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Abstract. This work considers synergistic multi-spectral CT reconstruction where
information from all available energy channels is combined to improve the
reconstruction of each individual channel, we propose to fuse this available data
(represented by a single sinogram) to obtain a polyenergetic image which keeps
structural information shared by the energy channels with increased signal-to-noise-
ratio. This new image is used as prior information during the minimization process
through the directional total variation. We analyze the use of directional total variation
within variational regularization and iterative regularization. Our numerical results
on simulated and experimental data show significant improvements in terms of image
quality and in computational speed.

Keywords: undersampled data, multi–energy CT, directional total variation, linearized
Bregman iteration, high-resolution reconstruction.
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1. Introduction

1.1. Undersampling in multi-spectral CT

Computed tomography (CT) is a widely used technique in many different fields of science
and industry; for example in medicine, it enables visualizing the internal structure of
a patient. The principle of this technique is to study the attenuation of X-rays when
they pass through the target object [40, 8]. Despite the potential usefulness of CT, the
X-ray source produces a single energy spectrum and the detector does not discriminate
between photon energies. As a consequence, two tissues whose elemental composition
are different might be indistinguishable in the resulting CT image [49, 50, 38]. The
latter makes it difficult to identify and classify different tissues and motivates the multi-
spectral techniques based on new scanner technologies [35, 2, 36].

Dual and multi-spectral CT use different technical approaches for acquiring multi-
energetic data, e.g., the rapid tube potential switching, multilayer detectors, or dual
(multi) X-ray sources [59, 56, 32, 29]. This multi-energetic data provides much
more information about the tissue composition allowing to differentiate its constituent
materials [38] but, in addition, the measurement process needs a balance between
radiation dose, acquisition time and image quality. A reduction in radiation dose
is achieved by reducing the number of views in the acquisition which, in turn,
decreases the spatial resolution [37, 23, 34]. A recent study proposes to reconstruct
a multi-spectral CT image by reducing the dose in each energy window, when just
a limited and non-overlapping range of angles is observed [52]. As the resolution of
the reconstructions is affected by this lack of measurements, small objects cannot be
reconstructed and the resulting images are affected by the presence of artifacts [28, 20].
Many advanced reconstruction techniques have been proposed to simultaneously or
independently reconstruct an spectral-image in this scenario [21, 31, 41, 55, 52, 27].
For example, variational methods are commonly used since they allow to directly
incorporate prior information and constraints into the model [47]. In addition,
regularizers can be added as part of the objective functional or in the optimization
process, to overcome ill-posedness [46]. The expected structural correlation between
different energy levels has motivated the use of structural priors to improve these
reconstructions [30, 43, 31, 25, 52], some of them based on level sets methods [15].
For example, in [31] the structural information has been added using directional total
variation. This regularizer has been successfully used in several other medical imaging
applications [17, 16, 18] and hyperspectral remote sensing [7].
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1.2. Main contribution

We propose a novel reconstruction technique to solve the undersampling problem in
multi-spectral CT, where information from all available energy channels is combined
to obtain a polychromatic image. The latter keeps the structural information
shared by the energy channels and is used to improve the reconstruction of each
individual channel using directional total variation (dTV). We explore variational and
iterative regularization methods, specifically, the forward-backward splitting algorithm
(FBS) [12, 11] and Linearized Bregman iterations [42, 57, 58, 5, 13] to solved the
undersampling problem using simulated and experimental data. The combination
of these methods and dTV show improvements in terms of image quality and
computational speed.

In section 2, we describe the inverse problem behind multi-spectral CT data seen
as a minimization problem. Later, in section 3, we present the variation and iterative
regularization of the inverse problem and we describe the FBS algorithm and Bregman
iterations to solved them,respectively. We include total variation and directional total
variation regularizers to be included during the regularization process. th all the
parameters that we consider during the optimization process. The last section is devoted
to present numerical results using synthetic and real data. Here, we specify all the
settings needed during the reconstruction.

2. Inverse problem

Multi-spectral CT aims to recover energy-dependent attenuation maps uk of a target
object for energies Ek with k = 1, ..., K. The acquisition method considers X-ray
projections using only a limited set of angles, i.e., we want to reconstruct uk ∈ RN

given data bk ∈ RM where M � N . When a considerable amount of measurements
is available, classical methods such as filtered back projection, Kaczmarz iterations
or iterative techniques can be used to solve an associated linear system of the form
Auk = bk or the associated least squares problem (see e.g. [40, 9])

min
uk∈RN

1
2‖Auk − bk‖

2
2, (2.1)

where A is the forward operator (a matrix in the discrete case) that relates the image uk
to the given data bk. The ill-posedness of this inverse problem makes a direct inversion of
the matrix A unstable even for a suitable number of measurements. The undersampling
scenario is even more challenging, since M � N , the system is under-determined.

For 2D CT, M = m1 ·m2 where m1 is the number of angles and m2 is the number
of detectors, and N = n1 · n2, where n1 and n2 are the number of rows and columns of
uk (considered as a matrix of pixels), respectively.
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2.1. Forward model

We recall the forward modelling for multi-spectral CT. For a fixed energy channel Ek, an
initial intensity I0

i (Ek) of X-rays is emitted along a line Li (from source to detector) given
a final intensity I1

i , for i = 1, . . .M . The discretized linear model use for reconstructing
a vectorized image u(Ek) of N pixels (see, e.g [31]) is given by

bik := − ln
(

Zik
I0
i (Ek)

)
≈

N∑
j=1

aijuj(Ek). (2.2)

where our measurements are Poisson distributed with expectation I1
i (Ek), i.e.

Zik ∼ Poiss{I1
i (Ek)}, i = 1, . . . ,M, k = 1, . . . , K.

In (2.2), uj(Ek) is the value of u(Ek) in the corresponding pixel j, and aij is the length
of the intersection of the i-th line and the j-th pixel.

Based on the discretization presented above for each energy Ek, we establish a
linear system that allows us to recover uj(Ek) for all j = 1, . . . , N , namely

Akuk = bk, k = 1, . . . , K, (2.3)

where Ak ∈ RM×N , is a matrix with components aij. The vector uk ∈ RN with
components uj and, bk is the vector of measurements bik for the fixed energy level
k. The matrix Ak represents the discretization of the X-ray transform for a particular
projection geometry.

From now on, we omit the energy sub-index in (2.3) since we will solve an
independent problem for each energy channel.

3. Regularization

In this section we discuss the regularizers used in this work, total variation and
directional total variation, and how these can be used to regularize an inverse problem.
To this end we consider variational regularization and iterative regularization based on
Bregman iterations.

3.1. Regularizers

3.1.1. Total Variation The total variation (TV) regularization has been widely studied
due to its edge-preserving properties [45]. The TV regularizer is defined as the 1-norm
of a discrete finite difference approximation of the gradient ∇:RN → (R2)N , namely

TV(u) = ‖∇u‖2,1 =
N∑
j=1

(
|∇1uj|2 + |∇2uj|2

)1/2
.

The TV regularizer is well-known to promote piecewise constant images with sharp
edges.
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3.1.2. Directional Total Variation While TV is a powerful regularizer, it is unclear
how additional structural a-priori information can be included. To this end we utilize
the directional total variation (dTV) proposed in [16]. Let ξ ∈ (R2)N be a vector field
with ‖ξi‖ ≤ η < 1. We denote by P ∈ (R2×2)N , Pi := I− ξi ⊗ ξi an associated matrix-
field, where I is the 2× 2 matrix and ⊗ represents the outer product of vectors. Then
dTV:RN → R is defined as

dTV(u;v) =
∑
j

‖Pj∇uj‖, (3.1)

where Pj implicitly depends on v by means of ξ.
Some interpretations of dTV are detailed in [17, 7]. We briefly describe some useful

properties of this functional using the explicit expression Pj∇uj = ∇uj − 〈ξi,∇uj〉ξi.
We observe two particular cases:

Pj∇uj =
{

(1− ‖ξj‖2)∇uj, if ∇uj is parallel to ξj
∇uj, if ∇uj is perpendicular to ξj.

So, when we minimize dTV(u), we are favouring u such that its gradient is collinear to
the direction ξi as long as ‖ξi‖ 6= 0. We note that a vanishing gradient ∇u = 0 always
leads to a smaller function value such that no artificial jumps are enforced.

In order to incorporate dTV into our model, we define the vector field below based
on the known image v ∈ RN by

ξj = η
∇vi
‖∇vi‖ε

(3.2)

with ‖u‖ε =
√
‖u‖2 + ε2. The parameter ε > 0 avoids singularities when ∇vi = 0 and

η is an edge parameter related to the size of an edge.
Figure 1 shows an example which compared TV and dTV. In contrast to TV, dTV

only penalizes edges which are missing in the side information.

image side information TV dTV

Figure 1. From left to right: An image u, side information v, pointwise TV-norm
j 7→ ‖∇uj‖, and pointwise dTV-norm j 7→ ‖Pj∇uj‖ as in (3.1).
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3.2. Variational regularization

A strategy to reconstruct u := uk in (2.3) is to solve

u∗ ∈ arg min
u∈RN

{1
2‖Au− b‖

2
2 + αJ(u) + ι[0,∞)N (u)

}
. (3.3)

The first term in (3.3) is called the data-fit and forces Au to stay close to the data, and
the regularizer J promotes stability of the inversion. The parameter α > 0 balances
the data-fit term and the regularization provided by J . We will use TV and dTV as
J . The additional term ι[0,∞)N (u) is included to impose a nonnegativity constraint for
each component of the solution u∗ and is defined as:

ι[0,∞)N (u) =
{

0, if uj ≥ 0
∞, otherwise.

Depending on the type of regularization that we choose, we define the following
functions:

GTV(u) = αTV(u) + ι[0,∞)(u), (3.4)
GdTV(u) = α dTV(u,v) + ι[0,∞)(u). (3.5)

3.2.1. Forward-backward splitting algorithm The forward-backward splitting (FBS)
algorithm [12] solves the composite minimization problem

min
u
{F (u) +G(u)} (3.6)

where F :X → R and G:X → (−∞,∞] are two proper, lower semi-continuous and
convex functionals such that F is differentiable on X with a L-Lipschitz continuous
gradient for some L ∈ (0,∞).

The principle of this algorithm is based on the two following steps:

(i) a forward (explicit) gradient step on F , i.e. ut+1/2 = ut − σt∇F (ut), and
(ii) a backward (implicit) step involving only G, i.e. ut+1 = proxσtG(ut+1/2), where the

proximal operator is given by

proxσG(z) = arg min
y

{1
2‖y − z‖

2 + σG(y)
}
. (3.7)

The step size σt is chosen in each iteration so that it satisfies the descent inequality

F
(
ut+1

)
≤ F

(
ut
)

+ 〈∇F
(
ut
)
,ut+1 − ut〉+ 1

2σt‖u
t+1 − ut‖2. (3.8)

More precisely, we reduce σt until the condition (3.8) is satisfied. This selection of σ is
known as backtracking and is considered in FBS and Bregman iterations.

Now, comparing problem (3.6) with (3.3), we choose the functions F and G as

F (u) = 1
2‖Au− b‖

2
2, G(u) = αJ(u) + ι[0,∞)N (u).
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We use the Fast Iterative Shrinkage Thresholding Algorithm (FISTA) presented in [3, 16]
to compute the proximal operators of GTV and GdTV associated to the minimization
problem (3.7). In this way, we ask the algorithm to have warm started FISTA iterations
or to stop when a given tolerance is reached. Additionally, we define the objective
function value at point u as H(u) = F (u) +G(u). Since FBS algorithm converges to a
minimizer of H [12], we stop the algorithm when the difference between two consecutive
iterations of the H value is less than a given tolerance tol, i.e. H(ut+1) − H(ut) ≤
tol ·H(ut+1). The algorithm 1 describes one iteration of FBS algorithm.

Algorithm 1 An iteration of forward-backward splitting algorithm
1 ut+1 = proxσtG (ut − σt∇F (ut)) .
2 if F (ut+1) > F (ut) + 〈∇F (ut),ut+1 − ut〉+ 1

2σt‖ut+1 − ut‖2 then
3 σt = ρσt, for any ρ < 1 and go back to Step 2.
4 else
5 σt+1 = ρσt, for any ρ > 1.
6 end if

3.3. Iterative regulatization

A different way to achieve regularization is to apply an iterative method to directly
solve the problem (2.1). Iterative methods start with a some vector u0 and generate a
sequence u1,u2, . . . that converges to some solution. Usually in these methods, initial
iterates ut are fairly close to the exact solution. However, for later iterations, the
solutions start to diverge from the desired one and tend to converge to the naive solution
A−1b. Thus, the success of these methods relies on stopping the iterations at the right
time. This behavior is known as semiconvergence [24, 40] and it is a frequently used
tool to solve large-scale problems. In figure 2 we present an example of this effect.
Additionally, iterative regularization avoids a predetermined regularization parameter,
and instead, the number of iterations takes the role of a regularization parameter [24].
This is an advantage compared to variational regularization since in this latter, a
minimization problem needs to be solved every time that a new regularization parameter
α is tested.

3.3.1. Linearized Bregman iterations Under this group of iterative methods, we explore
the Linearized Bregman iterations. This algorithm allows us to solve the least squares
problem (2.1).

We consider the (linearized) Bregmen iterations [42, 58] which makes use of the
Bregman distance defined in terms of a given functional J by

Dqt

J (u,ut) = J(u)− J(ut)− 〈qt,u− ut〉,

where qt ∈ ∂J(ut) is an element of the sub-differential of J at point ut.
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iter = 50 iter = 100 iter = 500 iter = 1000

Figure 2. Iterations along the Linearized Bregman iterations. While early iterations
are very smooth, the iterates become gradually better defined and eventually the
measurement noise is introduced.

Linearized Bregman iterations are defined as

ut+1 = proxσtG

(
ut + σt(qt −∇F (ut))

)
(3.9)

qt+1 = qt − 1
σt

(
ut+1 − ut + σt∇F (ut)

)
(3.10)

where F (u) = 1
2‖Au− b‖

2
2 is the objective function value and G can be chosen as GTV

or GdTV from (3.4) and (3.5), respectively. The algorithm with backtracking is detailed
in algorithm 2.

Algorithm 2 An iteration of Linearized Bregman iterations.
1 ut+1 = proxσtG(ut + σt(qt −∇F (ut)))
2 if F (ut+1) > F (ut) + 〈∇F (ut),ut+1 − ut〉+ 1

2σt‖ut+1 − ut‖2 then
3 σt = ρσt, for any ρ < 1 and go back to Step 2.
4 else
5 σt+1 = ρσt, for any ρ > 1.
6 end if

4. Numerical results

We consider two sets of data, the first one, related to real measured data and a second
one using synthetic (simulated) data. In both cases, we consider three energies labeled
as E0, E1 and E2, which are reconstructed separately. We analyze each energy channel
independently as individual optimization problems. We compare the results forward-
backward splitting and linearized Bregman iterations and, highlight the main differences
between TV and dTV regularizers. These algorithms were implemented using Python
programming language and the Operator Discretization Library (ODL) [1]. For each
energy channel, we consider sinograms of size 90 × 552, i.e. 90 projection angles and
552 detectors. These angles are uniformly distributed in the interval [0, 2π) and the
reconstructed images u are of size 512× 512.
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First, we detail how to choose the side information v in our experiments considering
the multi-spectral information in each energy channel.

4.0.1. Choice of side information We propose to reconstruct a polyenergetic image
v ∈ RN based on combining the data sets bk ∈ RM for k ∈ {1, 2, 3}, i.e., we solve

v ∈ arg min
u∈RN

{1
2‖Au− b̃‖

2
2 + αTV(u) + ι[0,∞)N (u)

}
. (4.1)

where b̃ = ∑3
k=1 bk. The regularization parameter α and more details related to

this optimization problem will be specified during the numerical experiments for
synthetic and real data. Solving (4.1), we get an image v that despite of losing
the spectral resolution, keeps structural information provided by all energy levels.
Additionally, this image has higher signal-to-noise ratio and helps to improve the
individual reconstructions uk as we show in our experiments.

We present the results using red, green and blue color maps for E0, E1 and E2,
respectively. We use the color grey to distinguish everything related to side information,
making an analogy with the grayscale representation of an RGB image.

4.1. Real data experiments

Experimental data was gathered at the Department of Physics, University of Helsinki,
using a cone-beam micro-CT scanner with an end-window tube and a tungsten target
(GE Phoenix nanotom 180 NF). The chest of a small bird was used as a test phantom,
as it contains multiple different tissue types as well as fine details arising from the bone
structure. The bird phantom was imaged using three different X-ray tube settings in
the same geometry. 2D sinograms were created using the central plane of the cone-beam
projections, in which the geometry reduces to a fan-beam geometry. First, we discuss
about the choice of reference images and side information.

Reference images: The reference images are reconstructions from data with 720 angles
and 552 detectors, computed via (3.3) using FBS and TV regularizer. The regularization
parameter α is chosen to preserve low noise and high-resolution details in each energy
channel, see in figure 3.

Choice of side information: We solve the problem (4.1) for different values of α,
we compare the resulting reconstructions in figure 4. We chose the reconstruction
with α = 0.03, that keeps sharper boundaries and includes few artifacts during the
reconstruction. We will compare the results obtained for two different side information
images in synthetic data section (see figure 16).
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E0 = 40 KeV

0.00 0.05 0.10

E1 = 80 KeV

0.00 0.02 0.04 0.06

E2 = 120 KeV

0.00 0.01 0.02 0.03 0.04

Figure 3. Reference images for real data solving the problem (3.3) with α = 0.005,
α = 0.002 and α = 0.002 for E0, E1 and E2,respectively.

sinogram α = 0.01 α = 0.03 α = 0.05

Figure 4. From left to right: sinogram of the prior information with 90 angles and
552 detectors, TV solutions of the problem (3.3) with α = 0.01, α = 0.03 and α = 0.05,
respectively. The minimization problem is solved with FBS algorithm in a space of
size 512× 512.

FBS results: We run the FBS iterations from algorithm 1, starting with u0 = 1 ∈ RN

and σ0 = 1/‖A‖2, where ‖A‖ is an estimated norm of the operator A. We set tolerance
as tol = 10−6 for all the experiments, so the algorithm stops when H(ut+1)−H(ut) ≤
tol ·H(ut+1). We choose η = 0.01 ·maxx |∇v(x)| for dTV definition (3.2) as commonly
done for this regularizer [16, 7].

The results for all energies are shown in figure 5, we have included the structural
similarity measure (SSIM) [53] and Peak Signal-to-Noise Ratio (PSNR) [26] measures
implemented in ODL, to compare the quality of the reconstructions to the reference
images in figure 3.

Bregman results: For algorithm 2, we start with σ0 = 1/‖A‖2 and u0 = q0 = 0 ∈ RN .
These choices guarantee that q0 ∈ ∂G(u0) for G = GTV or G = GdTV. We run 2000
iterations in algorithm 2 using α = 10 for (3.4) and (3.5). We observe from figure 6
a common pattern along energies: the SSIM curve for TV is always below the curve
associated to dTV, additionally, the number of iterations needed to maximize SSIM
is always smaller for dTV than TV. The diamond markers included refer to the best
iterations in terms of SSIM. The images with highest SSIM are presented in figure 7.
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Figure 5. For the three energies, reconstructions using FBS algorithm with TV (upper
row) and dTV (bottom row). For each setting, α is chosen to maximize SSIM.
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Figure 6. For each energy level, the graphs show iterations against SSIM.

Comparison between FBS and Bregman iterations: After calibration of the regulariza-
tion parameter α for FBS and iteration number for Bregman iterations, we compare the
two algorithms for E0 in figure 8. We observe that both algorithms give similar values
for PSNR and SSIM but consistently dTV outperforms TV.
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Figure 7. For the three energies, reconstructions using Bregman iterations with
TV(upper row) and dTV (bottom row). Each image is labeled by the iteration that
maximize SSIM.
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Figure 8. Top: reconstructions for E0 using “optimal” regularization for both FBS
and Bregman iterations. Bottom: difference between reconstruction and reference
image (see figure 3).
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4.2. Synthetic data experiments

We designed a new geometric phantom based on [31], see figure 11. Our phantom is
mainly composed of three materials: quartz, pyrite and galena as shown in figure 9.
As described in [31], a X-ray spectrum q(E) is generated with a tube potential of
E = 120 keV, the obtained source spectrum is normalized q̃(E) and multiplied by the
initial photon flux I0 = 4× 107. The resulting spectrum is shown in figure 10. We focus
on three energies E0 = 50 keV, E1 = 85 keV and E2 = 100 keV. Also figure 10 shows, we
include the photon attenuation process along the energy spectrum, which determines
the mass attenuation coefficient of each material at each energy channel.

Quartz Pyrite Galena

Figure 9. Materials distribution used for synthetic phantom.
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Figure 10. Left: The energy spectrum given by I0q̃(E). Right: mass attenuation
curves by material. In both figures, we have pointed out the energies that are
considered for our experiments.

Choice of side information: As in real case, we solve the problem (4.1) using α = 10−4,
α = 5 × 10−4 and α = 10−3. We have chosen the image with α = 10−4, which gave us
the best results. We discuss the accuracy of side information choice in figure 16.
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Figure 11. Reference images for E0 = 50 keV, E1 = 85 keV and E2 = 100 keV.
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dTV (bottom row). Each column is labeled by the α parameter used during the
reconstruction.

FBS results: We initialized u0 and σ0 as in real experiments. In figure 12, we present
the results obtained for three different values of α for TV and dTV regularizers using E1.
We included close-ups for easier comparison of the reconstructions. Here, we observe
that using dTV yields higher values of measures and better reconstructions reducing
the artifacts in the zoomed area at the top. The same analysis is applied for the other
two energies and the best choice of α is summarized in figure 13.
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The middle image is the one with highest SSIM.

Bregman results: Now, we observe the results for algorithm 2. We initialize σ0 =
1/‖A‖2 and u0 = q0 = 0 ∈ RN . We run the algorithm for 3000 iterations but using
α = 0.1 as regularizer. As before, the “optimal” iteration number is chosen to maximize
SSIM. The iterations for E1 are presented in figure 14 using TV and dTV.

The FBS and Bregman reconstructions are similar. However, we note that fewer
iterations were needed for Bregman iterations to reach those reconstruction compared
to FBS as shown in figure 15.



Synergistic Multi-spectral CT Reconstruction with dTV 16

1 10 100 1000

iterations

0.80

0.83

0.85

0.88

0.90

0.93

0.95

0.98

1.00

S
S

IM

fbs TV

fbs dTV

bregman TV

bregman dTV

1 10 100 1000

iterations

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

S
S

IM

fbs TV

fbs dTV

bregman TV

bregman dTV

1 10 100 1000

iterations

0.80

0.83

0.85

0.88

0.90

0.93

0.95

0.98

1.00

S
S

IM

fbs TV

fbs dTV

bregman TV

bregman dTV

Figure 15. SSIM along iterations for fbs and Bregman iterations using both TV and
dTV.

4.2.1. Influence of side information In this experiment, we compare the accuracy of
the reconstructions depending on the choice of side information. For this, we consider
two different regularization parameters α = 10−4 and α = 1 × 10−3 to solve (4.1).
These two choices, shown in figure 16, give us one image with sharper side information
(upper row) but containing some extra features as is observed in the zoomed zones, and
another image with smoother shapes with round corners (bottom row). We compare the
best reconstructions using the dTV and FBS algorithms, based on the highest values
of SSIM. For the second side information, some artifacts were observed, together with
smaller similarity measures values and larger number of iterations for the Bregman
iterations compared to the first side information.
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FBS and Bregman iterations. For FBS, α = 10−5 provided the highest SSIM and for
Bregman iterations, we stop after 2001 iterations.
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5. Discussion and conclusions

We have analyzed synergistic reconstruction for multi-spectral CT reconstruction when
a limited set of angles is observed. The proposed approach is based on combining
information from all available energy channels into a polyenergetic image. This image
is then included into the directional total variation regularizer for use in variational or
iterative regularization.

We observed that the synergistic approach based on directional total variation is
always superior to separate reconstruction using just total variation for both variational
and iterative regularization. In addition, we consistently saw that linearized Bregman
iterations converge faster to a desired solution than forward-backward splitting.

The observation that synergistic reconstruction can be faster than separate
reconstruction is novel and interesting. Future work will be directed to fully understand
this phenomenon.
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