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Abstract—Complex-Valued, Multi-Frequency Electrical 
Capacitance Tomography (CVMF-ECT) is a recently 
developed tomographic concept which is capable to 
simultaneously reconstruct spectral permittivity and 
conductivity properties of target objects within the region 
of interest. To date, this concept has been limited to 
simulation and another key issue restricting its wide 
adoption lies in its poor image quality. This paper reports a 
CVMF-ECT system to verify its practical feasibility and 
further proposes a novel image reconstruction framework 
to effectively and efficiently reconstruct multi-frequency 
images using complex-valued capacitance data. The image 
reconstruction framework utilizes the inherent spatial 
correlations of the multi-frequency images as a priori 
information and encodes it by using Multiple Measurement 
Vector (MMV) model. Alternating direction method of 
multipliers was introduced to solve the MMV problem. Real-
world experiments validate the feasibility of CVMF-ECT, 
and MMV based CVMF-ECT method demonstrates superior 
performance compared to conventional ECT approaches. 

 
Index Terms—Complex-valued measurement, electrical 

capacitance tomography, image reconstruction, multiple 
frequency, multiple measurement vector 

 

I. INTRODUCTION 

LECTRICAL Capacitance Tomography (ECT) is an 

emerging imaging technique which can reconstruct the 

permittivity distribution of dielectric materials within the 

Region of Interest (ROI) [1]. A prevailing application of ECT 

is multiphase flow measurement, where ECT can visualize the 

flow regime and derive critical flow parameters with externally 

deployed sensor electrodes in a real-time, non-invasive and 

contactless manner [2-6]. In ECT, capacitance measurements 

are mainly dependent on the dielectric permittivity of the 

Material Under Testing (MUT), and the conductive property of 

the MUT is normally negligible. In gas/oil/water multiphase 

flows, the water content over 40% is normally very challenging 

for conventional ECT, as the admittance obtained from an ECT 

measurement unit is mainly determined by the conductivity of 

the water, rather than the permittivity of MUT. To address this 

issue, Liu et al implemented Electrical Resistance Tomography 

(ERT) as a supplementary method to deal with multiphase 

flows with a high water content [7]. However, ERT sensors 

require direct contact with the conductive media, which is not 

 

 
 

suitable for long-term metering in oil wells, since the wax or 

deposits might stick to the electrodes and block the conductive 

path between electrodes. To avoid direct contact with the flow, 

Hammer et al proposed high frequency magnetic methods for 

two phase flow measurement [8-10]. Another contactless 

tomography modality, i.e. Magnetic Induction Tomography 

(MIT), was introduced by Zhang et al [11] to guide ECT to 

distinguish the non-conductive samples  from the background 

of conductive liquids. MIT is an imaging technique using coils 

to sense the secondary magnetic field from the eddy current 

inside the conductive liquid, where the conductivity of the 

liquid should be high enough to achieve a sensible level. To find 

a method to deal with a large range of conductivity, Wang et al 

proposed Capacitively Coupled Electrical Resistance 

Tomography (CCERT), which applied ECT sensors to collect 

resistance information, and reconstruct the conductivity 

distribution with high water contents [12-14]. In addition, 

Gunes et al proposed the concept of Displacement-Current 

Phase Tomography (DCPT) using the phase information from 

the ECT measurement to reconstruct the loss factor distribution 

of MUT [15, 16]. Jiang et al proposed a method to link the 

conductivity distribution with the phase difference on 

impedance measurements [17]. Recently, Zhang et al has 

developed a Complex-Valued, Multi-Frequency Electrical 

Capacitance Tomography (CVMF-ECT) model, simulated the 

complex-valued capacitance measurements and reconstructed 

both permittivity and conductivity by using measurements from 

a simulated 8-electrode ECT sensor [18]. Overall, these 

contactless methods based on either typical ECT sensors or 

capacitive sensor arrays aim to recover both permittivity and 

conductivity distribution from impedance or admittance 

measurements in the scenarios where conductivity is non-

negligible. 

In traditional ECT, applying excitation voltage with different 

frequencies does not provide more information of permittivity 

distribution. Capacitance measurement of dielectric MUT is 

independent of frequency, whilst MUT with conductivity could 

be frequency-dependent, i.e. change of excitation frequency can 

generate additional information or help distinguish the target 

objects from background. Especially in the case of gas/oil/water 

flow measurement, the salinity in the produced water could be 

considerable, leading to very high conductivity. To reduce the 

effect of increasing conductivity, the frequency of excitation 

signal must be increased [17-20]. 
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To date, the study of CVMF-ECT has been mainly 

simulation-based, and existing image reconstruction methods 

for CVMF-ECT are based on Single-Measurement Vector 

(SMV) model [18], where the capacitance measurement 

obtained under each frequency is processed individually. In this 

paper, we report a CVMF-ECT system to assess its practical 

feasibility and propose a novel image reconstruction framework 

based on Multiple Measurement Vector (MMV) model [21]. 

The proposed MMV framework utilizes simultaneously the 

complex capacitance measurements under multiple excitation 

frequencies to reconstruct both permittivity and conductivity 

distributions of the MUT. The inherent spatial correlation of 

multi-frequency images is explored to improve image quality 

and robustness. A linearized MMV based CVMF-ECT model 

is derived and Alternating Direction Method of Multipliers 

(ADMM) [22] is utilized to solve the corresponding image 

reconstruction problem. We compare and demonstrate the 

superiority of the proposed approach over commonly used 

methods through real-world experiments. 

This paper is organized as follows. The complex-valued ECT 

model are briefly reviewed in Section II. In Section III, the 

MMV based CVMF-ECT model is presented and the proposed 

image reconstruction framework is illustrated. In Section IV, an 

impedance analyzer based CVMF-ECT system is reported, and 

the performance of the proposed framework is verified and 

benchmarked by phantom experiments. Conclusions and future 

work are given in Section V. 

II. COMPLEX-VALUED ELECTRICAL CAPACITANCE 

TOMOGRAPHY 

Conventional ECT model describes the relations between 

capacitance 𝐶  and permittivity distribution 𝜀(𝑥, 𝑦) using the 

following integral equation [23]: 

 

         𝐶 =
𝑄

𝑉
= −

1

𝑉
∬ 𝜀(𝑥, 𝑦)∇𝜙

 

Γ

(𝑥, 𝑦)𝑑Γ 
 

(1) 

 

where 𝑄  and 𝑉  denote respectively the total charge and 

potential difference between electrodes constituting the 

capacitance; Γ  is the surface of the electrode, and 𝜙(𝑥, 𝑦) 

represents the electric potential distribution. 

By introducing a perturbation of permittivity, i.e. Δ𝜀, a linear 

approximation of Eq. (1) can be obtained: 

  

Δ𝐶 = 𝐽Δ𝜀 (2) 

 

where Δ𝐶 ∈ ℝ𝑚 is the change of capacitance due to 

perturbation Δ𝜀 ∈ ℝ𝑛 , and  𝐽 ∈ ℝ𝑚×𝑛  is the Jacobian matrix. 

Eq. (2) or its normalized format, which is also referred to as 

time-difference imaging model, is the most commonly adopted 

model in solving the ECT image reconstruction problem, which 

can be generally formulated as the following optimization 

problem:    

  

Δ𝜀̂ = arg  min
Δ𝜀

{‖Δ𝐶 − 𝐽Δ𝜀‖2 + 𝜇𝑓(Δ𝜀)} (3) 

 

where Δ𝜀̂ ∈ ℝ𝑛 is the estimate of permittivity variation; 𝑓(∙) 

and 𝜇 ∈ ℝ denote the regularization function and parameter, 

respectively. 

The conventional ECT model only considers the effect of 

permittivity. In order to comprehensively evaluate the influence 

of conductive components on measurement, the recently 

proposed complex-valued ECT model [18] further takes the 

impact of conductivity variation into account by introducing 

complex capacitance measurements. Then Eq. (1) becomes 

  

𝐶′ = −
1

𝑉
∬ (𝜀(𝑥, 𝑦) +

𝜎(𝑥, 𝑦)

𝑗𝜔
) ∇𝜙

 

Γ

(𝑥, 𝑦)𝑑Γ (4) 

 

where 𝐶′ denotes the complex-valued capacitance, 𝜎(𝑥, 𝑦) is 

conductivity distribution, and 𝜔 is the angular frequency of the 

excitation signal. 

Similarly, the linearization approximation of Eq. (4) can be 

obtained: 

  

[
Δ𝐶𝑟

Δ𝐶𝑖
] = [

𝐽𝑟,𝜀 𝐽𝑟,𝜎

𝐽𝑖,𝜀 𝐽𝑖,𝜎
] [

Δ𝜀𝑟

Δ𝜀𝑖
] (5) 

 

where Δ𝐶𝑟 , Δ𝐶𝑖 ∈ ℝ𝑚 represent respectively the real and 

imaginary part of the complex capacitance change, ; 𝐽𝑟,𝜀 , 𝐽𝑟,𝜎 ∈

ℝ𝑚×𝑛 are the Jacobian matrices mapping the change of 

permittivity and conductivity to the real part of capacitance 

change; likewise,  𝐽𝑖,𝜀 , 𝐽𝑖,𝜎 ∈ ℝ𝑚×𝑛 are the Jacobian matrices 

mapping the change of permittivity and conductivity to the 

imaginary part of capacitance change; Δ𝜀𝑟 , Δ𝜀𝑖 ∈ ℝ𝑛 denote 

respectively the real and imaginary part of complex permittivity 

change, where Δ𝜀𝑟 is the permittivity change and 

  

Δ𝜀𝑖 = −
Δσ

𝜔
 (6) 

 

where Δσ ∈ ℝ𝑛 is the conductivity change. 

For simplicity, Eq. (5) can be further written as 

  

𝑍 = 𝑆𝐺 (7) 

 

where 𝑍 = [
Δ𝐶𝑟

Δ𝐶𝑖
] ∈ ℝ2𝑚, 𝑆 = [

𝐽𝑟,𝜀 𝐽𝑟,𝜎

𝐽𝑖,𝜀 𝐽𝑖,𝜎
] ∈ ℝ2𝑚×2𝑛, and 𝐺 =

[
Δ𝜀𝑟

Δ𝜀𝑖
] ∈ ℝ2𝑛. 

 Solving the image reconstruction problem of complex-

valued ECT then becomes the estimation of both conductivity 

and permittivity change, given the complex capacitance 

measurement and Jacobian matrix. In theory, the image 

reconstruction algorithms for the conventional ECT model are 

also applicable. 
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III. MMV BASED CVMF-ECT 

In this Section, we first consider the simultaneous image 

reconstruction problem of CVMF-ECT by using MMV model. 

A general MMV model can be given by the following systems 

of equations. 

  

𝐵 = 𝐴𝑋 (8) 

 

where 𝐵 ∈ ℝ𝑚×𝑙  denotes the collection of l measurement 

vectors, 𝐴 ∈ ℝ𝑚×𝑛  is the system matrix, and 𝑋 ∈ ℝ𝑛×𝑙 

represents the collection of l unknown parameter vectors to be 

solved. The SMV problem is a special case of (8) where l=1. 

Further, based on Eq. (7), by incorporating the complex 

capacitance measurement vectors under l excitation frequencies, 

and taking into account the fact that the Jacobian matrices under 

l frequencies are different, the modified MMV model of 

CVMF-ECT can be formulated as 

  

[

𝑍1

𝑍2

⋮
𝑍𝑙

] = [

𝑆1

𝑆2

⋱
𝑆𝑙

] [

𝐺1

𝐺2

⋮
𝐺𝑙

] (9) 

 

where we define 

▪ 𝑍 = [𝑍1 𝑍2 ⋯ 𝑍𝑙]𝑇 ∈ ℝ2𝑚𝑙  is a collection of 

complex capacitance measurements under 𝑙 different 

excitation frequencies; 

▪ 𝐺̃ = [𝐺1 𝐺2 ⋯ 𝐺𝑙]𝑇 ∈ ℝ2𝑛𝑙  is a collection of 

solutions, i.e. complex permittivity, of 𝑙 frequencies; 

and 

▪ 𝑆̃ = 𝑑𝑖𝑎𝑔([𝑆1 𝑆2 ⋯ 𝑆𝑙]𝑇) ∈ ℝ2𝑚𝑙×2𝑛𝑙 denotes a 

collection of Jacobian matrices of 𝑙 frequencies.  

The simultaneous multi-frequency image reconstruction 

problem of CVMF-ECT is to estimate a series of complex 

permittivity 𝐺̃ with the given measurement collection 𝑍 and 

Jacobian collection 𝑆̃. 

In our formerly reported work [18], the problem was 

decomposed to l sub-problems by frequency, treated using 

SMV model and solved successively using Tikhonov 

Regularization (TR) [24], i.e.    

  

𝐺𝑖̂ = (𝑆𝑖
𝑇𝑆𝑖 + α𝐼)

−1
𝑆𝑖

𝑇𝑍𝑖  (10) 

 

where 𝐺𝑖̂ is the ith solution; α ∈ ℝ  is the regularization 

parameter; 𝐼 ∈ ℝ𝑛×𝑛  is the identity matrix, and 𝑖 = 1,2, … , 𝑙 
denotes the index of excitation frequency. Although TR is easy 

to implement, it suffers from low spatial resolution and the 

computational cost is considerable due to matrix inversion, 

especially when the dimension of the Jacobian matrix is large. 

In order to simultaneously reconstruct the multi-frequency 

images in an effective and efficient way, we consider to take 

advantage of the inherent correlations of individual image 

pixels under different frequencies. The idea is illustrated in Fig. 

1. Assume a two-object phantom (see the left of Fig. 1) is 

imaged under different excitation frequencies, i.e. 𝑓1, 𝑓2, … , 𝑓𝑙, 

it is intuitive that the pixels of all the l images with the same 

indices, e.g. p and q, will demonstrate strong correlation in 

magnitude. Briefly, all 𝐺𝑖  in 𝐺̃  have the same/similar 

distribution of conductivity/permittivity variation. This 

structural correlation can be utilized as a priori information for 

image reconstruction. 

Previous study has shown that such kind of a priori 

information can be encoded by minimizing a l2,1 norm of  𝐺̃ [25]. 

Accordingly, we can formulate the simultaneous multi-

frequency image reconstruction problem as 

 

      min
𝐺̃

    ‖𝐺̃‖
𝑤,2,1

≔ ∑ 𝑤𝑖
2𝑛
𝑖=1 ‖𝐺̃𝑏𝑖

‖
2
 

           𝑠. 𝑡.      𝑆̃𝐺̃ = 𝑍 

 
(11) 

 

where, we divide the elements/pixels of 𝐺̃ into 2n groups, i.e. 

{𝐺̃𝑏1
, 𝐺̃𝑏2

, … , 𝐺̃𝑏2𝑛
}, and each pixel group 𝐺̃𝑏𝑖

∈ ℝ𝑙 denotes the 

ith row of  𝐺′ = [𝐺1 𝐺2 ⋯ 𝐺𝑙] ∈ ℝ2𝑛×𝑙 ; in this way, the 

pixels of all the l images with the same indices will be grouped 

together. Fig. 2 further illustrates the pixel grouping method. 

𝑤𝑖 ∈ ℝ, 𝑖 = 1, … ,2𝑛, is the weighting factor for the l2 norm of 

each group, which is a positive scalar. The minimization of 

‖𝐺̃‖
𝑤,2,1

 in practical will promote the row-wise sparsity of 𝐺′, 

whose characteristic is resulted from the inter-image correlation. 

The Lagrange dual function is leveraged to solve Eq. (11), 

which is expressed as 

  

 

 
Fig. 1.  Schematic illustration of pixel correlation of reconstructed images under different excitation frequencies.  
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max
𝐾

 {min 
𝐺̃

∑ 𝑤𝑖

2𝑛

𝑖=1

‖𝐺̃𝑏𝑖
‖

2
− 𝐾𝑇(𝑆̃𝐺̃ − 𝑍)} (12) 

 

where 𝐾 ∈ ℝ2𝑚𝑙  denotes an auxiliary vector. Eq. (12) is 

equivalent to 

  

min
𝐾

 {−𝑍𝑇𝐾: ‖𝑆̃𝑏𝑖
𝐾‖

2
≤ 𝑤𝑖 , 𝑖 = 1,2, … ,2𝑛} (13) 

 

where 𝑆̃𝑏𝑖
 denotes the submatrix of 𝑆̃, which is a collection of 

columns of 𝑆̃ that corresponds to the ith group. 

We then introduce the Alternating Direction Method of 

Multipliers (ADMM) to solve the optimization problem in Eq. 

(13) [26, 27]. Here, by introducing another auxiliary vector ℊ ∈

ℝ2𝑛𝑙, Eq. (13) can be reformulated as 

  

min
𝐾,ℊ 

−𝑍𝑇𝐾

𝑠. 𝑡.  ℊ = 𝑆̃𝑇𝐾, ‖ℊ𝑏𝑖
‖

2
≤ 𝑤𝑖 , 𝑖 = 1,2, … ,2𝑛  

 (14) 

 

The augmented Lagrangian problem of (14) is then given by  

  

min
𝐾,ℊ 

−𝑍𝑇𝐾 − 𝐺̃𝑇(ℊ − 𝑆̃𝑇𝐾) +
𝜆

2
‖ℊ − 𝑆̃𝑇𝐾‖

2

2

𝑠. 𝑡.  ‖ℊ𝑏𝑖
‖

2
≤ 𝑤𝑖 , 𝑖 = 1,2, … ,2𝑛  

 (15) 

 

where 𝜆 as a positive scalar denotes the penalty parameter. 𝐺̃ ∈

ℝ2𝑛𝑙  is the multiplier and essentially the primal variable. Eq. 

(15) can be easily separated into two sub-problems and solved 

by applying alternating minimization. In this way, we can first 

obtain the K sub-problem, which is given by 

  

min
𝐾 

−𝑍𝑇𝐾 + (𝑆̃𝐺̃)
𝑇

𝐾 +
𝜆

2
‖ℊ − 𝑆̃𝑇𝐾‖

2

2
 (16) 

 

Eq. (16) as a convex quadratic problem can be solved 

iteratively via gradient descent method [28]. The iteration form 

is given by  

  

𝐾 = 𝐾 − 𝛿(𝜆𝑆̃𝑆̃𝑇𝐾 − 𝑍 + 𝑆̃𝐺̃ − 𝜆𝑆̃ℊ) (17) 

 

where 𝛿 is a positive scalar denoting the step length. 

Likewise, the ℊ sub-problem can be formulated as 

  

min
ℊ 

−𝐺̃𝑇ℊ +
𝜆

2
‖ℊ − 𝑆̃𝑇𝐾‖

2

2

𝑠. 𝑡.  ‖ℊ𝑏𝑖
‖

2
≤ 𝑤𝑖 , 𝑖 = 1,2, … ,2𝑛  

 (18) 

 

  Easily, the solution of (18) can be obtained: 

  

ℊ𝑏𝑖
= Ρℋ2

𝑖 {𝑆̃𝑏𝑖

𝑇 𝐾 +
1

𝜆
𝐺̃𝑏𝑖

} , 𝑖 = 1,2, … ,2𝑛 (19) 

 

where  Ρ  denotes a projection onto a convex set, which is 

denoted as a subscript, ℋ2
𝑖 ≜ {ℊ ∈ ℝ𝜃𝑖: ‖ℊ‖2 ≤ 𝑤𝑖} . For 

simplicity, Eq. (19) can be equivalently formulated as 

  

ℊ = Ρℋ {𝑆̃𝑇𝐾 +
1

𝜆
𝐺̃} (20) 

 

where Ρℋ ≜ {ℊ ∈ ℝ2𝑛𝑙: ‖ℊ𝑏𝑖
‖

2
≤ 𝑤𝑖 , 𝑖 = 1,2, … ,2𝑛}. 

Finally, the multiplier or the primal variable is updated by 

  

𝐺̃ = 𝐺̃ − 𝛽𝜆(ℊ − 𝑆̃𝑇𝐾) (21) 

 

where 𝛽 denotes the step length. We let ζ = 𝛽𝜆(ℊ − 𝑆̃𝑇𝐾) for 

later use. 

The implementation scheme of the proposed MMV based 

CVMF-ECT (MMV CVMF-ECT) algorithm is summarized in 

Algorithm 1. 

IV. RESULTS AND DISCUSSION 

In this Section, we validate the feasibility of CVMF-ECT and 

the performance of MMV CVMF-ECT framework by real-

world experiments. Comparison with the conventional ECT 

image reconstruction algorithms is also presented. 

A. Sensor and phantoms 

An 8-electrode ECT sensor with 60 mm external and 56 mm 

internal diameters was utilised in the experiments (see Fig. 3). 

Algorithm 1: MMV CVMF-ECT 

1: Input:  𝑍, 𝑆̃, 𝛽, 𝜆, k. 

2: Initialize:  𝐺̃  = 𝟎 ∈ ℝ2𝑛𝑙, ℊ = 𝟎 ∈ ℝ2𝑛𝑙 

3: while l ≤ k  and ‖ζ(: )‖2 ≥ ‖𝐺̃(: )‖
2
 do 

4:     (1): Solve the K sub-problem using (16). 

5:     (2): Solve the ℊ sub-problem using (18). 

6:     (3): Update the multiplier using (19). 

7:     (4): l ← l + 1. 

8: end while 

9: Return: the best solution of 𝐺̃. 

 

 

 
Fig. 2.  Illustration of pixel grouping of multi-frequency images. 
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Two different phantoms with conductive backgrounds and non-

conductive anomaly were constructed (see Fig. 4). Phantom 1 

(see Fig. 4(a)) has a homogeneous saline background and a 

circular acrylic bar which diameter is 15mm. Phantom 2 (see 

Fig. 4(b)) has the same background but three circular acrylic 

bars. Two different conductivity values of the background 

saline were tested, i.e. 0.1 S/m and 0.5 S/m, in order to 

demonstrate the impact of conductivity on image quality.  

B. CVMF-ECT system and experimental setup 

An 8-electrode CVMF-ECT system (see Fig. 5) was 

established to validate the practical feasibility of CVMF-ECT.   

The system was constructed based on a Keysight E4990A 

Impedance Analyzer. 

In the measurement process, we selected a series of 

excitation frequencies ranging from 0.1 MHz to 7 MHz with a 

step of 0.1 MHz. The complex capacitance measurements of 

each frequency were acquired and conventional ECT sensing 

strategy [23] was adopted, where a completed scan comprises 

28 non-redundant complex capacitance measurements. 

C. Algorithm parameters 

When implementing Algorithm 1, the maximum iteration 

number k is set to be 300, and we set 𝜆 = 𝑚𝑒𝑎𝑛(𝑎𝑏𝑠(𝑍)), 

where 𝑍 is a collection of complex capacitance measurements 

under five excitation frequencies. 𝛽 is fixed at 0.16 based on a 

fine tuning procedure by trials. 

We compare Algorithm 1 with the prevailing TR and 

Landweber iteration [23] in ECT. In implementation of TR (see 

Eq. (10)), the regularization parameter α is fixed at 1e-10 for all 

frequencies based on a fine tuning procedure. The number of 

iterations of Landweber is selected as 3000, and the relaxation 

factor is 1 for both phantoms, based on trial and error. 

D. Image quality assessment 

The Structural Similarity Index Measure (SSIM) is employed 

to quantitatively evaluate the reconstruction image quality. 

SSIM is commonly used in the area of image processing to 

evaluate the similarity between the reconstructed image and the 

ground truth, which is defined as [29] 

  

𝑆𝑆𝐼𝑀 =
(2𝜇𝑥𝜇𝑦 + 𝑅1)(2𝜎𝑥𝑦 + 𝑅2)

 (𝜇𝑥
2 + 𝜇𝑦

2 + 𝑅1)(𝜎𝑥
2 + 𝜎𝑦

2 + 𝑅2)
  (22) 

 

where 𝑥, 𝑦 is the reconstruction results and the true distribution 

    
                                                            (a)  

 
                                                            (b)  

Fig. 4.  Experimental phantoms. (a) Phantom 1. (b) Phantom 2.  

Impedance 

Analyzer
ECT sensor

 
Fig. 5.  The CVMF-ECT system.  

 

 
                                          

Fig. 3.  Structure of the sensor.  

TABLE I  

COMPARISON OF CONVENTIONAL ECT AND CV-ECT OF PHANTOM 1 

WITH 0.5 S·M-1 BACKGROUND CONDUCTIVITY UNDER 1.0 AND 6.5 MHZ 

EXCITATION FREQUENCY 

Frequency 

(MHz) 

Conventional ECT Complex-Valued ECT  

(Δ𝜀) (Δ𝜀) (Δ𝜎) 

1.0 

  

 

 SSIM= 0.126 SSIM= 0.099 SSIM= 0.194 

6.5 

  

 SSIM= 0.187 SSIM= 0.252 SSIM= 0.242  
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TABLE  II 

SIMULATION RESULTS OF PHANTOM 1 (0.5 S·M-1) 

Frequency 

(MHz) 

Tikhonov Regularization Landweber iteration  MMV CVMF-ECT 

 

Real part 

(Δ𝜀) 
Imaginary part 

(Δ𝜎) 

Real part 

(Δ𝜀) 
Imaginary part 

(Δ𝜎) 

Real part 

(Δ𝜀) 
Imaginary part 

(Δ𝜎) 

0.5 

   
 SSIM=0.319 SSIM=0.274 SSIM=0.319 SSIM=0.274 SSIM=0.788 SSIM=0.823 

3.5 

   
 SSIM=0.334 SSIM=0.285 SSIM=0.323 SSIM=0.273 SSIM=0.799 SSIM=0.813 

6.5 

   
 SSIM=0.380 SSIM=0.383 SSIM=0.323 SSIM=0.271 SSIM=0.793 SSIM=0.799 

 

TABLE  III 

SIMULATION RESULTS OF PHANTOM 2 (0.5 S·M-1) 

Frequency 

(MHz) 

Tikhonov Regularization Landweber iteration  MMV CVMF-ECT 

 

Real part 

(Δ𝜀) 
Imaginary part 

(Δ𝜎) 

Real part 

(Δ𝜀) 
Imaginary part 

(Δ𝜎) 

Real part 

(Δ𝜀) 
Imaginary part 

(Δ𝜎) 

0.5 

   
 SSIM=0.241 SSIM=0.204 SSIM=0.241 SSIM=0.205 SSIM=0.413 SSIM=0.489 

3.5 

   
 SSIM=0.234 SSIM=0.239 SSIM=0.257 SSIM=0.205 SSIM=0.487 SSIM=0.493 

6.5 

   
 SSIM=0.272 SSIM=0.277 SSIM=0.257 SSIM=0.205 SSIM=0.490 SSIM=0.492 

 
TABLE IV 

EXPERIMENTAL RESULTS OF PHANTOM 1 (0.1 S/M) 

Frequency 

(MHz) 

Tikhonov Regularization Landweber iteration  MMV CVMF-ECT 

Real part 

(Δ𝜀) 

Imaginary part 

(Δ𝜎) 

Real part 

(Δ𝜀) 

Imaginary part 

(Δ𝜎) 

Real part 

(Δ𝜀) 

Imaginary part 

(Δ𝜎) 

0.5 

   

3.5 

   

6.5 
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TABLE V 

EXPERIMENTAL RESULTS OF PHANTOM 2 (0.1 S/M) 

Frequency 

(MHz) 

Tikhonov Regularization Landweber iteration MMV CVMF-ECT 

Real part 

(Δ𝜀) 

Imaginary part 

(Δ𝜎) 

Real part 

(Δ𝜀) 

Imaginary part 

(Δ𝜎) 

Real part 

(Δ𝜀) 

Imaginary part 

(Δ𝜎) 

0.5 

   

3.5 

   

6.5 

   

 
   

 

TABLE VI 

EXPERIMENTAL RESULTS OF PHANTOM 1 (0.5 S/M) 

Frequency 

(MHz) 

Tikhonov Regularization Landweber iteration  MMV CVMF-ECT 

Real part 

(Δ𝜀) 

Imaginary part 

(Δ𝜎) 

Real part 

(Δ𝜀) 

Imaginary part 

(Δ𝜎) 

Real part 

(Δ𝜀) 

Imaginary part 

(Δ𝜎) 

0.5 

   

3.5 

   

6.5 

   

 
   

 
TABLE VII 

EXPERIMENTAL RESULTS OF PHANTOM 2 (0.5 S/M) 

Frequency 

(MHz) 

Tikhonov Regularization Landweber iteration  MMV CVMF-ECT 

Real part 

(Δ𝜀) 

Imaginary part 

(Δ𝜎) 

Real part 

(Δ𝜀) 

Imaginary part 

(Δ𝜎) 

Real part 

(Δ𝜀) 

Imaginary part 

(Δ𝜎) 

0.5 

   

3.5 

   

6.5 
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under current frequency, respectively; 𝜇𝑥 , 𝜇𝑦 , 𝜎𝑥 ,𝜎𝑦 , and 𝜎𝑥𝑦 

denote respectively the local means, standard deviations, and 

cross-covariance for images 𝑥, 𝑦; 𝑅1, 𝑅2 are the regularization 

constants for the luminance and contrast. 

E. Comparison with conventional ECT 

TABLE I compares the reconstruction images of 

conventional ECT and CVMF-ECT for Phantom 1 based on 

Landweber iteration. The background conductivity is 0.5 S/m 

and two excitation frequencies, i.e. 1 MHz and 6.5 MHz, are 

employed. 

In conventional ECT, the measurement is the amplitude of 

the complex capacitance, i.e. 𝑎𝑏𝑠(𝐶𝑟 + 𝐶𝑖) , and the 

reconstruction is permittivity change only. Observing the 

results, conventional ECT can hardly reconstruct the acrylic bar 

in the saline for both two excitation frequencies. In comparison, 

at the frequency of 1 MHz, the permittivity reconstruction of 

CVMF-ECT fails as well, but the conductivity image succeeds 

to distinguish the bar from the background. Increasing the 

frequency to 6.5 MHz, both permittivity and conductivity 

images of CVMF-ECT show the object clearly. The results 

demonstrate that CVMF-ECT solves the complex capacitance 

nature of the measurement better than conventional ECT. 

F. Numerical results 

To assess the feasibility of the CVMF-ECT, simulation of 

Phantom 1 and Phantom 2 (see Fig. 4) with 0.5 S/m background 

conductivity is conducted using Finite Element Analysis (FEA). 

The images are reconstructed by using TR, Landweber and 

MMV CVMF-ECT respectively and are shown in TABLE II 

and TABLE III. Meanwhile, the SSIM of each image is listed. 

For both phantoms and three frequencies, i.e. 0.5 MHz, 3.5 

MHz and 6.5 MHz, the results of MMV CVMF-ECT clearly 

outperform the others. It preliminarily verifies the validity of 

CVMF-ECT and the effectiveness of the proposed MMV based 

method. 

G. Experimental results 

When there are highly conductive contents in conventional 

ECT sensor area, the image reconstruction results are inaccurate 

because of the inaccurate sensitivity map [30].   

TABLE IV and TABLE V present the multi-frequency image 

reconstruction results of Phantom 1 (see Fig. 4(a)) and Phantom 

2 (see Fig. 4(b)) by using TR, Landweber and MMV CVMF-

ECT, respectively. In the two experiments, the background 

conductivity is 0.1 S/m. The TR results and Landweber iteration 

results at three frequencies, i.e. 0.5 MHz, 3.5 MHz and 6.5 MHz, 

were reconstructed subsequently whilst the MMV CVMF-ECT 

results were reconstructed simultaneously. The black dashed 

lines in the reconstructed images denote the true location and 

size of the objects. We can see that for Phantom 1, both real 

part, which stands for the permittivity change Δ𝜀 , and the 

imaginary part, which stands for the conductivity change Δ𝜎, 

can be reconstructed by TR, Landweber and MMV CVMF-

ECT. However, TR and Landweber results suffer from severe 

distortion and artifacts at all the given frequencies. Regarding 

Phantom 2, it is difficult to identify how many objects exist 

within the ROI owing to the distinct artifacts for both TR and 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 6.  SSIM of (a) results of Phantom 1 (0.1 S/M), (b) results of 
Phantom 2 (0.1 S/M), (c) results of Phantom 1 (0.5 S/M), and (d) results 
of Phantom 2 (0.5 S/M). 
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Landweber results. In contrast, for both phantoms, the MMV 

CVMF-ECT results significantly outperform the other results 

in terms of noise reduction, shape and location accuracy. 

We also evaluated the imaging performance of the three 

algorithms under a higher background conductivity. Another 

two experiments which adopted the same phantom setups with 

Fig. 4 but with a higher background conductivity of 0.5 S/m 

were carried out. TABLE VI and TABLE VII show the multi-

frequency image reconstruction results of the two phantoms at 

three given frequencies, i.e. 0.5 MHz, 3.5 MHz and 6.5 MHz, 

respectively. In our formerly reported work [18], it has been 

confirmed that the increase of background conductivity brings 

in challenge in reconstructing the permittivity part. Since the 

complex valued capacitance measurement, 𝐶′  in Eq. (4) is 

based on both permittivity and conductivity distribution, the 

conductivity has a stronger impact on the measurement when 

the frequency isn’t high enough, i.e. 
𝜎(𝑥,𝑦)

𝜔
≫ 𝜀(𝑥, 𝑦). Therefore 

in the saline of 0.5 S/m, it is difficult to distinguish the change 

in the permittivity distribution. Overall, the multi-frequency 

image reconstruction results of the two phantoms show 

consistency with the simulation analysis in [18]. That is, the real 

part, i.e. the permittivity change Δ𝜀 , can hardly be 

reconstructed, but the imaginary part, i.e. the conductivity 

change Δ𝜎 , can be stably recovered for all the testing 

frequencies. In regard to the reconstruction of imaginary part of 

Phantom 1 (see TABLE VI), TR and Landweber results can 

roughly demonstrate the location and shape of the object but 

there are still apparent distortions and the background artifacts 

are non-negligible. Differently, MMV CVMF-ECT results 

clearly give more accurate estimation of object shape and 

location, meanwhile with significantly reduced artifacts.  

As for results of Phantom 2 (see TABLE VII), the three 

objects can barely be identified in the imaginary parts of TR and 

Landweber results, due to the blurred boundaries and the 

existence of very strong background artifacts. However, the 

MMV CVMF-ECT results show similar performance with the 

lower background conductivity setup. Both the location and 

shape of the three objects can be explicitly recovered. This 

further verifies the image quality and robustness of CVMF-

ECT can be greatly enhanced with MMV model.  

 As shown in Fig. 6, the SSIM of MMV CVMF-ECT results 

are much higher than TR and Landweber. The quality of 

reconstructed images from the experimental data tends to be 

improved when the excitation frequency increases for highly 

conductive background (𝜎 =0.5 S/m). This suggests that both 

the real part and the imaginary part can be better reconstructed 

under higher excitation frequencies when background 

conductivity is high. 

The MMV approach also stands out for its high 

computational efficiency. All the algorithms were implemented 

in MABLAB R2018b, on a computer with Intel i5-9400F 

CPU@2.9GHz and 16.0 GB RAM Memory. The elapsed time 

for reconstructing multi-frequency images is shown in TABLE 

VIII. For the experiments with the background conductivity of 

0.1 S/m and 0.5 S/m, the mean elapsed time of MMV CVMF-

ECT and Landweber for reconstructing Phantom 1 and 

Phantom 2 is 0.142s and 3.046s respectively. The consumed 

time of MMV is close to TR (0.134s), which is a one-step 

inverse solver. This indicates the potential to implement the 

proposed approach in real-time applications. 

V. CONCLUSION 

This paper presents a novel image reconstruction framework 

for Complex-Valued, Multi-Frequency Electrical Capacitance 

Tomography (CVMF-ECT), and a practical imaging system for 

experimental validation of this new concept. Multiple 

Measurement Vector (MMV) model was introduced to 

simultaneously reconstruct the permittivity and conductivity 

distributions under the multi-frequency configuration. The 

proposed method uniquely utilizes the correlation of multi-

frequency images to enhance image quality and meanwhile 

preserve low computational cost. The feasibility of the MMV 

CVMF-ECT framework was validated for the first time by 

using experimental data. Compared with conventional image 

reconstruction methods, significant improvements have been 

achieved in terms of image quality and robustness to noise. The 

outcomes of this work could facilitate the wide application of 

CVMF-ECT in practical scenarios. 

In the future, we will develop a customized CVMF-ECT 

system by extending the conventional ECT hardware design. 
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