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ABSTRACT

Forecasting is an indispensable element of operational research (OR) and an important aid

to planning. The accurate estimation of the forecast uncertainty facilitates several operations

management activities, predominantly in supporting decisions in inventory and supply chain

management and effectively setting safety stocks. In this paper, we introduce a feature-based

framework, which links the relationship between time series features and the interval forecasting

performance into providing reliable interval forecasts. We propose an optimal threshold ratio

searching algorithm and a new weight determination mechanism for selecting an appropriate

subset of models and assigning combination weights for each time series tailored to the observed

features. We evaluate our approach using a large set of time series from the M4 competition.

Our experiments show that our approach significantly outperforms a wide range of benchmark

models, both in terms of point forecasts as well as prediction intervals.
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1. Introduction

With the advent of the big data era, a large amount of time series data is being continuously

collected, which has led to an explosive demand for time series forecasting methods. Time

series forecasting has played a pivotal role in the development of many fields, such as finance,

meteorology, and signal processing. The vast majority of the time series forecasting literature

aims to improve point forecasting accuracy, and they mainly forecast the mean or the median

of the distributions for future observations. However, more attention should be focused on

quantifying the uncertainty of the prediction to measure the reliability of the forecasting results.

As a result, there is a large demand in many fields of research for forecasting methods that can

provide a comprehensive outlook of the expected future values and the future uncertainty.

Forecasting is an indispensable element of operational research (OR) (Fildes, Nikolopoulos,

Crone, & Syntetos, 2008). In a recent article, Nikolopoulos (2020) mentions that “we have no

other option rather than throwing as many examples as possible of how OR changes our lives [...]

within the ubiquitous OR discipline, forecasting is the finest example.” He continues to enlist

a series of application areas of forecasting in OR, such as healthcare, tourism, and marketing.

Within OR, applications of estimating forecast uncertainty include finance (Tung & Wong,

2009), energy (Taylor, 2017), supply chains (Rahman, Sarker, & Escobar, 2011), and inventory

management (Syntetos, Boylan, & Disney, 2009).

As claimed by the no-free-lunch theorem (Wolpert & Macready, 1997), it is impossible for all

forecasting methods to perform well on all time series. Petropoulos, Makridakis, Assimakopou-

los, and Nikolopoulos (2014) also point out that there are horses for courses, and appropriate

forecasting methods have to be chosen for certain time series. Cang and Yu (2014) argue that

forecast combination is superior in forecasting accuracy to the individuals used for averaging.

Petropoulos, Hyndman, and Bergmeir (2018) show that handling forecast uncertainty entails the

understanding of its three sources: model uncertainty (selecting the correct model), parameters

uncertainty (correctly estimating the values of the model’s parameters), and data uncertainty

(inherent noise/unpredictable component of time series). They find that solely tackling model

uncertainty leads to significant performance improvements, giving support on the value of fore-

cast combinations.

A vast majority of literature uses features to capture time series characteristics. A time

series feature can be any statistical representation of time series characteristics (e.g., mean,

standard deviation, autocorrelation and seasonality). Feature-based time series representations

have received emerging interests in various time series mining tasks (Kang, Hyndman, & Smith-

Miles, 2017), such as time series clustering, classification, and anomalous detection. Another

remarkable application of features in time series analysis is feature-based time series forecasting,
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which focuses on associating the time series features with forecasts and utilizing this connection

to improve point forecasting accuracy. Petropoulos et al. (2014) identify the decisive effect

of seven time series features on forecasting accuracies of several methods and translate these

findings into forecasting method selection. Talagala, Hyndman, and Athanasopoulos (2018)

propose the FFORMS (Feature-based FORecast-Model Selection) framework that identifies the

best forecasting model by using time series features based on a random forest. Montero-Manso,

Athanasopoulos, Hyndman, and Talagala (2020) conduct a model combining process based on

meta-learning by training weights for various individual forecasting methods according to time

series features.

However, compared to point forecasting, the literature on the uncertainty estimation of

feature-based time series forecasts is very limited. The M4 forecasting competition (Makridakis,

Spiliotis, & Assimakopoulos, 2020) encouraged participants to provide point forecasts as well as

prediction intervals (PIs). Among the submissions, Montero-Manso et al. (2020) compute the

point forecasts using FFORMA (Feature-based FORecast Model Averaging) and obtain the PIs

by using a simple equally weighted combination of the 95% bounds of näıve, theta and seasonal

näıve methods. This approach ranks second in the M4 competition but does not take any time

series characteristic into account when calculating the interval forecasts.

The main aim of this paper is to explore how time series features affect the uncertainty esti-

mation of forecasts, which is measured by PIs, for various forecasting methods, and to translate

these findings into an attempt to improve the performance of these PIs. To accomplish this, we

use generalized additive models (GAMs: Hastie & Tibshirani, 1990), which are characterized

by interpretability, flexibility, and the reduction of overfitting. GAMs are applied to depict the

relationship between time series features and interval forecasting accuracies, making interval

forecasts interpretable for time series features. However, how to translate these relationship

findings into the improvement of time series interval forecasting remains an important question.

In this paper, we propose a general feature-based time series interval forecasting framework for

the situation where the interest lies in forecasting a set of time series and evaluating their forecast

uncertainty. By adapting the scoring rule to the evaluation of interval forecasting performance,

the relationship between features and interval scores is established by GAMs to obtain the

optimal weights for interval forecast combination per time series. Then, point forecasts as well

as PIs can be obtained by the weighted combination of forecasts calculated from a pool of

individual forecasting methods. The main contributions of the paper are as follows:

1. Unlike previous literature on feature-based forecasting that focuses on point forecast, our

proposed approach focuses on prediction intervals, making it tightly connected with OR

decision making. Also, we depict the relationship between time series features and interval
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forecasting accuracies, which makes our proposed framework interpretable.

2. Taking full advantage of the relationship between time series features and interval forecast-

ing performances, we propose a new weight estimation mechanism to assign the optimal

combination weights to the individual forecasting methods for each time series. To the best

of our knowledge, this is the first time that time series features are taken into account for

forecast uncertainty estimation.

3. Rather than combining all the individual models in the traditional forecasting combination

approach, we propose an optimal threshold ratio searching algorithm, through which we

select an optimal subset of the available individual methods per time series for model com-

bination. Experiments on the M4 competition data show that the weighted combination

of individual models that are selected by the optimal threshold significantly outperforms

the weighted combination of all the individual methods.

4. Our proposed approach outperforms a variety of standard forecasting benchmark methods

with distinctions for both point forecasts and predictive intervals. Our approach also

ranks competitively against the top submissions of the M4 competition, even if direct

comparisons should be treated with care as we have had access to the test data of the

competition.

The rest of the paper is organized as follows. Section 2 introduces the M4 competition data

that is used as the test data in the paper, and presents the general feature-based time series

forecasting framework proposed for the forecast uncertainty estimation. We elaborate on the

components and details of this framework towards deriving the forecast combination in Sec-

tion 3. Section 4 applies the proposed framework to the M4 competition data and reports the

experiment results. Section 5 concludes the paper.

2. General framework

2.1. M4 competition data

To better present the proposed forecasting framework, we first introduce our test data and use

it to demonstrate each aspect of the proposed method in the following sections.

We consider the yearly, quarterly and monthly subsets of the M4 competition data as our

test dataset. The recent M4 forecasting competition (Makridakis et al., 2020) is a continuation

of the previous M competitions, which are a series of competitions that are devoted to identi-

fying methods with superior forecasting performance and being inspired from the submissions

to advance the forecasting theory and practice. M4 competition introduces the challenge of

forecasting 100, 000 time series with different periods.
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Figure 1. Distributions of sample sizes of the yearly, quarterly and monthly subsets in the M4
dataset.

The M4 dataset is publicly available in the M4comp2018 R package (Montero-Manso, Netto,

& Talagala, 2018). We focus on the yearly, quarterly, and monthly series which represent 95% of

the competition’s series. The yearly subset includes 23, 000 series with sample sizes ranging from

13 to 835 observations and with forecast horizons of 6 periods. The quarterly subset consists

of 24, 000 series with 8 forecast horizons, and the sample size ranges from 16 to 866 periods.

The monthly subset contains 48, 000 time series with a constant horizon of 18 periods ranging

from 42 to 2, 794 sample observations. As shown in Figure 1, the sample sizes of the yearly,

quarterly and monthly data in the M4 competition are not constant but vary following different

distributions.

2.2. Framework overview

We propose a general feature-based time series forecasting framework for the situation where

the interest lies in forecasting large collections of time series. The framework is designed mainly

for providing improved uncertainty estimation of feature-based time series forecasts, which is

measured by PIs. By changing the scoring rule to suit the evaluation of interval forecasting per-

formance, we capture the relationship between time series features and the interval forecasting

performance, and thus produce the weights for combining the interval forecasts from a pool of

methods.

The proposed framework, as outlined in Figure 2, consists of the training and testing phases.

In the training phase, a diverse set of reference data is required to train the relationship between

time series features and forecasting performance of the individual methods in a pool. We describe

in detail the generation of reference data in Section 2.3. Given the reference dataset, we first

separate each time series into a training period (historical observations) and a testing period

(true values of future data). Second, we select a collection of forecasting methods (e.g., Näıve,

ARIMA) as the method pool. The training period is applied to train the individual methods and
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Figure 2. Feature-based time series forecasting framework. This framework is divided into train-
ing and testing phases shaded in blue and grey, respectively.

calculate the corresponding PIs. The interval forecasting performance can be easily evaluated

by a certain scoring rule given the testing period. Third, we extract features (e.g., length, trend

and seasonality) that reveal the intrinsic nature of the time series from the training period.

Finally, we establish a model for each individual forecasting method to link time series features

with its interval forecasting performance. Furthermore, we design an algorithm for the optimal

threshold ratio search (see Section 3.2 for the details), which contributes to the identification

of the advantageous individual methods used for forecast model combining.

In the testing phase, we only have to extract time series features from the newly given

time series (test dataset, which is M4 in this paper) and put them into the models that have

been previously trained for all the individual methods in the training phase. Subsequently,

the predicted values obtained from the pre-trained models are transformed into a convex set of

combining weights. The weights are then applied for model combination of the methods selected

by the optimal threshold ratios. Hence, the point forecasts as well as PIs of the newly given

time series are finally obtained.

It is worth mentioning that our proposed framework is a general procedure. The time series

features and the forecasting method pool can be customized for the newly given time series.

Moreover, we can consciously opt for a targeted approach for the time series being analyzed

to capture how the time series features relate to the interval forecasting performance in our

proposed framework. In this paper, we apply GAMs to achieve this goal and describe the
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details for our framework in the following sections.

2.3. Reference dataset generation

As shown in Figure 2, our proposed framework first requires a reference dataset for the training

phase. The effectiveness of our proposed framework rests on a fundamental assumption that the

reference dataset and the test dataset originate from the same population. In other words, the

reference and test datasets are sampled from one population and have a similar data-generating

process. This assumption ensures that the pre-trained algorithm based on the reference dataset

can be translated into the application on the test dataset. Specifically, our proposed framework

focuses on the feature space, and thus a reference dataset with features as diverse as the test

dataset will contribute to improving the forecasting performance.

The reference dataset used for training the algorithm is expected to cover the newly given

time series in feature spaces, which is a significant concern when we opt for a targeted reference

dataset. Recently, Kang, Hyndman, and Li (2020) propose GRATIS (GeneRAting TIme Series

with diverse and controllable characteristics) as an approach to simulating time series based on

mixture autoregressive (MAR) models, which provides a guarantee for obtaining sufficient and

targeted new time series with controllable features. Instead of simulating time series from models

with fixed parameter values as most typical simulation processes do, GRATIS uses parameter

distributions to generate time series data based on MAR models, allowing to capture the depen-

dence nature of time series and generate diverse time series instances. Besides, GRATIS can be

used to generate sets of time series with target features by tuning the parameters of the MAR

models.

Kang, Hyndman, and Li (2020) design a simulation study to generate 20, 000 yearly, 20, 000

quarterly, and 40, 000 monthly time series with certain parameter settings. They project the

features (computed using the R package tsfeatures, Hyndman, Kang, et al., 2019) of the

generated time series to a two-dimensional instance space and investigate that the features for

the generated time series comprehensively cover that for the M4 competition data.

In this paper, we follow Kang, Hyndman, and Li (2020) and apply the GRATIS approach to

separately generate 20, 000 yearly, 20, 000 quarterly, and 40, 000 monthly time series that have

the same forecast horizons as the M4 competition data. We use the implementation available

in the gratis package for R (Kang, Li, Hyndman, O’Hara-Wild, & Zhao, 2020). The lengths of

the generated time series are randomly sampled from the distributions of those of the M4 data

(see Figure 1). We refer to the generated time series as the reference dataset. Benefiting from

the diversity and coverage of the generated time series in feature spaces, the models trained by

the reference dataset in the training phase can be applied to the M4 dataset. The details of the
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reference and test datasets are summarized in Table 1.

Table 1. The number and forecast horizons of time series in the reference and test datasets.

Dataset Yearly Quarterly Monthly

Number Horizon Number Horizon Number Horizon

Reference (GRATIS) 20,000 6 20,000 8 40,000 18
Test (M4) 23,000 6 24,000 8 48,000 18

2.4. Time series features

Time series features contain information that captures the dynamic patterns in data and char-

acterizes their properties as numerical values. There are many time-series analysis methods to

depict these characteristics, such as autocorrelation, entropy, statistical tests, and linear and

nonlinear regression analysis. The features used in our proposed framework should be able to

identify the characteristics of various aspects of the time series.

We consider the set of 42 features which are the same as the features in Montero-Manso

et al. (2020). These 42 features, implemented in the tsfeatures package for R, capture the

characteristics of the time series from various aspects. For instance, peak indicates the location

of the maximum value in the seasonal component and STL decomposition of the series. The fea-

tures nperiods and seasonal-period are categorical variables: nperiods takes the values 0 or 1, and

seasonal-period takes the values 1, 4, or 12 for yearly, quarterly and monthly series, respectively.

Multiple dummy variables should be created from the feature seasonal-period: seasonal-period-q

(takes the value of 1 when the value of seasonal-period is 4 and is otherwise 0) and seasonal-

period-m (takes the value of 1 when the value of seasonal-period is 12 and is otherwise 0). In

this way, we actually use 43 features in our experiment.

2.5. Interval forecast evaluation

In this paper, we apply the central (1 − α) × 100% PIs for the median to assess the future

uncertainty of point forecasts. We use the mean scaled interval score (MSIS, Gneiting & Raftery,

2007) to measure the accuracy of PIs, as used in the M4 competition. The calculation of MSIS

can be stated as follows:

MSIS =
1

h

∑n+h
t=n+1(Ut − Lt) + 2

α(Lt − Yt)1 {Yt < Lt}+ 2
α(Yt − Ut)1 {Yt > Ut}

1
n−m

∑n
t=m+1 |Yt − Yt−m|

, (1)
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where Yt are the true values of the future data, [Lt, Ut] are the generated PIs, h is the forecasting

horizon, n is the length of the historical data, and m is the time interval symbolizing the length

of the time series periodicity (e.g., m takes the values of 1, 4, and 12 for yearly, quarterly, and

monthly data, respectively), 1 is the indicator function, which returns 1 when the condition is

true and otherwise returns 0.

Equation (1) illustrates the logic and calculations of MSIS. The numerator is a penalty for

the width of the generated PIs and for the cases where the generated PIs have not covered

the true values of the future period. The denominator attempts to make the score less scale

dependent.

3. Feature-based interval forecast combination

3.1. Linking time series features with interval forecasting performance

A crucial step in our proposed time series forecasting framework is to capture how time series

features relate to the interval forecasting performance (MSIS) of each individual method in a

pool. We use generalized additive models (GAMs), which were originally proposed by Hastie

and Tibshirani (1990), to characterize the contribution of each time series feature to the interval

forecasting performance in the training phase of our proposed framework, where the response

variable is MSIS and the covariates are the time series features. Since the values of MSIS are

all positive, we take the logarithmic form of the MSIS scores to expand their range to the real

number set R. Considering p extracted features and M forecasting methods, the GAM that we

train for the j-th method using N time series in the reference dataset can be written as:

g(E(log(MSISij))) = βj0 + βj1F1i + ...+ βjkFki + sj1(F(k+1)i) + ...+ sj(p−k)(Fpi), (2)

where i = 1, ..., N and j = 1, 2, ...,M , MSISij is the MSIS value of the i-th time series using the

j-th method, Fi = {F1i, ..., Fpi} denotes a predictor vector consisting of extracted features of

the i-th time series, F1i, ..., Fki are linear predictors with dummy features (features that have

value as categorical data), F(k+1)i, ..., Fpi are predictors that can be modeled non-parametrically

except linear terms, g is the link function used to establish the relationship between the mean

values of log(MSIS) and the extracted features, βj0 denotes the intercept of the regression,

βj1, ..., βjk are the regression coefficients of the linear terms, and the terms sj1(·), ..., sj(p−k)(·)

are smooth and non-parametric functions.

GAMs are flexible but computationally challenging in determining the form of smooth func-

tions and controlling the smoothness of these functions. In this paper, we estimate the GAMs by

using the penalized iterative least squares method introduced in the R package mgcv (Wood &
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Wood, 2019). By minimizing the generalized cross-validation score, the method synchronously

identifies the degrees of freedom for each smooth function in the process of model fitting. In

GAMs, the smooth functions in Equation (2) can be determined by selecting the appropriate

penalty for each pre-prepared basis function, which controls its degrees of freedom using a single

smoothing parameter (Wood, 2001).

It is worth mentioning that our framework is general and other nonlinear or nonparametric

approaches are equally well applicable. However, we find that GAM applies to our situation due

to the following key merits:

1. Interpretability. It is straightforward to explore the partial effects of each time series

feature on the interval forecasting accuracy. The marginal effect of each feature on the

MSIS is not interfered by other features due to the additive form of the model. The

effect analysis, established using GAM, plays a driving role in the design of a weight

determination mechanism (see Section 3.2 for the details), which is dedicated to assigning

weights for uncertainty estimation based on the model combining.

2. Regularization. The model is able to prevent over-fitting by controlling the smoothness

of the predictor functions and adapting a cross-validation scheme. This is particularly

useful if one has more than necessary features as the covariates. Particularly, we consider

the set of 43 features in our experiment.

3. Flexibility. With GAM, smooth functions are no longer restricted to linear and poly-

nomial forms, providing excellent performance in capturing the nonlinear relationship

between time series features and interval forecasting accuracies.

3.2. Weight assignment and optimal threshold ratio search

Time series forecast combination firstly selects a suitable collection of forecast models from

a model pool and then produces the forecasts based on their weighted combination. A vast

amount of literature shows such a procedure could produce accurate point forecasting results,

especially when none of the individual models is close to the true model. We extend the idea of

forecasting combination to the prediction interval combination.

We transform the fitted MSIS values of the pre-trained GAMs into a convex set of combining

weights to measure the importance of each individual method in the interval forecasting process

with the adjusted softmax function for the i-th time series in the j-th individual method as:

Pij =

exp

{
µi− ̂log(MSISij)

σi

}
∑M

k=1 exp

{
µi− ̂log(MSISik)

σi

} , (3)
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where i = 1, ..., N and j = 1, ...,M , µi and σi denote the mean and standard deviation of

the fitted values for log(MSIS) obtained by the M pre-trained GAMs for the i-th time series,

respectively.

The softmax function normalizes each element in the input vector to a combining weight and

ensures the sum of all the elements in the transformed weight vector is equal to 1. The adjusted

softmax function is actually a softargmin function, and we normalize the input elements by µi

and σi. We prefer the exponential form rather than other forms (e.g., square or absolute form)

in the softmax function because negative values should be down-weighted to near-zero. With

the exponential form, a larger log(MSIS) value, that is, a poor prediction accuracy, corresponds

to a lower weight compared to others. The adjusted softmax function also avoids a well-known

problem in the original softmax function (Goodfellow, Bengio, Courville, & Bengio, 2016) that

a larger value of the input vector leads to a much higher weight than other elements.

We select a subset of appropriate methods for each time series tailored to their features from

the method pool using an optimal threshold ratio searching algorithm. The pseudocode of the

algorithm is presented in Algorithm 1. We first define a threshold ratio Tr as a random number

between 0 and 1. For the i-th time series and the j-th individual method, we calculate the

ratio of weight by Rk = Pij/max(Pik), where k = 1, 2, · · · ,M . Then, the individual methods

that satisfy Rk ≥ Tr are selected for forecast combination. In particular, Tr = 0 indicates that

all the methods from the pool are selected, and Tr = 1 indicates that only the method with

the minimal fitted log(MSIS) is selected. In summary, the algorithm is essentially a searching

process that calculates combined forecasts in the configuration of each pre-set threshold ratio,

and then determines the threshold ratio with the highest accuracy as the optimal threshold.

Hence, the threshold ratio determines the number of candidate methods selected for model

combining.

3.3. Prediction interval combination

We combine the PIs calculated from the previously selected methods in Section 3.2. Inspired by

the previous studies on quantiles combination (Hora, 2004; Lichtendahl Jr, Grushka-Cockayne,

& Winkler, 2013), we consider two interval combination methods in this paper, which are the

simple average and the weighted average.

The interval combination considers the uncertainty of future forecasts with a certain set

of combining weights. Assuming S forecasting methods are selected for the i-th time series

according to a pre-defined threshold ratio, the weighted lower (f lwi) and upper (fuwi) bounds of

10



Algorithm 1 The optimal threshold ratio search

Input:
O = {x1, x2, ..., xN}: the collection of N time series in the reference dataset.
Tr = {Tr1, T r2, ..., T rq}: the set of q pre-set threshold ratios.
M : the number of individual forecasting methods.

Output:
The optimal threshold ratios for yearly, quarterly and monthly data.

1: for i = 1 to q do
2: for j = 1 to N do
3: Obtain the fitted log(MSIS) of time series xj from the M pre-trained GAMs in the

training phase.
4: Apply the Equation (3) to calculate the adjusted softmax transformation P for xj .
5: Calculate the ratio of P : Rk = Pk/max1≤k≤M (Pk).
6: Select the individual methods that satisfy Rk ≥ Tri for xj and utilize these methods

for forecast combination (see Section 3.3 for the details).
7: Calculate the MSIS value of xj .
8: end for
9: Calculate the average MSIS values of yearly, quarterly and monthly data.

10: end for
11: The optimal threshold ratios are pre-set threshold ratios with minimal MSIS for the yearly,

quarterly and monthly series in O, respectively.

the h-step prediction interval are defined as:

f lwi =
1∑S

k=1 Pik

S∑
k=1

Pikf
l
ik,

fuwi =
1∑S

k=1 Pik

S∑
k=1

Pikf
u
ik,

(4)

where f lik and fuik are the lower and upper bounds of the h-step prediction interval for the selected

k-th individual method, and Pik denotes the weight of the k-th method being selected, which

is calculated from the adjusted softmax function. If Pik = 1 for k = 1, 2, ..., S, the combined

prediction interval
[
f lwi, f

u
wi

]
reduces to the simple average combination.

In addition to PIs, our proposed framework also aims to provide improved point forecasts,

giving a comprehensive outlook of the expected future values and the future uncertainty. For

i-th time series, the h-step point forecasts can be calculated as:

fwi =
1

2
(f lwi + fuwi), (5)

where fwi is the point forecasts for the i-th time series. In the same way as the combined

prediction intervals, fwi reduces to the simple average combination when Pik = 1 for k =

1, 2, ..., S.

We have developed an R package fuma for the implementation of the aforementioned frame-
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work, which is available at https://github.com/xqnwang/fuma.

4. Application to the M4 competition data

In this section, we apply our approach to the M4 competition data, defining a suitable pool

of models that will also act as benchmarks. We also analyze the partial effects of time series

features on the interval forecasting accuracy of each individual model. In addition, we present

the optimal threshold ratios captured in the reference data, as well as the interval forecasting

results of M4 data based on our proposed framework.

4.1. Evaluation measures

To assess the performance of our proposed framework, we consider the MSIS in Equation (1)

and the absolute coverage difference (ACD) as the measures of interval forecasting accuracies,

as used in the M4 competition. As a supplemental scoring rule, ACD measures the absolute

difference between the actual coverage of the method and the nominal coverage, where coverage

reflects the rate at which the true values fall within the PIs. Lower MSIS and ACD values are

better.

We also evaluate point forecasting accuracies using the mean absolute scaled error (MASE,

Hyndman & Koehler, 2006), given by

MASE =
1

h

∑n+h
t=n+1 |Yt − Ŷt|

1
n−m

∑n
t=m+1 |Yt − Yt−m|

,

where Ŷt are the point forecasts. MASE is considered for its excellent mathematical properties,

such as less scale dependent and less insensitive to outliers. Lower MASE values are better.

4.2. Individual model pool

We use eight forecasting models as our method pool, as shown in Table 2 and implemented in

the R package forecast (Hyndman, Athanasopoulos, et al., 2019). Note that the forecasting

results of snäıve models for yearly series essentially coincide with that of näıve models and,

thus, there are seven forecasting models are considered in the model pool for the yearly series.

Given the individual model pool, we first calculate the point forecasting accuracy, which is

evaluated in terms of MASE and the forecasting accuracy of the 95% confidence intervals (α =

0.05), which is measured by MSIS, for all the methods in the pool on the reference dataset. We

can see from Figure 3 that the distributions of point forecasting accuracy for different individual

methods are clearly similar to those of the interval forecasting accuracy. For example, for the
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Table 2. The model pool considered in the application to the M4 competition data.

Individual model Description

auto-arima The best autoregressive integrated moving average model that is automati-
cally selected by the AICc value.

ets Exponential smoothing state space model proposed by Hyndman, Koehler,
Snyder, and Grose (2002).

tbats The exponential smoothing state space model with Trigonometric, Box-Cox
transformation, ARMA errors, Trend and Seasonal components.

stlm-ar Time series is decomposed by STL method proposed by Cleveland, Cleve-
land, McRae, and Terpenning (1990), then an AR model are fitted for the
seasonally adjusted series.

rw-drift Random walk with drift.

thetaf A univariate forecasting model proposed by Assimakopoulos and Nikolopou-
los (2000). It can be seen as a decomposition approach to forecasting by
modifying the local curvatures of the time series with Theta-coefficient.

näıve The simplest time series forecasting method. The point forecasts of all fore-
cast horizons are equal to the last observation in the training period.

snäıve Seasonal näıve. The point forecast is equal to the most recent value of the
same season.

yearly series, the median and variance of both point and interval forecasting accuracies of the

stlm-ar method are significantly larger than that of auto-arima, ets and tbats. Moreover, auto-

arima and ets perform well in both point and interval forecasts for yearly, quarterly and monthly

series in reference data, while stlm-ar, näıve and snäıve methods perform poorly compared to

other methods in the method pool. This indicates that the proposed forecasting framework for

the uncertainty estimation may be used to provide promising point forecasts.

4.3. Effect analysis of time series features

Given the feature matrix FN×p and score matrix MSISN×M for the N time series in the reference

dataset and M individual methods, GAMs are modeled for all the methods in the pool, giving a

comprehensive description of the partial effects of features on the interval accuracy of forecasting

methods.

For demonstration purposes, we combine the partial effect plots of eight individual methods,

as presented in Figure 4. In the analysis, the MSIS scores assume a 95% confidence level. Note

that since the GAMs analysis is performed on the whole reference dataset (including yearly,

quarterly and monthly categories generated by GRATIS), the marginal effect of each feature

on log(MSIS) in Figure 4 is also built based on all the frequencies of the reference dataset and

not interfered by other features (e.g., data frequency). We analyze the relationship depicted by
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Figure 3. Boxplots of point and 95% interval forecasting accuracy over reference dataset for the
individual method pool.

GAMs from the following three angles.

Given a particular forecasting method, Figure 4 first reveals that the partial effect of one fea-

ture on the interval forecasting performance is distinct from the other features. This distinction

stems from the properties and intrinsic patterns reflected by the various features. Taking the

auto-arima method as an example, if we keep other features fixed, the plot shows a downward

trend as the value of x-acf1 increases, indicating a drop in the MSIS values, which further im-

plies an improved accuracy. We consider in detail the cause of this phenomenon: x-acf1 reflects

the degree of the autocorrelation relationship in the time series, while auto-arima is excellent

at capturing the autocorrelation. As another example, the plot shows an inverted-U shape re-

lationship (a slight rise and then a substantial fall) between seasonal-strength, which measures

the seasonal strength, and the MSIS values. The curve indicates that the auto-arima method

works well in capturing strong seasonality rather than inconspicuous seasonality of the time

series using the seasonal part of the ARIMA model. Therefore, the auto-arima method should

be chosen to deal with time series with strong seasonality.

Figure 4 also indicates that a feature has its unique way of affecting the interval forecasting

performance of some specific forecasting methods, while sometimes all the forecasting methods

behave similarly with time series features changing. Taking the feature x-acf1 as an example,

as the value of x-acf1 increases, the interval forecasting performance of the eight methods in

the pool successively improves in a similar path under the condition of keeping other features
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Figure 4. The partial effects of features (x-axis) on log(MSIS) (y-axis) from trained GAMs for
reference data with the method pool. Plots contain 40 features, and 3 dummy features are
removed.
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fixed. In addition, as the value of seasonal-strength increases, the MSIS values of the auto-arima

method present an inverted-U shape in a similar way as the ets and tbats methods, while that

of other individual methods show an overall ascent. This suggests that we would prefer the

auto-arima, ets and tbats methods to others when we have to forecast a time series with a large

value of seasonal-strength. Therefore, the GAMs analysis facilitates the model selection in light

of how features affect the interval forecasting accuracy of the methods in a pool.

Finally, Figure 4 shows that some features are biased towards up-weighting some forecasting

methods over others. The time series features, which are applied to select appropriate meth-

ods for interval forecasting, should perform discriminatingly on how to affect the forecasting

accuracy of various methods. The features with similar growth paths of partial effects on all

the individual methods would play a weak role in the model selection process. In contrast,

as shown in Figure 4, diff1-acf1, arch-acf, alpha, beta, lumpiness, non-linearity, seasonal-strength,

peak, trough, and hw-beta may have significant impacts on our model selection process due to

their diverse partial effects on the forecasting performance.

4.4. Interval forecasting results

We first apply all the pre-trained GAMs to search for the optimal threshold ratios (see Al-

gorithm 1 for the details) that performs best on selecting appropriate methods for each data

frequency on the reference dataset, visualized in Figure 5. A larger threshold value means that

fewer methods are selected for model combining, while a smaller threshold value means that

many more methods are used for model combining. As we can see from all the panels, the

averaged MSIS scores of each data frequency show an initial decrease and then increase as the

threshold increases. This indicates that controlling the number of methods using the threshold

searching algorithm is beneficial for improving the forecasting performance in our experiment.

As presented in Figure 5, the optimal thresholds for yearly, quarterly and monthly series are all

set to 0.3 and 0.2 for the simple average and the weighted average combination, respectively.

Having identified the optimal settings for the threshold ratios, given a new time series,

we can easily map the optimal thresholds into which models are selected for model combi-

nation and what weights are assigned to these models. For example, if the weight values of

0.3, 0.3, 0.2, 0.01, 0.06, 0.07, 0.03, and 0.03 are initially assigned to auto-arima, ets, tbats, stlm-

ar, rw-drift, thetaf, näıve, and snäıve using the previously trained GAMs and the adjusted

softmax function, respectively, then auto-arima, ets, tbats, rw-drift, and thetaf are selected for

model combination because the ratios of their weights (Rk) are greater than or equal to the

optimal threshold (0.2). Subsequently, their weights are normalized to sum to one.

We benchmark the forecasting performance of our proposed feature-based framework, abbre-
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Figure 5. The search path of the optimal threshold ratios for yearly, quarterly and monthly
series on the reference dataset. Two interval combination methods are considered: the simple
average and the weighted average.

viated from now on simply as ‘fuma’ (forecast uncertainty based on model averaging), against

all the methods in the pool as well as their simple equally weighted combinations. We adopt

an overall appraisal from the interval forecasting performance as well as the point forecasting

performance. All the models considered for comparison are listed as follows:

• All the individual models in the model pool. This collection includes eight models that we

select in our application on the M4 data, as listed in Table 2.

• The simple equally weighted combination of all the individual models. We refer to this

model as ‘simple averaging’.

• The simple combination of individual models selected by the optimal threshold in our

proposed framework. We refer to this model as ‘fuma (mean)’.

• The weighted combination of individual models that are selected by the optimal thresh-

old in our proposed framework. The weights are determined by the weight assignment

mechanism proposed in our framework. We refer to this model as ‘fuma (weighted)’.

• The weighted combination of all eight methods in the pool, where the weights are assigned

according to our framework. We refer to this model as ‘fuma (all weighted)’.

Figure 6 presents the performance of the uncertainty estimation across various confidence

levels (80%, 85%, 90%, 95%, and 99%) for our feature-based framework and all the benchmark

models with regard to the MSIS values. We observe that ‘fuma (mean)’, ‘fuma (weighted)’

and ‘fuma (all weighted)’ consistently outperform all the individual methods as well as ‘simple

averaging’ in terms of the MSIS values for each data frequency. The results indicate that the

optimal threshold ratio searching algorithm works to select appropriate models for combination,

resulting in the fact that ‘fuma (mean)’ achieves performance improvements compared to ‘simple

averaging’. In this way, instead of calculating forecasts of all the models in the pool for the newly

given time series, only the individual models selected by the optimal thresholds are expected to
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Figure 6. Benchmarking the performance of fuma evaluated in terms of MSIS against the eight
individual methods for different confidence levels for each data frequency.

be established and serve as the basis for the final forecasts in the testing phase.

We proceed by comparing the rates of each individual model being selected for ‘fuma

(weighted)’ on M4, which are determined by previously trained GAMs and optimal thresh-

old ratios in the testing phase of our framework. Figure 7 gives a detailed description of the

selection rates of each model in the pool for different confidence levels and each data frequency.

We can see that auto-arima, tbats and ets are the top three methods that are selected for the

weighted combination in our feature-based framework, while the stlm-ar, näıve are selected at

smaller rates for each data frequency.

We pick two commonly adopted confidence levels (80% and 95%) and summarize the fore-

casting performance of fuma against all the individual models and their simple average. Table 3

presents the MSIS and MASE results of all models for each data frequency separately as well

as across all frequencies (Total). We observe that the ‘simple averaging’ does not generally help

in improving the forecasting performance either for point or interval forecasting. On the other

hand, ‘fuma (mean)’, ‘fuma (weighted)’ and ‘fuma (all weighted)’ perform excellently against all

the individual methods and their simple average with regards to MSIS and MASE for each data

frequency, indicating that fuma gives a comprehensive outlook of the expected future values

as well as the future uncertainty. It is worth mentioning that ‘fuma (weighted)’ produces com-

bined forecasts superior to ‘fuma (mean)’ and ‘fuma (all weighted)’ for monthly data, proving

the validity of the weight assignment mechanism and the optimal threshold searching algorithm

in our framework.

Next, we investigate the statistical significance of the performance improvements achieved by

fuma. We conduct the multiple comparisons with the best (MCB: Koning, Franses, Hibon, &
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Figure 7. The rates of being selected to combine forecasts in our feature-based framework for
each individual method. Different nominal coverages are considered in this plot: 80, 85, 90, 95,
and 99%.

Stekler, 2005) test to identify whether the average ranking differences of all models considered

for comparison across time series are statistically significant. The MCB test is applied based on

MSIS and MASE for the 95% confidence level, as shown in Figure 8. With MCB, the ranking

performances are statistically different if the intervals of two models do not overlap.

The MCB results show that ‘fuma (weighted)’ results in the best-ranked performance in terms

of the MSIS values, except that it ranks similarly with the auto-arima and thetaf methods on the

quarterly series with the 95% confidence level. In particular, the interval forecasting performance

of ‘fuma (weighted)’ is significantly better than that of both ‘fuma (mean)’ and ‘fuma (all

weighted)’ for each data frequency separately as well as across all frequencies, which further

confirms the positive effects of the weight assignment mechanism and the optimal threshold

searching algorithm. Besides, even if our proposed framework is proposed for interval forecasting,

fuma provides comparable and even significantly better point forecasting performance.

Table 4 depicts the MSIS and ACD results assuming a 95% confidence level for fuma and the

top five ranked methods from the M4 competition in terms of PIs precision. We observe that

fuma results in comparable performances with the top ranked methods from the M4 competition

and ‘fuma (all weighted)’ ranks third for both MSIS and ACD. Specifically, the proposed fuma

method ranks second for quarterly and monthly series with regard to MSIS. However, we should

treat these comparisons with care, as the participants in the M4 competition did not have access

to the test data.
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Figure 8. MCB test results for the ranks of all models (individual model pool, ‘simple averaging’,
and fuma) for each data frequency separately as well as across all frequencies (Total). The MSIS
and MASE values assume a 95% confidence level.

20



Table 3. Benchmarking the performance of our proposed feature-based framework against all
the individual models and their simple equally weighted combination (‘simple averaging’) with
regard to the MSIS and MASE values for the confidence levels of 80% and 95%. For each
confidence level, the MSIS and MASE values smaller than the minimum value of the model
pool and ‘simple averaging’ are marked in bold.

Confidence level 80% Confidence level 95%

MSIS MSIS

Yearly Quarterly Monthly Total Yearly Quarterly Monthly Total

auto-arima 20.450 6.224 4.901 9.000 46.226 11.299 8.719 18.452

ets 18.639 6.001 5.003 8.557 34.897 9.452 8.297 15.029

tbats 19.291 5.981 6.192 9.310 40.263 9.780 13.122 18.849

stlm-ar 62.134 9.267 6.443 20.639 127.747 14.805 11.140 40.297

rw-drift 18.433 7.471 7.420 10.099 42.773 12.568 12.282 19.736

thetaf 19.826 6.480 5.209 9.069 44.451 11.624 9.546 18.522

näıve 24.177 8.176 7.389 11.652 56.554 14.073 12.300 23.462

snäıve 24.177 8.071 6.502 11.178 56.554 13.346 10.846 22.544

simple averaging 19.680 6.176 5.365 9.035 38.050 9.476 9.012 16.159

fuma (mean) 16.476 5.772 4.725 7.834 32.857 9.281 7.900 14.291

fuma (weighted) 16.581 5.749 4.673 7.828 32.852 9.234 7.859 14.257

fuma (all weighted) 16.336 5.733 4.730 7.793 32.196 9.075 8.050 14.155

MASE MASE

Yearly Quarterly Monthly Total Yearly Quarterly Monthly Total

auto-arima 3.451 1.175 0.926 1.600 3.451 1.175 0.926 1.600

ets 3.444 1.161 0.948 1.606 3.444 1.161 0.948 1.606

tbats 3.437 1.186 1.053 1.664 3.437 1.186 1.053 1.664

stlm-ar 10.387 2.028 1.334 3.701 10.387 2.028 1.334 3.701

rw-drift 3.068 1.330 1.180 1.675 3.068 1.330 1.180 1.675

thetaf 3.375 1.231 0.970 1.618 3.375 1.231 0.970 1.618

näıve 3.974 1.477 1.205 1.944 3.974 1.477 1.205 1.944

snäıve 3.974 1.602 1.260 2.003 3.974 1.602 1.260 2.003

simple averaging 3.691 1.243 0.981 1.703 3.691 1.243 0.981 1.703

fuma (mean) 3.031 1.144 0.913 1.484 3.049 1.147 0.906 1.486

fuma (weighted) 3.037 1.141 0.905 1.481 3.032 1.142 0.902 1.478

fuma (all weighted) 3.016 1.144 0.910 1.479 3.023 1.145 0.912 1.482

5. Conclusions

In this paper, we focused on the uncertainty estimation of feature-based time series forecasts

where the interest is in forecasting large collections of time series. To this end, we designed a

general feature-based time series forecasting framework to explore how time series features affect

the uncertainty estimation of forecasts and then translated these findings into an attempt to

improve the forecasting accuracy of PIs. At the same time, we developed a new weight determi-

nation mechanism, which is applied to assign combination weights for each time series tailored

to their features, and an optimal threshold ratio searching algorithm, which focus on selecting
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Table 4. Benchmarking the performance of our proposed framework against the top five methods
in the M4 competition in terms of PIs precision.

MSIS ACD

Yearly Quarterly Monthly Total Yearly Quarterly Monthly Total

Rank M4 competition

1 (Smyl) 23.898 8.551 7.205 11.587 0.003 0.004 0.005 0.004

2 (Montero-Manso, et al.) 27.477 9.384 8.656 13.397 0.014 0.016 0.016 0.016

3 (Doornik, et al.) 30.200 9.848 9.494 14.596 0.037 0.029 0.054 0.044

4 (ETS - Standard for comparison) 34.900 9.452 8.297 15.030 0.111 0.018 0.016 0.040

5 (Fiorucci & Louzada) 35.844 9.420 8.029 15.115 0.164 0.056 0.028 0.068

Method Our framework

fuma (mean) 32.857 9.281 7.900 14.291 0.124 0.037 0.018 0.048

fuma (weighted) 32.852 9.234 7.859 14.257 0.128 0.036 0.016 0.048

fuma (all weighted) 32.196 9.075 8.050 14.155 0.115 0.027 0.005 0.037

the subset models for model combining. To our knowledge, this is the first time that features are

taken into account to estimate the uncertainty of forecasts. We investigated the performance

of our approach against the benchmark models and the top ranked methods from the M4 com-

petition. We found that our approach performs excellently against the individual benchmark

models. Moreover, we demonstrated the positive role of the weight assignment mechanism and

the optimal threshold searching algorithm in improving forecasting performance.
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