Omega v1.2.3 as 193 

implemented in Geneious Prime® v2020.1.1 (Biomatters, Ltd., Auckland, New Zealand). The 194 

alignment of representative contigs was visualised with Easyfig v2.2.2 [19]. Sequence reads of 195 

isolates harbouring blaOXA-48 were mapped to pOXA-48 using Burrows−Wheeler Aligner v0.7.12 [20]. 196 

and visualised in Tablet [21]. Read sets from the isolates and publicly available sequences of 21 197 

pOXA-48-like plasmids (described in Table S2) were mapped to pOXA-48 using Snippy v4.3.6 198 

(https://github.com/tseemann/snippy), giving an alignment of 61,881 nucleotides and 28 core single 199 

nucleotide variants. Where reads were available, the variants were confirmed by mapping to the 200 

reference (as above).  An approximate maximum-likelihood phylogenetic tree using a GTR model 201 

was generated with FastTree v2.1.11 [11, 12]. 202 

The ybt locus encodes the siderophore and virulence factor yersiniabactin and is typically associated 203 

with an ICE (integrative conjugative element). The ybt-positive annotated genomes (n=33) were 204 

manually inspected to determine the location of the tRNA-Asn occupied site using Geneious Prime®. 205 

The contig containing the ybt locus was re-annotated with an in-house ICEKp-ybt database using 206 

Geneious Prime®. The sequences of the genes in the ybt-locus (ybtS-ybtX-ybtQ-ybtP-ybtA-irp2-irp1-207 

ybtu-ybtT-ybtE-fyuA) were extracted and concatenated. An alignment of the concatenated ybt locus 208 

was produced using MAFFT v7.450 [22] and a tree was generated using FastTree v2.1.11 [11, 12] 209 

with the GTR model. The ybt locus of Kpne NCTC11697 was used as reference to re-root the tree. 210 

Recombination events were identified using Gubbins v2.4.1 [23]. A Perl-based local version of 211 

ICEfinder [24] was used to detect potential ICEs. A tanglegram linking the core genome and ybt locus 212 

were generated using the “tanglegram” function from the “dendextend” package v1.13.4 in R v3.6.3 213 

(https://www.r-project.org). 214 

  215 

Plasmid detection and characterisation 216 

Plasmid replicons were identified using Abricate v0.9.8 with the PlasmidFinder database 217 

(downloaded 13 Jan 2020) based on a threshold of >80% nucleotide identity and coverage [25]. To 218 

determine the plasmid content of the isolates, we used MOB-suite [26] and mlplasmids v1.0.0 [27] 219 

to classify contigs as plasmid-borne or chromosomal. MOB-suite uses Mash distances to assign 220 

contigs to plasmids in a closed reference database. We used the default parameters that are already 221 

https://www.r-project.org/


optimised for Enterobacteriaceae plasmids. This approach identifies the accession number of the 222 

plasmid with the shortest Mash distance to a given set of contigs but, depending on the database, 223 

we recognise that substantial size or structural variation may still be present between the query 224 

contigs and the returned plasmid. In contrast, mlplasmids uses a machine learning tool to assign 225 

contigs as plasmid-borne or chromosomal and was run specifying Kpne as the species model, a 226 

minimum contig length of 1,000 bp, and a posterior probability threshold of 0.7. Only contigs that 227 

were consistently assigned as plasmid-borne or chromosomal by both MOB-suite and mlplasmids 228 

were accepted, cases where the results from these two approaches were discordant were assigned 229 

as ambiguous. We also carried out a clustering analysis to detect linkage between resistance genes, 230 

plasmids and sequence type (ST) using the pheatmap package in R v3.6.3. The NbClust function 231 

(method “ward.D2” and index “silhouette”) available in the RNbClust package (version 3.0) was used 232 

to evaluate an optimal number of clusters. The hierarchical clustering using the method “ward.D2” 233 

was computed by cutting the resulting trees specifying 15 clusters. 234 

Statistical analysis 235 

Box plots and Wilcoxon Rank Sum tests were carried out using R v4.0.2 (https://cran.r-project.org/).  236 

 237 

Results 238 

The phylogenetic tree, all metadata, as well as combined and parsed outputs from Kleborate, 239 

ResFinder, PlasmidFinder, mlplasmids, MOB-suite are freely available to explore and download via 240 

the Microreact project at  https://microreact.org/project/Wastewater. A brief explanation to the 241 

metadata fields is given in supplementary note 1, and full instructions on how to use Microreact are 242 

available at https://microreact.org/instructions. The metadata is also available as an excel file (Table 243 

S1). 244 

Species diversity and distribution 245 

High quality genome assemblies were obtained for 95 isolates, 49 from the hospital wastewater, 45 246 

from the WWTP and 1 from the local river. A total of six species were isolated, but Kpne and Korn 247 

dominated the samples, together accounting for 88% of the isolates (Table 1). All six species were 248 

present in the hospital sample, but only three were present in the WWTP sample (Kpne, Korn and a 249 

single isolate of K. variicola; Kvar). Within the hospital sample, 19 were Kpne (39%) and 20 isolates 250 

were Korn (41%). In contrast, for the WWTP sample, 39 (87%) were Kpne and only 5 isolates (11%) 251 

were Korn. This was unexpected as Kpne is considered a major healthcare pathogen whilst Korn is 252 

considered a predominantly environmental species. Studies of hospital-acquired infection by 253 

Klebsiella species do not typically target Korn, hence the prevalence of this species in health-care 254 

settings may have been under-estimated. However, although a Fisher’s Exact Test confirmed that 255 

the WWTP sample was significantly enriched for Kpne over Korn compared to the hospital sample (P 256 

<0.0001), the number of isolates sequenced is too small to draw firm conclusions on species 257 

distributions. Moreover, the samples were taken over a small temporal range (5 days), which 258 

renders the data vulnerable to transient clonal expansion.   259 

The phylogenetic relationships between the species are shown in Figure 1. This confirms the close 260 

relatedness of the species corresponding to the Kpne species complex: Kpne, Kvar and K. 261 

quasipneumoniae subspecies similipneumoniae (Kqps). The two species previously assigned as 262 

‘Raoultella’ (Korn and Kpla) are also related. The single isolate of K. michigenensis (Kmic) is more 263 

closely related to the ‘Raoultella’ group than to the Kpne species complex, which justifies the re-264 

https://microreact.org/project/Wastewater
https://microreact.org/instructions


inclusion of the ‘Raoultella’ species within the Klebsiella genus as previously observed [16]. Kmic 265 

belongs to a third species complex with K. grimontii and K. oxytoca, which were not recovered in this 266 

study. The enrichment of Kpne within WWTP isolates (shown in blue) is also evident in Figure 1. 267 

Discussion of within species diversity and prevalent clonal lineages is given below and in 268 

supplementary material.  269 

 270 

The prevalence and distribution of resistance genes 271 

We used both ARG-Annot (via Kleborate) and ResFinder (via Abricate) in order to detect resistance 272 

genes in our data. The outputs from these tools were consistent, and available to explore via the 273 

Microreact project. The analysis below is primarily based on the more inclusive ResFinder data.  We 274 

identified 58 resistance genes or gene variants, predicted to encode resistance to antibacterial drugs 275 

from the following 8 classes, where the number in brackets refer to gene variants rather than the 276 

number of isolates: Aminoglycoside (n=6), Beta-lactam (n=30), Chloramphenicol (n=1), Fosfomycin 277 

(n=7), Quinolones (n=5), Sulfonamide (n=3), Tetracycline (n=3), Trimethoprim (n=3). A minor caveat 278 

is that some of the genes assigned by this analysis as resistance genes are in fact intrinsic 279 

chromosomal genes present in the vast majority of Klebsiella strains, and may only confer resistance 280 

when highly expressed or when additional plasmid-borne duplicates are present. These genes 281 

include intrinsic oqxA and oqxB genes which encode efflux pumps and (unless highly expressed) only 282 

confer very low level resistance to fluoroquinolones [28, 29]. Other examples include fosA, which 283 

typically confers only low levels of resistance to fosfomycin, and blaSHV-187 which confers intrinsic 284 

resistance to ampicillin and amoxicillin across all Kpne strains (Figure S1). 285 

The median number of resistance genes per isolate (combining chromosomal and plasmid-borne) 286 

from the hospital wastewater is 9, whereas for the WWTP sample it is 4, and this difference is 287 

statistically significant by a Wilcoxon Rank Sum test (P<0.001; Figure 2A). The significant enrichment 288 

of resistance genes within the hospital wastewater holds true when only considering Kpne isolates, 289 

and therefore does not simply reflect the non-random distribution of species between sites 290 

(P<0.001; Figure 2B). As there is only one Kpne ST that is found in both sites (ST983), this difference 291 

is more likely due to differences in strain composition rather than to individual strains losing or 292 

gaining resistance genes according to which site they are located. This single species analysis was 293 

only possible for Kpne due to the low prevalence of Korn isolates from the WWTP influent.  294 

Although there is no significant difference between Kpne and Korn in terms of the number of 295 

resistance genes identified by ResFinder per isolate (P = 0.059; Figure S2), there is a surprising 296 

difference between these two species with respect to the carbapenemase gene blaOXA-48. Twenty-297 

eight isolates over all species (29.5%) harboured this gene, and all of these except a single Korn 298 

isolate were recovered from the hospital wastewater. A total of 17 of the Korn isolates carry the 299 

blaOXA-48 gene, accounting for 68% of the isolates from this species. In contrast, of the 59 Kpne 300 

isolates, only 2 (3.4%) carried this gene (7Rg and 8Rg), and these are clonally related thus have co-301 

inherited this gene (these isolates differ by only 33 core SNPs and are marked with a red asterisk in 302 

Figure 3). Of the 11 isolates from species other than Kpne and Korn, 9 harboured blaOXA-48, the 303 

exceptions being one Kvar isolate from the WWTP and the single Kmic isolate (Figure 1). We 304 

emphasise that our culturing procedure did not select for non-susceptibility to carbapenems, thus 305 

the high frequency of blaOXA-48 reflects a high abundance of this gene within the underlying 306 

community at the time of sampling. 307 

Characterisation of a pOXA-48-like plasmid  308 



We characterised the genetic context of blaOXA-48 within the assemblies of the 28 isolates harbouring 309 

this gene. In 17/28 assemblies this gene is present on a conserved contig of approximately 62 kb. 310 

Alignments between these contigs revealed they share >99% sequence identity with each other and 311 

with the 63 kb plasmid pOXA-48 ([17]; accession number JN626286; Figure 4). This IncL conjugative 312 

plasmid (and minor variants) is the predominant source of blaOXA-48  in  Enterobacteriales worldwide 313 

[30]. pOXA-48 carries a composite transposon Tn1999, made up of blaOXA-48, lysR (encoding a helix-314 

turn-helix type transcriptional regulatory protein) and two copies of IS1999. A common variant is 315 

Tn1999.2, which harbours IS1R between blaOXA-48 and IS1999. Our 62 kb contigs included three of the 316 

four elements making up Tn1999 (Figure 4), but our assemblies failed to resolve the expected 317 

second copy of IS1999. Alignments with pOXA-48-like plasmids confirm that 8/17 of our contigs 318 

harbour Tn1999 (Figure 4 groups 1 and 3). The assemblies of the remaining 9/17 contigs do not 319 

extend far enough beyond blaOXA-48 to distinguish between Tn1999 and Tn1999.2 (Figure 4 groups 2 320 

and 4), although we can be sure they are not Tn1999.3, .4 or .5 in which additional mobile elements 321 

are present between blaOXA-48 and lysR, or within the lysR sequence [30]. In the absence of any 322 

evidence that our isolates do harbour Tn1999.2 we shall refer to them all as harbouring Tn1999. The 323 

transposon is inserted in the plasmid backbone in the same orientation as in pOXA-48 in 9/17 of 324 

these contigs (Figure 4, groups 1 and 4). Within the limitations of the short-read assemblies, the 325 

Tn1999 in our contigs are identical to each other at the nucleotide level, and differ from the 326 

reference sequence in pOXA-48 by 10 SNPs. The plasmid backbone (approx. 58 kb) is also highly 327 

conserved. Our contigs have two IS1 family transposase genes, not present in pOXA-48 (Figure 4), 328 

otherwise the identity is >99% throughout. Allowing for the presence of the additional IS1999, the 329 

size of our contigs (~62 kb) would be highly consistent with other pOXA-48-like plasmids [30].  330 

In the remaining 11/28 blaOXA-48 positive isolates, the gene is harboured on a short contig, up to 3.7 331 

kb. Mapping of reads from these isolates to pOXA-48 revealed that more than 99.8% of the plasmid 332 

is represented, although in all but one case the short-read assembled contig only carries blaOXA-48 and 333 

lysR so we cannot determine the wider genetic context of the gene. In two of these isolates the lysR 334 

sequence is interrupted by an insertion sequence. Korn isolate 8Rl harbours a fragment with 335 

homology to ISKpn26, an IS5 family transposase, whereas Kpla 6Rh contains a region with homology 336 

to a Tn3-like element Tn5403 family transposase. Multiple copies of these sequences are present in 337 

many of our isolates, as well as in many publicly available Klebsiella genomes and other 338 

Enterobacteriales, but they have not, to our knowledge, previously been shown to be associated 339 

with blaOXA-48.  340 

Despite the potential for mobility, we found no evidence for Tn1999 or blaOXA-48 transferring 341 

independently of a pOXA-48-like plasmid. Reads from all of our blaOXA-48 positive isolates mapped to 342 

at least 99.8% of pOXA-48, and BLAST searches with the blaOXA-48, Tn1999 or the plasmid backbone 343 

only identified significant matches in the blaOXA-48 positive isolates. An analysis of the blaOXA-48 344 

containing contigs with MOB-suite and mlplasmids v1.0.0 further supported the view that these 345 

contigs were of plasmid origin. MOB-recon assigned the contigs to plasmid cluster 681 and more 346 

specifically to plasmid accession number CP015075, a 63.5 kb pOXA-48-like plasmid pEC745_OXA48 347 

isolated from E. coli ST131 [31]. Our contigs are more similar to this plasmid than to pOXA-48. The 348 

presence/absence of this plasmid was 100% consistent with the presence/absence of blaOXA-48. 349 

Hierarchical clustering analysis of predicted plasmids, resistance genes and replicon types further 350 

confirmed the association between blaOXA-48, replicon type IncL/M and a pOXA-48-like plasmid 351 

(Figures 5, S3). 352 

Our data thus suggest that blaOXA-48 has spread within and between species in the hospital 353 

wastewater community via the transfer of the pOXA-48 plasmid. Whereas most of the ~62 kb blaOXA-354 



48 contigs differ by one or two SNPs, there are two pairs of isolates from different species in which 355 

the contigs are 100% identical, consistent with recent interspecies transfer (Kpne 8Rg / Kvar 9Rb, 356 

and Korn 9Ri / Kpne 6Rf).  To examine whether there were single or multiple introductions of the 357 

pOXA-48 plasmid into this population, we constructed a phylogenetic tree to compare our isolates 358 

with 21 publicly available sequences of pOXA-48-like plasmids (Figure S4; Table S2). These publicly 359 

available plasmid sequences were from diverse geographic origins, multiple species and harbour 360 

blaOXA-48 on either Tn1999 or the variant Tn1999.2. They include two pOXA-48-like plasmids 361 

associated with Korn isolates previously recovered from wastewater in the UK [14]. This analysis 362 

confirmed that the plasmid bearing blaOXA-48 in our isolates is highly similar to those plasmids 363 

previously reported from global origins. Most plasmids on the tree are separated by only a single 364 

core SNP, confirming that this plasmid is very widespread and highly conserved. The plasmids 365 

harbouring blaOXA-48 in our isolates are no more closely related to each other than they are to 366 

plasmids from global sources, hence it is not possible to deduce how many times this plasmid was 367 

introduced into our study community. A minor exception to the high degree of plasmid conservation 368 

is found in the two isolates 6Rbi (Korn, hospital wastewater) and 7Sd (Korn, WWTP); the pOXA-48 369 

plasmids in these strains are identical but separated from the other plasmids by a single core SNP 370 

(indicated by the red circle in Figure S4). As the host chromosomes of these two isolates differ by 371 

only 107 core SNPs (Figure 6), this congruence between plasmid and chromosomal phylogeny is 372 

likely to reflect common inheritance rather than horizontal transfer.  373 

Summary of plasmid distribution across species and sites 374 

Having characterised the pOXA-48-like plasmid in our data, we used a combination of the outputs 375 

from MOB-suite, mlplasmids, PlasmidFinder and ResFinder to determine the plasmid and replicon 376 

profiles of all our isolates and, as far as possible, assign each resistance gene either to a specific 377 

plasmid or as chromosomal. The distribution of plasmids, replicon types and resistance genes over 378 

the whole dataset are shown in Figures S5, S6 and S1, respectively, and are available to explore on 379 

the Microreact project at https://microreact.org/project/Wastewater (see supplementary note 1). 380 

MOB-suite assigned the plasmid with accession number CP015075 as the closest hit to the blaOXA-48 381 

carrying pOXA-48 like plasmid in our data. Our data show this plasmid to be highly promiscuous, 382 

being present in 5 of the 6 species, the exception being the single isolate of Kmic. Out of a total of 80 383 

plasmids identified by MOB-suite from our data (representing 26 replicon types; Figure S5), 20 384 

carried at least one resistance gene (25%), only one other showed the same degree of cross-species 385 

distribution as the CP015075-like plasmid. This was a CP011607-like plasmid with replicon type 386 

Col440I, and this small (~5 kb) plasmid does not harbour any resistance genes in our data. Two other 387 

plasmids were detected in 5 species, three in four, three in three, 17 in two and 55 (68.8%) were 388 

restricted to a single species. An important caveat to these figures is that there is likely to be 389 

variation between plasmids that are placed in the same cluster by MOB-suite, and these differences 390 

may in turn impact on the ability of the plasmid to transfer between species. 391 

Wilcoxon Rank Sum tests confirmed that the isolates from the hospital wastewater contain 392 

significantly more plasmids per isolate (P<0.001), and significantly more replicon types per isolate 393 

(P<0.001), than the isolates from the WWTP (Figure S7). As noted earlier, the hospital wastewater 394 

sample also contains significantly more resistance genes than the WWTP sample (Figure 2). 395 

Considering all 58 resistance gene variants across all 96 isolates, there were a total 665 resistance 396 

gene assignments attempted. In 374 cases (56.2%) the resistance gene was assigned as 397 

chromosomal, 205 assignments (30.8%) were plasmid-borne by both methods, 73 (11%) were 398 

ambiguous (ie assigned as plasmid-borne by only one of the two methods, and hence excluded), and 399 

13 (1.9%) were assigned as plasmid by both methods, but with no clear match in the MOB-suite 400 

https://microreact.org/project/Wastewater


database (‘unknown’).  The resistance genes that were assigned plasmid-borne by both MOB-suite 401 

and mlplasmids were significantly enriched in the hospital wastewater sample (P<0.001), but there 402 

was no difference between the two sites with regards to chromosomal resistance genes (Figure 7).  403 

To explore plasmid and resistance gene distribution within a finer sub-species phylogenetic context, 404 

we then considered each species in turn.  405 

Plasmids, resistance genes and phylogeny of K. ornithinolytica (Korn) 406 

The distribution, according to source and phylogeny, of all 29 plasmids detected by MOB-suite 407 

(representing 16 replicon types) within the Korn isolates is given in Figure 6. Only 4 of these plasmids 408 

are associated with at least one resistance gene (13.8%). The distribution of replicon types is given in 409 

Figure S8.  Nineteen of the 25 Korn isolates resolve into two clades, represented by 12 and 7 410 

isolates. All of the 19 isolates belonging to these clades were recovered from the hospital 411 

wastewater, whereas of the remaining 6 isolates only one was isolated from the hospital 412 

wastewater. Isolates within the larger clade differ between 42 and 136 SNPs, and within the smaller 413 

clade between 25-95 SNPs. These levels of diversity are within the maximum distance typically 414 

observed within single STs [32]. In order to place our Korn genomes within a wider phylogenetic 415 

context we rebuilt the tree with additional Korn genomes from Italy and Pakistan that were 416 

recovered from diverse sources and sequenced as part of other studies. We also included two Korn 417 

genomes recovered previously from UK wastewater and which harbour a pOXA-48-like plasmid 418 

([14]; Figure S9). This revealed that the Korn isolates from the current study did not represent a 419 

monophyletic group, but are scattered across the tree indicating multiple introductions. However, 420 

none of these additional isolates clustered with either of the major two Korn lineages, which in turn 421 

points to subsequent local clonal expansion consistent with the low diversity within each of these 422 

clones.  423 

The two major clones show distinct repertoires of plasmids and resistance genes (Figure 6), although 424 

this is less clear for replicon types (Figure S8). The larger clone is associated with a total of 13 425 

plasmids across all isolates, of which 5 are specific to this clone and only two of which carry 426 

resistance genes; the blaOXA-48-carrying CP015075-like plasmid, and the KT896499(pKPSH169)-like 427 

plasmid which carries the qnrS2 gene encoding reduced susceptibility to quinolones. The original 428 

pKPSH169 plasmid was harboured by a Kpne isolate recovered from wastewater biosolids in Israel, 429 

and belongs to the widespread pKPN3-like family of small plasmids known to carry qnrS genes [33]. 430 

Ten plasmids are detected among all isolates within the smaller clone, but again only two of these 431 

contain resistance genes; the blaOXA-48-carrying CP015075-like plasmid, and a KJ541070(pG5A4Y413)-432 

like plasmid harbouring the ß-lactamase blaMOX-3 and blaOXA-10 genes. The fourth resistance gene-433 

bearing plasmid found in the Korn isolates is a KY798506-like plasmid that carries the aac(3’)-IIa, 434 

aac(6’)-IIb, blaOXA-1 and blaSHV-12 resistance genes. This plasmid is present in the pair of closely related 435 

Korn isolates (6Rbi and 7Sd) that also harbour a single SNP variant of the pOXA-48-like plasmid 436 

CP015075 (Figure S4). blaSHV-12 is an important extended-spectrum beta-lactamase (ESBL) variant 437 

gene that is assigned as associated with the KY798506-like plasmid in strain 7Sd, but is not 438 

unambiguously assigned to this plasmid in isolate 6Rbi. The KY798506-like plasmid is also present 439 

within three isolates of Kvar ST454 (see below), and belongs to the pKpQIL-like family of plasmids 440 

that commonly carry blaKPC-2 [34, 35]. An alignment of the KY798506 reference plasmid with the 441 

corresponding contigs in our data confirmed regions of high homology (Figure S10).  442 

Plasmids, resistance genes and phylogeny of K. pneumoniae (Kpne) 443 



A total of 60 different plasmids and 19 replicon types were detected in 59 Kpne isolates using MOB-444 

suite. The distribution of resistance genes and their associated plasmids is given in Figure 3, and the 445 

distribution of all plasmids and replicon types is given in Figures S11 and S12 respectively. Although 446 

the average number of plasmids per isolate is lower for Kpne (3.3) than for Korn (6), a higher 447 

proportion of the Kpne plasmids harbour at least one resistance gene (15/60; 25%) than the Korn 448 

plasmids (4/29; 13.8%). A higher proportion of the Kpne plasmids were present in only one isolate 449 

(26/60; 43%) than the Korn plasmids (7/29; 24.1%), consistent with a more diverse sample.   450 

Kleborate was used to assign multilocus STs to the Kpne data. The most common ST is ST983, which 451 

is represented by 9 isolates, and these differ from each other by between 15 and 47 core SNPs, 452 

suggesting local clonal expansion. Eight of the 9 Kpne ST983 isolates are from the hospital 453 

wastewater, and one from the WWTP influent. A total of 10 different plasmids are observed within 454 

this clone, five of which carry resistance genes (Figures 3, S13). It is noteworthy that these five 455 

different resistance plasmids carry the same set, or a subset, of 9 resistance genes: the 456 

aminoglycoside resistance genes aac(3)-IIa, aac(6’)-Ib-cr, aph(3’’)-Ib, aph(6’)-Id, in addition to 457 

dfrA14, blaCTX-M-15, blaOXA-1, blaTEM-1 and sul2. The CP021953(AR_0148)-like plasmid carries all these 458 

genes in three ST983 isolates (5Rk, 8Rc and 8Rhi), plasmid JX424423(pKD01)-like carries all these 459 

genes in 5Rg (this plasmid is also present in a Kpla isolate where it harbours 11 resistance genes), 460 

and plasmid CP016925(pCTXM15_DHQP1400954)-like contains all the genes except for aac(3)-IIa in 461 

5Rd (Figure S13).  462 

The data therefore suggest that a suite of resistance genes are linked on a mobile element and have 463 

been co-transferred between different plasmids within the ST983 clone. This is supported by 464 

hierarchical clustering analysis, which confirmed the linkage of the resistance genes blaCTX-M-15, 465 

blaTEM-1B, aph(3’’)-Ib, sul2, dfrA14 and aph(6)-Id within Kpne ST983, but with multiple plasmids 466 

(Figure 5; cluster 2). Furthermore, comparison of the ST983 contigs with published data from South 467 

Africa [13] provides additional support that these genes are linked, mobile and have a global 468 

distribution (Figure S14) and more detailed analyses of the relevant contigs also  point to the 469 

mobility of these genes (supplementary note 2). There are four Kpne STs (STs 35, 13, 17 and 584) 470 

that are each represented by 3 isolates (Figure 3). The plasmid and resistance gene profiles of these 471 

lineages are described in supplementary note 3.  472 

Plasmids and resistance genes in other species 473 

In addition to the 59 Kpne isolates, we also recovered two other species corresponding to the Kpne 474 

species complex, Kqps (n=4) and K. variicola (Kvar) (n=4). All of these 8 isolates were recovered from 475 

hospital wastewater and harbour blaOXA-48, except one divergent Kvar isolate which was isolated 476 

from the WWTP and does not harbour blaOXA-48. The four isolates of Kqps all correspond to ST3590 477 

and harbour identical plasmid and resistance profiles. Three of the four Kvar isolates corresponded 478 

to ST454. Although this is not a clone of recognised clinical importance, all three ST454 isolates 479 

harbour a KY798506-like plasmid that was also found in Korn and belongs to the pKpQil-like family of 480 

plasmids as discussed above. Similar to the Korn isolates, this plasmid is also associated with the 481 

blaSHV12 in Kvar ST454 isolates 8Rji and 5Rj, whereas this gene is assigned as chromosomal in Kvar 482 

ST454 isolate 9Rb. Finally, Kpla isolate 6Rf harbours plasmid a JX424423(pKDO1)-like plasmid with 11 483 

resistance genes, more than any other plasmid in the dataset. These are aac(3)-IIa, aac(6’)-Ib-cr, 484 

blaOXA-1, blaCTX-M-15, dfrA14, aph(3’’)-Ib, aph(6)-Id, blaTEM, qnrB1, sul2, tet(A). This plasmid is also 485 

present in two Kpne isolates, including one ST983 isolate as previously noted, where it harbours 486 

subsets of nine and six of these genes. 487 

Characterisation of virulence factors 488 



Kleborate revealed that 33 of the isolates contained the major virulence factor ybt that encodes the 489 

siderophore yersiniabactin. This locus was detected in all 25 Korn isolates and in each case was 490 

assigned an “unknown” type. We note that the ybt locus in Korn is chromosomally located close to 491 

an tRNA-Asn site, with no evidence for an associated ICE, and is phylogenetically distinct from the 492 

ybt locus in Kpne (Figure S15). A tanglegram linking the ybt-based and core genome-based 493 

phylogenies shows that different ybt variants match the different core genome lineages in Korn, 494 

suggesting a single acquisition of the ybt locus into this species (Figure S16), however, the Korn 495 

phylogeny lacks the resolving power to show this conclusively. 496 

A total of 8 Kpne isolates harbour a yersiniabactin locus, 4 from the hospital wastewater, 3 from the 497 

WWTP sample and the single isolate from the river, and these correspond to 4 unique STs. The three 498 

Kpne ST13 isolates are all ybST21 (ybt 10; ICEKp4). The two highly related ST35 isolates (River_C and 499 

7Sl) harboured a novel 2LV of ybST183 (ybt 9; ICEKp3), whilst the third ST35 isolate (8Sd) harboured 500 

ybST10 (ybt 5; ICEKp6). A single locus variant of Kpne ST25 from the hospital wastewater (5Ra) 501 

harboured a 1LV of ybST63 (ybt 6; ICEKp5) and finally an isolate of Kpne ST1536 was isolated (7Sc) 502 

from the WWTP sample harbouring a 2LV of ybST 209 (ybt 9; ICEKp3).  We confirmed the presence 503 

of the ybt locus using the vfdb database through ABRicate. 504 

Kleborate and ABRicate also revealed the absence of type I or III Klebsiella fimbriae (although fim 505 

genes are present), and the presence of the astA gene in 3 Korn isolates (6Rbi, 7Sa, 7Sd) that 506 

encodes a heat-stable enterotoxin 1. We note that the astA gene is embedded in an IS256-family 507 

transposon, and a BLASTP search suggested that the closest astA-encoded protein (from strain 6Rbi), 508 

named EAST1, is from Edwardsiella ictalurid (100% coverage, 77.14% identity; data not shown).  509 

 510 

Discussion 511 

The acquisition of multiple antibiotic resistance genes by Klebsiella spp. accounts for a significant 512 

public health burden, particularly in health care settings. Here we compared Klebsiella spp. isolates 513 

from the wastewater of a large hospital in South West England with those from the influent to a 514 

WWTP serving the hospital. We targeted Klebsiella spp. isolates through selective culturing, but we 515 

did not actively enrich for antibiotic resistance (other than for ampicillin), nor for specific Klebsiella 516 

species. We note marked differences in resistance profile and species composition between the two 517 

sites which suggests that the signal from hospital wastewater is markedly diluted once it has reached 518 

the WWTP [36]. However, it remains likely that bacteria from the hospital are still present in the 519 

WWTP influent, and possibly also the effluent, albeit at a low frequency [14]. In support of this, the 520 

WWTP sample contained a single Korn isolate (7Sd) that carries both a pOXA-48-like plasmid 521 

(harbouring blaoxa48) and a pKpQIL-D2-like plasmid (harbouring blaSHV12). Although we cannot rule out 522 

the possibility that this isolate derived from the community rather than the hospital, isolate 7Sd is 523 

clonally related to the hospital wastewater Korn isolate 6Rbi, differing by only 107 core SNPs, and 524 

both 7Sd and 6Rbi possess a variant pOXA-48 plasmid containing a unique SNP. This exception aside, 525 

the prevalence of plasmid-borne resistance genes is significantly greater within the hospital 526 

wastewater than the WWTP influent, which again is consistent with previous studies examining a 527 

range of different hosts and including hospital associated isolates [37]. In contrast, we find no 528 

evidence for a difference in the prevalence of chromosomal resistance genes, indicating that these 529 

are commonly core genes in Klebsiella spp. [38].  530 

Whereas both Kpne and Korn are present in the hospital wastewater at equal abundances, and four 531 

other species are also present at this site, the WWTP sample is overwhelmingly dominated by a 532 



single species, Kpne. As Kpne is health-care associated, and Korn is considered an environmental 533 

species, their relative abundances at either site is the opposite of that expected. Moreover, the 534 

WWTP sample also represents a much more heterogeneous mixture of inputs from the surrounding 535 

community, thus would be expected to contain a higher species diversity. The bulk of the WWTP 536 

influent derives from domestic, rather than industrial, sources. Thus the high prevalence of Kpne in 537 

this sample presumably reflects, at least in part, a high rate of asymptomatic carriage of Kpne in the 538 

local community. We note that nursing homes in particular have been implicated as a major 539 

reservoir of ESBL-producing E. coli and Kpne [39].  540 

Our data reveal a high abundance of a 63 kb IncL/M pOXA-48-like plasmid harbouring the 541 

carbapenemase gene blaOXA-48. This gene encodes the OXA-48 class D β-lactamase that hydrolyses 542 

penicillins at a high level and carbapenems at a low level. This enzyme confers a high level of 543 

resistance to imipenem [40] but is ineffective against cephalosporins [41]. The pOXA-48 plasmid is 544 

almost exclusively present in the hospital wastewater, with the Korn WWTP isolate 7Sd being the 545 

only exception. The pOXA-48 plasmid has disseminated worldwide, and has previously been 546 

associated with Korn isolates from sewage in the UK [14]. Although minor variants have been 547 

described [30], it appears to be highly stable [42]. This plasmid has also been observed to freely 548 

transfer between species within the Enterobacteriaceae family [14], and has a very low fitness 549 

burden [43].  These characteristics are evident in our data. Even without selective culturing, the 550 

pOXA-48-like plasmid is present in the majority of isolates of 4 species within the hospital 551 

wastewater (Korn, Kpla, Kvar and Kqps), with the notable exception being that only 2 clonally related 552 

isolates of Kpne carry this plasmid. The pOXA-48-like plasmid present in our data is highly related to 553 

publicly available sequences from diverse geographic origins, meaning it is not possible to infer how 554 

many times the local community has acquired this plasmid. Caution should thus be exercised before 555 

inferring local epidemiological spread of a pOXA-48-like plasmid from a single source.  556 

In addition to the high abundance of plasmid-borne blaOXA-48, we note multiple plasmids that harbour 557 

clinically important ESBL genes. Cases where these plasmids co-reside with the pOXA-48-like plasmid 558 

(eg Kpla isolate 6Rf and Korn isolate 7Sd) are likely to present particular therapeutic challenges due 559 

to resistance to both cefpodoxime and meropenem. Two ESBL-bearing plasmids are present in 560 

multiple species; first, a blaSHV-12 carrying KY798506(pKpQIL-D2)-like plasmid is present in the WWTP 561 

Korn isolate 7Sd and two hospital wastewater Kvar ST454 isolates 8Rji and 5Rj. This pKpiQIL-like 562 

plasmid commonly carries the key carbapenemase gene blaKPC-2, and is facilitating the spread of this 563 

gene in the UK [34] and globally [43]. Although we did not detect the blaKPC-2 gene in our data, we did 564 

observe a plasmid with high homology to the KY798506 reference plasmid that is known to carry this 565 

carbapenemase gene. Whilst the presence of this plasmid might potentially increase the risk of the 566 

acquisition and spread of blaKPC-2 within this population it is currently not possible to speculate 567 

further on the public health relevance of this finding. The second ESBL-plasmid in multiple species is 568 

a JX424423(pKDO1)-like plasmid, which carries a blaCTX-M-15 gene in a Kpne ST983 isolates and Kpla 569 

isolate 6Rf. In the latter case, this plasmid also harbours an additional 10 resistance genes and co-570 

resides in isolate 6Rf with the pOXA-48-like plasmid. Thus both Korn and Kpla isolates can harbour 571 

multidrug resistance plasmids in the environment, and improved diagnostics are required to 572 

improve the reporting of serious infections caused by these species [44, 45].  573 

The blaCTX-M-15 gene is found associated with other plasmids in different Kpne isolates, including two 574 

highly related isolates of Kpne ST35 (7Sl and River_C) isolated from the WWTP and river respectively 575 

(supplementary note 3). This finding suggests that this clinically relevant clone, which also harbours 576 

a yersiniabactin virulence locus in our data, is circulating within the wider environment. The blaCTX-M-577 

15 gene is also associated with all nine isolates of Kpne ST983. This clone is associated with a suite of 578 



linked resistance genes, including blaCTX-M-15, that co-mobilise between the different plasmids 579 

associated with this clone. Comparison with published data from an ST983 isolate from South Africa 580 

[13] suggests this association is stable on a global scale (Figure S14; supplementary note 2).  This 581 

observation highlights that epidemiological surveillance should not only incorporate strains and 582 

plasmids, but should also consider mobile transposable elements that can independently transfer 583 

between them. Plasmid-borne transposons harbouring resistance genes have been noted to exhibit 584 

varying degrees of autonomy in Kpne [42], suggesting that the epidemiologically most relevant unit 585 

of mobility will vary between different species, strains, plasmids and resistance genes [46].  586 

Although plasmids can be maintained even in the absence of the relevant antibiotics[47], the key 587 

observation that plasmid-borne resistance genes are enriched in the hospital wastewater sample 588 

points to selection pressures resulting from antibiotic exposure.  However, it is unclear as to where 589 

this selection is predominantly operating. There have been a number of studies comparing 590 

wastewater and local clinical samples, and it is reasonably assumed that the microbial composition 591 

of hospital wastewater closely mirrors that of the hospital itself [14, 48-50]. However, an alternative 592 

is that resistance is both acquired and maintained directly within drain-associated biofilms, possibly 593 

driven by sub-lethal concentrations of antibiotics in these environments. In the absence of 594 

comparative data from the hospital itself, or on the concentration of carbapenems and other beta-595 

lactam antibiotics within the wastewater, it is currently not possible to argue strongly in favour of 596 

one scenario over the other. Parallel sampling of hospital wastewater and patients over time would 597 

help to resolve this question. 598 

This study has important practical implications regarding the public-health impact of Klebsiella 599 

species other than Kpne, and in particular Korn and other species corresponding to the Raoultella 600 

group. These species pose a risk both as emerging pathogens [45], but also as a potential reservoir 601 

for resistance determinants that can be readily transferred between species [51]. There are 602 

numerous reports of species of the Raoultella group harbouring carbapenemase genes, including 603 

those encoding OXA-48-like, VIM, KPC and NDM type enzymes in health-care, community and 604 

environmental settings [52-54]. Moreover, blaOXA-48 specifically has been recognised as an increasing 605 

problem in the UK [55] and a major cause of hospital outbreaks [56, 57]. Korn isolates harbouring a 606 

pOXA-48 like plasmid have been previously reported from wastewater in the UK [14], although it is 607 

not possible to show that these plasmids are epidemiologically linked to those in the current study. 608 

The pathogenic potential of Korn, and the putative virulence factors in this species, have not been 609 

widely studied. Our data confirm the presence of a chromosomally encoded yersiniabactin (ybt) 610 

locus, which is a major virulence factor for pulmonary infection in Kpne [58]. In Kpne, the ybt locus is 611 

typically located within an integrative conjugative element (ICEKp). In contrast, in Korn the ybt locus 612 

is located in the chromosome next to a tRNA-Asn site but with no identifiable integrase gene [59]. 613 

We show that the Korn ybt variant is phylogenetically distinct, but its role in the virulence of this 614 

species is yet to be determined. Additionally, we also found a homologue of the astA gene 615 

embedded in an IS256-family transposon in 3 Korn isolates, two of which also contain the pOXA-48-616 

like plasmid and the pKpQIL-like plasmid that commonly carries blaKPC-2. The astA gene encodes for a 617 

heat-stable enterotoxin 1 (EAST1) in E. coli (usually EAEC or ETEC; [60]) and it has been described in 618 

enteropathogenic Kpne [61]. However, to the best of our knowledge, it has never been found in Korn 619 

(supplementary note 3). The relevance of this gene for the pathogenicity of Korn also remains to be 620 

elucidated, but it further raises its pathogenic potential.  621 

In conclusion, our data reveal a high abundance of a pOXA-48-like plasmid in hospital wastewater in 622 

multiple Klebsiella species, and in particular within Korn. This plasmid was detected at a much lower 623 



frequency in the influent to the WWTP serving the hospital. These data warrant close surveillance 624 

both of this plasmid and of Korn and related species. 625 
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Table 1 642 

 Hospital 
drain 

WWTP 
influent 

River Total 

K. pneumoniae (Kpne) 19 39 1 59 

K. ornithinolytica (Korn) 20 5 0 25 

K. quasipneumoniae subsp. 
similipneumoniae (Kqps) 

4 0 0 4 

K. variicola subsp. variicola (Kvar) 3 1 0 4 

K. planticola (Kpla) 2 0 0 2 

K. michiganensis (Kmic) 1 0 0 1 

Total 49 45 1 95 



 643 

 644 

Table legends 645 

Table 1. Number of isolates corresponding to each species isolated from hospital drain, influent at 646 

WWTP serving the hospital and local community and river approximately 8 km upstream. 647 

 648 

Figure legends 649 

 650 

Figure 1. Approximate maximum likelihood phylogenetic tree of the 95 isolates analysed in this study 651 

constructed using an alignment of 184,671 core SNPs. Species, source of each isolate and presence 652 

of carbapenemase resistance gene blaOXA-48 are indicated. The tree and all metadata discussed can 653 

be accessed at https://microreact.org/project/Wastewater 654 

Figure 2. Comparison of number of resistance genes identified using Abricate with the Resfinder 655 

database from the hospital wastewater and WWTP influent in (A) all isolates and (B) Kpne only. 656 

Figure 3. Approximate maximum likelihood phylogenetic tree of the 59 Kpne isolates in this study 657 

isolated from the hospital wastewater, the WWTP influent and the river. The presence of plasmids 658 

identified by MOB-suite and listed by accession number, and of resistance genes identified using 659 

Abricate with the ResFinder database, are shown. STs are indicated. Only plasmids associated with 660 

resistance genes are included. The Kpne isolates 7Rg and 8Rg carry the pOXA-48 plasmid and are 661 

marked with a red asterisk.  662 

Figure 4. Alignment of pOXA-48 ([17]; accession JN626286) and representative contigs from our 663 

isolates harbouring blaOXA-48. Arrows represent ORFs; blaOXA-48 is shown in green and insertion 664 

sequences in red. 665 

Figure 5. Simplified hierarchical clustering of predicted plasmid, resistance genes and replicon types 666 

in 95 isolates. Green refers to absence and pink to presence. For the complete hierarchical clustering 667 

see Figure S3. 668 

Figure 6. Approximate maximum likelihood phylogenetic tree of the 25 Korn isolates in this study 669 

isolated from the hospital wastewater and WWTP influent. The presence of plasmids identified by 670 

MOB-suite and listed by accession number, and of resistance genes identified using Abricate with 671 

the ResFinder database, are shown. Plasmids associated with resistance genes are marked with an 672 

asterisk. 673 

Figure 7. Frequency of resistance genes identified as (A) plasmid-borne and (B) chromosomal in 674 

isolates from the hospital wastewater and WWTP influent. Contigs harbouring resistance genes were 675 

characterised as plasmid or chromosomal using MOB-suite and mlplasmids; plasmid numbers 676 

assigned by MOB-suite were used to determine number of plasmids per isolate. 677 

 678 
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Supplementary note 1 - Analysing the data via the microreact project at: 

https://microreact.org/project/Wastewater 

Columns B - CX include output from Kleborate v0.4.0-beta, including species, MLST, virulence loci 

and antimicrobial resistance genes. Column CY lists the number of resistance genes identified in the 

isolates using Abricate v0.9.8 with the ResFinder database (downloaded 29 April 2020) using the 

threshold of >80 % nucleotide identity and coverage. The locations of these genes are detailed in 

columns CZ - FE, using output from MOB-suite and mlplasmids v1.0.0; ‘chromosomal’, ‘ambiguous’ 

(MOB-suite and mlplasmids predictions were discordant) or plasmid (when MOB-suite and 

mlplasmids both called ‘plasmid’, the accession number returned by MOB-suite is shown, or 

unknown in the case of novel plasmids). Columns FF - GE show replicon types identified using 

Abricate with the PlasmidFinder database (downloaded 13 Jan 2020) with a threshold of >80 % 

nucleotide identity and coverage. Columns GF - JG are presence (‘1’)/ absence (‘-’) of plasmids 

identified by MOB-suite identified by accession number (as above). Columns JH and JI show the 

number of virulence factors identified using Abricate with the virulence factors database 

(downloaded 19 April 2020) with thresholds of both >80 and >40 % nucleotide identity and coverage 

respectively. Columns JJ - NG show the presence of these virulence factors in the isolates as 

identified using thresholds of >40 % (‘40’) or >80 % (‘80’) nucleotide identity and coverage. Detailed 

instructions on how to use microreact are available at https://microreact.org/instructions. 

 

Supplementary note 2 - linked resistance genes on multiple plasmids in Kpne ST983 

In all nine ST983 isolates, the resistance genes blaCTX-M-15, blaTEM-1B, aph(3’’)-Ib, sul2 and aph(6)-Id 

genes are on homologous contigs of 9 - 14 kb, which also harbour genes for IS1380 family 

transposase ISEcp1 and transposon Tn3 resolvase. In the longer contigs these are flanked by an 

IS110 family transposase IS5075 and Tn3 family transposase Tn2. The resistance genes aac(6’)-Ib-cr 

and blaOXA-1 are on another homologous contig with a gene encoding chloramphenicol 

acetyltransferase in all isolates, and also carries dfrA14 in one isolate (5Rd). Resistance gene aac(3)-

IIa is on a homologous contig in eight of the isolates, with an IS3 family transposase ISKpn11 and 

tmrB which encodes a tunicamycin resistance protein. Similarly, dfrA14 is on a homologous contig in 

these eight isolates, alongside an IS6 family transposase IS6100 and flanked in the longer contigs by 

IS6 family transposase IS26. When aligned to CP021953 and JX424423, two of the resistance 

plasmids predicted by MOB-suite to harbour all of these resistance genes in four of these isolates, all 

of the contigs from all of the ST983 isolates align to the plasmid over an approximately 30 kb region, 

interspersed with insertion sequences (data not shown). These arrangements likely explain the 

mobility of these resistance genes. The ST983 isolates in a previous study from South Africa [1] show 

a similar profile of resistance genes with those in the present study (aph(6’)-Id, aph(3′’)-Ib, blaTEM-1B, 

blaSHV-38, blaSHV-168, blaCTX-M-15, qnrB6, oqxA, oqxB, fosA, sul2, tet(A), tet(C), dfrA14, qnrB1). 

Phylogenetic analysis confirmed the close relatedness between the ST983 reported from South 

Africa and those in the current study (Figure S14).  
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Supplementary note 3 – Other Kpne lineages  

Kpne ST35 is a global multidrug-resistant clone [1]. Two isolates of ST35 were recovered from the 

WWTP (7Sl, 8Sd) and one from the river (River_C). These two isolates have identical plasmid and 

resistance gene profiles, and differ by 80 core SNPs over the alignment of 5,100,720 nucleotides. 

Both isolates harbour a single NC_021231_00058-like plasmid, which contains 6 resistance genes 

(aac(3’)-IIa, aac(6’)-Ib-cr, blaOXA-1, blaCTX-M-15, dfrA14 and qnrB1; Figure 3), possess the same two 

replicon types (IncFII_1_pKP91 and IncFIB(K)_Kpn3; Figure S12), the same four chromosomal 

resistance genes oqxA, oqxB,  fosA6 and blaSHV-33 (Figure 3) and the virulence factor yersiniabactin 

(type ybt9; ICEKp3; as discussed below). The high identity between these two isolates is striking, 

given that one isolate was from the WWTP influent, and the other sampled directly from the river 

approximately 8 km upstream from the WWTP and 3 months earlier. This suggests that this 

multidrug-resistant clone is stable and relatively abundant in the local aquatic environment. The 

third ST35 isolate, 8Sd from the WWTP, is slightly divergent on the tree and exhibits a different 

plasmid and resistance gene profile.  

Kpne ST13 is also a globally disseminated clone of clinical importance [2, 3, 4, 5]. This ST was 

represented by 3 hospital wastewater isolates, each of which contains two plasmids, a CP000823-

like plasmid (which does not carry any resistance genes) and a CP021856(tig00000001_pilon)-like 

plasmid, which harbours ant(3”)-la, dfrA1 and sul1. All three ST13 isolates possess the chromosomal 

resistance genes oqxA, oqxB, fosA6 and blaSHV-101. Similarly, ST17 has been detected from global 

sources and is known to harbour multiple resistance genes [6, 7]. ST17 was also represented by 3 

hospital isolates which show more heterogeneous plasmid and resistance profiles; a total of 5 

plasmids were detected within these 3 isolates, but 4 of these were only present in only one isolate. 

Only a single plasmid-borne resistance gene was detected in ST17, tet(D), but 7 chromosomal genes 

were noted. Finally, ST584 was assigned to three isolates from the WWTP sample. One of these 

isolates, 5Sf, harbours 5 plasmids including a JX843238(pTOR_02)-like plasmid [8] that carries catA1 

encoding resistance to chloramphenicol (the only unambiguous example of the presence of this 

gene on a plasmid in our data) and sul1 genes. ST584 is not recognised as clinically significant, and is 

most notable for being recovered at high prevalence from wild boar and barbary macaques in 

Algeria [9]. 
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Figure S1.  Approximate maximum likelihood phylogenetic tree (midpoint rooted) of the 95 isolates analysed in this study constructed using an alignment of 
184,671 core SNPs. Species and source of each isolate are indicated, with the location of resistance genes identified using Abricate with the Resfinder database. 
Contigs harbouring the resistance genes were classified as chromosomal or plasmid using MOB-suite and mlplasmids; contigs classified as plasmid by one 
method and chromosomal by another are marked as ‘ambiguous’. Where both methods assigned a contig to plasmid origin, the accession number of the 
plasmid as reported by MOB-suite is shown. Contigs assigned as plasmids but without a match to the database are assigned as “unknown”.
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Figure S2. Distribution of resistance genes identified using Abricate with the 
Resfinder database  between Korn and Kpne; not significantly different by a 
Wilcoxon test (p = 0.059).

Korn Kpne
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Figure S3. Complete 
hierarchical clustering 
analysis (ward.D2) of 
predicted plasmids, 
resistance genes and 
replicon types in 95 
isolates. Green refers to 
absence and pink to 
presence.



Figure S4. Approximate maximum likelihood phylogenetic tree (midpoint 
rooted) of the pOXA-48-like plasmids recovered in our study and 21 publicly 
available sequences (listed in Table S2). Two Korn isolates (6Rbi and 7Sd) 
separated by a single SNP indicated with a red circle. 
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Figure S5.  Approximate maximum likelihood phylogenetic tree (midpoint rooted) of the 95 isolates 
analysed in this study constructed using an alignment of 184,671 core SNPs. Species, source of each 
isolate and presence of plasmids identified using MOB-suite are indicated. A red asterisk indicates 
plasmids associated with resistance genes.
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Figure S6.  Approximate maximum likelihood phylogenetic tree (midpoint rooted) of the 95 isolates analysed in this study constructed 
using an alignment of 184,671 core SNPs. Species, source of each isolate and presence of replicon types identified using Abricate with 
the PlasmidFinder database are indicated.



A B

Figure S7.  Comparison of isolates from hospital drain and WWTP influent. (A) Number of plasmids as determined using MOB-suite; those 
that also not confirmed as plasmid by mlplasmids were classed as ambiguous, (B) number of replicon types identified by Abricate using 
the PlasmidFinder database. Wilcoxon test shows a significant difference in both cases.



Figure S8.  Approximate maximum likelihood phylogenetic tree (midpoint rooted) of the 25 Korn isolates 
in this study isolated from the hospital drain and WWTP influent showing the presence of replicon types 
identified using Abricate with the PlasmidFinder database.



Publication

Figure S9.  Approximate maximum likelihood phylogenetic tree (midpoint rooted) of the 25 Korn isolates from this 
study with isolates from WWTP in the East of England (n=2; Ludden et al., 2017) and unpublished sequences of 
isolates from Italy (n=25) and Pakistan (n=5). Isolates were aligned to SPARK_1625_C1 from Italy; the tree was 
constructed using an alignment of 6,004,523 core SNPs. The source of each isolate is indicated.



Figure S10. Alignment of the GU595196 and KY798506 reference plasmids with the contigs identified 
in our data as KY798506-like. In red are the blaKPC genes, in grey the blaTEM and in blue the blaSHV.
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Figure S11. Approximate maximum likelihood phylogenetic tree (midpoint rooted) of the 59 Kpne isolates in this study 
isolated from the hospital wastewater, WWTP influent and river showing ST and the presence of plasmids as identified by 
MOB-suite. Contigs were also analysed using mlplasmids and any that were not identified as plasmid by both methods 
were omitted from this data. Plasmids associated with resistance genes are marked with a red asterisk.



0.0014

Figure S12. Approximate maximum likelihood phylogenetic tree (midpoint rooted) of the 59 Kpne
isolates in this study isolated from the hospital drain, WWTP influent and river showing ST and 
the presence of replicon types identified using Abricate with the PlasmidFinder database.
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Figure S13. Approximate maximum likelihood phylogenetic tree (midpoint rooted) of the 9 Kpne ST983 isolates in 
this study isolated from the hospital drain and WWTP influent. The presence of plasmids identified using MOB-
suite and mlplasmids, listed by accession number, is shown. The location of resistance genes (plasmid accession 
number / chromosomal / ambiguous) is shown; ambiguous was assigned to contigs when results from MOB-suite 
and mlplasmids did not agree. Plasmids associated with resistance genes are marked with an asterisk.



ED01500733

0.003

Figure S14.  Approximate maximum likelihood phylogenetic tree 
(midpoint rooted) of the 59 Kpne isolates in this study with ED01500733 
(ST983) from South Africa (accession number NZ_POWS00000000.1).  The 
South African ST983 isolate differed from the ST983 isolates in the current 
study by between 180 and 208 core SNPs.



Figure S15. Phylogenetic reconstruction of the ybt locus identified in our samples (n=33). 
Blue leaves correspond to Kpne isolates and pink to Korn.



Figure S16. Tanglegram linking the phylogenetic trees constructed using SNPs in the core genome (Left) and the ybt locus 
(Right). Both trees are midpoint rooted and include 33 isolates. The purple branches include Kpne ybt-positive isolates, while 
the green branches include Korn ybt-positive isolates. Lines have been drawn between tips in the trees representing the same 
isolate, while the tree branches were sorted to minimize the number of overlapping lines required. The lines are coloured by the
leaves that are common in subtrees of both trees. The lines of the leaves that are not common in subtrees of both trees were 
left in grey. The leaves are coloured according to the maximum number of matching clusters the trees contain (k=5).
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