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Associations between toddler touchscreen use and attention 

Abstract – 150/ 150 

 

Childhood screen time is associated with both attentional difficulties (for television viewing) 

and benefits (in action video gamers), but few studies have investigated today’s pervasive 

touchscreen devices (e.g. smartphones and tablets), which combine salient features, 

interactive content, and accessibility from toddlerhood (a peak period of cognitive 

development). We tested exogenous and endogenous attention, following forty children who 

were stable high (HU) or low (LU) touchscreen users from toddlerhood to pre-school. HUs 

were slower to disengage attention, relative to their faster baseline orienting ability. In an 

infant anti-saccade task, HUs displayed more of a corrective strategy of orienting faster to 

distractors before anticipating the target. Results suggest that long-term high exposure to 

touchscreen devices is associated with faster exogenous attention and concomitant decreases 

in endogenous attention control. Future work is required to demonstrate causality, dissociate 

variants of use, and investigate how attention behaviours found in screen-based contexts 

translate to real-world settings.  
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Introduction 

Attention control plays a pivotal role in selecting relevant information from the 

environment, and is thought to underpin the adaptive control of behaviour early in life1,2. This 

selection results from the interaction between exogenous (stimulus-driven and automatic, e.g. 

looking at a flashed cue) and endogenous (goal-driven and voluntary, e.g. inhibition of 

looking to a distractor) processes3-5, and can be studied using saccadic paradigms6-9. 

Although under genetic control, the development of attention is subject to environmental 

influences10, like the visual experience of screen media activity, e.g. television11 or computer 

games12-14. 

High levels of non-curated television exposure before the age of 2 have been 

proposed as a risk factor for attention11,15 and executive function difficulties16,17; with the 

fast-pace TV content, by overly activating exogenous attention18, being hypothesized to 

deplete endogenous attention resources15,19-22. However, the evidence to support these 

associations is often inconsistent, and thorough examinations of the mechanisms for and the 

directions of the effects are lacking23. In contrast, in some studies of adults and older 

children, action video-games (fast-paced games placing high perceptual and motor demands) 

have been shown to train attention skills, with video-gamers showing enhanced visual 

discrimination, processing speed, and endogenous attention13,24-28 (however, see 29 for a 

review of the counter-evidence). This enhancement is hypothesized to result from a more 

flexible and efficient allocation of attentional resources24,26,27, although the extent to which 

these effects may also be observed in infants is unknown due to the traditional inaccessibility 

of action videogames at this age. 

Screen media is commonly used as entertainment for children, and with the rapid 

increase in touchscreen device use (i.e. smartphones and tablets), the media environment of 

young children has changed, from 28% of 3-4 year-olds using a tablet at home in 2013 to 
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63% in 201930. Touchscreens share similarities with television, in terms of the salient features 

that guide attention; and with video-gaming, in the interactivity afforded during video 

selection and app use. However, research addressing the associations between touchscreen 

media and cognitive development is limited.  

Using the same cohort as the current study, we have shown that, at 18 months and 3.5 

years, high touchscreen users (HUs) were faster in exogenous visual search than low users 

(LUs) – i.e. detecting a red apple amongst blue apples31. However, because looking at the 

most salient item (the red apple) was advantageous, it was not known whether HUs would 

still display faster exogenous orienting when such behaviour is in direct conflict with 

endogenous attention, e.g. when inhibiting saccades to salient distractors. Preliminary 

evidence for inhibitory control issues have been reported in pre-schoolers who had high 

touchscreen app use the year before32.  

In the current study, we tested whether long-term (from 12-18 months to 3.5 years) 

use of touchscreens was associated with exogenous and endogenous attention, using two 

saccadic orienting tasks. These tasks provide objective measures of the interplay between 

exogenous and endogenous attentional processes and are ideal for investigating attentional 

control across early development. The Gap-Overlap assesses the disengagement and 

facilitation of attention by measuring the latency of eye movements from a central to a 

peripheral stimulus6,8,33 in three increasing levels of visual competition. In ‘overlap’ trials 

(highest competition), the two stimuli overlap in time, disrupting automatic saccades and 

requiring active fixation disengagement, producing longer latencies compared to ‘baseline’ 

trials (simultaneous peripheral stimulus onset and central stimulus disappearance). In ‘gap’ 

trials (least competitive condition), a delay between central stimulus disappearance and 

peripheral onset provides a warning signal, facilitating disengagement34, producing faster 

latencies. The Anti-saccade indexes inhibition by measuring suppression of automatic 
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saccades to a distractor and execution of an anticipatory saccade in the opposite direction. 

The adult anti-saccade makes use of instructions35,36; in the infant implementation, infants are 

implicitly trained to look opposite to the distractor by presenting a delayed target stimulus 

and reinforcing a response to its location with a reward. Over the course of the task, infants 

learn to inhibit the response to the distractor37 to respond quicker to the target and anticipate 

its appearance. The pro-saccades are thought to reflect exogenous processing, whereas the 

voluntary anti-saccades reflect endogenous processing7,9. 

This study aims to test whether HUs’ overt attention shifts (i.e. saccades) a) were 

faster than LUs’ under conditions where saliency-driven behaviour is elicited (i.e. exogenous 

attention, measured by the facilitation index, the latency on the baseline condition, and the 

proportion and latency of prosaccades) and, critically, b) differ to LUs when the required 

shifts conflict with stimulus saliency, requiring endogenous control (the disengagement index 

and the proportion and latency of anti-saccades). 

 
 
Results  

The Gap-Overlap task 

Data from forty children (16 girls) who were either High (26 HUs) or Low (14 LUs) users 

across visits (long-term users) were included in the analysis. Groups did not differ on the 

number of valid trials (see Supplementary Table S6 online). 

A GEE model including usage group (HU, LU) and visit (12 months, 18 months and 3.5 

years) as predictors of disengagement showed a significant main effect of group (p = .047, 

see Table 1): LUs showed a smaller disengagement index (mean = 101ms) compared to HUs 

(mean = 130ms). There was no significant effects of visit nor interactions. 

For facilitation, there was a significant main effect of visit (p = .001, see Table 1). Bonferroni 

corrected pairwise comparisons showed a significantly smaller facilitation index at 12 months 
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(mean = -69ms) relative to 3.5 years (mean = -22ms, p < .001), but no differences with 18 

months (mean = -52ms, p = .318 and p = .073 respectively). There was no group main or 

interaction effects. 

To follow-up on the group effect on disengagement, separate GEEs models were run for 

saccadic latencies in the Baseline and Overlap condition. Latency in the baseline condition 

was significantly associated with user group (p = .026, see Table 1) with HUs showing faster 

baseline latencies (mean = 396ms) compared with LUs (mean = 425ms) – see Fig. 1; there 

was also a main effect of visit (p = .022), with faster latencies at 3.5 years (mean = 392ms) 

relative to 12 months (mean = 425ms, p = .019), but not 18 months (mean = 412ms, p = .119 

and p = .596 respectively). The interaction was not significant. For latency in the overlap 

condition, a GEE model showed a main effect of visit (p < .001, see Table 1), with faster 

latencies at 3.5 years (mean = 487ms) compared with 12 months (mean = 548ms, p < .001) 

and 18 months (mean = 537ms, p = .002), but no difference between 12 and 18 months (p = 

.959). There was no main or interaction effect of group. 

There was no significant main effects of sex (p > .2) or of average Background TV (p > .2) 

on the outcome variables.  

In summary, results show that the disengagement index was higher for HUs, suggesting 

reduced endogenous attention. However, HUs were faster than LUs only in the baseline 

condition, suggesting faster exogenous attention in this group. 

Table 1. Summary of GEE Model Effects including long-term user group (high and low 

users) and visit (12 months, 18 months, and 3.5 years) as predictors of the Gap-Overlap Task 

outcome measures. The analysis included 14 LUs and 26 HUs. 

 Wald χ2 (df), p value 

Disengagement 

Visit 4.51 (2), p = .105 

Group 3.95 (1), p = .047 

Visit *Group 0.33 (2), p = .848 

 

Facilitation 

Visit 15.20 (2), p = .001 
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Group 1.13 (1), p = .288 

Visit *Group 0.40 (2), p = .817 

 

Follow-up model on Baseline Latency 

Visit 7.62 (2), p = .022 

Group 4.99 (1), p = .026 

Visit *Group 3.06 (2), p = .216 

 

Follow-up model on Overlap Latency 

Visit 18.22 (2), p < .001 

Group 0.01 (1), p = .919 

Visit *Group 2.89 (2), p = .235 

 

 

 
Figure 1. Mean Saccadic Reaction Time (ms) for each touchscreen use group (N = 40) as a 

function of trial condition in the Gap-Overlap Task. Measures are aggregated across the 

three longitudinal visits. Shaded areas represent standard error of the mean. *p < .05. 

 

The Anti-saccade task 

Proportion of saccadic behaviour 

Data from thirty-eight children (16 girls) who were either High (24 HUs) or Low (14 LUs) 

users across visits were included in the analysis. Groups did not differ on the number of valid 

trials (see Supplementary Table S6 online). 
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A GEE model with group, visit, and task half (first, second) as predictors of the proportion of 

anti-saccades showed a main effect of half (p < .001, see Table 2), with a higher proportion in 

the second half of the task (mean = 0.46), compared with the first half (mean = 0.12); 

suggesting all participants were learning the task. There was also a main effect of visit (p = 

.005). Bonferroni corrected pairwise comparisons showed that at 18 months (mean = 0.40) 

children were doing more anti-saccades than at 12 months (mean = 0.25, p = .016), however, 

at 3.5 years (mean = 0.22), they were doing less anti-saccades than at 18 months (p = .004), 

with no significant difference between 3.5 years and 12 months (p > .99). There was no main 

effect of touchscreen user group, and no significant interaction effects.  

For proportion of pro-saccades (i.e. looks to the distractor not followed by an anticipatory 

look to the target location) there was again an effect of half (p < .001, the proportion 

decreased from the first, mean = 0.71, to the second half, mean = 0.32; see Table 2); and an 

effect of visit (p = .007), with more pro-saccades at 12 months (mean = 0.61) than 18 months 

(mean = 0.44, p = .007) and 3.5 years (mean = 0.51, p = .051), while at 18 months and 3.5 

years the proportion did not differ (p > .99). There was also an interaction between half and 

visit (p = .005); follow-up models split by half showed that at 18 months and 3.5 years babies 

started with a similar proportion of pro-saccades (which was lower than at 12 months), but by 

the second half 18-month-olds had a lower proportion of pro-saccades compared to 12-

month-olds and 3.5-year-olds – i.e. children at 3.5 years do not seem to reduce the proportion 

of pro-saccades across the task as much as the toddlers (see means in Supplementary Table 

S7 online) . There was no effect of group, or other interactions. 

For the proportion of corrective looks (looks to the distractor followed by an anticipatory 

look to the target location) there was a main effect of half (p = .025, the proportion of 

corrective looks increased from the first, mean = 0.16, to the second half, mean = 0.22; see 

Table 2), and a main visit effect (p = .001), with children doing more corrective looks at 3.5 



Associations between toddler touchscreen use and attention 

years (mean = 0.27) than at 12- (mean = 0.14, p = .008) and 18-months (mean = 0.16, p = 

.001), while 12 and 18 months did not differ (p > .99). There was also an interaction between 

half and visit (p = .038); follow-up models for each half showed that visit differences were 

only evident in the first half of the task (p = .008). There was no main effect of group, but 

there was a significant interaction effect of half and group (p = .002). Follow-up models 

showed that groups differed in their corrective looks in the second half of the task (p = .017) 

– see Fig. 2. There were no other interactions.  

In summary, results suggest that participant behaviour adapted appropriately to the infant 

anti-saccade task as indexed by an increase in anti-saccades (endogenous attention) during 

the task. Performance seems to be optimal at 18 months with the highest proportion of anti-

saccades in the second half at this age; whereas performance at 3.5 years is similar to 

performance at 12 months. However, in the first block of the task at 12 months there were 

more pro-saccades (exogenous attention), while at 3.5 years there were more corrective looks 

(failing to inhibit a pro-saccade but still anticipating the target). In terms of usage group, 

while no differences in proportion of anti-saccades (endogenous) or pro-saccades 

(exogenous) was found, HUs showed more of this corrective behaviour in the second half of 

the task. 

Table 2. Summary of GEE Model Effects including long-term user group (high and low 

users) and visit (12 months, 18 months, and 3.5 years), and task half (first, second) as 

predictors of the Anti-saccade Task outcome measures. The analysis included 14 LUs and 24 

HUs. 

 Wald χ2 (df), p value 

% Anti-saccades 

Half 125.02 (1), p < .001 

Visit 10.80 (2), p = .005 

Group 0.14 (1), p = .706 

Half *Group 1.30 (1), p = .254 

Visit *Group 2.00 (2), p = .369 

Half *Visit 5.46 (2), p = .065 

Half * Visit *Group 0.82 (2), p = .661 

 

% Pro-saccades 

Half 230.34 (1), p < .001 
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 Wald χ2 (df), p value 

Visit 10.03 (2), p = .007 

Group < 0.01 (1), p = .966 

Half *Group 0.03 (1), p = .871 

Visit *Group 1.49 (2), p = .476 

Half* Visit 10.56 (2), p = .005 

Half * Visit *Group 0.13 (2), p = .938 

 

% Corrective looks 

Half 5.01 (1), p = .025 

Visit 14.29 (2), p = .001 

Group 3.26 (1), p = .071 

Half *Group 9.35 (1), p = .002 

Visit *Group 1.37 (2), p = .505 

Half * Visit 6.52 (2), p = .038 

Half * Visit *Group 1.08 (2), p = .583 

 

Latency to distractor (pro-saccade) 

Half < 0.01 (1), p = .993 

Visit 17.70 (2), p < .001 

Group 4.55 (1), p = .033 

Half *Group 1.75 (1), p = .186 

Visit *Group  4.96 (2), p = .084 

Half * Visit 9.06 (2), p = .011 

Half * Visit *Group 1.69 (2), p = .430 

 

Latency to target location (anti-saccade) 

Half 9.28 (1), p = .002 

Visit 33.69 (2), p < .001 

Group 0.94 (1), p = .334 

Half *Group 1.71 (1), p = .191 

Visit *Group 0.26 (2), p = .878  

Half * Visit 4.04 (2), p = .133 

Half * Visit *Group 0.79 (2), p = .673 
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Figure 2. Mean Proportion for each Longitudinal touchscreen use group (N=38) as a 

function of Task Half and look behaviour in the Anti-Saccade Task. Measures are aggregated 

across the three longitudinal visits. Shaded areas represent standard error of the mean. 

Latencies to Distractor and Target 

A GEE model for latency to the distractor during a pro-saccade showed a main effect of visit 

(p < .001, see Table 2 above), with children being faster at 3.5 years (mean = 436ms) than at 

12 (mean = 526ms, p = .005) and 18 months (mean = 548ms, p = .017), while no difference 

between 12 and 18 months was found (p > .99). This model also showed a main effect of 

group (p = .033): LUs were slower (mean = 535ms) than HUs (mean = 480ms). There was no 

main effect of half, but there was an interaction between half and visit (p = .011); follow-up 

models run for each half showed that the visit effect was only evident in the first half (p < 

.001). 

For the latency to saccade to the target location during an anti-saccade there was a main 

effect of half (p = .002, see Table 2), with latencies decreasing from the first (mean = 702ms) 

to the second half (mean = 665ms). The model also showed an effect of visit (p < .001): at 18 

months (mean = 619ms) anti-saccades were faster than at 12 months (mean = 719ms, p < 
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.001), but at 3.5 years (mean = 716) they were slower than at 18 months (p = .010), with a 

similar level of performance compared with 12 months (p > .99). There was no main effect of 

group, and no interactions. See Supplementary Tables S8 online for means of latency 

measures. In summary, results suggest that, in line with the proportion analysis, performance 

was better at 18 months; with faster latencies to anti-saccade at this age. In terms of pro-

saccades, latencies were faster at 3.5 years in the first half of the task; and HUs were faster 

than LUs throughout the task (suggesting faster exogenous attention). 

See all GEE results with covariates in Supplementary Table S9 online. There was a main 

effect of sex only for the latency to saccade to the target location during an anti-saccade (p = 

.023), with girls being faster to anti-saccade than boys; results remained similar to the ones 

presented above when controlling for it. There was a significant main effect of Background 

TV on the proportion of anti-saccades (p = .002), pro-saccades (p = .018) and corrective 

looks (p = .001), with higher Background TV associated with less anti-saccades, more pro-

saccades and more corrective looks; higher Background TV was also associated with faster 

latencies to saccade to the target location during an anti-saccade (p = .002). When running the 

analysis with Background TV as a covariate all main and interaction effects reported above 

remained significant, apart from the main effect of half on the proportion of corrective looks, 

which became marginally significant (p = .076).  

 

Concurrent time-varying group analysis   

To assess if the results above were specific to long-term touchscreen use (which indexes 

concurrent and past consistent usage), all analyses were repeated with the full-sample and the 

time-varying concurrent touchscreen use group as predictor. Results are reported in 

Supplementary Note S10 online.  
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In the Gap-overlap Task (n = 53), visit effects remained similar; in terms of touchscreen 

usage group (HU, LU), the effect did not reach significance for the disengagement index (p = 

.123) but remained significant for the baseline condition latency (p = .016). 

In the infant Anti-saccade Task (n = 51), effects remained mostly similar. The two exceptions 

were that the interaction of half and visit was significant for proportion of anti-saccades (p = 

.041; at 18 months children were doing more anti-saccades than at 12 months and 3.5 years in 

the second half); and that the interaction of task half and visit did not reach significance for 

corrective looks (p = .141). The usage group effect on the latency to the distractor during a 

pro-saccade remained significant between concurrent groups (p = .025), as did the interaction 

of task half and usage for proportion of corrective looks (p =.007).  

 

Discussion 

Long-term touchscreen use was associated with differences in the speed and control of 

attention allocation over the visual scene across two tasks, with HUs showing faster 

exogenous attention (he baseline and pro-saccades latencies) and concomitant endogenous 

attention differences (longer disengagement index). Concurrent use was associated with 

faster exogenous attention. 

On the Gap-overlap task, long-term HUs were slower to disengage attention. However, this 

was due to them being faster when shifting attention on a no-competition condition, rather 

than being slow on the overlap-competition condition. One well-documented change after 

playing video-games is faster reaction times25,28,38; however, in this study, a general increase 

in processing speed was not found. Rather, considering the speed advantages HUs presented 

in the baseline, HUs took more time than expected to disengage attention in the overlap 

condition. The saliency bias (faster baseline latencies) was found for concurrent and long-

term HUs, which supports the idea that exposure to touchscreens, which provide experience 
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with salient and contingent content, may lead to a greater attentional bias to exogenous 

salient stimuli, in line with our previous finding of faster pop-out search in HUs31. Although 

significant group effects on the facilitation index (which was thought to index exogenous 

attention) and on the gap condition (which also indexes a shift to a salient stimuli, p = .158, 

see Supplementary Table S11 online) were not found, given that facilitation is a subtraction 

of gap and baseline latencies and the later differed between groups, it is reasonable to say that 

HUs either tended to also be faster in the gap condition or tended to have a weaker 

facilitation effect. It is possible that the complex processes that underlie facilitation (e.g. 

phasic alerting10) might be implicated in high users of touchscreens, but this hypothesis 

cannot be addressed with the studies presented.   

On the Anti-saccade task, HUs produced more corrective looks, still anticipating the target. 

HUs were also faster to look to the salient distractor, again supporting our previous finding31, 

which may have triggered the corrective behaviour (see below). While anti-saccade 

performance increased from 12 to 18 months, at 3.5 years, children produced fewer and 

slower anti-saccades while being faster to shift to the distractor and producing more 

corrective looks (see Supplementary Figure S11 online for a visualization of age differences 

in performance). It is possible that the target onset delay (1000ms after distractor offset at all 

visits, necessary to ensure measures could be compared across visits) was too generous to 

enforce automatic saccade inhibitions at 3.5 years, allowing children with faster orienting to 

opt for an overselective behaviour, i.e. look to distractor and anticipate the target. The similar 

direction of effects between visit and touchscreen usage tentatively suggests that HUs’ faster 

exogenous attention enables them to opt for this corrective, overselective behaviour already 

at 12 and 18 months. Corrective saccades, which were also found in other studies of the anti-

saccade with young children7, could suggest that participants learnt the costraints of the task 

and were able to adapt to it given their exogenous orienting speed. Alternatively, this 
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corrective behaviour could be seen as a failure to inhibit a pro-saccade while still anticipating 

the reward. The finding that at 3.5 years the latency to anti-saccade is slower than at 18 

months suggests that participants struggled to anti-saccade at this age. It is important to 

highlight that while proportion and latency of anti-saccades did not statistically differ 

between usage groups, descriptively, they tended towards reduced and slower inhibitory 

control also in HUs (i.e., less and slower anti-saccades). Dissociating these two hypothesis 

(i.e. does corrective behaviour reflect an overselective adaptation or a failure to inhibit 

attention?) is crucial to understand the implications to attention and executive control of the 

differences found, and future studies should look at trial-by-trial performance to understand 

the different learning strategies used at different ages and usage levels. In terms of pro-

saccades (thought to index exogenous attention), while no differences between the groups 

was found, it is important to note this exogenous behaviour is also captured by the corrective 

looks found to be different between groups (these behaviours were constrained to be mutually 

exclusive, such that a pro-saccade that occurred during a corrective look did not count for the 

final proportion of pro-saccades). 

In sum, these findings indicate that visual attention of young HU children may be more 

exogenously driven than that of LUs – replicating our previous finding of faster pop-out 

visual search31 – but also demonstrating that the association is both with concurrent and long-

term touchscreen use, and extending it to tasks in which such behaviour is not always 

advantageous to performance. On the other hand, endogenous control appears reduced in 

long-term HUs only, with slower disengagement of attention (relative to their baseline). 

These endogenous differences may be driven by a long-term exogenous speed advantage, 

which allows them to opt for a different attentional strategy. It may be that HUs use their 

faster orienting to compensate for endogenous differences, or alternatively, that their strategy 

to give priority to automatic exogenous processing displaces opportunities for learning 
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endogenous control over the critical first few years of neurodevelopment, as already 

suggested in relation to television viewing15,19-22.  

The use of a longitudinal design and objective lab-based attention measures in the current 

study provided a detailed profile of attention performance associated with using a 

touchscreen early in life. However, this approach has clear limitations. First, given that the 

findings are based on associations, it is equally possible that children who are already biased 

towards salient content (and have relatively reduced endogenous attention control) are 

predisposed towards touchscreens, or that a sensitivity to saliency (and concomitant 

difficulties) is caused by using a touchscreen. While direction and causality remain to be 

investigated, the concurrent associations found in this and our previous study (and the 

changed group memberships over the years) tentatively suggest that the saliency bias seen in 

HUs is not due to trait-level predispositions and that this attentional profile was acquired 

through the experience with touchscreens. Second, given the screen-based tasks 

administration, it is unknown if the behaviours found are screen-specific, and future 

investigations should replicate in these in “real-world” settings where saliency appears in the 

form of distraction and executive processes are required more actively to control behaviour in 

a goal-driven way39,40, such as solving a puzzle in a busy living room, or concentrating in a 

classroom. 

Another limitation is that the assignment of touchscreen use group was based on a parent-

report question, which may be subject to reporter bias and under-estimation41. However, 

response to this question was strongly correlated with the cumulative duration of daily 

touchscreen use reported in at least one media diary kept by their parents during a day prior 

to each visit (see correlations statistics in the Methods – Touchscreen use section and in 

Supplementary Table S3 online; see Vandewater and Lee42 for discussion of the suitability of 

such diaries when objective measurement is not possible). Further, the rank order of 
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objectively-measured individual differences in screen time is captured by self/parent-report, 

such as the median split global estimate used in this study43. However, future studies should 

attempt to use objective tracking of the duration, context and content of touchscreen 

exposure, in order to understand how variants of use are associated with attention control. As 

far as we know, the findings of faster exogenous attention have not been documented before 

in relation to more conventional media (i.e. television and video-gaming), which suggests a 

potentially unique role of these devices for the developing mind. While at our age range the 

use of a touchscreen is predominantly to watch videos, with increasing age the type of usage 

also seems to change from more passive to more active use44. A lack of interaction effects 

between age and usage in our results could tentatively suggest the effects found are not 

dependent on the type of touchscreen use (e.g. watching videos versus playing games) and 

may be specific to the experience afforded by the touchscreen platform. It is, however, 

crucial to follow-up these findings by studying or manipulating the context and content of 

such experience to try and pinpoint the specific characteristics of the platform that are 

associated with these attentional patterns.  

In conclusion, the results presented suggest that long-term exposure to touchscreen media is 

associated with faster exogenous orienting, and concomitant reduced endogenous attention 

control (slower disengagement of attention). If replicated in larger scale future studies this 

finding could have important implications for the development of digital media content and 

evidenced-based screen-time policies. 
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Methods 

Participants and study design 

Fifty-six infants were recruited between October 2015 and March 2016, through the 

Birkbeck and Goldsmith’s Babylab databases and communication and social media. Three 

participants were later excluded from the study – one withdrew consent after the first visit, 

and the other two received a later diagnosis of genetic or neurological conditions. Families 

visited the Babylab and children took part in a battery of experimental measures 

(Supplementary Table S1 online), including the saccadic control tasks described below, as 

part of three longitudinal visits at 12 months (N = 53, 23 girls, M = 376 days, SD = 20), 18 

months (N = 49, 22 girls, M = 540 days, SD = 21) and 3.5 years (N = 46, 23 girls, M = 1256, 

SD = 16). Full sample details are reported in Supplementary Table S2 online. One child was 

born prematurely at 32 weeks, and one child occasionally suffers from Reflex Anoxic 

Seizures – as both were able to fully perform the tasks their data were retained in the 

analysis. The study was approved by the Birkbeck Psychological Sciences ethics board and 

conducted according to the British Psychological Society Code of Ethics and Conduct. 

Parents provided written informed consent at each visit. 

 

Measures 

Touchscreen use 

Parents assessed their child’s touchscreen use in hours and minutes before each visit, 

through a question embedded in an online survey: ‘On a typical day, how long does your 

child spend using a touchscreen device (tablet, smartphone or touchscreen laptop)?’45. Infants 

were initially recruited and assigned to a user group based on the median for average daily 

touchscreen use in 12- to 13-month-olds from a previous online survey sample45, >10 

minutes/day “high users” (HU), <10 minutes/day “low users” (LU). At subsequent visits, the 

median was calculated within the sample: 15 minutes/day at 18 months and 3.5 years (Table 
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3). This parent-reported duration of use was significantly associated with total touchscreen 

exposure in 24-hour media diaries (12 months: rs = .49; 18 months: rs = .59; 3.5 years: rs = 

.62; see Supplementary Table S3 online). At recruitment, groups were matched on 

background covariates – see Supplementary Table S2 online for detailed descriptive statistics 

of concurrent usage groups. 

Table 3. Parent-reported touchscreen use (minutes/day) details for the TABLET sample and 

concurrent usage groups (LU=low user, HU=high user) split by visit. *p < .05, **p < .001 

for the Spearman’s rho correlation. 

 12-

months 

(min/day) 

18-

months 

(min/day) 

3.5-years 

(min/day) 

12-months 

(min/day) 
- .78** .31* 

18-months 

(min/day) 
- - .33* 

Median  

Cut-off 
10 15 15 

Sample Mean  

(SD) 

25.58 

(54.94) 

29.14 

(62.28) 

37.93 

(62.92) 

Concurrent Usage   

LU 

N 21 23 19 

Mean 

(SD) 

0.52  

(1.25) 

2.09  

(3.23) 

3.16  

(4.15) 

H

U 

N 32 26 27 

Mean 

(SD) 

42.03 

(66.01) 

53.08 

(78.54) 

62.41 

(73.03) 

 

For some children, touchscreen usage was not consistent throughout the study and 

their group membership changed between visits (as evidenced by the moderate to high 

correlations for duration of use between visits). For this reason, only participants who had 

stable usage over time (n = 40), and hence their touchscreen use across visits could index 

long-term exposure, were considered in the main analysis; however, concurrent time-varying 

group analysis (i.e. cross-sectional) using the full sample (n = 53) can be seen in the 

Supplementary File online. To be considered as a long-term user, a child’s user group at 

either of the first ‘toddler’ visits (12 or 18 months) needed to match the usage group at the 3.5 

year ‘preschool’ visit (i.e. if at 12 months a child was a LU and at 3.5 years he/she was also a 
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LU, then he/she would be considered a long-term LU; if at 12 and 18 months a child was a 

HU but at 3.5 years he/she was a LU, then he/she would be considered an unstable user and 

hence dropped from this analysis). If children missed the last visit, they were included in a 

group if their usage was consistent on the other time points (this happened for 5 children). 

See Supplementary Table S4 online for the possible group permutations and outcome group 

classification. In total, 14 children were classified as LUs, 26 were HUs and 13 children were 

dropped from analysis because their usage could not be described across age points.  

Background covariates  

Table 4 presents detailed descriptive statistics for each long-term usage group, 

including touchscreen media use duration and background measures: sex, age at each visit, 

general development level at 12 months (assessed by the Mullen Scales of Early Learning46), 

average Background TV Viewing (min/day assessed through the question: “On a typical day, 

how long is a TV switched on in your home?”), and Mothers’ education. Given that sex and 

average background TV were significantly different across groups, these were tested as 

covariates in follow-up analysis, with any that had a significant main effect on the outcome 

retained and reported in the Supplementary File online.  

Table 4. Descriptive and frequency statistics for key background variables by long-term 

touchscreen media user group. For continuous numerical variables data is presented as 

Mean (Standard Deviation) and difference between user groups (high and low users) was 

tested with an independent samples t-test. For categorical variables data is presented as N 

(Proportion) and difference between user groups (high and low users) was tested with a 

Pearson Chi-Square.  

 
Long-term 

Low users 

Long-term 

High users 

Between-groups 

comparison 

N 14 26  

Touchscreen Use    

Average Min/Day 3 (5) 54 (78) p = .003 

Sex    

Girls 9 (64%) 7 (27%) 
p = .021 

Boys 5 (36%) 19 (73%) 

Mother’s Education    

School-leaving, college 0 3 (11%) 

n.s. (p = .177) University, Postgrad 14 (100%) 22 (85%) 

Missing/ N/A 0 1 (4%) 
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Age (days)    

At 12-months 378 (16) 375 (21) n.s. (p = .687) 

At 18-months 542 (18) 540 (16) n.s. (p = .748) 

 At 3.5-years 1253 (13) 1257 (20) n.s. (p = .499) 

Background TV    

At 12-months* 127 (178) 230 (174) n.s. (p = .084) 

Average*  118 (169) 236 (171) p = .042 

MSEL Standard Score    

At 12-months 111 (11) 108 (11) n.s. (p = .372) 

* One value that exceed 3 standard deviations from the mean were trimmed (i.e. changed to be one 

more than the non-trimmed highest value) 
 

 

Lab-measures of attention control 

Attention control performance was measured in the lab on two gaze-contingent 

paradigms. Participants’ eye coordinates were recorded at 120Hz using a Tobii TX300 eye-

tracker (Tobii Technology, Stockholm, Sweden), MATLAB, and the Tobii Analytics SDK on 

a MacBook Pro. Stimuli were presented on a 23" widescreen monitor (16:9, 1920X1080 

pixels) with stereo speakers via custom scripts using PsychToolbox (version 3.0.12) while the 

child was seated on their parent’s lap approximately 60cm distance. The session was 

monitored and recorded with a web camera located above the screen with the ScreenFlow 

(Telestream Inc., version 9.0) screen-casting software. Participants’ gaze was calibrated using 

a child appropriate 5-points procedure47 before each task. After calibration, stimulus 

presentation ran automatically (pacing of the trials and the timing of stimuli presentation was 

dependent on child’s gaze) and continued until the end unless children became overly fussy.  

The Gap-Overlap task was presented first, across seven blocks of 12 trials 

interleaved with free-viewing of dynamic and static scenes. All trials began with a centrally 

presented animation (CS, subtending 6.5°×6.4°) to attract the child to the centre of the screen 

– see Fig. 3. Once the child fixated the CS and after a delay of 200ms, a peripheral target (PS, 

a cloud subtending 6°×6°) was presented randomly to either left or right side of the screen, at 

the eccentricity of 18.5°. For 25% of trials, the PS was presented either on top or bottom of 

CS to avoid anticipation, ‘vertical trials’, but these were not included in the analysis. When 
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the child looked to the PS, or after 4 seconds elapsed, a novel animated stimuli (reward) 

replaced it and the trial ended. In the Overlap condition, the PS appeared while the CS 

remained displayed so that the two stimuli overlapped until the end of the trial; in the 

Baseline condition, the CS disappeared and the PS appeared simultaneously; in the Gap 

condition, the CS disappeared and was followed by a gap of 200ms before the PS appeared. 

 
Figure 3. Stimulus sequence for experimental trials in the Gap-Overlap Task. Stimuli drawn 

to scale. Every trial started with the central stimulus onset and were followed by the 

presentation of the peripheral stimuli (PS). 

The conditions were presented pseudo-randomly within block: 40% of these trials were 

Overlap trials, 30% were Baseline trials and another 30% were Gap trials. A maximum of 70 

trials (ignoring the vertical trials) was presented. The central stimulus and the background 

colour changed every block. 

Saccadic latencies (ms) were defined as the time from the PS presentation onset to the first 

look to the PS and were extracted offline. All trials were automatically validated based on 

gaze quality flags and latency duration (see processing details in the OSF archived file at 

https://osf.io/p5ahq/). Only valid trials were considered when averaging latency for each 

condition. Disengagement was then calculated by subtracting the baseline latency from the 

overlap latency, and facilitation by subtracting the baseline latency from the gap latency.  

 

The Anti-saccade task was presented in a second block of tasks and all trials started with the 

presentation of a central animation (a star, subtending 3°×3°) to attract the child to the centre 

of the screen – see Fig. 4. When the participant looked to this central stimulus, a distractor 
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stimulus (a black circle, subtending 3°×3° with 17° to the right or left of the screen) appeared 

for 200ms. Only 1000ms after the distractor disappeared a target stimulus (a red circle, 

subtending 4°×4° with 17° eccentricity) was presented on the opposite side. When the child 

looked to the target an attractive animation of an animal with sound replaced it and the trial 

ended. If the participant looked at the target side before its presentation, the animation started 

immediately. Within participant, the Distractor and Target did not change sides across trials 

but side was balanced between groups. The task was presented in one continuous series of 

trials, consisting of 26 (at the 12-month visit) or 15 (at 18 months and 3.5 years) trials.  

Location of looks and reaction times to stimuli were measured offline. In each trial, it was 

determined 1) whether the participant looked at the distractor and 2) whether he/she looked at 

the target location before (or shortly after, up to 100ms post-target onset, as per other studies 

using anti-saccade paradigms in infants7, and adults35) the onset of the target (= anticipatory 

look). All trials were automatically validated based on gaze quality flags (see processing 

details in the OSF archived file at https://osf.io/p5ahq/). If during a trial the child did not look 

to the distractor nor the target location before target appearance the trial was excluded on the 

basis that the child failed to orient to the distractor. Only valid trials were considered for 

further computation of measures.  
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Figure 4. Stimulus sequence for experimental trials in the Anti-Saccade Task. Stimuli drawn 

to scale. Every trial started with the central fixation stimulus onset. 

 

The first 15 trials were segmented in two, first half ‘first 7 trials’ and second half ‘remaining 

8 trials’. The proportion of looks towards the distractor not followed by an anticipatory look 

(= pro-saccades); of looks towards the distractor followed by an anticipatory look (= 

corrective saccades); and of anticipatory looks in the absence of a look to the distractor (= 

true anti-saccades, where inhibition of pro-saccades, as well as the production of contralateral 

saccades is required) were calculated for each half (categories were mutually exclusive in a 

trial), as well as the average latency to the cue during a pro-saccade and to the target location 

during an anti-saccade.  

 

Analytic approach 

The data analysis plan for the 3.5-year visit was pre-registered on the Open Science 

Framework48. In a deviation from this plan, touchscreen effects were tested using long-term 

exposure and linear Generalised Estimating Equation (GEE) models with identity link and 

unstructured correlation matrix. GEE is an ideal method for analysing longitudinal data and 

commonly used in experimental repeated-measures data similar to this study31,49 as it takes 
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into account the within subject change over time, while allowing us to include individuals 

who had missing data points (but see Supplementary Note S5 online for the pre-registered 

ANOVA analysis results). Missing data points occured due to unavailability to come to the 

lab, technical problems, excessive fussiness, or low number of valid trials on the task (less 

than 5). For Gap-Overlap, two GEE models were run, with disengagement and facilitation 

indexes as outcome variables and visit and long-term usage group as predictors. For the Anti-

saccade Task, separate GEE models for the proportion of anti-, corrective-, and pro-saccades, 

and the latencies to distractor and target were run with half, visit, and the usage group as 

predictors. Main effects models were run first and then 2-way and 3-way interaction effects 

were added in sequential steps. When age effects were found, they were followed up by 

Bonferroni corrected pairwise comparisons to assess differences between each age level.  
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