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Summary 
Background: Dietary advice remains the cornerstone of prevention and management of type 2 diabetes (T2D).  

However, understanding the efficacy of dietary interventions is confounded by the challenges inherent in 

assessing free living diet. Here we profiled dietary metabolites to investigate glycaemic deterioration and 

cardiometabolic risk in people at risk of or living with T2D. 

 

Methods: We analysed data from plasma collected at baseline and 18-month follow-up in individuals from the 

Innovative Medicines Initiative (IMI) Diabetes Research on Patient Stratification (DIRECT) cohort 1 n=403 

individuals with normal or impaired glucose regulation (prediabetic) and cohort 2 n=458 individuals with new 

onset of T2D. A dietary metabolite profile model (Tpred) was constructed using multivariate regression of 113 

plasma metabolites obtained from targeted metabolomics assays. The continuous Tpred score was used to explore 

the relationships between diet, glycaemic deterioration and cardio-metabolic risk via multiple linear regression 

models.  

 

Findings: A higher Tpred was associated with healthier diets high in wholegrain (β=0.004 g, p=0.02 and β=0.003 

g, p=0.03) and lower energy intake (β=-0.0002 kcal, p=0.04 and β=-0.0002 kcal, p=0.003), and saturated fat 

(β=-0.03 g, p<.0001 and β=-0.03 g, p<.0001), respectively for cohort 1 and 2. In both cohorts a higher Tpred 

score was also associated with lower total body adiposity and improved lipid profiles HDL-cholesterol (β=0.07 

mmol/L, p<.0001), (β=0.08 mmol/L, p=0.0002), and triglycerides (β=-0.1 mmol/L, p=0.003), (β=-0.2 

mmol/L, p=0.0002), respectively for cohort 1 and 2. In cohort 2, the Tpred score was negatively associated with 

liver fat content (β=-0.74 %, p<.0001), and lower fasting concentrations of HbA1c (β=-0.9mmol/mol, 

p=0.02), glucose (β=-0.2 mmol/L, p=0.01) and insulin (β=-11.0 pmol/mol, p=0.01). Longitudinal analysis 

showed at 18-month follow up a higher Tpred score was also associated lower total body adiposity in both 

cohorts and lower fasting glucose (β=-0.2 mmol/L, p=0.03) and insulin (β=-9.2 pmol/mol, p=0.04) 

concentrations in cohort 2. 

 

Interpretation: Plasma dietary metabolite profiling provides objective measures of diet intake, showing a 

relationship to glycaemic deterioration and cardiometabolic health.   

 

Funding: This work was supported by the Innovative Medicines Initiative Joint Undertaking under grant 

agreement no. 115317 (DIRECT), resources of which are composed of financial contribution from the European 

Union’s Seventh Framework Programme (FP7/2007-2013) and EFPIA companies. 
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Research in context  
Evidence before this study  

We searched PubMed and Google Scholar for all studies on metabolic profiling of dietary patterns and/or single 

nutrient intake. Studies were restricted to those with abstracts in English. Our background review showed a wide 

range of RCT measuring single nutrients metabolites based on small sample sizes and distinct diets. Few studies 

investigated metabolic profiling derived from multiple metabolites associated with dietary patterns and none 

was found in our review on a population level. To our knowledge no similar study has been conducted before. 

We also searched studies investigating metabolomics and risk T2D. A substantial literature exists on metabolites 

linked with glycaemic and associated metabolic traits, though the majority of these studies were limited to 

single or a few metabolites specific to phenotypic traits, and none of these included dietary metabolic profiling.  

 

Added value of this study  

To our knowledge this study provides the first assessment of combined dietary metabolite profiling and risk of 

T2D. We show that application of dietary metabolic profiling at the population level provides an objective 

measurement of dietary patterns and is associated with glycaemic and cardiometabolic risk profiles.  

The methodology of the model Tpred demonstrate to capture distinct dietary patterns and intake of single 

nutrients both in plasma samples. Metabolic profiling is a novel and pragmatic approach, which may serve as 

validation tool for self-reported diet recording and strengthened the precision of diet-disease relationships in 

epidemiological studies.  

 

Implications of all the available evidence  

Finding from our background review and this study show that use of metabolomics is a novel approach in 

profiling individuals cardiometabolic risk in epidemiological studies. The metabolic profile model Tpred is an 



objective measurement tool, which should be utilised in nutritional studies to help reduce misreporting and 

measurement bias existing in traditional nutritional analysis methods.  

 

  



Introduction 
Worldwide, over 425 million people are estimated to be living with type 2 diabetes (T2D) (1). People with T2D 

have a five-fold risk of developing cardiovascular disease (CVD) and are 1.6 times more likely to die 

prematurely life expectancy reduced by at least 10 years, compared with those without T2D (2). Identifying 

high-risk individuals and intervening before diabetes is manifest may disrupt the deterioration of the pancreatic 

beta cells and minimize damage to the vasculature associated with chronic hyperglycaemia (1). 

The aetiology of T2D is multi-factorial, with obesity, poor diet quality, physical inactivity and genetic factors 

being some of the driving forces (2). Diet is a key modifiable component in the development and management 

of T2D and associated cardiometabolic risk factors (2-5). The World Health Organisation (WHO) (2) report 

along with other randomised controlled trials (RCTs) and epidemiological studies, has found the effectiveness 

of diet in relation to management and prevention of T2D is related to global dietary profiling of numerous 

nutrients and food groups rather than change in individual nutrients (6-10).   

However, assessing a person’s diet can be challenging as diet recording is prone to numerous sources of error and 

bias, such as estimating portion sizes and misreporting by participants (11-13). The extent of underreporting of 

energy intake in nutritional studies is estimated to be between 30-88 % (11-13). This contributes to data inaccuracy 

and misinterpretation, which adversely affects the extent to which the effects of diet in health and disease can be 

estimated(13, 14) Diet underreporting have shown a strong direct relationship with obesity (11-14).  A large health 

survey found analysis based only on plausible respondents re-establishes the theoretical relationship between 

energy intake and body weight, which a was lost in analysis using samples including misreporters(14). Although 

it is possible to objectively assess dietary biomarkers, these are generally constrained to a few specific nutrients 

such as sodium, potassium and nitrogen and are not suitable for the overall assessment of dietary patterns. 

Evolving discoveries of dietary metabolites may serve as a novel tool in nutritional epidemiology for measuring 

nutrients and foods in our diets (15-17). Garcia-Perez et al. (17) developed a predictive model (Tpred) using 

metabolic profiles to classify diets by training urinary metabolomics data on diet allocation in a cross-over trial 

of four WHO-defined diets (2). However, many of these studies are limited by their small numbers of participants 

and use of specific diets. Furthermore, the studies have not investigated the use of the models with health 

outcomes. More evidence is needed from larger samples size and testing its relationship with dietary patterns in 

free-living populations and health outcomes.   

 

Here we applied the Tpred diet classifier to plasma metabolomics from a free-living population in the Innovative 

Medicines Initiative (IMI) Diabetes Research on Patient Stratification (DIRECT) Consortium cohorts 

(https://www.direct-diabetes.org). The richly phenotyped IMI DIRECT cohorts were designed for the discovery 

of biomarkers for glycaemic deterioration in individuals at risk of or diagnosed with T2D (18). In this analysis, 

we applied the Tpred score in the IMI DIRECT cohorts to explore the relationships between diet, glycaemic 

deterioration and cardiometabolic risk.  

  



Materials and methods  
Study design and participants 

The IMI DIRECT multicentre study is a European Union Innovative Medicines Initiative project collaborating 

among investigators from European leading academic institutions and pharmaceutical companies. The 

overarching objective of the DIRECT study is to discover and validate biomarkers of glycaemic deterioration 

before and after onset of T2D and has been reported in detail elsewhere(19). DIRECT established two 

multicentre prospective cohort studies comprised of adults of Northern European-ancestry; cohort 1 n=2127 

participants with normal or impaired glucose regulation (pre-diabetic) and cohort 2 n=789 participants with new 

onset T2D. Study inclusion and exclusion criteria for cohort 1 and 2 are outlined in table 1. Screening 

examinations at baseline and 18 months follow up were carried out the morning after a 10-hour overnight fast in 

the DIRECT study centres by trained nurses. Study protocol have been described in details elsewhere (18). Loss 

of follow up at 18 months were 138 (6.5%) from cohort 1 and 121 (15.3%) from cohort 2.  

This manuscript analyses included all participants from the five study centres Malmö Sweden, Copenhagen 

Denmark, Exeter UK, Newcastle UK and Dundee UK with baseline and 18 months follow up data available 

n=861 participants (cohort 1 n=403, cohort 2 n= 458).  Participants from study centres Kuopio Finland (cohort 1 

n=1236) and Amsterdam the Netherlands (cohort 1 n=500; cohort 2 n=121) were excluded due to the required 

data was not yet available.   

 

Ethical approval 

All participants provided written informed consent and the study protocol was approved by the regional research 

ethics review boards. The research conformed to the ethical principles for medical research involving human 

participants outlined in the declaration of Helsinki. Clinical Trial Registration NCT03814915. 

 

Data collection  

Biochemistry assays 

Fasting plasma glucose and insulin assays were analysed using the enzymatic glucose hexokinase method and 

photometric measurement on Konelab 20 XT Clinical Chemistry analyser (Thermo Fisher Scientific, Vantaa, 

Finland). Fasting HbA1c was measured by ion-exchange high-performance liquid chromatography using Tosoh 

G8 analysers (Tosoh Bioscience, San Francisco, CA, USA). Fasting blood lipids; cholesterol, triacylglycerol 

and HDL-cholesterol were measured using a Roche MODULAR P analyser (Roche Diagnostics, Indianapolis, 

IN, USA). LDL-cholesterol was calculated from the Friedewald formula. Each biochemical assay was 

performed using validated standard methods. Reference samples were included in all procedures to control for 

inter-assay variation and laboratories regularly participated in international external quality assessment 

schemes. Methodology is reported elsewhere (19).  

 

Body composition 

BMI was calculated as weight in kg divided by height in meters squared (kg/m2), and waist circumference was 

measured at the level of the umbilicus at mid-respiration. 

 

Magnetic resonance imaging  

Whole body tissue composition was assessed using magnetic resonance imaging (MRI).  Local protocols 

standardised across study centres by an experienced radiographer to harmonise the scan methodology. Multi-

echo imaging sequencing was applied to identify liver fat.  Methodology has been described in detail elsewhere 

(20). 

 

Dietary data  

Self-reported dietary intake was assessed by 24-hour multi-pass method and a food habit questionnaire, which 

was filled in by each participant the day before the study visit. The methods for the dietary record and the food 

habit questionnaire have been validated as part of the Euroaction Study (21). The method is structured into three 

levels of dietary questioning or ‘passes’. The first pass aims to document a ‘usual’ day’s meal. The second pass 

aims to give the respondent the time to reflect and add to the foods recorded in the first pass. The third pass of 

the food record aims to obtain information about portion size and method of preparation using a food portion 

size atlas. Nutritional analysis was undertaken using Dietplan-7 software (Forestfield Software Ltd, Horsham, 

UK) based on the McCance and Widdowson’s 7th Edition Composition of Foods UK Nutritional Dataset. All 

diet coders were trained by a lead research dietician/nutritionist using a study specific operational manual 

protocol. Detailed description of the coding and diet analysis protocol are reported elsewhere (22).   

Dietary patterns were assessed as concordance with WHO dietary guidelines using the validated ‘Healthy Diet 

Indicator’ (HDI) (9). The HDI priori score include assessment of six nutritional variables; fruits/vegetables, 

dietary fibre, total fats, saturated fat, sugars and salt. Mean daily intake of each of the seven components is 

assessed and scored according to their concordance with WHO dietary guidelines; 1 point represent +/- two 



standard deviation of criteria, 0 point if intake was worse than WHO criteria and 2 points if intake was better 

than WHO criteria. The points are summed to calculate an overall score between 0-12 points; a higher score 

indicates a more favourable diet. The score was calculated from the dietary intakes of all food and drink 

consumed except alcohol, which was analysed separately and adjusted for with other known confounders. 

 

Metabolic profiling  

Fasting plasma blood samples were collected from participants at their baseline visit and processed using a 

targeted metabolomic assay AbsoluteIDQTM p150 Kit (BIOCRATES Life Sciences, Innsbruck, Austria) 

quantifying 163 metabolites (amino acids, acylcarnitnes, sugars, glyceropholipids, sphingolipids) 

(Supplementary table S5) (23). Samples were processed and quality controlled according to established 

protocols described in supplementary material, 116 metabolites passed quality control (Supplementary 

material). Plasma blood samples from a controlled clinical trial (17) (CCT) of participants undergoing four 

dietary interventions (with different levels of adherence to WHO guidelines for healthy eating) in random order 

were analysed using the same AbsoluteIDQTM p180 Kit. This targeted metabolomic data was used to build a 

regression model (see below) to predict the stepwise adherence of participants to WHO guidelines. This model 

was constructed using the same methodology as exemplified previously by Garcia-Perez et al. for urine (16,000 
1H NMR variables measured, 28 significant metabolites identified) (17) and applied here to fasting plasma (113 

metabolites) to develop the predictive metabolomic score, Tpred for healthiness of diets using the 113 plasma 

metabolites. The 113 metabolites included in the model were selected based on metabolites found both from 

p180 Kit and from the 116 metabolites which passed the quality control in p150 Kit.  

 

Statistical analysis 

Baseline characteristics of participants were analysed across the two cohorts using a t-test.  

The Tpred score was modelled with the 113 plasma metabolites of the CCT data with multivariate regression 

(partial least squares, PLS) and Monte Carlo cross-validation (MCCV) to assess model robustness (24). The 

MCCV model consisted of 1,000 iterations and the data were centred and scaled to account for the repeated-

measures design of the CCT. The regression coefficients of each of the 1,000 MCCV iterations were used to 

calculate the predicted score (mean of all scores, Tpred). The samples of CCT individuals left out of each 

iteration of the training model, were used as test set for that iteration. This resulted in a goodness of prediction 

value of 0.94 for the CCT test data. The Tpred is indicative of how a metabolite profile relates to the plasma 

metabolite profiles of two dietary interventions with different levels of concordance with WHO healthy eating 

guidelines that were consumed in a highly controlled environment that assured full adherence to intervention 

diet (17). The Tpred (trained on plasma metabolomics data) ranged roughly from -3.5 to 3.5; a more positive Tpred 

indicate that the metabolite profiles have a greater resemblance to the diet with higher concordance with WHO 

healthy eating guidelines, whereas a negative Tpred is reflective of lower concordance with WHO guidelines. 

This model was then used to predict the DIRECT samples and obtain a Tpred for each sample. The Tpred score 

was log-transformed for analysis due to a right-skewed distribution (Supplementary figure S1).Associations 

between baseline data metabolite score Tpred, dietary pattern, single nutrients and food groups were analysed via 

multivariable generalised linear models. Models were adjusted for covariates including age, gender, BMI, 

cigarette smoking, alcohol consumption, energy intake, study centre and cohort.  

Associations between baseline data Tpred score and glycaemic and cardiometabolic traits were analysed via 

multivariable generalised linear models. Models were adjusted for covariates including age, gender, smoking, 

alcohol consumption, energy intake and study centre; analyses where glycaemic traits outcomes were 

additionally adjusted for usage of glucose-lowering medication. 

Relationships between baseline Tpred score and association with longitudinal changes in glycaemic traits and 

body composition were analysed at 18 months using generalised estimating equation regressions models (25). 

All models were adjusted for baseline age, gender, cigarette smoking, study centre and models with glycaemic 

traits (fasting glucose, insulin and HbA1c) were additionally adjusted for usage of glucose lowering medication.  

Sensitivity analyses were conducted using models adjusted for BMI. Additional longitudinal data analyses were 

conducted using mathematically modelled glycaemic progression rates for fasting plasma glucose and HbA1c 

concentrations from 36-month data adjusted for changes in BMI and usage of glucose-lowering medication (25). 

Each trajectory was described with a conditional linear mixed-effect model, in which the longitudinal 

component of the data was described as a proportional function of time, with normally distributed slopes 

describing individual progression rates. The slopes were additionally adjusted for age, gender and study centre. 

(Supplementary data). 

Discordant and concordant analyses between Tpred and HDI quartiles were compared using a t-test. To assess 

discordant; upper HDI diet quartile (healthiest diet) and lower Tpred quartile (least favourable metabolic profile) 

and concordant; upper HDI diet quartile (healthiest diet) and upper Tpred quartile (most favourable metabolic 

profile). 



Variable which did not follow a normal statistical distribution and was log transformed for the purpose of this 

study and coefficients were exponentiated. SAS version 9.4 (SAS Institute Inc. VX, Cary, NC, USA) was used 

for all analyses. The statistical significance threshold was set at p<0.05. 

 

 

Results  
Baseline characteristics of participants in the DIRECT cohorts 

Table 2 shows descriptive characteristics for the two cohorts in DIRECT; Cohort 1 (participants with normal or 

impaired glucose regulation) and cohort 2 (participants diagnosed with T2D). Participants in cohort 2 were 

younger with a higher percentage of women than in cohort 1. Cohort 2 had higher BMI and a worse glycaemic 

profile compared to cohort 1 (unadjusted). No differences were observed across the two cohorts for smoking 

status, quality of diets or metabolite profile score Tpred.  

 

Tpred metabolite profile score association with dietary patterns  

Table 3 shows the linear regression coefficients, which represent mean changes in the nutritional variable per 

one-unit increase in Tpred score. A higher Tpred score (healthier metabolite profile) was associated with healthier 

dietary patterns based on WHO HDI score in cohort 2 (β=0.05, p= 0.0002) and a higher intake of fibre (β=0.03 

g, p=0.004), fruit and vegetables (β=0.0007 g, p=0.002), and lower intake of added sugars (β=-0.02 g, p<.0001) 

in cohort 2. In both cohort 1 and 2, a higher Tpred score was associated with a higher intake of wholegrain 

(β=0.004 g, p=0.02 and β=0.003 g, p=0.03) and fish (β=0.004 g, p=0.0002 and β=0.004 g, p<.0001) and lower 

intake of energy (β=-0.0002 kcal, p=0.04 and β=-0.0002 kcal, p=0.003), and saturated fat (β=-0.03 g, p<.0001 

and β=-0.03 g, p<.0001), respectively.  

 

Tpred metabolite profile score association with glycaemic and cardiometabolic traits 

Table 4 shows the mean changes in the phenotypic traits per one unit increase in Tpred score in the baseline data. 

A higher Tpred was associated with a lower weight in both cohorts β=-1.8 kg, p=0.01 and β=-2.1 kg, p=0.03, 

respectively for cohort 1 and 2.  In cohort 2 a higher Tpred was also associated with a lower liver fat content (β=-

0.74 %, p<.0001), and lower fasting HbA1c (β=-0.9 mmol/mol, p=0.02), glucose (β=-0.2 mmol/L, p=0.01) and 

insulin (β=-11.0 pmol/mol, p=0.01), lower TG (β=-0.8 mmol/L, p=0.0002) and higher HDL cholesterol (β=0.08 

mmol/L, p=0.0002). In cohort 1, a higher Tpred was associated with a lower HbA1c (β=-0.4 mmol/mol, p=0.04), 

lower TG (β=-0.1 mmol/L, p=0.003) and a higher HDL cholesterol (β=0.07 mmol/L, p<.0001). No associations 

were observed for fasting LDL-cholesterol in either of the cohorts.  

 

HDI dietary pattern score association with glycaemic and cardiometabolic traits 

Supplementary table S2 shows the mean changes in phenotypic traits per one point increase in HDI diet score 

(indicating a healthier diet). Baseline data showed a higher HDI score was associated with lower weight in both 

cohorts.  In cohort 2 a higher HDI was also associated with a lower waist circumference (β=-0.7 cm, p=0.002), a 

lower BMI (β=-0.3 kg/m2, p=0.0002), liver fat (β=-0.7 %, p=0.0001). A higher HDI score was associated with a 

lower fasting glucose and insulin in both cohorts, in cohort 1 (β=-0.04 mmol/L, p=0.002) and cohort (β=-0.2 

pmol/mol, p=0.04), respectively. In cohort 2 this was only significant for fasting glucose (β=-0.06 mmol/L, 

p=0.03) and insulin (β=-1.9 pmol/mol, p=0.09). No associations were observed between HDI score and lipid 

profile fasting HDL cholesterol, LDL-cholesterol and triglycerides in either cohort.  

 

Tpred metabolite profile score effect on adiposity and glycaemic traits changes 

Table 5 shows the generalised estimating equation regression coefficient representing the mean changes in 

phenotypic traits for one unit increase in Tpred score. A higher baseline Tpred score (healthier metabolite profile) 

was associated with decreasing body adiposity in both cohorts at 18 months follow up. In cohort 1 Tpred score 

was associated with a decrease in weight by -1.6 kg (p=0.02) and BMI -0.5 kg/m2 (p=0.03). Cohort 2 also 

showed a reduction in waist circumference -1.6cm (p=0.04). A higher Tpred score was also associated with lower 

glycaemic traits in cohort 2; per one unit increase in Tpred score glucose was reduced by -0.2 mmol/L (p=0.03) 

and insulin was reduced by 9.2 pmol/mol (p=0.04). No other significant changes were observed for other 

glycaemic traits in cohort 1. Sensitivity analysis with glycaemic traits was done using same models with 

additional BMI adjustment (Supplementary table 3).  The results showed per one point increase in the Tpred score 

glucose was reduced by 0.2 mmol/L (p=0.05) in cohort 2. No other significant changes were observed in either 

cohort. 

The Tpred score showed no significant effect with the two glycaemic progression slopes modelled on fasting 

glucose (β=-0.007 mmol/L, p=0.6) or HbA1c (β=-0.07 mmol/mol, p=0.3) at 36-month follow up data in cohort 

2 (Supplementary table 4).  

 

Discordance analysis between Tpred metabolite profile score and HDI score 



Discordance analyses of participants who were both in the lowest quartile of the metabolite score Tpred (worst 

metabolic profile) and in the highest diet score quartile (healthiest diets) were worse metabolically compared to 

those participants who were concordant with both scores i.e. highest Tpred score (healthiest metabolic profile) 

and highest diet score (healthiest diets) (supplementary material table 1). Participants concordant with both Tpred 

and HDI diet score had a lower BMI (mean=27.8 kg/m2) compared to those who were discordant (mean= 30.3 

kg/m2) p=0.02, a lower mean fasting HbA1c (41.6 mmol/mol vs (42.9 mmol/mol) p=0.03, a lower mean fasting 

glucose (5.9 mmol/L vs 6.3 mmol/L) p<.0001, and a lower mean fasting insulin (42.6 pmol/mol vs 65.8 

pmol/mol) p<.0001. Those concordant with the scores also had a better lipid profile: a lower mean fasting 

triglycerides (1.09 mmol/L vs 1.55 mmol/L) p<.0001, and a higher mean HDL-cholesterol (1.28 mmol/L vs 

1.11 mmol/L) p=0.02. No significant differences were observed in body measurement or liver fat between the 

two groups.  

 

Discussion  
Dietary advice remains one of the cornerstone of prevention and management of T2D. The effectiveness of 

dietary intervention is related to global dietary profiling of numerous nutrients and food groups (increased fruit, 

vegetable, wholegrain and dietary fibre, decreased added sugars and total fat intake) rather than change in 

individual nutrients. However, understanding the relationship between diets and T2D is challenging because of 

the inaccuracy of traditional dietary assessment tools (15, 17, 26). We recently demonstrated the utility of 

urinary metabolite profiling in diet assessment (17). Here, we applied similar methodology to derive a plasma 

metabolite profiling score Tpred and demonstrated that it captures distinct dietary patterns in free-living 

populations. Furthermore, a more favourable Tpred score was associated with a better glycaemic homeostasis and 

body composition, liver fat, triglycerides and HDL-cholesterol. Our findings demonstrate that metabolic 

profiling validated self-reported diet recording and strengthened the precision of diet-disease relationships in 

epidemiological studies.  

 

Firstly, we showed that the plasma metabolite profile score Tpred was associated with four distinct dietary 

patterns as defined by WHO dietary guidelines (HDI diet score), replicating findings from our previous RCT 

(17). Furthermore, a higher Tpred score (favourable metabolic profile) was associated with higher intake of 

healthy foods and nutrients including fibre, wholegrains, fish, fruit and vegetables and a lower intake of 

unhealthy nutrients including saturated fat, added sugars and lower energy intake despite the metabolites 

included in the Tpred score are not direct dietary metabolites. Similar findings were reported in the TwinsUK 

cohort which analysed same set of metabolites (AbsoluteIDQTM p150 Kit) separately and found correlations 

between two thirds of the metabolites and dietary patterns driven by food groups including meat intake, energy 

intake, fruit and vegetables (27). 

We have demonstrated using discordant analyses that participants who both were in the lowest quartiles of Tpred 

(least favourable metabolic profile) and the highest diet score quartile (healthiest diet) are worse metabolically 

both in their glycaemic traits and lipid profiles compared to those concordant in both scores top quartiles 

(healthiest metabolite profile and healthiest diet). Few studies have conducted discordance analyses. We found 

two other cohorts (Cardiovascular Risk in Young Finns Study and Whitehall II) reporting similar findings when 

studying participants in concordance with higher adherence to a healthy diet and associated metabolites. The 

studies found participants had a better (more favourable) blood lipid profile and lower incidence of CVD (28), 

which was argued was driven by healthy dietary patterns.   

Our findings may further imply that Tpred score can capture dietary misreporting known to confound the 

association between diet and health outcomes. This aligns with other nutritional studies, which show that 

participants “classified” as misreporters or energy underreporters in their diet recordings are more likely to have 

a worse cardio-metabolic profile compared to those who do not under-report their diet intake (11-13, 29). 

Metabolic profiling may serve as a more accurate and unbiased diet assessment method compared to existing 

methods relying mainly on BMI and physical activity reporting. Studies with high levels of 

underreporting/misreporting should adjust for such bias in their analyses or conduct sensitivity analyses to 

assess the impact on the relationship between diet and health outcomes (14, 30). In this study, we applied a 

statistical method using quartiles to identify the discordant and concordant groups in our dataset as both the Tpred 

and HDI score are arbitrary and no known or validated cut-off value exist. However, due to lack of published 

metabolomics discordance analysis in nutritional epidemiological studies such statistical principals have not yet 

been set for discordance as for bias of energy under-reporting.  

 

A key finding of this study, the Tpred score was strongly associated with glycaemic and other cardiometabolic 

traits at baseline in both people at risk of diabetes and those living with the disease. Similar findings were 

observed in two other cohorts investigating the association between metabolic profiling with dietary patterns 

and CVD risk (28).  They found 41 metabolites (amino acids, glycerophospholipids and sphingolipids) 

associated with healthy dietary patterns also predicted a favourable lipid (fatty acids) profile and lower 



incidence of CVD risk. However, glycaemic and adiposity traits were not included in these studies. We also 

show that self-report diet data (HDI score) was associated with some of the same cardiometabolic traits as the 

Tpred score, but these relationships were less robust. This may imply a metabolic profile more accurately capture 

these associations between diet and health outcomes compared to self-reported dietary data, which are more 

prone to confounding from misreporting.  

 

Mechanisms driving these nutritional and metabolic pathways are complex and multi-factorial. A metabolite 

profile score may capture metabolites, such as acylcarnitines, glycerophospholipids, and sphingolipids which 

are not captured in HDI score. Such metabolites have been associated with increased risks of fatty acid 

oxidation, insulin resistance and T2D (31, 32). Furthermore, the Tpred score may also capture other non-lifestyle 

factors such as interactions with an individual’s microbiome (33, 34). Gut microbiota modified by diet may also 

play a role in the relationships between acylcarnitines, phosphatidylcholine and cardiometabolic traits (35, 36). 

Numerous metabolites such as acylcarnitines and phosphatidylcholine, are involved in gut microbe–dependent 

pathways that contribute to the formation of hepatic production of trimethylamine-N-oxide from choline and 

sequentially into trimethylamine in the microbiota, which may increase risk of atherosclerosis (37)and glucose 

metabolism (36, 38). A study that characterized faecal microbiome and serum metabolome of non-diabetic 

individuals found serum levels of branched-chain amino acids (BCAA) were higher in insulin-resistant 

individuals and also correlated with specific strains of faecal microbiomes with higher biosynthetic potential for 

BCAAs (34). These predictions were further validated in an animal study by showing that same microbiome 

strains could induce insulin resistance while increasing circulating BCAA levels when introduced into high fat 

diet (34). Further investigations are needed to elucidate the interplay between specific dietary components and 

these metabolic and biological pathways. 

 

The baseline Tpred score also showed favourable relationships with BMI and waist measurement in both cohorts 

at 18 months and significant lower fasting glucose and insulin in cohort 2 at 18 months. It is of interest that the 

Prevención con Dieta Mediterránea (PREDIMED) study showed that baseline metabolite profiles characterized 

by elevated concentrations of 28 acylcarnitines are independently associated with risks of CVD (serum lipid 

profile and adiposity markers) after 1 year and that these effects were lessened in participants consuming 

healthier diet patterns (Mediterranean diet compared to a control diet) (39). The Tpred metabolic profile score 

also included 18 of these acylcarnitines, which could suggest that the relationships observed in our study 

between Tpred score and serum lipid profile (HDL-cholesterol and triglycerides) and lower adiposity 

measurements were partially driving by the differences in acylcarnitines captured by Tpred score and other 

beneficial interaction effects of healthy dietary patterns.  The Framingham study found association between 217 

metabolites (amino acids, acylcarnitines, glycerophospholipids and sphingolipids) and body compositions, 

glycaemic and cardiometabolic traits (32). Their discoveries defined three distinct factors; dyslipidaemia, insulin 

resistance and adiposity at baseline. However, similar to our findings, their baseline metabolite profiles 

associations with longitudinal changes in these traits were distinct from the cross-sectional findings. They 

showed body compositions remained unchanged, whereas glycaemic traits varied across BMI strata, modifying 

metabolic signatures of insulin resistance. BMI was also associated with broad alteration in other multiple 

biochemical pathways (32). 

 

Strengths and limitations of study 

This study builds on previous metabolomics studies, but contributes a larger sample size, more detailed 

phenotyping and comprehensive dietary data analysis. Most epidemiological studies rely on dietary data from 

food frequency questionnaires, which may be limited by the specific nutrients and food groups studied. The 

IMI-DIRECT comprehensive dietary data analysis permitted us to study a range of single nutrients and food 

groups and overall dietary patterns and their relationships. This gives us a better understanding of what is 

driving a person’s diet in relation to the metabolic impact and its association with important phenotypic traits. 

Furthermore, the data are derived from two well-designed and rigorously conducted cohort studies. These 

longitudinal data allow us to study the longer-term effects of the metabolite profile score on phenotypic traits in 

both participants with normal and impaired glucose regulation.   

Lastly, the integration of metabolic and dietary profiling strengthens our findings as the metabolic profiling 

serves as an objective and unbiased approach, that does not rely on arbitrary cut-offs, which can strengthen 

accuracy in dietary data and nutritional epidemiology.  

 

An important limitation is that our study design does not allow for determination of the temporality of the 

observed associations, which is important when considering the longitudinal dimension of T2D development 

and the complexity of nutrient and metabolomics. We performed metabolic profiling at one single time point, 

precluding the study of glycaemic and cardiometabolic effects on longitudinal changes in metabolite profile.  



It also remains unclear whether metabolites represent biomarkers or actual mediators of metabolic disease or are 

acting as surrogate markers, thus, and causal inferences cannot be drawn from our observational study without 

further investigation. Another important limitation of this study is the use of a short-term dietary assessment 

method. A single 24-hour recall is unable to account for day-to-day variation, two or more non-consecutive 

recalls are required to estimate usual dietary intake distributions on an individual level. Multiple recalls are also 

recommended when used to examine diet and health. Though, the main focus of our study was to apply the 

metabolic model Tpred on a large free-living population.  The Tpred was also derived from a single time point 

sample. Hence, to confirm these finding replication studies are needed using data collected over multiple time 

points to gain better accuracy and understanding on how the two methods compare in relation to each other and 

health outcomes. 

 
This study demonstrates that application of dietary metabolic profiling at the population level provides an 

objective measurement of dietary patterns and is associated with glycaemic and cardiometabolic risk profiles.  
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Table 1: Study inclusion and exclusion criteria for the IMI DIRECT cohorts 

 

Cohort 1 Cohort 2  

Inclusion criteria  Inclusion criteria   
• No treatment with insulin-sensitising, glucose-lowering or other 

antidiabetic drugs  

• Patients diagnosed with T2D not <6 months and not >24 

months before baseline  

• Fasting capillary blood glucose <10 mmol/l at baseline • Management by lifestyle with or without metformin therapy  

 • White European   • White European   
• Age ≥35 and <75 years  • Age ≥35 and <75  

 • Estimated GFR >50 ml/min  

 • All HbA1c <60 mmol/mol within previous 3 months  

Exclusion criteria  Exclusion criteria   
• Diagnosed diabetes of any type, HbA1c ≥48 mmol/mol or fasting 
plasma glucose ≥7.0 mmol/l or 2 h plasma glucose • Type 1 diabetes    

>11.0 mmol/l previously  • A previous HbA1c >75 mmol/mol   

• For women, pregnancy, lactation or plans to conceive within the 

study period  

• Prior treatment with insulin or an oral hypoglycaemic agent 

other than metformin  

• Use of a pacemaker • BMI <20 or >50 kg/m2  

• Any other significant medical reason for exclusion as determined 
by the investigator  

• For women, pregnancy, lactation or plans to conceive within 
the study period  

 

• Any other significant medical reason for exclusion as 

determined by the investigator  
 

  

 

 

 Table 2: Baseline characteristics of participants in, the IMI DIRECT cohorts   
 

    
           Cohort I (n=403)    Cohort II (n=458) 

 
  

   

  
Mean  

or n 

SD  

or % 

Mean  

or n 

SD  

or % 
P value b 

     
 

Sex (female) % 234 59.1 183 41.8 <.0001 

Age (years)  64 8 62 7.9 <.0001 

Diet quality  
     

Tpred metabolic score [range -3.5, 3.5] -0.6 0.9 -0.6 0.7 0.80 

HDI diet score [range 0, 12] 4.6 2.7 4.8 2.6 0.48 

Daily energy (kcal) intake 1753.5 610.7 1802.5 618.9 0.18 

Alcohol %     0.09 

No alcohol  315 69 380 73 
 

Within UK guidelines  76 17 64 12 
 

Above UK guidelines  65 14 77 15 
 

Cigarette smoking % 
     

Never  149 37 190 43 0.21 

Former 192 48 197 45 
 

Current   57 14 51 12 
 

Body mass index (kg/m2) 28.9 4.2 30.8 5.1 <.0001 

Waist circumference (cm) 102.1 11 102.6 13.8 0.58 

Liver fat (%) 5.2 4.6 8.6 7.8 <.0001 

Glycaemic & cardio-metabolic traits  
    



Glucose (mmol/L) 5.6 0.9 6.9 1.4 <.0001 

Insulin (pmol/mol) 11.9 16.3 103.9 70.4 <.0001 

HbA1c (mmol/mol) 38.1 3.2 46.5 5.9 <.0001 

Triglycerides (mmol/L) 1.3 0.6 1.4 0.8 <.0001 

LDL-cholesterol (mmol/L) 3.4 0.9 2.3 0.9 <.0001 

HDL-cholesterol (mmol/L) 1.2 0.3 1.2 0.4 0.09 

Abbreviations: Cohort 1; participants with normal or impaired glucose regulation, cohort 2; participants  

with diabetes type 2, Tpred, metabolic profile score; HDI, Healthy Diet Indicator WHO diet score 
a Values are unadjusted means (standard deviation) or n (%)    

b P value linear model (continuous variable) Mantel-Haenzel chi-square test (categorical variables) 

 

 

  



Table 3: Metabolic profile score Tpred association with mean dietary intake adjusted for age, gender, smoking,  

alcohol consumption, BMI and study centre, the IMI DIRECT cohorts  

 
 Cohort I n=403                     Cohort II n=458  

  
 a 95% CI P value  a 95% CI P value 

Fibre (NSP) per  

1000 kcal 0.02 -0.004, 0.05 0.09 0.03 0.001, 0.05 0.004   

Fruit/vegetables per  

1000 kcal 0.0004 0.0001, 0.0009 0.23 0.0007 0.0003, 0.001 0.002  

Wholegrains per  
1000 kcal 0.004 0.0005, 0.007 0.02 0.003 0.003, 0.006 0.03  

Fish per  

1000 kcal 0.004 0.002, 0.005 0.0002 0.004 0.002, 0.005 <.0001  

Carbohydrate  
%TEI -0.005 -0.01, 0.004 0.34 -0.007 -0.01, -0.0004 0.04  

Protein  
%TEI 0.02 0.001, 0.03 0.04 0.03 0.02, 0.04 <.0001  

Fat  
%TEI -0.0006 -0.01, 0.008 0.86 -0.006 -0.01, 0.002 0.23  

Saturated fat  

%TEI -0.03 -0.05, -0.02 <.0001 -0.03 -0.05, -0.02 <.0001  

Added sugar 
 %TEI -0.01 -0.02, -0.006 0.31 -0.02 -0.03, -0.01 <.0001  

Mean kcal  -0.0002 -0.0003, -0.0001 0.04 -0.0002 -0.0003, -0.0001 0.003  

HDI score 0.03 -0.004, 0.06 0.09 0.05 0.02, 0.07 0.0002  

Abbreviation: Cohort 1; participants with normal or impaired glucose regulation, cohort 2; participants with diabetes 

 type 2, NSP, non‐starch polysaccharides, %TEI, percentage of total energy intake, 95% CI, confidential interval,  

HDI, Healthy Diet Indicator. a, Generalised linear regression model coefficient represents the mean change in the  

nutritional variable for one unit change (increase) in Tpred score fully adjusted models.  



 
Table 4:  Metabolic profile score Tpred association with phenotypic traits adjusted for age,  

gender, smoking, alcohol consumption and study centre at baseline, the IMI DIRECT cohorts  

 

    

                    

Cohort I n=403                
  

 Cohort II n=458 

 

 

  
 a  95% CI P value  a  95% CI P value 

 

Waist circumference (cm) -0.9 -2.1, 0.3 0.09 -1.5 -2.9, 0.08 0.06 

Weight (kg) -1.8 -3.2, -0.4 0.01 -2.1 -3.8, -0.2 0.03 

Body mass index (kg/m2) -0.5 -1.0, -0.1 0.02 -0.5 -1.1, 0.1 0.09 

Liver fat (%) -0.97 -0.82, 1.11 0.63 -0.74 -0.67, 0.81 <.0001 

Fasting HbA1c (mmol/mol)† -0.4 -0.7, -0.01 0.04 -0.9 -1.5, -0.1 0.02 

Fasting glucose (mmol/L)† 0.04 -0.04, 0.1 0.32 -0.2 -0.4, -0.05 0.01 

Fasting insulin (pmol/mol)† 0.2 -0.7, 0.7 0.88 -11.0 -19.5, -2.6 0.01 

Fasting triglycerides (mmol/L) -0.1 -0.2, -0.03 0.003 -0.2 -0.3, -0.09 0.0002 
Fasting LDL-cholesterol 

(mmol/L) 0.001 -0.1, 0.1 0.86 -0.06 -0.2, 0.04 0.24 

Fasting HDL-cholesterol 
(mmol/L) 0.07 0.03, 0.1 <.0001 0.08 0.04, 0.1 0.0002 

 

Abbreviations: Cohort I; participants with normal or impaired glucose regulation, Cohort II;  

participants with type 2 diabetes, HDL; high density lipoprotein cholesterol, LDL; low density lipoprotein cholesterol,  

HbA1c; glycated haemoglobin. a: Generalised linear regression model coefficient represents the mean change in the  

phenotypic trait for one unit change (increase) in Tpred score. 

† Cohort II is additionally adjusted for usage of glucose lowering medication 
  

Table 5: Metabolic profile score Tpred effect on phenotypic traits changes adjusted for gender, age, 

smoking, alcohol consumption and study centre at 18 months follow up, the IMI DIRECT cohorts 

 

  
    Cohort I n=403     Cohort II n=458   

 
            

 

  

  a 95% CI P value  a  95% CI P value 

 

Fasting insulin (pmol/mol) †  -0.2 -0.9, 0.5 0.61 -9.2 -17.9, -0.4 0.04 
 

Fasting glucose (mmol/L) †  0.03 -0.03, 0.1 0.28 -0.2 -0.3, -0.01 0.03 
 

Fasting HbA1c (mmol/mol) †  -0.4 -0.7, 0.01 0.06 -0.6 -1.5, 0.1 0.09 
 

Body mass index (kg/m2)  -0.5 
-0.9, -0.06 

0.03 -0.7 
-1.6, 0.1 

0.09 
 

Waist circumference (cm)  -1.1 -2.2, 0.03 0.05 -1.6 -3.0, -0.1 0.04 
 

Weight (kg)  
 

-1.6 -3.05, -0.2 0.02 -1.7 -3.5, -0.1 0.06 
 

 

Abbreviation: cohort I participants with normal or impaired glucose regulation, cohort II participants with type 2 

diabetes. a, Generalised estimating equation regression coefficient represent the mean change in phenotypic trait 

for one unit change (increase) in Tpred score adjusted for covariates. † Cohort II is additionally adjusted for usage 

of glucose lowering medication 
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Table S1: Discordance analysis of metabolic profile score Tpred and Healthy Diet Indicator score (t-test) 

unadjusted, the IMI DIRECT cohorts 

 

 

                                Discordant a n=291 

              

                  Concordant b n=70 

                   

 Mean†    95% CI             Mean†       95% CI                       P-value  

Weight (kg)  88.2 86.4, 89.9  79.2 75.9, 82.5  <.0001 

Body mass index (kg/m2) 30.3 29.8, 30.9  27.8 26.8, 28.7  <.0001 

Liver fat (%) 16.8 15.4, 18.2   11.5 9.3, 13.7  0.08 

Fasting HbA1c (mmol/mol) 42.3 41.6, 43.1  41.6 40.3, 42.8  0.32 

Fasting glucose (mmol/L) 6.2 6.0, 6.4  6.0 5.7, 6.3  0.27 

Fasting insulin (pmol/mol) 58.9 49.9, 67.9  42.1 33.1, 50.9  0.009 

Fasting triglycerides (mmol/L) 1.5 1.4, 1.6  1.1 0.9, 1.2  <.0001 

Fasting HDL-cholesterol (mmol/L) 1.1 1.1, 1.2  1.3 1.2, 1.4  0.003  

Fasting LDL-cholesterol (mmol/L) 2.9 2.8, 3.1  2.7 2.4, 2.9  0.05  

 

a, discordant; highest HDI diet score quartile (healthiest diet) and lowest metabolite score Tpred quartile (least favourable  

metabolic profile) b, concordant; highest HDI diet score quartile (healthiest diet) and highest metabolite score Tpred quartile  

(most favourable metabolic profile). †Means and 95%CI are unadjusted 
 

 
Table S2: Healthy Diet Indicator score association with phenotypic traits adjusted for age, gender, 

smoking, alcohol consumption, BMI and study centre at baseline, the IMI DIRECT cohorts  

 

                                                                     Cohort I n=403                                                                      Cohort II n=485 

   a  95% CI P value  a 95% CI P value 

Waist circumference (cm) † -0.4 -0.8, 0.01 0.05 -0.7 -1.2, -0.3 0.002 

Weight (kg) † -0.5 -1.01, -0.07 0.02 -1.0 -1.5, -0.5 0.0002 

Body mass index (kg/m2) † -0.2 
-0.3, 0.004 

0.06 -0.3 
-0.5, -0.2 

0.0002 

Liver fat (%) 0.06 -0.4, 0.5 0.83 -0.7 -1.0, -0.3 0.0001 

Fasting HbA1c (mmol/mol) †† 0.05 -0.07, 0.2 0.41 -0.1 -0.3, 0.1 0.33 

Fasting glucose (mmol/L) †† -0.04 -0.07, -0.02 0.002 -0.06 -0.1, -0.01 0.03 

Fasting insulin (pmol/mol) †† -0.2 -0.4, -0.003 0.04 -1.9 -4.2, 0.3 0.09 

Fasting triglycerides (mmol/L) -0.01 -0.03, 0.01 0.29 -0.01 -0.04, 0.01 0.26 

Fasting LDL-cholesterol (mmol/L) -0.004 -0.04, 0.03 0.77 0.01 -0.02, 0.04 0.53 

Fasting HDL-cholesterol (mmol/L) 
0.00004 -0.01, 0.01 0.92 

-0.005 
-0.02, 0.01 

0.48 

 

Abbreviations: Cohort 1; participants with normal or impaired glucose regulation, Cohort 2; participants with type 2  

diabetes, HDL; high density lipoprotein cholesterol, LDL; low density lipoprotein cholesterol, HbA1c; glycated haemoglobin.  

a, Generalised linear regression model coefficient represents the mean change in the phenotypic trait for one unit change  

(increase) in the Healthy Diet Indicator score. † variables not adjusted for body mass index 

†† Cohort 2 additionally adjusted for usage of glucose lowering medication 

 

 

 

 

 

 
Table S3 Metabolic profile score Tpred effect on phenotypic traits changes adjusted for gender, age,  



smoking, alcohol consumption, BMI and study centre at 18 months follow up, the IMI DIRECT cohorts 

 

      Cohort I (n=403)      Cohort II (n=458)   

  
   a 95% CI P value  a 95% CI P value 

Fasting insulin (pmol/mol)† 0.2 -0.4, 0.8 0.48 -6.3 -14, 1.5 0.11 

Fasting glucose (mmol/L)† 0.05 -0.02, 0.1 0.21 -0.2 -0.3, 0.003 0.05 

Fasting HbA1c (mmol/mol)† -0.3 -0.7, 0.04 0.08 -0.6 -1.4, 0.2 0.09 

 

Abbreviation: cohort I participants with normal or impaired glucose regulation, cohort II participants with type 2 

diabetes. a, Generalised estimating equation regressions coefficient represent effect per one unit increase Tpred 

on dependent variable adjusted for covariates. † Cohort II is additionally adjusted for usage of glucose lowering 

medication 

 

Table S4 Baseline metabolic profile score Tpred effect on glycaemic traits changes at 36 months  

follow up adjusted for gender, age, BMI and study centre, the IMI DIRECT cohort II 

 

        Cohort II (n=458)   

  
  

 a
 95% CI P value 

Fasting glucose (mmol/L)  -0.01 -0.04, 0.02 0.62 

Fasting HbA1c (mmol/mol)  -0.07 -0.21, 0.07 0.28 

 

Abbreviations: Cohort 2; participants with type 2 diabetes, HbA1c; glycated haemoglobin. a: Generalised linear 

regression model coefficient represents the mean change in the phenotypic trait for one unit change (increase) in 

Tpred score using mathematically modelled glycaemic progression slopes for fasting plasma glucose and HbA1c 

concentrations from 36-month data adjusted for changes in BMI, age, gender, study centre and usage of 

glucose-lowering medication. 
 

 

Table S5 Targeted metabolites groups included in the metabolic profile score Tpred, the IMI DIRECT 

cohorts 

 
Metabolite class Biological relevance (selected examples) 

Amino Acids Amino acid metabolism, urea cycle, activity of gluconeogenesis and glycolysis, insulin 

sensitivity/resistance, neurotransmitter metabolism, oxidative stress 

Acylcarnitines Energy metabolism, fatty acid transport and mitochondrial fatty acid oxidation (e.g., ketosis, oxidative 

stress, mitochondrial membrane damage (apoptosis) 

Hexoses Carbohydrate metabolism 

Phosphatidylcholines Dyslipidaemia, membrane composition and damage, fatty acid profile, activity of desaturases 

Lysophosphatidylcholines Degradation of phospholipids (phospholipase activity), membrane damage, signalling cascades, fatty 
acid profile 

Sphingomyelins Signalling cascades, membrane damage (e.g., neurodegeneration) 
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Biocrates AbsoluteIDQTM p150 

Plasma concentrations of 163 metabolites were determined using a FIA-ESI-MS/MS-based targeted 

metabolomics approach with the AbsoluteIDQTM p150 kit (BIOCRATES Life Sciences AG, Innsbruck, Austria). 

Analytical specifications for LOD and evaluated quantification ranges, further LOD for semi-quantitative 

measurements, identities of quantitative and semiquantitative metabolites, specificity, potential interferences, 

linearity, precision and accuracy, reproducibility, and stability were described in Biocrates manual AS-P150. 

The assay allows simultaneous quantification of 163 metabolites out of 10 µL plasma, and includes free carnitine, 

40 acylcarnitines (Cx:y), 15 amino acids (Leu and Ile are measured together as xLeu), hexoses (sum of hexoses – 

about 90-95 % glucose), 91 glycerophospholipids (15 lysophosphatidylcholines (lysoPC.Cx:y) and 76 

phosphatidylcholines (PC.Cx:y)), and 15 sphingolipids (SM.Cx:yc). The abbreviations Cx:y are used to describe 

the total number of carbons and double bonds of all chains, respectively. 

The LODs were set to three times the values of the zero samples (PBS). The LLOQ and ULOQ were determined 

experimentally by Biocrates. The assay procedures of the AbsoluteIDQTM p150 Kit as well as the metabolite 

nomenclature have been described in detail previously (1,2). 

Analytical specifications for LOD and evaluated quantification ranges, further LOD for semi-quantitative 

measurements, identities of quantitative and semi-quantitative metabolites, specificity, potential interferences, 

linearity, precision and accuracy, reproducibility, and stability were described in Biocrates manual AS-P150. 

Sample handling was performed by a Hamilton Microlab STARTM robot (Hamilton Bonaduz AG, Bonaduz, 

Switzerland) and a Ultravap nitrogen evaporator (Porvair Sciences, Leatherhead, U.K.), beside standard 

laboratory equipment. Mass spectrometric analyses were done on an API 4000 triple quadrupole system (Sciex 

Deutschland GmbH, Darmstadt, Germany) equipped with a 1200 Series HPLC (Agilent Technologies 

Deutschland GmbH, Böblingen, Germany) and a HTC PAL auto sampler (CTC Analytics, Zwingen, Switzerland) 

controlled by the software Analyst 1.6.2. Data evaluation for quantification of metabolite concentrations and 

quality assessment was performed with the software MultiQuant 3.0.1 (Sciex) and the MetIDQ™ software 

package, which is an integral part of the AbsoluteIDQ™ Kit. Metabolite concentrations were calculated using 

internal standards and reported in µM.  



In addition to the investigated samples, five aliquots of a pooled reference plasma were analyzed on each kit plate. 

These reference plasma samples were used for normalization purposes and for calculation of coefficient of 

variance (CV) for each metabolite. 

Targeted metabolomics – quality control 

After data export from MetIDQTM, a first technical QC comprising analysis of peak shapes, retention times, and 

compound identity was performed. In subsequence QC steps, we join metabolites measurements from both 

cohorts and evaluated the number of samples with zero values in the metabolites concentration and remove any 

individual with more than 50% of zeros. No sample was removed in this step. We then evaluate the CV per 

metabolite and removed 33 with CV > 0.25 relative to the reference samples. Metabolites with concentration 

below the LOD were discarded, removing an additional 14 metabolites. Of the 163 metabolites, 116 passed all 

quality controls in 3,029 individuals.  
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Figure S1: Metabolic profile score Tpred distribution, the IMI DIRECT cohorts 
 

 


