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Abstract 

Detection and attribution of trends in individual at-site series of hydrological extremes is routinely 

undertaken using simple linear regression-based models.  However, the available records are often too 

short to allow a consistent assessment of trends across different stations in a region.  The theoretical 

developments presented in this paper propose a new method for estimating a regional regression slope 

parameter across a region, or pooling group, of catchment considered hydrologically similar, and where 

annual maximum events at different sites are cross-correlated.  Assuming annual maximum events to 

follow a two-parameter log-normal distribution, a series of Monte Carlo simulations demonstrate the 

ability of the new framework to accurately identify the regional slope, and provide estimates with a 

reduced sampling variability as compared to the equivalent at-site estimates, thereby enhancing the 

statistical power of the trend test.  This regionally-based trend estimates would allow for a clear 

characterization of changes across several stations in a region. Finally, the new method is applied to 

national dataset of annual maximum series of peak flow from 662 gauging sites located across the United 

Kingdom.  The results show that the regional slope estimates are significantly positive (p<0.05) consistently 

in the west and north of the country, while mostly not significant in the east and south.  This translate into 

a corresponding increase in design flood (as measured by regional magnification factors) of up-to 50% for 

time horizon of 50-years into the future. 

 

 

1. Introduction 



Detection and attribution of trend in series of hydrological and climatological extremes is an important 

endeavour both as early warning of changes in the environment and to ensure that hydrological design is 

appropriate via non-stationary extreme value models where distribution parameters are allowed to change 

as a function of one or more covariates (Salas et al., 2018).  Studies investigating the impact of climate and 

catchment change on large-scale databases of observed records of environmental extremes, such as high 

and low flow, rainfall or temperature, typically rely on relatively simple at-site methods such as the Mann-

Kendall test or linear regression models (Faulkner et al., 2020, Vicente‐Serrano et al. (2020), Mohan et al., 

2020).  However, as discussed by Prosdocimi et al. (2014) and Brady et al. (2019) these tests have a low 

statistical power when applied to the short annual maximum series (AMS) derived from station 

measurements typically characterised by the high year-to-year variability of the extremes.  Consequently, it 

is often difficult to discern compelling evidence of consistent regional trends when these tests are applied 

on a site by site basis (e.g. Vilarini et al., 2009; Archfield et al., 2016; Mediero et al., 2015).  

Attempts to provide more consistent regional assessment of trend have been published by, for example, 

Bloeschl et al. (2019) who smoothed at-site estimates of trend obtained from observed flood records 

located across Europe to provide more coherent spatial patterns.  Another approach is to develop regional 

trend tests analogue to regional frequency analysis, where the sampling variability of at-site estimators is 

overcome by trading space for time and forming a regional (or pooled) estimate of trend at a particular site.  

Examples of this approach include Douglas et al. (2000) who presented a regional version of the Mann-

Kendall test, including consideration of the variance inflation caused by the existence of cross-correlation 

between the observations at different sites.  Renard et al. (2008) compared the performance of four 

different methods for assessing field significance and investigated the existence of trend in regional flood 

datasets from France.  Prosdocimi et al. (2019) presented a spatial hierarchical model allowing an 

assessment of consistent and significant trend signals in regions of the United Kingdom.  These studies 

exemplify how it is possible to derive regional estimators with a generally lower variance than the 

corresponding tests based on at-site data only, but of course at the costs of having to evoke more 

complicated statistical models and estimation techniques.  A second issue is the need to impose simplifying 

model assumptions that might not reflect the data; for example, classifying a region as being 



‘homogeneous’ thereby stating that the hydrological characteristics of all sites in the region are identical.  

Depending on the assumptions made in the modelling building phase, these assumptions can inflate either 

bias or variance of the regional estimator. 

Vogel et al. (2011) proposed the use of magnification factors to quantify the effect of change in the 

observed records on the magnitude of design floods over a pre-defined time period.  The concept initially 

relied on the use of a two-parameter log-normal distribution (LN2) and have subsequently been applied by, 

for example, Prosdocimi et al. (2014) and Zhang et al. (2015).  Prosdocimi and Kjeldsen (2020) extended the 

concept for use with a more general class of extreme value distributions (Kappa, GEV, GLO and Pareto 

distribution).  The concept of a magnification factor is a convenient method for linking trend studies to non-

stationary flood frequency analysis, while at the same time also providing an intuitive means of 

communicating the effects of change on design floods.  Despite these obvious advantages from an 

engineering hydrology perspective, the current applications of magnification factors cited above are still 

subject to the limitations of at-site trend estimation as discussed above.  Furthermore, magnification 

factors can only be estimated for sites where observed data are available and there is little understanding 

of how to use these estimated magnification factors to inform/correct the estimated design events for 

locations at which no measurements are available, i.e. ungauged location (Rosbjerg et al. 2013). The aim of 

this study is to present a new regional flood frequency model that will allow the concept of magnification 

factors to be applied using regional (or pooled) information based on an assumption that annual maximum 

peak flow events follows a LN2 distribution.  This can then be extended to the case in which the regional 

method is used to estimate the frequency of extreme events at ungauged site. Noticeable, the regional 

trend estimator can be applied more generally to assess the significance of a regional trend coefficients 

without the need to evoke magnification factors.  First, the theoretical background will be presented 

followed by a case study based on a national database of AMS of peak flow from the United Kingdom. 

 

2. Flood Magnification factors 



The concept of a magnification factor was introduced by Vogel et al. (2011) and is based on a description of 

the annual maximum series (AMS) as an iid sample following a LN2 distribution where the location 

parameter is itself a linear function of one of more covariates.  For a LN2 distribution, the quantile function 

𝑄𝑝 associated with an exceedance probability 𝑝 is defined as  

𝑄𝑝 = 𝑒𝑥𝑝(𝜇𝑦 + 𝜎𝑦𝑧𝑝) (1) 

 

where 𝜇𝑦 and 𝜎𝑦 are the mean and standard deviation of the log transformed annual maximum event 𝑦𝑡 =

𝑙𝑛𝑄𝑡, and 𝑧𝑝 is the p’th quantile of a standard normal distribution.  A non-stationary (or change-permitting) 

version of the quantile function in Eq. (1) can be obtained by imposing a simple linear relationship between 

the location parameter 𝜇𝑦 and a covariate 𝑥 as 

𝜇𝑦 = 𝛽0 + 𝛽1𝑥 (2) 

 

where 𝛽0 and 𝛽1 are model parameters which need to be estimated.  In many cases (e.g. Vogel et al, 2011, 

Zadeh et al. 2020) the covariate is chosen to be water-year, i.e. the year in which the annual maximum 

peak occurred.  This relationship can also be cast as a linear regression model linking the log transformed 

annual maximum series (𝑄𝑡 , 𝑡 = 1,⋯ , 𝑛) to a covariate (𝑥𝑡 , 𝑡 = 1,⋯ , 𝑛) as: 

𝑙𝑛𝑄𝑡 = 𝑦𝑡 = 𝛽0 + 𝛽1𝑥𝑡 + 𝜀𝑡 (3) 

Where the residuals 𝜀𝑡 are assumed normally distributed with mean zero and variance 𝜎2.   

A statistical assessment of the evidence against the no-trend hypothesis can be conducted by testing if the 

slope 𝛽1 is equal to zero or not.  The statistical power of this test is closely linked to the sampling variance 

of the estimated slope and to the sample size as discussed in details by Prosdocimi et al. (2014) in the 

context of AMS of peak flow. 

Finally, a non-dimensional magnification factor, 𝑀, is derived by combining Eq. (1) and (2) and considering 

the ratio between a design event at time 𝑥 + ∆𝑥 and at the initial time 𝑥 



𝑀 =
𝑒𝑥𝑝(𝛽0 + 𝛽1[𝑥 + ∆𝑥] + 𝜎𝑦𝑧𝑝)

𝑒𝑥𝑝(𝛽0 + 𝛽1𝑥 + 𝜎𝑦𝑧𝑝)
= 𝑒𝑥𝑝(𝛽1∆𝑥) 

(4) 

 

Notably, for the LN2 distribution the magnification factor depends only on the slope of the regression line 

and the chosen value of ∆𝑥.  For example, Vogel et al. (2011) fixed ∆𝑥 at 10-years to define a ’decadal 

magnification factor’ communicating the expected change in a design flood of any rarity over a decade.  

Vogel et al. (2011), Prosdocimi et al. (2014) and Zhang et al. (2015) all demonstrated application of the 

magnification factor to large-scale datasets by considering each site in isolation.  In the next section we will 

develop an analytical framework allowing a regional (or pooled) estimate of the slope to be derived based 

on considerations similar to those commonly adopted in regional frequency analysis, such as the index 

flood (Hosking and Wallis, 1997).  

 

3. A regional model for the regression slope 

Consider a region, or pooling group, consisting of 𝑖 = 1,⋯ ,𝑁 sites.  At a site 𝑖 the relationship between the 

log-transformed annual maximum peak flow, 𝑙𝑛𝑄𝑖,𝑡, and the covariate 𝑥𝑖,𝑡 is described by a linear 

relationship as: 

𝑙𝑛𝑄𝑖,𝑡 = 𝑦𝑖,𝑡 = 𝛽𝑖,0 + 𝛽1𝑥𝑖,𝑡 + 𝜀𝑖,𝑡  (5) 

 

where the residuals are assumed normal distributed with mean zero and a site-specific standard deviation 

𝜎𝑖. Notice that although t is used to index the observation of year 𝑡 the covariate 𝑥𝑡 could potentially be 

any physically relevant variable, and does not necessarily need to be water-year. For a pair of stations 𝑖 and 

𝑗, and at observations 𝑡 and 𝑘, the cross-correlation between the residuals is given as: 

𝑐𝑜𝑟(𝜀𝑖,𝑡 , 𝜀𝑗,𝑘) = {

1 𝑖 = 𝑗 𝑡 = 𝑘
0 𝑖 = 𝑗 𝑡 ≠ 𝑘
𝜌 𝑖 ≠ 𝑗 𝑡 = 𝑘
0 𝑖 ≠ 𝑗 𝑡 ≠ 𝑘

 

(6) 

 



It is assumed here that the slope 𝛽1 is constant across all sites in the region.  This can be interpreted as the 

region, or pooling group, experiencing a consistent level of change simultaneously at every catchment in 

the region. This modelling assumption is similar to one of a, similarly to a fixed slope is a fixed and random 

effects model.  A possible future model extension could consider the slope as a random effect, but this was 

not pursued further here.  In contrast, the intercept 𝛽𝑖,0 would be expected to vary from site to site 

representing the general magnitude of events from each catchment.  This variation in intercept could arise 

from a region consisting of a mix of small and large catchments.  As the magnification factor defined in Eq. 

(4) considers only the slope parameter, this study will not focus further on characterisation and estimation 

of the intercepts.  However, a model extension to allow prediction of non-stationary design floods in 

ungauged catchments would need a procedure for linking the intercept to the target catchment. 

For each individual site in the region the intercept and slope can be estimated using simple ordinary least 

square as: 

𝛽𝑖,1 =
∑ (𝑥𝑡 − 𝑥)𝑦𝑡
𝑛𝑖
𝑡=1

∑ (𝑥𝑡 − 𝑥)2
𝑛𝑖
𝑡=1

 

𝛽𝑖,0 = 𝑦 − 𝛽1𝑥 

(7) 

 

Analogue to the index flood method, a regional estimate of the slope 𝛽1
𝑅 can be derived as a weighted 

average of the at-site slope estimate from each of the 𝑁 sites in the region.  As the basic assumption is that 

the slope is identical at each site, the weighted average is, by definition, unbiased and has a lower sampling 

variance than the individual estimates.  As discussed by Douglas et al. (2000) in the context of trend testing, 

the existence of cross-correlation between the data at different sites will inflate the variance of the regional 

estimate.  It is therefore necessary to carefully consider here how cross-correlation will affect the variance 

of the regional slope estimator.   

The weighted average of the at-site estimates, 𝛽1
𝑅, of slope is defined in a matrix form as 

𝛽1
𝑅 =∑𝜔𝑖𝛽𝑖,1

𝑁

𝑖=1

= 𝝎𝑻𝜷̂𝟏 
(8) 



 

where 𝜔 is a 𝑁 × 1 vector of weights and 𝜷̂𝟏 is a 𝑁 × 1 vector whose elements are the at-site estimates of 

slope from each site according to Eq. (7).  The weights 𝝎 are chosen to minimise the variance of the 

regional estimator, which can be derived directly from Eq, (8) as 

𝑣𝑎𝑟(𝛽1
𝑅) = 𝝎𝑻𝚺𝝎 (9) 

 

where 𝚺 is the 𝑁 × 𝑁 covariance matrix of the at-site slope estimates, the element of which are derived in 

Appendix A and defined for two sites i and j as: 

𝑐𝑜𝑣(𝛽𝑖,1, 𝛽𝑗,1) = 𝜎𝑖𝜎𝑗𝜌
𝑆𝑆𝑥,𝛿

𝑆𝑆𝑥,𝑖𝑆𝑆𝑥,𝑗
 

(10) 

 

where 𝜎𝑖 and 𝜎𝑗 are the standard deviation of the residuals at the two sites, and 𝜌 is the correlation 

coefficient between the residuals at the two sites.  The sum of squares over the covariate at each site is 

denoted 𝑆𝑆𝑥,𝑖 and 𝑆𝑆𝑥,𝑗 while the sum of squares over the covariates covering the overlapping periods at 

both sites is denoted 𝑆𝑆𝑥,𝛿.  For the diagonal elements of the covariance matrix (𝑖 = 𝑗), the covariance 

expression in Eq. (10) reduces to the variance of the at-site slope estimate as in this case: 𝜎𝑖 = 𝜎𝑗, 𝜌 = 1, 

and 𝑆𝑆𝑥,𝑖 = 𝑆𝑆𝑥,𝑗 = 𝑆𝑆𝑥,𝛿. 

Using Lagrange multiplier for constraint optimisation (Kjeldsen and Prosdocimi, 2015), the set of weights 

minimising the variance in Eq. (9) can be derived as: 

𝝎 = 𝚺−𝟏𝒊(𝒊𝑻𝚺−𝟏𝒊)
−𝟏

 (11) 

 

where 𝑖 is a 𝑁 × 1 vector where all elements equal one. 

Initial testing of the method via Monte Carlo simulation showed that using the raw sampling estimates of 

the variance and covariance elements of the covariance matrix in Eq. (10) sometimes resulted in estimates 

of weights 𝝎 inflating the regional variance in excess of the at-site variance. A more robust estimate of the 



covariance matrix was introduced based on idea by Madsen and Rosbjerg (1997) replacing the values of 𝜎𝑖 

and 𝜌 in Eq.(10) with singular regional average values rather than the raw at-site sample values. 

 

4. Model verification using Monte Carlo simulations 

Two sets of Monte Carlo experiments were conducted to verify the proposed modelling strategy. First, the 

expression of covariance of the regional slope estimators from correlated sites (Eq. 10) was verified 

followed by an assessment of the ability of the regional slope estimator to provide credible estimates of the 

underlying regression slope parameter in a homogeneous region.   

It is particularly important to consider how the procedure performs when AMS from different sites in the 

region are correlated, and how this will affect the ability to detect change when it exits.  The Monte Carlo 

simulations used in this study were based on the regional model specified in Eqs. (5) and (6).   

• Consider a homogeneous region consisting of 𝑖 = 1,… ,𝑁 sites, each with 𝑡 = 1,… , 𝑛𝑖  years of 

record and where the marginal distribution at each site is a 2-parameter log-normal distribution. 

• First, generate 𝑚𝑎𝑥(𝑛𝑖) correlated realisation 𝜀𝑡 at each site from a 𝑁-dimensional multivariate 

standardises normal distribution with a correlation matrix 𝑹 (scaled by the appropriate standard 

deviations 𝜎𝑖 to obtain the covariance matrix 𝛴). The off-diagonal elements of this 𝑁 × 𝑁 

correlation matrix are all set to 𝜌 representing the cross-correlation, while the diagonal elements 

are all set to one.  

• At each site the 𝑛𝑖realisations of 𝜀𝑡 are transformed into a site-specific log-transformed annual 

maximum peak flow values using Eq. (5).   

The Monte Carlo simulations therefore require specification of the model parameters at each of the 𝑁 

sites which include: two regression parameters, 𝛽𝑖,0 and 𝛽1, as well as the standard deviation of the 

residuals at each site 𝜎𝑖.  In addition, the number of sites 𝑁, the record length at each site 𝑛𝑖 and the 

degree of cross-correlation 𝜌 all need to be specified. 

 



4.1 Correlation between regression estimators 

The analytical formula for the covariance between the estimated regression slope parameter  𝛽1 at 

different sites is verified by considering a set of Monte Carlo experiments simulating AMS of log-normal 

distributed peak flow from two sites as outlined above. 

The combinations of regression parameters are selected to illustrate the verification across a range of 

cross-correlations (𝜌 = 0.0,⋯ ,0.80, step by 0.10).  Notably, the regional covariance estimator in Eq. (10) 

considers only the variance of the residuals and properties of the covariates, but are independent of the 

actual regression parameters.  Hence in both cases, the regression parameters are specified as (𝛽1,0 =

𝛽2,0 = 0.0, 𝛽1,1 = 𝛽2,1 = 0.0050) which are representative values from fitting OLS regression models to 

662 AMS from UK catchments.  A slope value of 0.0050 corresponds to a decadal magnification factor of 

exp(0.0050 * 10) ≈1.05, so a 5% increase in any design event over a 10 year period. 

In the first example the standard deviation of the residuals at both sites are identical; 𝜎1 = 𝜎2 = 0.20 and 

with a common record-length of 𝑛 = 30 years.  In the second example the residual standard deviations are 

different; 𝜎1 = 0.20, 𝜎2 = 0.40.  A total of 10,000 joint AMS at the two sites were generated using Monte 

Carlo simulations, and the mean of the estimated covariances compared to the theoretical expression in 

Figure 1. 

 



 

Figure 1:  Comparison of analytical expressions and Monte Carlo simulations of covariance of slope of 

regression model at two sites (1 and 2) with correlated data.  Record-length 𝑛 = 30.  Top: 𝜎1 = 𝜎2 = 0.20. 

Bottom: 𝜎1 = 0.20, 𝜎2 = 0.40. 

The close correspondence between the outcome of the Monte Carlo simulations and the theoretical 

expression in Figure 1 is indicative that the derived expressions can be used as estimators of the 

covariances across a range of cross-correlations. 

 



4.2 Performance of pooling group 

To check the robustness of the estimation procedure, a homogenous region consisting of 𝑀 = 21 sites was 

defined using the same basic model structure outlined in Eqs.(5) and (6) with 𝛽𝑖,0 = 1 and 𝛽1 = 0.005 

(indicative of values observed in real data series where the covariate is the raw water year, i.e. not 

normalised).  A total of 1000 regional data sets were generated across a range of cross-correlation as 

before (𝜌 = 0.0,⋯ ,0.80, step by 0.10).  For each regional data set, the weights and the corresponding 

regional estimates of slope were calculated using the procedure outlined in this paper.  At the same time, 

direct at-site estimation of the slope was also conducted at one of the 21 sites, thus allowing a comparison 

of the effect of using a regional procedure vs at-site trend estimation.  Figure 2 shows the mean plus/minus 

two times the standard deviations for the regional and the at-site estimates of 𝛽1 as a function of cross-

correlation as derived from the 1000 Monte Carlo simulations. 

 

Figure 2: Comparison of the intervals covered by plus/minus two times the standard deviation for at-site 

(black lines) and pooled (red lines) results. The dashed line indicates the true value of the regional slope, 

and the points represent the mean values of the trend estimates obtained from the 10,000 Monte Carlo 

replications. 

 



The results show a good correspondence between the regional estimator of 𝛽1 and the underlying 

population value, and that the sampling uncertainty of the regional estimator is greatly reduced for low to 

moderate levels of cross-correlation when compared to the at-site estimates.  However, for high degrees of 

cross-correlation the variance of the regional model approaches the variance of the at-site estimator.  

These results confirm that the proposed regional estimator is capable of providing unbiased estimates of 

the population parameter values, and that the sampling variance of the estimators behave as expected. 

 

5. Case Study: United Kingdom peak flow data 

The proposed model introduced and validated in the preceding sections have been applied to pooling 

groups formed using annual maximum series of peak flow from gauging station located through-out the 

United Kingdom.  Version 9 of the National River Flow Archive (NRFA) peak flow dataset contains AMS of 

peak flow data from 935 catchments containing data up-to and including water year 2017 (i.e. ending 

September 2018).  In this study, only catchment that fulfil the following criteria were included: (1) rating 

considered suitable up-to at-least bankfull, (2) a minimum record length of 20 years, and (3) considered 

essential rural (defined as having less than 5% urban land-use, as measured by the URBEXT2000 catchment 

descriptor), resulting in a total of 662 catchments. 

5.1 Formation of pooling groups 

A pooling group was formed for each site in turn using the method outlined by Kjeldsen and Jones (2009), 

and enforcing the minimum number of peak flow events in the pooling group to be 500 years.  The pooling 

groups are formed by selecting gauged catchments among the 662 available that are considered 

hydrologically similar to the target site with regards to: catchment area, standardised annual average 

rainfall as measured from 1961-1990 (SAAR), and the potential influence of lakes and reservoirs (FARL) and 

flood plain extend (FPEXT).  The similarity is judged based on Euclidian distance in a four-dimensional space 

determined by the set of catchment descriptors associated with each catchment.  This resulted in a total of 

662 pooling groups (one for each site) containing on average 11.5 gauging stations, ranging from a 



minimum of 6 to a maximum of 15 gauging stations.  Note that individual sites can be members of more 

than one pooling group. 

At each site a log-linear model was fitted directly to the AMS and subsequently the pooled slope 𝛽1
𝑅 

estimated for each pooling group using Eq. (8).  Prosdocimi et al. (2014) and Laio et al. (2009) discussed the 

appropriateness of using the LN2 distribution to model annual maximum peak flow from rivers in the 

United Kingdom, and both studies found it to be a reasonable model based on application of goodness-of-

fit tests applied to national data sets. 

While the pooling groups are formed based on an assessment of hydrological similarity, there was no 

explicit consideration of similarity in term of trend or not in the data series.  Studies from other regions in 

the World attempting to form regions (or pooling groups) for the purpose of regional flood frequency 

analysis include e.g. in Canada, Chunderlik and Burn (2003) and O’Brien and Burn (2014). Both studies used 

seasonality of the annual maximum floods as the basis for forming pooling groups, while Leclerc and 

Ouarda (2007) used canonical correlation analysis based on catchment area, rainfall, location (lat/long) and 

temperature.  As the formation of the UK pooling does not explicitly consider spatial proximity, the use of 

standard average annual rainfall (SAAR) as one of the key features ensures some spatial consistency due to 

the strong east-west gradient in rainfall patterns across the UK.  

 

5.2 Testing trend hypothesis 

A recognised benefit of regional flood frequency analysis is the reduction in the sampling variance of the 

regionalised (pooled) parameter; while this typically apply to the estimation of parameters of the stationary 

model, this advantage applies in this case to the estimate of slope 𝛽1
𝑅.  In this case, the pooled estimate of 

the slope will feed into a hypothesis test determining if a trend in the annual maximum peak flow data is 

evident or not across the pooling group.   

A null-hypothesis H0 is defined as 𝛽1
𝑅 = 0 against the alternative hypothesis H1: 𝛽1

𝑅 ≠ 0.  To assess if H0 can 

be rejected, a two-sided test can be made against a t-distribution using a test statistic defined as 



𝛽1
𝑅 − 0

√𝑣𝑎𝑟(𝛽1
𝑅)

 
(12) 

 

As the combined sample size used for estimating 𝛽1
𝑅 is an order of magnitude larger than the sample size 

available for each at-site analysis, we approximate the t-distribution with a standard normal distribution.  

The same is done for the at-site analysis to enable a direct comparison of the significance of both the at-site 

and the regional slope estimates. 

 

Figure 3 shows the boxplots of the slope estimates for each site from the at-site and pooled analysis.  

Evidently, the range of estimates obtained using the at-site estimates is large while the pooled estimates 

are more constrained.  Notably, the number of negative estimates of slope is large for the at-site analysis 

(33.5%) but only 19.2% for the pooled estimates. 



 

Figure 3: Box plot showing the range of slope estimates obtained from the regional model (top) and at-site 

analysis (bottom). 

 

While individual pooling groups can contain a mix of sites with positive and negative at-site estimates of 

slope, the results in Figure 3 suggest that, in general, the AMS of peak flow are characterised by a positive 

slope and less variability between sites. 



A comparison of the level of statistical significance in the slope estimates derived from the at-site and 

pooled slope estimates are shown on maps of the UK in Figure 4 where each symbol represents the 

location of the target site of the pooling group.   

 

Figure 4:  Statistical significance of slope estimate obtained using at-site analysis (left) and the regional 

model (right).  green cross, non-significant trend;  red triangle, significant positive slope, blue triangle, 

significant negative  slope . Significance level: 5%.  

 

The spatial distribution of sites with significant upwards trend, as shown in Figure 5, indicate that the 

western and north western parts of the UK are showing the strongest signals of upward trend in the flood 

data, while the East and South Eastern region shows little or no sign of a change in any direction.  These 

results are consistent with the results of recent national flood trend studies presented by Prosdocimi et al. 

(2019) as well as Faulkner et al. (2020).   



 

To further explore a possible link between catchment types and a propensity for trend in the flood data, 

Figure 5 shows the location of each target site as a function of catchment area and standard annual 

average rainfall (SAAR); the colours of the points indicate whether a significant trend, positive (red) or 

negative (blue) was identified or not (green).   

 

Figure 5:  Catchment descriptors and significance of the regional slope estimate, 𝛽̂1
𝑅, for each of the 655 

sites. 



The results in Figure 5 do not reveal any particular catchment type to be more susceptible to change than 

other.  However, Figure 5 does show that the majority of gauged catchments are medium sized (catchment 

area between 25 km2 and 500 km2) and relatively dry (SAAR of less than 1500mm).  As the pooling groups 

are formed predominantly based on similarity of area and rainfall, the pooling groups formed for sites with 

values of catchment area and SAAR located on the edge of the dataset will be rather similar as they will 

draw from the same limited pool of available data.  The effect of this can be observed, for example, in the 

cluster of sites with decrease trend located in the lower right of the graph, i.e. low values of SAAR and 

catchment area in the vicinity of 500 km2.  It is also notable that the sites with significant upward trend (red 

dots) are generally associated with higher values of SAAR than the sites where no significant trend (green 

dots) was detected.  This is reflecting the patterns also observed on the maps in Figure 4 where sites with 

significant upward trend are located predominantly in the wetter western and northern parts of the 

country, while the drier eastern and southern parts are dominated by sites where no significant trend was 

detected.  

 

5.3 Impact of non-stationarity on design floods 

Magnification factors (eq. 4) measure the relative increase of design flood, assuming a LN2 distribution, in 

response to a change in the covariate ∆𝑥.  Having obtained estimates of the slope 𝛽1, as well as the 

associated statistical significance, for each of the 662 catchments using both the at-site and regional 

method, it is possible to assess the impact of using the regional method on the expected change in design 

floods across the country.  Figure 6 shows the evolution of the magnification factor as a function of ∆𝑥 (i.e. 

water years into the future) for each target site when the slope 𝛽1 is estimated using traditional at-site 

trend analysis (left) and the new regional trend estimator (right).   



 

Figure 6: Magnification factors 𝑀 plotted as a function of time horizon into the future ∆𝑥 when basing 

extrapolations on the slope estimated from at-site data (left) and the regional model (right).  Based on a 5% 

significance level, the red lines indicate significant positive trend, grey lines are non-significant, and blue 

lines represent significant negative trend. 

 

There is a notable difference in the behaviour of the magnification factor when estimates are based on at-

site and regional analysis.  In particular, the variability between sites is comprehensively reduced when the 

assessment is based on regional data, restricting the increase in design floods to about 50%.  In contrast, 



the site-to-site variation is substantial when relying on at-site analysis, including more sites showing a 

significant reduction in design flood (a significant negative slope) as signified by the blue lines on Figure 6, 

as well as increases in design floods of up-to 200% over a 50-year period in some catchments. 

 

 

6. Discussion 

The new methodological developments and results presented in this study has demonstrated how the 

concept of magnification factors (Vogel et al., 2011) can be extended to allow more robust assessment of 

trend in regional series of hydrological extremes and changes in design floods across a specified region or 

pooling group.  However, moving from at-site to regional trend analysis naturally raises a number of issues 

of both theoretical and practical issue.  Firstly, this study has made the assumption that the pooling groups 

formed on the basis of hydrological similarity when considering: catchment area, annual average rainfall, 

and the potential influence of lakes, reservoirs and flood plains (Kjeldsen and Jones, 2009).  While this is a 

convenient method for forming regions, it is possible that hydrological regions formed differently might 

provide a more suitable basis for regional trend detection.  It should also be noted that the same site can 

be a member of several pooling groups. 

Secondly, the time period covered by the observed records might vary from site to site, and the resulting 

at-site trend estimates might be representative of different flood rich or flood poor periods.  Consequently, 

the weighted average of these different at-site estimates would represent an overall trend across all these 

periods. It might be that more consistent results could be obtained if a common data period was selected 

for each site, even if this would potentially result in a high degree of data loss. It would also be possible to 

use more sophisticated hierarchical models such as demonstrated by Brady et al. (2019) to better represent 

more complex dependence structures.  

Thirdly, the trend model considered in this study is very simple, considering a blanket linear trend over time 

for each site and thus ignoring the potential influence of physical drivers of change such as, for example: 



urbanisation (Hecht and Vogel, 2020), change in precipitation (Šraj et al. 2016), change in large-scale 

climatic indicators such as the North Atlantic Oscillation (Brady et al. 2019), or long-terms variation in flood 

rich and flood poor periods (Macdonald and Sangster, 2017).  

Finally, a simple two-sided test was used to establish if a trend is significant or not.  A more sophisticated 

testing methodology could be introduced where the default position is the existence of trend rather than 

starting from an assumption of no-trend as discussed in details by Vogel et al. (2013) and Prosdocimi et al. 

(2014). 

 

7. Conclusions 

This study has presented a new procedure for estimating a regional slope parameter from a collection of 

annual maximum series considered to form a hydrological region of pooling group.  The method explicitly 

considers the effect of cross-correlation on the variance of the estimated slope.  The method was 

successfully combined with the concept of a magnification factor developed by Vogel et al. (2011) to allow 

a statistical assessment of the impact of change on future design floods.  The results of the regional analysis 

shows that there is substantial evidence of a significant increase in annual maximum peak flow series in the 

West and North West of the United Kingdom.  Extrapolating the existing trends into the future shows a 

positive trend in the majorities of pooling groups and a predicted change in design floods of up to about 

50% for a time horizon of 50 years into the future. 
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Appendix A: Covariance of regression parameter estimates 

Annual maximum series (AMS) of log-transformed flow 𝑦1,𝑡 and 𝑦2,𝑡 is available from two catchment with 

overlapping records 𝛿 ∈ [1: 𝑛𝛿].  For each site, a regression model linking the log-transformed flow with 

the covariate 𝑥𝑡 as 

𝑦1,𝑡 = 𝛽1,0 + 𝛽1,1𝑥𝑡 + 𝜀1,𝑡 

𝑦2,𝑡 = 𝛽2,0 + 𝛽2,1𝑥𝑡 + 𝜀2,𝑡 

(A1) 

 

For each site the residuals are assumed to be normal distributed with zero mean, a site-specific standard 

deviation 𝜎𝑖 and cross-correlation 𝜌 exists between the two series for events that occur in the same year, 

but not between lagged years, i.e. 

𝑐𝑜𝑟(𝜀1,𝑡 , 𝜀2,𝑘) = {
𝜌 𝑡 = 𝑘
0 𝑡 ≠ 𝑘

 (A2) 

 

For each site, the OLS estimate of slope can be obtained as 

𝛽1,1 = 𝑆𝑆𝑥,1
−1∑(𝑥𝑡 − 𝑥)𝑦1,𝑡

𝑛1

𝑡=1

 

𝛽2,1 = 𝑆𝑆𝑥,2
−1∑(𝑥𝑡 − 𝑥)𝑦2,𝑡

𝑛2

𝑡=1

 

(A3) 

 

Where 𝑆𝑆𝑥,1 and 𝑆𝑆𝑥,2 are the sum of squares over the covariate for each of the two sites.   

The covariance of the least square slope estimates at the two sites is found by combining Eqs. (A1), (A2) 

and (A3) as: 

 



𝑐𝑜𝑣(𝛽1,1, 𝛽2,1) = 𝑐𝑜𝑣 (𝑆𝑆𝑥,1
−1∑(𝑥𝑡 − 𝑥)𝑦1,𝑡

𝑛1

𝑡=1

, 𝑆𝑆𝑥,2
−1∑(𝑥𝑡 − 𝑥)𝑦2,𝑡

𝑛2

𝑡=1

)

= 𝑆𝑆𝑥,1
−1𝑆𝑆𝑥,2

−1𝑐𝑜𝑣 (∑(𝑥𝑡 − 𝑥)𝑦1,𝑡

𝑛1

𝑡=1

,∑(𝑥𝑡 − 𝑥)𝑦2,𝑡

𝑛2

𝑡=1

)

= 𝑆𝑆𝑥,1
−1𝑆𝑆𝑥,2

−1𝑐𝑜𝑣 (∑(𝑥𝑡 − 𝑥)(𝛽1,0 + 𝛽1,1𝑥𝑡 + 𝜀1,𝑡)

𝑛1

𝑡=1

,∑(𝑥𝑡 − 𝑥)(𝛽2,0

𝑛2

𝑡=1

+ 𝛽2,1𝑥𝑡 + 𝜀2,𝑡))

= 𝑆𝑆𝑥,1
−1𝑆𝑆𝑥,2

−1𝑐𝑜𝑣 (∑𝑥𝑡𝜀1,𝑡
𝑡∈𝛿

− 𝑥∑𝜀1,𝑡
𝑡∈𝛿

,∑𝑥𝑡𝜀2,𝑡
𝑡∈𝛿

− 𝑥∑𝜀2,𝑡
𝑡∈𝛿

)

=
𝜎1𝜎2𝜌

𝑆𝑆𝑥,1𝑆𝑆𝑥,2
[∑𝑥𝑡

2 − 𝑛𝛿(𝑥)
2

𝑡∈𝛿

] = 𝜎1𝜎2𝜌
𝑆𝑆𝑥,𝛿

𝑆𝑆𝑥,1𝑆𝑆𝑥,2
 

(A4) 

 

For the special case of 𝛽1,1 = 𝛽2,1 where 𝜌 = 1, 𝜎1 = 𝜎2 and 𝑆𝑆𝑥𝑥,1 = 𝑆𝑆𝑥,2 = 𝑆𝑆𝑥,𝛿 the covariance 

estimator defaults to the variance of the at site estimator 𝛽1, i.e. 

𝑣𝑎𝑟(𝛽1) =
𝜎2

𝑆𝑆𝑥
 (A5) 

 

 

 


