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 8 

With news, in late 2020, that vaccination against COVID-19 may be up to 95% effective, we have 9 

entered a new chapter in our fight against the disease [1]. Restrictions on movement and social 10 

contacts can recede as vaccine-acquired immunity reduces susceptibility to infection and (possibly) 11 

transmission. A key determinant of this is the speed at which the population can be vaccinated. To 12 

facilitate rapid dissemination, many countries are considering mass vaccination centres [2]. Ideally 13 

located in large spaces – conference venues or sporting arenas – these sites will immunise hundreds or 14 

possibly thousands of individuals each day. 15 

 16 

Crucial to their success is the safe and effective planning of demand and capacity. If more people are 17 

booked than can be seen then large and unmanageable queues will form; compromising social 18 

distancing and reducing the likelihood that people will return for their second and final inoculation. If, 19 

on the other hand, demand is too far exceeded by capacity then resources are not fully utilised; 20 

wasting vaccine and unnecessarily delaying the regression of economically-punitive social 21 

restrictions. The question is therefore, how can we safely and sustainably maximise the throughput of 22 

these sites? 23 

 24 



To this end, Operational Research (OR) can be a valuable asset. Containing a range of practically 1 

focused and mainly quantitative methods, OR has a track record in addressing questions of this very 2 

nature. While OR techniques have a history within the immunology field, e.g. in strategically 3 

optimising the extent to which influenza vaccine should be stockpiled or reactively purchased [3], the 4 

more operational question posed here is perhaps better paired to experiences from the healthcare 5 

setting – where modelling patient throughput along some kind of ‘pathway’ is commonplace [4]. In 6 

applying such models to the mass vaccination ‘pathway’ considered here, we demonstrate an example 7 

of the contribution that OR can make in this important next stage of our fight against COVID-19. 8 

 9 

 10 

Live exercise 11 

 12 

On 2 December 2020, a live exercise was conducted at one of the sites planned to operate as a mass 13 

vaccination centre in the UK. The purpose of Exercise Panacea was to provide a safe learning 14 

environment within which to explore processes for administering COVID-19 vaccine to what would 15 

be over 1000 people each day. Such exercises are core to health emergency preparedness, supporting 16 

the identification of gaps in plans and processes [5]. The exercise involved ‘flowing’ a number of 17 

‘players’ through the site, with services provided by members of the ‘cast’. Specifically, 70 players 18 

were provided with a unique script for each attendance to ensure a range of presentations were 19 

considered, e.g. the representation of elderly people or those with hearing or mobility limitations, as 20 

well as those with adverse reactions to vaccination. 21 

 22 

Exercise Panacea took place at Ashton Gate football/rugby stadium in Bristol (UK), where a large 23 

rectangular interior hall normally used for spectator catering and entertainment had, in the days before 24 

the exercise, been converted to a space in which the four activities necessary within the mass 25 

vaccination process could be performed (Figure 1). While hitherto unconfirmed, it was a 26 

consideration at the time of the exercise that, when live, there would be 1560 arrivals per 12-hour 27 

operating period facilitated by six registration assistants, 12 clinical assessors, six immunisers, and 64 28 



seats for post-vaccination observation, and maximum safe waiting space for six vaccinees before 1 

clinical assessment and 15 before vaccination. 2 

 3 

The overarching vaccination process design had been informed by centrally-produced planning 4 

guidance (unpublished) suggesting that immunisers work in teams of two and according to fixed 5 

staffing ratios to clinical assessment. Recommendations were that each two-immuniser ‘pod’ could 6 

support a throughput of 520 vaccinations per 12-hour operating period (thus 1560 for six immunisers). 7 

Ultimately, the number of pods was limited to six due to spatial constraints of the Ashton Gate site. 8 

This also restricted the waiting space within the queues for clinical assessment and vaccination.  9 

 10 

While some of these operational parameters had been informed by an earlier live exercise (Exercise 11 

Asclepius, the only other live exercise of its kind before Exercise Panacea), there remained 12 

uncertainties given the novelty of the operation and the intricacies of each vaccination centre 13 

(specifically with regard to the physical layout of the site and the type and training of staff). Indeed, a 14 

key objective of Exercise Panacea was to test performance under such a configuration. Yet a robust 15 

appraisal was not fully possible, not least since only a third of the envisaged operating capacity was 16 

used during the exercise. In these situations, computer modelling can be a valuable asset in addressing 17 

any such gaps in understanding and considering ‘what if’ scenarios not possible to examine in real life 18 

[6].  19 

 20 

 21 

Computer simulation modelling 22 

 23 

Analysis was performed using a versatile open source simulation tool that had been previously been 24 

developed by the authors for modelling patient pathways [7,8]. The tool employs a discrete event 25 

simulation method which is well-established in healthcare modelling [9]. This works by simulating 26 

the real-life events of vaccinees arriving at the centre, queueing (as necessary), and starting and 27 

finishing the various activities along the vaccination pathway (Figure 1). These events are generated 28 



according to a given arrival rate and the capacity and service time distributions of each activity (i.e. 1 

the model inputs). Simulation outputs, calculated by running multiple (1500) replications of the 2 

model, relate to the activity-level numbers of vaccinees in service and in queue over time. 3 

 4 

With the aforementioned ‘baseline’ arrival rate and capacity allocations, what remained was to 5 

estimate the durations of time vaccinees would spend at each of the four activities (Figure 1). This 6 

was achieved by fitting the appropriate statistical distributions to data collected from the exercise 7 

(using maximum likelihood estimation with selection through Akaike Information Criterion [10]). 8 

The distribution of registration time was found to be fairly symmetric, and best approximated by a 9 

Weibull distribution with a mean and median of 62 seconds. Both clinical assessment and vaccination 10 

times were right-skewed and best approximated by a lognormal distribution with a mean and median 11 

of 219 and 200 seconds for the former and 187 and 171 for the latter. Observation time was fixed at 12 

15 minutes as per the latest guidance. (For more information on the distribution fitting process refer to 13 

the Supplementary Material.) 14 

 15 

Simulation results indicate that the baseline allocation is unviable, with a bottleneck forming at the 16 

vaccination activity as characterised by a very high number in service (c.f. capacity of six) and an 17 

ever-increasing queue (Table 1, Baseline). This finding is, in fact, evident without modelling – an 18 

hourly arrival rate of 130 (i.e.1560 over 12 hours) simply cannot be sustained by a pathway 19 

containing an activity whose maximum hourly throughput is only 116 (i.e. six immunisers with 187 20 

second estimated mean service duration). 21 

 22 

The solution is either to increase capacity or reduce arrivals. With an operational constraint limiting 23 

the number of immunisers to no more than six, the arrival rate could be lowered to the level of 24 

maximum throughput. While, at first thought, this may seem a reasonable mitigation, it does not 25 

appreciate the impact of variability in service duration, which can contribute to the formation of large 26 

queues. Although these are smaller than under the Baseline scenario, they still lead to breaches in the 27 

15-space waiting area (Table 1, Scenario 1).  28 



 1 

In order to safely accommodate the various peaks and troughs in service duration, the arrival rate 2 

should be sufficiently less than maximum throughput [11]. Lowering the arrival rate by 10% (i.e. 3 

from 1386 to 1247 over 12 hours), results in performance within operational limits (Table 1, Scenario 4 

2). It would, however, be prudent to increase the waiting space for vaccination (from 15), in order to 5 

absorb any potential ‘shocks’ relating to periods of elevated demand or staff shortages. Given spatial 6 

constraints of the site, this can be achieved by shifting the vaccination space into a reduced-capacity 7 

observation space (noting that observation capacity can be safely reduced since it is considerably 8 

under-utilised – as shown in Table 1, the upper 95% CI for number in service (32.3) is approximately 9 

half the allocated capacity (64)). 10 

 11 

Registration and clinical assessment are also under-utilised, implying uneconomic use of available 12 

resource. Modelling a one-sixth capacity reduction (i.e. to five and ten workers respectively) is not 13 

shown to have an adverse performance impact (Table 1, Scenario 3); with the possible opportunity to 14 

safely make further reductions, particularly to registration capacity.  15 

 16 

 17 

Concluding remarks 18 

 19 

Poor management of demand and capacity can result in suboptimal use of resources and excessive 20 

queueing. If available waiting space is breached then safety may be compromised as social distancing 21 

cannot be maintained. Modelling and computer simulation can provide useful insights to improve the 22 

design and operational management of mass vaccination centres. 23 

 24 

The modelling presented here has directly informed operations at the Ashton Gate site. Following our 25 

recommendations, the centre went live on 11 January 2021 with an expanded vaccination queueing 26 

area and with 1247 vaccinees booked to each 12-hour operating period (i.e. 416 vaccinees per two-27 

immuniser ‘pod’). Site management have reported that, with such an arrival rate, a good balance 28 



appears to have been struck between maximising throughput and ensuring patient safety. As such, 1 

daily bookings were based upon the 1247 figure for the first six weeks of operation – a time in which 2 

any negative patient experience could have generated poor publicity and impacted upon the high 3 

levels of public confidence required to ensure good attendance. 4 

 5 

Beyond the analysis contained here, future work should more formally assess the impact of 6 

unforeseen ‘shocks’ to the vaccination process. In addition to capturing variation in arrivals and 7 

service durations (as in this study), it would be prudent to consider the resilience of any setup to the 8 

range of ‘low-frequency, high-impact’ stochastic events that could be possible. For instance, staff 9 

unavailability or a road traffic accident that causes delays followed by a deluge of arrivals. Modelling 10 

could be useful in determining the necessary ‘slack’ in capacity required to safely absorb such shocks.  11 

 12 

Given the aforementioned intricacies of each vaccination centre, a ‘one-size-fits-all’ blueprint would 13 

unlikely be appropriate. Instead, those involved in setting up and managing different sites should 14 

consider the use of bespoke modelling to initialise or optimise their operation. The simulation tool 15 

used here is freely available to such ends [7,8]. With this software, prospective users can experiment 16 

with different arrival rates and capacity configurations. The software also has additional functionality 17 

to account for time-dependent arrival rates and capacities (for instance, for use in modelling the 18 

previously mentioned shocks). 19 

 20 

As well as demand and capacity management, OR can contribute to effective mass vaccination in a 21 

number of other ways. These may include workforce scheduling, predicting no-shows and associated 22 

airline-style ‘overbooking’, and optimising the priority order of individuals for vaccination based 23 

upon their risk of severe illness (older people) and/or onward transmission (younger people). 24 

 25 

 26 

 27 

 28 
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Figure 1. Configuration of the Ashton Gate mass vaccination centre in Bristol, where arriving 

individuals pass through four activities: registration, clinical assessment, vaccination and observation. 

If any of these stages are full, then individuals queue in the dedicated waiting areas. 

 



Table 1. Steady-state simulation results for number of vaccinees in service and in queue under the 

Baseline scenario and hypothetical Scenarios 1 to 3. Arrivals is the number of vaccinees arriving at 

the site per hour and Capacity represents the maximum number of vaccinees that can concurrently be 

served within registration, clinical assessment and vaccination respectively. Note, unless otherwise 

indicated, steady state was reached within the first hour of the 12-hour operating period.  

 

Scenario Arrivals Capacity Mean number (95% CI) of vaccinees in service Mean number (95% CI) of vaccinees in queue 

Registration Clinical 

assessment 

Vaccination Observation Registration Clinical 

assessment 

Vaccination Observation 

Baseline 130 6-12-6 2.2 (0.0 – 

5.6) 

7.8 (3.0 – 

12.0) 

 6.0 (6.0 – 

6.0)* 

29.6 (24.7 – 

34.4) 

0.0 (0.0 – 

0.0) 

0.2 (0.0 – 

2.2) 

108.0 (34.9 – 

179.0)* 

0.0 (0.0 – 

0.0) 

Scenario 1 116 6-12-6 2.0 (0.0 – 

5.0)  

6.9 (2.3 – 

12.0) 

5.7 (3.0 – 

6.0)** 

28.1 (20.3 – 

33.7) 

0.0 (0.0 – 

0.0) 

0.1 (0.0 – 

0.6)  

9.1 (0.0 – 

36.5)** 

0.0 (0.0 – 

0.0) 

Scenario 2 104 6-12-6 1.8 (0.0 – 

4.9) 

6.2 (2.0 – 

11.6) 

5.1 (1.7 – 

6.0) 

25.4 (16.8 – 

32.3) 

0.0 (0.0 – 

0.0) 

0.0 (0.0-0.0) 2.1 (0.0 – 

11.6) 

0.0 (0.0 – 

0.0) 

Scenario 3 104 6-10-5 1.8 (0.0 – 

4.9) 

6.2 (2.0 – 

10.0) 

5.1 (1.8 – 

6.0) 

25.4 (16.9 – 

32.4) 

0.0 (0.0 – 

0.0) 

0.1 (0.0-1.9) 2.1 (0.0 – 

11.1) 

0.0 (0.0 – 

0.0) 

 

 

* Values at end of 12-hour operating period. Behaviour did not stabilise during operating period.  

** Values from hours 8 to 12 within operating period. Behaviour stabilised at approximately hour 8. 

 



Supplementary Material 
 
Duration of time at registration, clinical assessment and 
immunisation  
 
 
 
 
 
 
 
1. Background 
 
The main steps of the mass vaccination process from an operational perspective are: 
 

1. Registration at front desk (S1) 
2. Clinical assessment (S2) 
3. Immunisation (S3) 
4. Observation (S4) 

 
Quantifying the duration at each step of the process is useful for effective planning and is an 
important prerequisite for understanding capacity sufficiency via dynamical modelling. Of crucial 
importance is the distribution of such durations. Such variability is essential to factor into operational 
considerations, since larger variability puts greater pressure on queue holding areas and increases 
waiting time1.  
 
From the live exercise, various times were recorded for durations at S1 to S3 above. However, these 
are just samples, and are moreover samples with a relatively low sample size. In estimating the truer 
distribution of the S1-S3 durations from the underlying population, the appropriate statistical 
distributions can be fitted to the sample data.  
 
Here, a number of candidate distributions (known to perform well in healthcare settings2 3) are fitted 
and the most appropriate one is selected based upon AIC4. Note that S4 is not considered since this is 
assumed to be of constant 15 minute duration. 
 
Each section in this report contains results for each step S1-S3, illustrating the quality of the 
distribution fit to the data and presenting corresponding estimates for mean and median duration, and 
standard deviation, as derived from the fitted distribution. Full results are in the appendix. 
 
 
  

 
1 Gupta D. Queueing models for healthcare operations. InHandbook of Healthcare Operations Management 
2013 (pp. 19-44). Springer, New York, NY. 
 
2 Marazzi A, Paccaud F, Ruffieux C, Beguin C. Fitting the distributions of length of stay by parametric models. 
Medical care. 1998 Jun 1:915-27. 
 
3 Faddy M, Graves N, Pettitt A. Modeling length of stay in hospital and other right skewed data: comparison of 
phase‐type, gamma and log‐normal distributions. Value in Health. 2009 Mar;12(2):309-14. 
 
4 Akaike H. Information theory and an extension of the maximum likelihood principle. InSelected papers of 
hirotugu akaike 1998 (pp. 199-213). Springer, New York, NY. 



2. Registration at front desk (S1) 
 
Best distribution is Weibull with shape and scale parameters 3.92 and 68.53 respectively. 
 

 
 

Figure 1. Illustration of Weibull distribution fitted to sample data (note: units in seconds). 
 
 

Table 1. Comparison of sample and fitted distribution moments (note: units in seconds). 
   

Median Mean Standard deviation 

Sample (n=20) 65 62 19 

Distribution 62 62 18 
 
 
 
  



3. Clinical assessment (S2) 
 
Best distribution is lognormal with shape and scale parameters 0.429 and 5.30 respectively. 
 

 
 

Figure 2. Illustration of lognormal distribution fitted to sample data (note: units in seconds). 
 
 

Table 2. Comparison of sample and fitted distribution moments (note: units in seconds). 
  

Median Mean Standard deviation 

Sample (n=53) 182 220 103 

Distribution 200 219 98 
 

 
 
  



4. Immunisation (S3) 
 
 
Best distribution is lognormal with shape and scale parameters 0.414 and 5.14 respectively. 
 

 
 

Figure 3. Illustration of lognormal distribution fitted to sample data (note: units in seconds). 
 
 

Table 3. Comparison of sample and fitted distribution moments (note: units in seconds). 
  

Median Mean Standard deviation 

Sample (n=24) 173 186 77 

Distribution 171 187 81 
 
 

 
 



Appendix A.1 Registration at front desk (S1) 
 

 
 
 
 expo normal tnormal lognormal gamma weibull 

Kolmogorov-Smirnov statistic 0.372 0.158 0.158 0.224 0.204 0.148 

Cramer-von Mises statistic 0.924 0.067 0.067 0.142 0.113 0.059 

Anderson-Darling statistic 4.553 0.347 0.347 0.743 0.580 0.318 

Akaike's Information Criterion 207 177 177 181 179 176 

Bayesian Information Criterion 208 179 179 183 181 178 

 
 



 
 
  



Appendix A.2 Clinical assessment (S2) 
 

 
 
 
 
 

 

 expo normal tnormal lognormal gamma weibull 

Kolmogorov-Smirnov statistic 0.345 0.180 0.165 0.118 0.136 0.149 

Cramer-von Mises statistic 1.675 0.401 0.348 0.112 0.186 0.278 

Anderson-Darling statistic 8.419 2.254 2.001 0.584 0.988 1.578 

Akaike's Information Criterion 680 645 643 626 630 637 

Bayesian Information Criterion 681 649 647 630 634 641 

 
 
 



 
 
 
  



Appendix A.3 Immunisation (S3) 
 

 
 
 
 
 
 

 expo normal tnormal lognormal gamma weibull 

Kolmogorov-Smirnov statistic 0.361 0.155 0.148 0.155 0.157 0.147 

Cramer-von Mises statistic 0.770 0.097 0.087 0.065 0.066 0.075 

Anderson-Darling statistic 3.969 0.628 0.574 0.441 0.453 0.496 

Akaike's Information Criterion 301 280 279 277 277 278 

Bayesian Information Criterion 302 282 282 279 279 280 
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