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Figure	S1.	Representative	photograph	of	as-deposited	film	on	FTO-coated	glass	(Fe-Ti-O	film	prepared	at	450	°C	for	1	

h	by	AA-CVD).	

 

 

Figure	S2.	XRD	pattern	of	as-deposited	Fe-Ti-O	at	450°C	for	1h.	
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Figure	S3.	Raman	spectra	of	Fe-Ti-O-Zn	and	Fe-Ti-O.	P:	Fe2TiO5	(pseudobrookite)	and	H:	Fe2O3	(hematite).	

 

 

Figure	S4.	SEM	cross-sectional	micrographs	of	(a)	Fe-Ti-O	and	(b)	Fe-Ti-O-Zn.	

 

 

Figure	S5.	Survey	XPS	spectra	of	(a)	Fe-Ti-O	and	(b)	Fe-Ti-O-Zn	thin	film	samples. 
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Figure	S6.	SEM-EDX	spectrum	of	Fe-Ti-O-Zn	sample	measured	with	an	acceleration	voltage	of	15	kV.	

 

 

Figure	S7.	Front-side	illumination	j-V	curves	of	Fe-Ti-O-Zn	and	Fe-Ti-O.	All	measurements	were	performed	under	
chopped	simulated	sunlight	(1	sun,	AM	1.5)	and	in	1	mol	L-1	NaOH	(pH=13.6)	

 

Figure	S8.	Back-side	illumination	j-V	curves	of	Fe-O	and	Fe-O-Zn.	All	measurements	were	performed	under	chopped	
simulated	sunlight	(1	sun,	AM	1.5)	and	in	1	mol	L-1	NaOH	(pH=13.6)	

 

Fe-Ti-O-Zn
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Table	S1.	Reported	preparation	methods,	photocurrent	performances	and	IPCE	of	Fe2TiO5-based	
photoanodes.	

Composition	 Preparation	
methoda	

Photocurrent	density	
(mA	cm-2)b	 IPCE	(%)c	 Reference	

Zn-doped	Fe2TiO5	
(major)	&	
α-Fe2O3	

AACVD	 0.6	 20	 This	work	

Fe2TiO5	with	Fe2O3	
traces	

Sol-gel	synthesis	and	
dip	coating	 0.05	 Not	reported	 1	

Fe2TiO5	 Pulsed	laser	
deposition	 0.16		 5	 2	

Fe2TiO5	with	
Ni2FeOx	 Electrochemical								 0.3	 Not	reported	 3	

Fe2TiO5	with	SnOx	
coating	 solvothermal	 0.36	 10	 4	

Al3+-surface-
treated	Fe2TiO5	
with	FeOOH	as	
electrocatalyst	

Electrospray	+	
surface	treatment	 0.52	 Not	reported	 5	

F-surface	modified	
Fe2TiO5	

Electrospray	+	
surface	treatment	 0.4	 20	 6	

Fe2TiO5	inverse	
opal	structure	
(IOS)	with	Ga2O3	
underlayer	

and	(Ni2CoFe)OOH	
electrocatalyst	

Layer-by-layer	self-
assembly	and	hybrid	
microwave	annealing	

2.08	 23	 7	

Fe2TiO5	nanotube	
arrays	with	TiO2	
underlayer,	H2	
treatment	and	

FeNiOx	
electrocatalyst	

Hybrid	microwave	
annealing	

(Use	of	anodized	
aluminum	oxide	as	

template)	

0.93	 Not	reported	 8	

a	Refers	to	the	experimental	method	used	for	the	growth	of	Fe2TiO5-based	films.	The	methods	used	for	electrocatalyst	
loadings	or	other	treatments	are	omitted.	

b	Reported	photocurrent	density	value	at	1.23	VRHE	under	simulated	sunlight	(AM	1.5G	filter,	100	mW	cm-2)	

c	IPCE	at	350	nm	measured	at	1.23	VRHE	
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Figure	S9.	Number	of	photons	absorbed	from	the	solar	visible	light	spectrum	(AM	1.5G,	1	sun	irradiance)	for	Fe-Ti-O-
Zn	and	Fe-Ti-O.	

 

Table	S2.	Theoretical	maximum	photocurrent	density	obtained	by	integrating	the	absorbance	spectra	with	
the	AM	1.5G	1	sun	irradiance	spectrum.	

Sample	 jabs	(mA	cm-2)	

Fe-Ti-O	 3.94	

Fe-Ti-O-Zn	 5.27	

 

 

Figure	S10.	Photocurrent-time	curve	of	Fe-Ti-O-Zn	for	60	min	under	simulated	sunlight	(1	sun,	AM	1.5)	measured	at	
1.	23	VRHE	in	1	mol	L-1	NaOH		
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Figure	S11.	ABPCE	curves	of	Fe-Ti-O	and	Fe-Ti-O-Zn.		

 

 

 

Figure	S12.	UPS	measurements	using	an	He	I	photon	source	(E=21.2	eV)	with	(a)	an	applied	bias	of	2	V	and	(b)	
without	applied	bias.	From	these	measurements,	Ecut-off,	work	function	(ϕ)	and	valence	band	maximum	(VBM)	were	

determined.	
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Figure	S13.	Zoomed-in	UPS	spectra	using	an	He	I	photon	source	(E=21.2	eV)	without	applied	bias	plotted	on	a	linear	
(a,c)	and	logarithmic	scale	(b,d).	(a-b)	Fe-Ti-O	and	Fe-Ti-O-Zn	films.	(c-d)	Fe-O	and	Fe-O-Zn.	

Table	S3	Work	function	(ϕ)	and	valence	band	maximum	(VBM))	values	obtained	from	UPS	measurements	

Sample	 Φ	(eV)	 VBM	(eV)	

Fe-Ti-O	 4.36	 1.83	

Fe-Ti-O-Zn	 4.07	 2.10	

Fe-O	 4.77	 1.93	

Fe-O-Zn	 4.88	 1.82	
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Figure	S14.	UV-Vis	absorptance	spectra	and	(b)	Tauc	plots	measured	via	diffuse	reflectance	UV-Vis	spectroscopy	of	Fe-
O-Zn	and	Fe-O.	 Insets	 in	(a)	show	photographs	of	all	 films	prepared.	Dashed	vertical	 line	 indicates	onsets	 for	Fe-O	
samples.	The	logo	is	copyrighted	by	the	Helmholtz-Zentrum	Berlin	für	Materialien	und	Energie	GmbH.	

 

 

Figure	S15.	Schematic	diagram	of	band	level	positions	for	Fe-O	films		calculated	from	UPS	measurements	(Figure		S14†)		
with	respect	to	the	vacuum	level	and	the	normal	hydrogen	electrode	(NHE)	potential	
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