

Citation for published version:
Sanci, E & Daskin, MS 2021, 'An integer L-shaped algorithm for the integrated location and network restoration
problem in disaster relief', Transportation Research Part B: Methodological, vol. 145, pp. 152-184.
https://doi.org/10.1016/j.trb.2021.01.005

DOI:
10.1016/j.trb.2021.01.005

Publication date:
2021

Document Version
Peer reviewed version

Link to publication

Publisher Rights
CC BY-NC-ND

University of Bath

Alternative formats
If you require this document in an alternative format, please contact:
openaccess@bath.ac.uk

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 25. Jun. 2024

https://doi.org/10.1016/j.trb.2021.01.005
https://doi.org/10.1016/j.trb.2021.01.005
https://researchportal.bath.ac.uk/en/publications/0f9e1ced-0668-4878-b4e2-f1daa5f43cf8

1

AN INTEGER L-SHAPED ALGORITHM FOR THE INTEGRATED LOCATION AND NETWORK

RESTORATION PROBLEM IN DISASTER RELIEF

Ece Sanci𝑎,𝑏,∗ (*Corresponding author)

E-mail address: es2138@bath.ac.uk

Mark S. Daskin𝑎

E-mail address: msdaskin@umich.edu

 𝑎 University of Michigan, Ann Arbor, MI 48109, USA

 𝑏 University of Bath, Bath BA2 7AY, UK

1. INTRODUCTION

Every year, disasters threaten hundreds of thousands of lives and cause massive amounts of damage. The Indian

Ocean Tsunami in 2004, Hurricane Katrina in 2005, the Haiti earthquake in 2010, the Japan earthquake and tsunami

in 2011, and the Nepal earthquake in 2015 are only a few examples of the deadliest disasters in the last two decades.

The high impact of these disasters has attracted the attention of many scholars in operations research. There has been

a significant interest in using operations research in humanitarian applications to reduce loss of life and alleviate

human suffering caused by disasters. Kara and Savaşer (2017) state that location problems constitute the majority of

problems studied in the relief logistics literature published between 2007 and 2017. In particular, the warehouse

location and inventory prepositioning problem has been extensively studied in recent years.

Being prepared for potential disaster scenarios enables government agencies and humanitarian

organizations to respond effectively once the disaster hits. In the literature, the two-stage stochastic

programming models are commonly employed to develop preparedness plans before anticipated disasters.

These models can be very difficult to solve as the complexity increases by several sources of uncertainty

and interdependent decisions. In this study, we propose an integer L-shaped algorithm to solve the

integrated location and network restoration model, which is a two-stage stochastic programming model

determining the number and locations of the emergency response facilities and restoration resources under

uncertainty. Our algorithm accommodates the second-stage binary decision variables which are required to

indicate undamaged and restored roads of the network that can be used for relief distribution. Our

computational results show that our algorithm outperforms CPLEX for the larger number of disaster

scenarios as the solution time of our algorithm increases only linearly as the number of scenarios increases.

Keywords: Disaster preparedness, prepositioning, relief distribution, network restoration, integer L-shaped

mailto:es2138@bath.ac.uk
mailto:msdaskin@umich.edu

2

Prepositioning emergency relief items prior to an anticipated disaster is a preparedness strategy to effectively

support the relief distribution capacity in the aftermath of the disaster. Studies on prepositioning in the literature

mainly develop optimization models to determine the location and capacity of the emergency response facilities,

which are warehouses to store the relief items before the disaster. After the disaster strikes, relief items kept in these

facilities are distributed to the affected communities. It is usually very difficult to predict the location, time, and scale

of disasters. Therefore, most of these studies consider potential disaster scenarios and the corresponding relief

operations when locating the emergency response facilities (Grass and Fischer, 2016). The two-stage stochastic

programming framework is the most common modeling approach since it allows the modeler to incorporate

uncertainties following the disaster and time-dependent decisions.

Maintaining a holistic view is critical in disaster management (Çelik et al., 2014). However, the problem of

locating emergency response facilities is approached by mainly focusing on the relief distribution in the post-disaster

stage and ignoring network restoration efforts performed concurrently to reestablish connectivity with inaccessible

demand regions. Kovacs and Moshtari (2019) draw attention to the need for integrated models considering the

potential effect of network restoration decisions on the prepositioning plans and relief distribution decisions. There

are several studies (Liberatore, Ortuno, Tirado, Vitoriano, and Scaparra, 2014; Çelik, Ergun, and Keskinocak, 2015;

Ransikarbum and Mason, 2016) which consider the relief item distribution and network restoration problems jointly;

however, these studies limit the problem environment to the post-disaster stage. A recent study by Aslan and Çelik

(2019) proposes a prepositioning model that determines warehouse locations and inventory levels prior to a disaster

in the presence of vulnerable roads. The model allows for the network restoration after the disaster to ensure the

timely delivery of relief items. Nevertheless, this model fails to incorporate that restoration resources may be scarce,

and they may not have access to some parts of the network due to limited connectivity.

Sanci and Daskin (2019) present a two-stage stochastic programming model which determines where to

locate emergency response facilities and restoration equipment before an anticipated disaster in the face of

uncertainty in demand, supply availability, and network availability. Decisions related to distributing relief items

from the emergency response facilities to the disaster victims and decisions related to restoring damaged arcs of the

underlying relief network are made jointly after the disaster as the uncertainties are resolved. To solve this integrated

location and network restoration problem, Sanci and Daskin (2019) develop a sample average approximation (SAA)

method with concentration sets motivated by Rosing and ReVelle (1997)’s Heuristic Concentration. In this approach,

they construct concentration sets consisting of locations with high potential to be in the optimal solution, and they

limit the first-stage solution space to concentration sets within the SAA scheme.

The computational results from Sanci and Daskin (2019) show that limiting the solution space in the first

stage to concentration sets reduces the problem size without sacrificing the solution quality significantly; however,

the quality of solutions cannot be verified unless the optimal solution is known. Moreover, this approach does not

exploit the structure of the two-stage stochastic programming model which allows us to decompose the second-stage

problem into subproblems for each disaster scenario once the first-stage decisions are fixed. A solution method

3

utilizing this property can effectively tackle the long run time and out-of-memory risks posed by the increasing

number of scenarios required for the convergence of the SAA algorithm.

In this study, we develop an exact solution approach based on exploring the first-stage solution space on a

branch-and-bound tree and decomposing the second-stage problem into subproblems for fixed first-stage solutions.

Optimality cuts derived from these subproblems remove non-optimal solutions from further consideration. We use

the integer optimality cuts, which are employed in the integer L-shaped method by Laporte and Louveaux (1993),

since our problem includes binary decision variables in the second stage. Our approach mainly follows an improved

version of the integer L-shaped method by Angulo, Ahmed, and Dey (2016) with two modifications to better exploit

the structure of our integrated model. Furthermore, we start our algorithm by finding a feasible solution by locating

emergency response facilities and restoration equipment in two steps. This feasible solution typically provides a tight

upper bound for our branch-and-cut procedure. Our computational results show that the solution time of our algorithm

increases only linearly as the number of scenarios increases.

The organization of the rest of the paper is as follows: in Section 2, we review the literature on prepositioning

models using the stochastic programming framework and the literature on exact solution algorithms for two-stage

stochastic programs with integer recourse. We present the two-step sequential approach and the integer L-shaped

method with our modifications in Section 3 and Section 4, respectively. We discuss our computational results in

Section 5. In Section 6, we conclude the paper along with our future research directions.

2. LITERATURE REVIEW

We review studies from two streams of literature related to our study. First, we review studies employing the

stochastic programming framework for the prepositioning problem. Second, we review studies developing exact

solution methods to solve two-stage stochastic programming models with integer decision variables in the second-

stage (recourse) problem.

2.1. Stochastic Programming Models for the Prepositioning Problem

The seminal papers by Balcik and Beamon (2008), Rawls and Turnquist (2010), and Mete and Zabinsky (2010)

propose stochastic programming models to determine the location of the emergency response facilities and their

prepositioning levels in the pre-disaster stage while focusing on the relief distribution problem in the post-disaster

stage. Balcik and Beamon (2008) use an objective function maximizing the expected covered demand, whereas Rawls

and Turnquist (2010) and Mete and Zabinsky (2010) use objective functions minimizing the expected total cost

including the expected unmet demand cost. These studies consider uncertainty in demand and uncertainty associated

with the network condition through increased transportation time/cost and reduced transportation capacity. There are

various prepositioning studies in the literature extending this line of work by incorporating other decisions in the pre-

or post-disaster stages, objective functions, or sources of uncertainty (Salmeron and Apte, 2010; Duran, Gutierrez,

and Keskinocak, 2011; Döyen, Aras, and Barbarosoğlu, 2012; Salman and Yücel, 2015; Ahmadi, Seifi, Tootooni,

2015). We refer the interested reader to Kara and Savaşer (2017) for a more detailed literature review on the

prepositioning studies. In this section, we review several recent studies in this body of literature.

4

The damaged transportation network in the aftermath of a disaster can be a major obstacle to the effectiveness

of relief distribution operations. Hong, Lejeune, and Noyan (2015) propose a two-stage chance-constrained stochastic

programming model to ensure that a feasible flow of relief supplies exists on the post-disaster transportation network

with high probability. Moreover, to improve the response time, they define regions and use chance constraints to

guarantee that these regions can satisfy their own demand with high probability. Elci and Noyan (2018) also propose

a chance-constrained model for the prepositioning problem to ensure responsive relief distribution. This model

features a mean-risk objective that incorporates the conditional value-at-risk to reflect the decision-makers’ risk

preferences with respect to the total cost.

Several prepositioning studies address the relationship between relief distribution operations and the capacity

of available vehicle fleets. Alem, Clark, and Moreno (2016) propose a two-stage stochastic programming model to

determine the fleet sizing of multiple types of vehicles as well as the inventory levels of the prepositioned relief

supplies on the relief network before the disaster. Paul and Zhang (2019) present a two-stage stochastic programming

model for the hurricane preparedness problem to determine the transportation capacity in addition to the location of

emergency response facilities and relief supply levels prior to the landfall. Hu, Han, Dong, and Meng (2019) propose

a multi-stage stochastic programming model that decides on the facility locations at the first stage but updates the

number and type of vehicles needed for the relief distribution at every stage of the disaster response. The authors

take into consideration dynamic road capacity due to unpredictable secondary disasters and the fluctuation of vehicle

rental costs. In a similar problem setting, Moreno, Alem, Ferreira, and Clark (2018) propose a two-stage stochastic

programming model to determine the number of vehicles procured before and after the disaster occurs. The authors

incorporate human suffering due to delayed access to relief supplies in the objective function via minimizing the

deprivation cost (Holguín-Veras, Pérez, Jaller, Van Wassenhove, and Aros-Vera, 2013) in addition to minimizing

the logistics cost.

The severity levels of casualties may deteriorate in the absence of relief supplies stemming from insufficient

capacity or long transportation times, eventually leading to fatality. Paul and MacDonald (2016) incorporate

uncertainty in the number of casualties of different severity levels and propose a model that minimizes the sum of

facility and relief supply acquisition costs and the associated fatality cost given the expected fatalities. Paul and Wang

(2019) propose two robust models for a similar problem using distribution-free uncertainty sets for stochastic

parameters and using a relative regret limit.

Although the prepositioning literature recognizes the adverse effect of the damaged transportation network

on the promptness of deliveries to the disaster victims, it neglects the network restoration efforts supporting relief

distribution activities. Aslan and Çelik (2019) made the first attempt to incorporate network restoration decisions in

the prepositioning problem. They propose a two-stage stochastic programming model to design a three-echelon

network for the prepositioning problem by considering the damage in the road network and the interdependence of

road repair and relief distribution activities in the aftermath of the disaster. The authors show that ignoring network

restoration efforts would affect the timeliness of relief distribution dramatically. Although this model is a closer

representation of the post-disaster problem where road repair and relief distribution take place concurrently, it has

5

two strong assumptions in terms of the restoration requirements. It assumes that there is a sufficient number of

restoration resources, and these resources have no limitation in accessing any part of the network. In addition to these

restrictive assumptions, Aslan and Çelik (2019) also point out the need to improve the solution time of the resulting

mixed-integer programs for larger scenario sets within the SAA scheme.

Sanci and Daskin (2019) avoid the assumptions made in Aslan and Çelik (2019) by a two-stage stochastic

programming model which determines the location and number of pieces of restoration equipment along with the

location and size of emergency response facilities in the first stage. The second-stage problem allows for the flow of

restoration equipment and the flow of relief items only on the operational (either undamaged or restored) roads of

the underlying network. Therefore, this integrated model helps decision-makers to plan for the restoration

requirements before the disaster while ensuring that the restoration resources repair damaged roads after the disaster

only if they can reach these roads from their initial position. Sanci and Daskin (2019) propose a heuristic solution

approach coupled with the SAA algorithm to solve this problem. In this paper, we develop an exact solution approach

based on the integer L-shaped algorithm to solve the same problem. Note that our algorithm can be used to solve the

resulting problems generated within the SAA scheme, or the deterministic equivalent MIPs if there is a limited set

of discrete disaster scenarios.

2.2. Exact Solution Methods for the Two-Stage Stochastic Programs with Integer Recourse

Grass and Fischer (2016) claim that a high-quality solution should be obtained from the stochastic programming

models within a reasonable time to support the decision-making process in disaster management. They state that even

the decisions made in the pre-disaster stage have become time-sensitive with the need for agile humanitarian supply

chains which can quickly respond to short-term forecasts. Their literature survey shows that most of the studies in

this field use a general-purpose solver like CPLEX which cannot take advantage of the special structure of the

stochastic programs and run into long computational times and memory issues. They also observe that for large-scale

instances, these studies often propose a heuristic algorithm that does not provide any guarantee on the solution

quality. The high level of uncertainty in data with the questionable solution quality can lead to fatally wrong

decisions. In this paper, we develop an exact algorithm to solve the integrated location and network restoration model

introduced by Sanci and Daskin (2019), which has binary decision variables in the second-stage (recourse) problem.

Therefore, we review the exact algorithms for solving two-stage stochastic programs with an integer recourse in this

section.

First, we briefly discuss the two-stage stochastic programming framework to lay the foundation. A standard

formulation of the two-stage stochastic program can be presented as follows:

where 𝝃 denotes the uncertain data with a known probability distribution 𝑃 and 𝔼[.] is the expectation operator taken

with respect to 𝝃. Then, for a particular realization 𝜉 of 𝝃, 𝑄(𝑧, 𝜉) is defined as

 (1) min 𝑓𝑇𝑧 + 𝔼[𝑄(𝑧, 𝝃)]

 s.t. 𝑧 ∈ 𝒵

6

 (2) 𝑄(𝑧, 𝜉) = min 𝑞(𝜉)𝑇𝑦

 s.t. 𝑊(𝜉)𝑦 + 𝑇(𝜉)𝑧 ≥ ℎ(𝜉)

 𝑦 ∈ 𝒴

Problem (1) is the first-stage problem where the first-stage decision vector 𝑧 is determined before the

realization of the uncertain data so that the sum of the first-stage cost and expected second-stage cost is minimized.

Problem (2) constitutes the second-stage problem with the second-stage decision vector 𝑦. 𝒵 and 𝒴 are generally

described by linear constraints. In some cases, integrality restrictions are also included in these sets. The second-

stage matrix 𝑊(𝜉) is called the recourse matrix. The impact of the first-stage decisions on the second-stage problem

is reflected through the technology matrix 𝑇(𝜉).

When 𝝃 follows a discrete distribution with a finite support, it is possible to calculate the expected second-

stage cost as a simple weighted sum. Moreover, Schultz (1995) shows that the continuous distribution of 𝝃 can be

approximated by a discrete distribution under mild conditions even if the stochastic program has an integer recourse.

Therefore, the uncertain data can be represented by a finite number of scenarios each corresponding to a realization

𝜉. Off-the-shelf solvers typically run into memory problems as the set of scenarios gets large. The L-shaped method

(Van Slyke and Wets, 1969) is a common solution approach to overcome this difficulty.

For given first-stage decisions and the realization of the uncertain parameters, the second-stage problem

decomposes into independent subproblems corresponding to each scenario. The L-shaped method exploits this

structure by approximating the convex function of the expected second-stage cost using the duals obtained from the

subproblems when the second-stage problem has only continuous decisions.

Let us reformulate Problem (1) by introducing a new decision variable 𝜃, which underestimates 𝔼[𝑄(𝑧, 𝝃)]:

 (3) min 𝑓𝑇𝑧 + 𝜃 (3.1)

 s.t. 𝑧 ∈ 𝒵 (3.2)

 𝜃 ≥ 𝑜𝑗 − 𝑂𝑗𝑧 𝑗 = 1,2, … , 𝐽 (3.3)

Problem (3) is the so-called master problem and the constraint set (3.3) is the set of optimality cuts. The L-

shaped method starts with an empty set of optimality cuts. At every iteration, a new 𝑧 is obtained by solving the

master problem and one optimality cut is generated using the dual variables obtained by solving the subproblems for

given 𝑧. The L-shaped method terminates when it finds an optimal first-stage decision vector 𝑧∗; i.e. 𝜃 is equal to

𝔼[𝑄(𝑧∗, 𝝃)]. Note that if every feasible 𝑧 results in a feasible second-stage problem, the problem has a (relatively)

complete recourse. For problems which do not have this property, feasibility cuts should be also added to the master

problem in every iteration the first-stage decision vector creates an infeasible second-stage problem. Note that we do

not consider the feasibility cuts in our discussion since our problem has this property.

Now, let us assume that the second-stage decision variables are continuous and let us rewrite Problem (2) as

follows:

 (4) 𝑄(𝑧, 𝜉) = min 𝑞(𝜉)𝑇𝑦 (4.1)

7

 s.t. 𝑊(𝜉)𝑦 ≥ ℎ(𝜉) − 𝑇(𝜉)𝑧 (4.2)

 𝑦 ≥ 0 (4.3)

Let 𝜋(𝜉) be the optimal dual variables associated with the constraint set (4.2). Then, the optimal objective

function value for the subproblem corresponding to realization 𝜉 is [ℎ(𝜉) − 𝑇(𝜉)𝑧]′𝜋(𝜉). Assuming that the set of

scenarios is denoted by Ω and the probability of scenario 𝜉𝜔 is 𝑝𝑟𝜔, the expected second-stage cost for 𝑧 is

∑ 𝑝𝑟𝜔[ℎ(𝜉𝜔) − 𝑇(𝜉𝜔)𝑧]′𝜋(𝜉𝜔)𝜔∈Ω . Then, the matrix 𝑂𝑗 and the vector 𝑜𝑗 in 𝑗𝑡ℎ optimality cut are

∑ 𝑝𝑟𝜔𝜋(𝜉𝜔)′𝑇(𝜉𝜔)𝜔∈Ω and ∑ 𝑝𝑟𝜔𝜋(𝜉𝜔)′ℎ(𝜉𝜔) 𝜔∈Ω , respectively.

Note that the L-shaped algorithm is also applicable for the two-stage stochastic programming models with

integer first-stage variables and continuous second stage variables. The expected second stage value function is still

convex for these models. On the other hand, the existence of integer decisions in the second stage problem leads to

an objective function which is non-convex and discontinuous in general (Ahmed, 2010).

Caroe and Tind (1998) generalize the L-shaped method to accommodate integer variables in the second

stage. Drawing upon IP duality, their method generates nonlinear feasibility and optimality cuts resulting in a non-

convex master problem. Caroe and Tind (1998) show that it is conceptually possible to use the L-shaped method

framework for stochastic integer programs; however, their approach does not address the complexity arising from

non-convexity.

Caroe and Schultz (1999) propose a Lagrangian relaxation based approach which deploys a scenario-wise

decomposition instead of a stage-wise decomposition as in the L-shaped method. This is accomplished by introducing

copies of first-stage variables for each scenario and relaxing the non-anticipativity constraint which restricts them to

be identical across all scenarios. Then, the Lagrangian dual problem becomes separable by scenarios for a given set

of Lagrange multipliers. Note that the subproblems of the Lagrangian dual include decision variables and constraints

from both stages. Therefore, it is harder to solve a subproblem in this approach compared to a subproblem in the L-

shaped method which only corresponds to the second-stage problem for a given first-stage decision and a particular

scenario. Another limitation is that a non-smooth optimization technique such as the subgradient method is required

to solve the Lagrangian dual problem.

It is worth mentioning that Caroe and Tind (1998) and Caroe and Schultz (1999) do not impose any restriction

on whether the integer variables are in the first stage and/or second stage. They also assume a general structure for

the recourse and technology matrices. More efficient solution approaches can be developed for stochastic integer

programs with certain specific structures. Sen (2005) and Kucukyavuz and Sen (2017) review a collection of

algorithms developed to solve stochastic integer programming problems, which mainly differ based on (i) the

integrality restrictions in the first stage variables and/or recourse variables, and (ii) the structure of the recourse and

technology matrices.

Laporte and Louveaux (1993) develop the integer L-shaped algorithm, which is a general branch-and-cut

procedure, for two-stage stochastic programs with binary first-stage variables and mixed-integer second stage

variables. The integer L-shaped method uses a new optimality cut which removes a non-optimal solution from further

8

consideration. In this study, the classical L-shaped method is modified in a way that the ‘continuous L-shaped

optimality cuts’ generated from the linear relaxation of the second stage problems are still valid. These valid cuts are

used to improve lower bounds in the branch-and-cut procedure.

The algorithm proposed by Laporte and Louveaux (1993) requires the exact computation of the expected

second stage value function every time a new first-stage solution is obtained in the branch-and-bound tree. Even

though the second-stage problem decomposes to smaller subproblems for each scenario for fixed first-stage

decisions, this still means that a MIP should be solved for each scenario in the presence of mixed-integer second-

stage variables. Angulo et al. (2016) improve the integer L-shaped algorithm by using the LP relaxation of

subproblems whenever the continuous L-shaped optimality cut is enough to cut off a solution which is not optimal.

The main idea behind the integer L-shaped method is to approximate the expected second-stage value

function sequentially by generating linear cuts. In the same spirit, the methods proposed by Sherali and Fraticelli

(2002) and Sen and Higle (2005) sequentially construct the partial representation of the convex hull, which heavily

relies on the theory of disjunctive programming. Sherali and Fraticelli (2002) develop a solution method for two-

stage stochastic programs with binary first-stage decisions and 0/1 mixed-integer subproblems. The authors modify

the classical L-shaped method by using a cutting plane scheme to describe the convex hull of the subproblems before

generating the continuous L-shaped optimality cut. Note that Sherali and Fraticelli (2002) do not assume fixed

recourse or technology matrices, as is usually assumed in the literature. Sen and Higle (2005) also use a cutting plane

method for the convexification of the second-stage problem which takes advantage of the fixed recourse property to

eliminate the need to store cuts separately for each scenario. Sen and Sherali (2006) extend this line of research by

coupling the use of disjunctive cuts with a branch-and-cut procedure. Gade, Kucukyavuz, and Sen (2014) and Zhang

and Kucukyavuz (2014) use Gomory cuts instead of disjunctive cuts within a decomposition algorithm to solve two-

stage stochastic programs with pure integer recourse.

The studies presented so far assume that the first-stage decision variables are integer variables. This

assumption is mainly important to guarantee that the proposed algorithms converge to the optimal solution in a finite

number of steps. Ahmed, Tawarmalani, and Sahinidis (2004) propose a branch-and-bound algorithm for stochastic

integer programs with mixed-integer first-stage variables and pure integer second-stage variables. When there exist

continuous variables in the first stage, infinitely many branching operations may be needed before the lower and

upper bounds converge; therefore, finiteness of the algorithm becomes a major concern. The algorithm proposed by

Ahmed et al. (2004) overcomes this difficulty by using a variable transformation which is applicable when the

technology matrix is deterministic. Sherali and Zhu (2006) also propose a branch-and-bound strategy to solve

stochastic programs with integer recourse when continuous first-stage variables are present. In the proposed

algorithm, the lower bounds are computed by deploying a similar decomposition approach as in Sherali and Fraticelli

(2002).

Although the interest in developing algorithms to solve the two-stage stochastic programs with integer

recourse is increasing, the number of application papers is still very limited. The integer L-shaped method by Laporte

and Louveaux (1993) is applied to solve a stochastic location problem (Laporte, Louveaux, and van Hamme, 1994),

9

a stochastic traveling salesperson problem (Laporte, Louveaux, and Mercure, 1994), and stochastic vehicle routing

problems (Gendreau, Laporte, and Seguin, 1995; Laporte, Louveaux, and van Hamme, 2002). More recent studies

Miller-Hooks, Zhang, and Faturechi (2012), Noyan, Balcik, and Atakan (2016), and Noyan and Kahvecioglu (2018)

employ the integer L-shaped method to solve problems from disaster management. The two-stage stochastic

programming model proposed by Miller-Hooks, Zhang, and Faturechi (2012) determines the optimal set of pre-

disaster preparedness activities on the transportation network to maximize the expected post-disaster flow between

origin and destination pairs. Miller-Hooks et al. (2012) solve this model using a dynamic list of optimality cuts within

the integer L-shaped method. Noyan, Balcik, and Atakan (2016) consider the problem of determining the

locations/capacities of the distribution points in the relief networks at the post-disaster stage to achieve high levels

of accessibility and equity in the aftermath of a disaster. They employ the lazy constraints when implementing the

multi-cut version of the integer L-shaped algorithm. Noyan and Kahvecioglu (2018) extend this work by considering

a three-echelon relief network design problem. They follow the solution procedure in Noyan et al. (2016) with the

improvements proposed by Angulo et al. (2016).

3. TWO-STEP SEQUENTIAL APPROACH

Sanci and Daskin (2019) present a two-stage stochastic programming model for the integrated location and network

restoration problem to locate emergency response facilities and restoration equipment prior to a disaster. The model

determines the number and locations of the facilities and restoration resources in the first stage in the face of demand

uncertainty, damage uncertainty, and repair time uncertainty. The decisions related to relief item distribution and

network restoration are made jointly in the second stage for the corresponding first-stage decisions and realizations

of uncertain parameters. The model assumes that the relief items prepositioned in the emergency response facilities

before the disaster are transported to disaster victims at demand nodes using the operational arcs of the network after

the disaster. Meanwhile, restoration resources repair damaged arcs so that demand nodes may be accessed

subsequently if there does not exist any operational path from an open facility right after the disaster.

To solve this integrated model, Sanci and Daskin (2019) propose a heuristic procedure to obtain near-optimal

solutions in a reasonable time by reducing the first-stage solution space using concentration sets comprised of

promising nodes. This idea is inspired by Heuristic Concentration (Rosing and ReVelle, 1997) where concentration

sets are formed utilizing information from multiple runs of an exchange heuristic. Sanci and Daskin (2019) construct

the concentration sets by solving the integrated model for small subsets of scenarios multiple times. In this study, we

use another approach to reduce the first-stage solution space to handle the problem in two steps where decisions for

emergency response facilities and restoration equipment are made in the first step and second step, respectively. In

the first step, a two-stage stochastic programming model is solved to determine the location and size of the emergency

response facilities. The network restoration problem is disregarded completely in this step, so a demand node which

cannot be reached by any of the open facilities immediately after the disaster will remain inaccessible. Therefore,

there is no need to consider multiple time periods in the second stage unlike the original integrated model where

people in need may be reached in the future time periods following the disaster as the damaged roads are restored.

Once the location/size of the facilities are determined in the first step, another two-stage stochastic programming

10

model is solved to locate restoration equipment in the second step. This second model is almost identical to the

original model; however, the decisions regarding the location and size of the emergency response facilities are taken

as an input this time.

Let us introduce the two-stage stochastic programming model solved in the first step of this sequential

approach. Before we present the formulation, we go over the notation introduced in Sanci and Daskin (2019). Note

that we provide the complete list of notations and the model formulation in Appendix A. We consider a network

(𝑁, 𝐴) where 𝑁 is the set of nodes and 𝐴 is the set of arcs. 𝑁(𝑖) denotes the set of neighbor nodes of node 𝑖, which

includes node 𝑗 ∈ 𝑁 if 𝑎 = (𝑖, 𝑗) or 𝑎̅ = (𝑗, 𝑖) is in set 𝐴. Moreover, 𝑁𝐹 and 𝐿𝐹 are the set of candidate nodes and set

of levels for emergency response facilities, respectively. The operating cost of an emergency response facility of

level 𝑙 ∈ 𝐿𝐹 during the preparedness phase is 𝑓𝑙 which enables the facility to have 𝑞𝑙 units of capacity during this

phase. Moreover, 𝑐𝑎 is the travel cost per unit emergency relief item flowing on arc 𝑎 ∈ 𝐴, and 𝑏 is the penalty cost

per unit unmet demand. Note that the parameters presented so far are deterministic. As before, 𝝃 denotes the uncertain

data and 𝜉 denotes a particular realization of the uncertain data. The uncertain parameters are demand 𝑑𝑖
𝜉
 at node

𝑖 ∈ 𝑁, damage ratio 𝜌𝑖
𝜉
 at node 𝑖 ∈ 𝑁, and repair time 𝑝𝑎

𝜉
 of arc 𝑎 ∈ 𝐴 in realization 𝜉. Note that the damage ratio

refers to the ratio of the lost capacity after the disaster to the initial capacity of an open facility. Also, note that

although it is necessary to incorporate the repair time of arcs to model the uncertainty in the network condition for

the original model, we use repair time information here just to check whether an arc is operational or not in the

aftermath of the disaster. That is, if 𝑝𝑎
𝜉

> 0, arc 𝑎 is not operational; if 𝑝𝑎
𝜉

= 0, arc 𝑎 is operational in realization 𝜉.

Let us also go over the decision variables in this model. 𝑍𝑖𝑙 is the binary decision variable which is 1 if an

emergency response facility of level 𝑙 is open at node 𝑖, and 0 otherwise. 𝑍𝑖𝑙 is the only first-stage decision variable

in this model, and 𝑧 stands for the decision vector for facility locations. 𝑌𝑎𝑘
𝜉

 and 𝑌𝑎̅𝑘
𝜉

 denote the fraction of demand

at node 𝑘 flowing on arc 𝑎 in realization 𝜉. Note that 𝑎̅ denotes the reverse direction of arc 𝑎 ∈ 𝐴. 𝑊𝑖𝑘
𝜉
 is the fraction

of demand at node 𝑘 served by the facility at node 𝑖, and 𝑈𝑘
𝜉
 is the unmet demand at node 𝑘 in realization 𝜉. Finally,

𝑋𝑎
𝜉
 is the binary decision variable denoting whether arc 𝑎 is operational or not in realization 𝜉.

With this notation, the two-stage stochastic programming model in the first step is as follows:

 (5) 𝑚𝑖𝑛 ∑ ∑ 𝑓𝑙𝑍𝑖𝑙𝑙∈𝐿𝐹𝑖∈𝑁𝐹 + 𝔼[𝑄1(𝑧, 𝝃)] (5.1)

 s.t.

 ∑ 𝑍𝑖𝑙𝑙∈𝐿𝐹 ≤ 1 ∀𝑖 ∈ 𝑁𝐹 (5.2)

 𝑍𝑖𝑙 ∈ {0,1} ∀𝑖 ∈ 𝑁𝐹 , 𝑙 ∈ 𝐿𝐹 (5.3)

where

(6) 𝑄1(𝑧, 𝜉) = 𝑚𝑖𝑛 ∑ ∑ 𝑐𝑎𝑑𝑘
𝜉

(𝑌𝑎𝑘
𝜉

+ 𝑌𝑎̅𝑘
𝜉

)𝑘∈𝑁𝑎∈𝐴 + 𝑏 ∑ 𝑑𝑘
𝜉

𝑈𝑘
𝜉

𝑘∈𝑁 (6.1)

11

s.t. ∑ 𝑌𝑎̅𝑖
𝜉

𝑗∈𝑁(𝑖) + 𝑊𝑖𝑖
𝜉

+ 𝑈𝑖
𝜉

= ∑ 𝑌𝑎𝑖
𝜉

𝑗∈𝑁(𝑖) + 1, ∀𝑖 ∈ 𝑁 (6.2)

 ∑ 𝑌𝑎̅𝑘
𝜉

𝑗∈𝑁(𝑖) + 𝑊𝑖𝑘
𝜉

= ∑ 𝑌𝑎𝑘
𝜉

𝑗∈𝑁(𝑖) , ∀𝑖 ∈ 𝑁, ∀𝑘 ∈ 𝑁\{𝑖} (6.3)

 ∑ 𝑑𝑘
𝜉

𝑊𝑖𝑘
𝜉

𝑘∈𝑁 ≤ (1 − 𝜌𝑖
𝜉

) ∑ 𝑞𝑙𝑍𝑖𝑙𝑙∈𝐿𝐹 , ∀𝑖 ∈ 𝑁𝐹 (6.4)

 𝑊𝑖𝑘
𝜉

≤ ∑ 𝑍𝑖𝑙𝑙∈𝐿𝐹 , ∀𝑖 ∈ 𝑁𝐹 , ∀𝑘 ∈ 𝑁 (6.5)

 𝑊𝑖𝑘
𝜉

= 0, ∀𝑖 ∈ 𝑁\𝑁𝐹 , ∀𝑘 ∈ 𝑁 (6.6)

 𝑌𝑎𝑘
𝜉

≤ 𝑋𝑎
𝜉
, ∀𝑎 ∈ 𝐴, ∀𝑘 ∈ 𝑁 (6.7)

 𝑌𝑎̅𝑘
𝜉

≤ 𝑋𝑎
𝜉
, ∀𝑎 ∈ 𝐴, ∀𝑘 ∈ 𝑁 (6.8)

 𝑝𝑎
𝜉

𝑋𝑎
𝜉

= 0, ∀𝑎 ∈ 𝐴 (6.9)

 0 ≤ 𝑌𝑎𝑘
𝜉

, 𝑌𝑎̅𝑘
𝜉

≤ 1, ∀𝑎 ∈ 𝐴, ∀𝑘 ∈ 𝑁 (6.10)

 0 ≤ 𝑊𝑖𝑘
𝜉

≤ 1, ∀𝑖, 𝑘 ∈ 𝑁 (6.11)

 0 ≤ 𝑈𝑘
𝜉

≤ 1, ∀𝑘 ∈ 𝑁 (6.12)

 𝑋𝑎
𝜉

∈ {0,1}, ∀𝑎 ∈ 𝐴 (6.13)

If the two-stage stochastic programming model solved in this first step is compared with the original model,

it is easy to recognize that the model presented above is a reduced version in which the decision variables and

constraints related to network restoration are removed. In this step, emergency response facilities are located based

on the network availability right after the disaster; therefore, the multi-period second stage is also reduced to a single

period.

 The model decides on the location and size of emergency response facilities to minimize the objective

function (5.1) which is comprised of the facility costs and expected second-stage cost. Constraints (5.2) ensure that

at most one facility of any available size can be established at candidate nodes. Constraints (5.3) defines the first-

stage decision variables as binary decisions.

 The second-stage cost function (6.1) consists of the relief distribution cost and unmet demand cost.

Constraints (6.2) and (6.3) are the relief item flow balance constraints when 𝑖 = 𝑘 and 𝑖 ≠ 𝑘, respectively. Two sets

of flow balance constraints are needed as constraints (6.2) control the flow balance of relief items at node 𝑖 ∈ 𝑁 when

the flow is designated for this node. On the other hand, constraints (6.3) ensure that the flow balance is preserved at

node 𝑖 ∈ 𝑁 for the relief item flow designated for another node 𝑘 ∈ 𝑁\{𝑖} which is transshipped through node 𝑖.

Constraints (6.4) guarantee that the capacity limitation is not violated. Constraints (6.5) and (6.6) together make sure

that only open facilities are used to serve the demand for relief items. Constraints (6.7) and (6.8) forbid using the

damaged arcs for relief transportation. Constraints (6.9) define the operational arcs and damaged arcs. Finally,

constraints (6.10) - (6.13) define the domain of the second-stage decision variables.

 Let us now present the additional notation used in the two-stage stochastic programming model solved in the

second step of the sequential approach. 𝑁𝐸 and 𝐿𝐸 are the set of candidate nodes and set of levels for restoration

equipment, respectively. 𝑇 denotes the set of time periods representing multiple time periods in the second stage

problem. In addition to the deterministic parameters presented above, 𝑒𝑙 is the cost of acquiring restoration equipment

12

at level 𝑙 ∈ 𝐿𝐸 with 𝑤𝑙 pieces of restoration equipment at this level. 𝑐𝑎
′ is the travel cost per piece of restoration

equipment flowing on arc 𝑎 ∈ 𝐴.

 In this step, information on the location/size of facilities becomes a parameter of the model. Let us define 𝑧𝑖̅𝑙

to represent whether there is an open facility at node 𝑖 ∈ 𝑁𝐹of level 𝑙 ∈ 𝐿𝐹. This time 𝑉𝑖𝑙 is the only first-stage

decision variable, which is 1 if node 𝑖 is chosen to locate level 𝑙 of restoration resources, and 0 otherwise.

Additionally, 𝑣 denotes the decision vector for the restoration equipment. In this model, we keep the second-stage

decision variables defined above with a slight modification to reflect the time perspective in the response phase.

Therefore, we add time index 𝑡 to 𝑌𝑎𝑘𝑡
𝜉

, 𝑌𝑎̅𝑘𝑡
𝜉

, 𝑊𝑖𝑘𝑡
𝜉

, and 𝑈𝑘𝑡
𝜉

. Moreover, the decision variables 𝑌𝑅𝑎𝑡
𝜉

 and 𝑌𝑅𝑎̅𝑡
𝜉

 represent

the restoration equipment flow on arc 𝑎 at time 𝑡, 𝑊𝑅𝑖𝑡
𝜉

 represents the number of pieces of restoration equipment

available at node 𝑖 at time 𝑡, and finally 𝐻𝑎𝑡
𝜉

 and 𝐻𝑎̅𝑡
𝜉

 represent the number of pieces of restoration equipment repairing

arc 𝑎 at time 𝑡 in realization 𝜉.

The two-stage stochastic programming model in the second step is as follows:

 (7) 𝑚𝑖𝑛 ∑ ∑ 𝑓𝑙𝑧𝑖̅𝑙𝑙∈𝐿𝐹𝑖∈𝑁𝐹 + ∑ ∑ 𝑒𝑙𝑉𝑖𝑙𝑙∈𝐿𝐸𝑖∈𝑁𝐸 + 𝔼[𝑄2(𝑧̅, 𝑣, 𝝃)] (7.1)

 s.t.

 ∑ 𝑉𝑖𝑙𝑙∈𝐿𝐸 ≤ 1 ∀𝑖 ∈ 𝑁𝐸 (7.2)

 𝑉𝑖𝑙 ∈ {0,1} ∀𝑖 ∈ 𝑁𝐸 , 𝑙 ∈ 𝐿𝐸 (7.3)

 where

(8) 𝑄2(𝑧̅, 𝑣, 𝜉) = 𝑚𝑖𝑛 ∑ (∑ ∑ 𝑐𝑎𝑑𝑘
𝜉

(𝑌𝑎𝑘𝑡
𝜉

+ 𝑌𝑎̅𝑘𝑡
𝜉

)𝑘∈𝑁𝑎∈𝐴 + ∑ 𝑐𝑎
′

𝑎∈𝐴 (𝑌𝑅𝑎𝑡
𝜉

+𝑡∈𝑇

𝑌𝑅𝑎̅𝑡
𝜉

) + 𝑏 ∑ 𝑑𝑘
𝜉

𝑈𝑘𝑡
𝜉

𝑘∈𝑁)

(8.1)

s.t.

∑ 𝑌𝑎̅𝑖𝑡
𝜉

𝑗∈𝑁(𝑖) + 𝑊𝑖𝑖𝑡
𝜉

+ 𝑈𝑖𝑡
𝜉

= ∑ 𝑌𝑎𝑖𝑡
𝜉

𝑗∈𝑁(𝑖) + 1, ∀𝑖 ∈ 𝑁, 𝑡 = 1 (8.2)

∑ 𝑌𝑎̅𝑖𝑡
𝜉

𝑗∈𝑁(𝑖) + 𝑈𝑖𝑡
𝜉

= ∑ 𝑌𝑎𝑖𝑡
𝜉

𝑗∈𝑁(𝑖) + 𝑈𝑖,𝑡−1
𝜉

, ∀𝑖 ∈ 𝑁, ∀ 𝑡 ∈ 𝑇\{1} (8.3)

∑ 𝑌𝑎̅𝑘𝑡
𝜉

𝑗∈𝑁(𝑖) + 𝑊𝑖𝑘𝑡
𝜉

= ∑ 𝑌𝑎𝑘𝑡
𝜉

𝑗∈𝑁(𝑖) , ∀𝑖 ∈ 𝑁, ∀𝑘 ∈ 𝑁\{𝑖}, ∀ 𝑡 ∈ 𝑇 (8.4)

∑ ∑ 𝑑𝑘
𝜉

𝑊𝑖𝑘𝑡
𝜉

𝑡∈𝑇𝑘∈𝑁 ≤ (1 − 𝜌𝑖
𝜉

) ∑ 𝑞𝑙𝑧𝑖̅𝑙𝑙∈𝐿𝐹 , ∀𝑖 ∈ 𝑁𝐹 (8.5)

𝑊𝑖𝑘𝑡
𝜉

≤ ∑ 𝑧𝑖̅𝑙𝑙∈𝐿𝐹 , ∀𝑖 ∈ 𝑁𝐹 , ∀𝑘 ∈ 𝑁, ∀ 𝑡 ∈ 𝑇 (8.6)

𝑊𝑖𝑘𝑡
𝜉

= 0, ∀𝑖 ∈ 𝑁\𝑁𝐹 , ∀𝑘 ∈ 𝑁, ∀ 𝑡 ∈ 𝑇 (8.7)

𝑌𝑎𝑘𝑡
𝜉

≤ 𝑋𝑎𝑡
𝜉

, ∀𝑎 ∈ 𝐴, ∀𝑘 ∈ 𝑁, ∀ 𝑡 ∈ 𝑇 (8.8)

𝑌𝑎̅𝑘𝑡
𝜉

≤ 𝑋𝑎𝑡
𝜉

, ∀𝑎 ∈ 𝐴, ∀𝑘 ∈ 𝑁, ∀ 𝑡 ∈ 𝑇 (8.9)

∑ 𝑌𝑅𝑎̅𝑡
𝜉

𝑗∈𝑁(𝑖) + ∑ 𝑤𝑙𝑉𝑖𝑙𝑙∈𝐿𝐸 = ∑ 𝑌𝑅𝑎𝑡
𝜉

𝑗∈𝑁(𝑖) + 𝑊𝑅𝑖𝑡
𝜉

, ∀𝑖 ∈ 𝑁𝐸 , ∀ 𝑡 ∈ 𝑇 (8.10)

∑ 𝑌𝑅𝑎̅𝑡
𝜉

𝑗∈𝑁(𝑖) = ∑ 𝑌𝑅𝑎𝑡
𝜉

𝑗∈𝑁(𝑖) + 𝑊𝑅𝑖𝑡
𝜉

, ∀𝑖 ∈ 𝑁\𝑁𝐸 , ∀ 𝑡 ∈ 𝑇 (8.11)

13

𝑌𝑅𝑎𝑡
𝜉

≤ 𝑀𝑋𝑎𝑡
𝜉

, ∀𝑎 ∈ 𝐴, ∀𝑡 ∈ 𝑇 (8.12)

𝑌𝑅𝑎̅𝑡
𝜉

≤ 𝑀𝑋𝑎𝑡
𝜉

, ∀𝑎 ∈ 𝐴, ∀𝑡 ∈ 𝑇 (8.13)

∑ 𝐻𝑎𝑡
𝜉

𝑗∈𝑁(𝑖) ≤ 𝑊𝑅𝑖𝑡
𝜉

, ∀𝑖 ∈ 𝑁, ∀ 𝑡 ∈ 𝑇 (8.14)

𝑝𝑎
𝜉

𝑋𝑎𝑡
𝜉

= 0, ∀𝑎 ∈ 𝐴, 𝑡 = 1 (8.15)

𝑝𝑎
𝜉

𝑋𝑎𝑡
𝜉

≤ ∑ (𝑡−1
𝑡′=1 𝐻

𝑎𝑡′
𝜉

+ 𝐻
𝑎̅𝑡′
𝜉

), ∀𝑎 ∈ 𝐴, ∀ 𝑡 ∈ 𝑇\{1} (8.16)

∑ (𝐻
𝑎𝑡′
𝜉

+ 𝐻
𝑎̅𝑡′
𝜉

)𝑡
𝑡′=1 ≤ 𝑝𝑎

𝜉
, ∀𝑎 ∈ 𝐴, ∀ 𝑡 ∈ 𝑇 (8.17)

𝐻𝑎𝑡
𝜉

+ 𝐻𝑎̅𝑡
𝜉

≤ 𝑝𝑎
𝜉 ∑ 𝑈𝑙𝑡

𝜉
𝑙∈𝑁 , ∀𝑎 ∈ 𝐴, ∀ 𝑡 ∈ 𝑇 (8.18)

0 ≤ 𝑌𝑎𝑘𝑡
𝜉

, 𝑌𝑎̅𝑘𝑡
𝜉

≤ 1, ∀𝑎 ∈ 𝐴, ∀𝑘 ∈ 𝑁, ∀ 𝑡 ∈ 𝑇 (8.19)

0 ≤ 𝑊𝑖𝑘𝑡
𝜉

≤ 1, ∀𝑖, 𝑘 ∈ 𝑁, ∀ 𝑡 ∈ 𝑇 (8.20)

0 ≤ 𝑈𝑘𝑡
𝜉

≤ 1, ∀𝑘 ∈ 𝑁, ∀𝑡 ∈ 𝑇 (8.21)

𝑌𝑅𝑎𝑡
𝜉

, 𝑌𝑅𝑎̅𝑡
𝜉

∈ ℤ+, ∀𝑎 ∈ 𝐴, ∀ 𝑡 ∈ 𝑇 (8.22)

𝑊𝑅𝑖𝑡
𝜉

∈ ℤ+, ∀𝑖 ∈ 𝑁, ∀ 𝑡 ∈ 𝑇 (8.23)

𝑋𝑎𝑡
𝜉

∈ {0,1}, ∀𝑎 ∈ 𝐴, ∀ 𝑡 ∈ 𝑇 (8.24)

𝐻𝑎𝑡
𝜉

, 𝐻𝑎̅𝑡
𝜉

∈ ℤ+, ∀𝑎 ∈ 𝐴, ∀ 𝑡 ∈ 𝑇 (8.25)

 In this model, the objective function (7.1) is to minimize the sum of the facility and restoration equipment

costs and expected second-stage cost. Constraints (7.2) guarantee that at most one level is chosen from the set of

levels for restoration equipment at any candidate node and constraints (7.3) define the first-stage decision variables

as binary decisions.

 As mentioned above, the model in the first step is a reduced version of the original model. Moreover, the

model in the second step is just a small modification of the original one which takes the first-stage facility location

decisions as an input from the first step. These two models show similarity to a great extent for the relief item

distribution constraints. Constraints (6.2) – (6.8) in the first model correspond to constraints (8.2) – (8.9) in the second

model. The main difference is that these common constraints are stated for each time period in the second model. In

addition, the second model involves network restoration decisions and constraints. Constraints (8.10) and (8.11) are

the flow balance constraints for the restoration equipment. These constraints help to identify the number of pieces of

restoration equipment available at every node. Constraints (8.12) and (8.13) ensure that only operational arcs are

used to carry the equipment flow. Here, 𝑀 denotes an adequately large number. Constraints (8.14) allow only

available pieces of restoration equipment to be allocated to repair damaged arcs. Constraints (8.15) and (8.16) define

the operational arcs by ensuring that an arc is not operational at a certain time period if it has not received the required

amount of repair time by that time period. Constraints (8.17) state that no additional repair work is necessary after

the number of pieces of restoration equipment allocated to an arc equals the repair time of that arc. Constraints (8.18)

ensure that the efforts for network restoration stop as soon as the system-wide demand is satisfied. Note that the

14

optimal objective function value would not change if constraints (8.17) and (8.18) are removed; however, they help

to reduce the number of alternative optimal solutions and consequently the computational efforts.

The two-step sequential approach locates emergency response facilities with a focus on satisfying more

demand in the first time period. However, we can fail to find solutions satisfying more demand in the long run if we

restrict our attention only to the first time period. We can illustrate how the integrated model outperforms the two-

step approach on a small example.

Let us consider the network given in Figure 1. The fixed cost of opening a facility is $100,000 at any node

and the cost of acquiring a unit of restoration equipment is $20,000. Note that there is only one size of facility and

one level of restoration equipment in this example. The travel cost per unit flow (both relief item and restoration

equipment) is $1 for each arc. The penalty cost per unit unmet demand per time period is given as $100. Let us

assume we have a deterministic problem and demand at each node is given in Figure 1. The remaining capacity of

any candidate facility is enough to meet all demand. All of the arcs in the network are damaged and the repair time

of each arc is one time period.

Figure 1 Network of the example problem

The optimal decision obtained from the integrated model in the first stage is to locate one emergency response

facility at node 5, one piece of restoration equipment at node 3 and one piece of restoration equipment at node 7.

Note that all of the nodes are disconnected from each other right after the disaster. Therefore, only demand at node

5 can be met in the first time period. The repaired arcs are shown in Figure 2 for the first four time periods. Figure 2

shows that node 7 can be reached from node 5 in the second time period since arc (5,7) becomes operational in this

time period. Similarly, node 1, node 3, and node 4 are accessible from node 5 in the third time period. Finally, in the

fourth time period, node 2 and node 6 can be accessed from node 5. As soon as a node can be reached from node 5

where the emergency response facility is located, emergency relief items are transported to meet the demand fully.

15

Figure 2 Condition of the network throughout time for the integrated model

Now, let us discuss what would happen differently if we use the two-step approach instead of the integrated

model. The two-step approach chooses node 1 to locate an emergency response facility in the first step since it covers

the maximum demand that can be satisfied in the first time period. For the given location of the emergency response

facility, one piece of restoration equipment is located at node 1 and another piece of restoration equipment is located

at node 4 in the second step. As a result, demand at node 1 is met in the first time period, demands at node 3 and

node 4 are met in the second time period, demands at node 5 and node 6 are met in the third time period, and demands

at node 2 and node 7 are met in the fourth time period. Similar to the integrated model, all demand is satisfied in four

time periods. However, by the end of the second time period, the optimal solution obtained by the integrated model

satisfies almost double the demand compared to the solution from the two-step approach. To put it another way, the

solution from the integrated model satisfies 24% of the total demand one time period earlier. Figure 3 shows the

percentage of satisfied demand throughout the time periods for both solutions.

Figure 3 Percentage of satisfied demand for both solutions

16

 Although the two-step approach may result in a suboptimal solution, it can still provide a good upper bound

in a reasonable time. Note that any feasible solution for emergency response facilities obtained in the first step is also

feasible for the integrated model. Moreover, the model solved in the second step is the same as the original model

except that facility decisions are fixed. Therefore, the objective function of the model solved in the second step is a

valid upper bound. Solving these two models in consecutive steps is expected to be much faster than solving the

original model since the first model considers only a single time period in the second-stage problem by ignoring the

network restoration activities. Also, the second model takes the facility locations as an input which reduces the

computational burden to a great extent. In the next section, we propose an integer L-shaped algorithm which is an

exact solution approach to solve the original model. We start our algorithm with the upper bound found through the

two-step sequential procedure.

4. INTEGER L-SHAPED METHOD

As discussed in Section 2, the L-shaped method is an efficient approach to solve two-stage stochastic programs if the

second-stage problem is a linear program. However, the integrated model has integer second-stage decision variables

which makes the classical L-shaped method not applicable. Sanci and Daskin (2019) show that most of the integrality

restrictions in the second-stage problem can be relaxed except for the binary decision variables which determine

whether an arc is operational at a certain time period or not. This binary decision variable is necessary to ensure that

relief items and restoration equipment can only flow on operational arcs.

In this section, we present a decomposition-based branch-and-cut algorithm to solve the integrated model.

This algorithm is adapted from the integer L-shaped method which is developed by Laporte and Louveaux (1993)

and later improved by Angulo et al. (2016). To describe our solution approach, let us represent the integrated model

by a general formulation as follows:

 (9) min 𝑓𝑇𝑧 + 𝑒𝑇𝑣 + 𝐸[𝑄(𝑧, 𝑣, 𝝃)] (9.1)

 s.t. 𝑧 ∈ 𝒵 ∩ {0,1}𝑛𝑧 (9.2)

 𝑣 ∈ 𝒱 ∩ {0,1}𝑛𝑣 (9.3)

 (10) 𝑄(𝑧, 𝑣, 𝜉) = min 𝑞(𝜉)𝑇𝑦 (10.1)

 s.t. 𝑊𝑦(𝜉)𝑦 + 𝑊𝑥(𝜉)𝑥 + 𝑇𝑧(𝜉)𝑧 + 𝑇𝑣(𝜉)𝑣 ≥ ℎ(𝜉) (10.2)

 𝑦 ∈ ℝ+

𝑛𝑦
 (10.3)

 𝑥 ∈ {0,1}𝑛𝑥 (10.4)

 In this model 𝑧 and 𝑣 vectors represent the capacity/location decisions for emergency response facilities and

restoration equipment, respectively. These decisions belong to the sets 𝒵 and 𝒱, which assure that at most one

capacity level is chosen at any candidate node. The second-stage decisions are represented by 𝑥 and 𝑦 vectors

corresponding to binary and continuous variables, respectively.

 Now, let us reformulate the first-stage problem as follows:

 (11) min 𝑓𝑇𝑧 + 𝑒𝑇𝑣 + 𝜃 (11.1)

17

 s.t. 𝑧 ∈ 𝒵 ∩ {0,1}𝑛𝑧 (11.2)

 𝑣 ∈ 𝒱 ∩ {0,1}𝑛𝑣 (11.3)

 𝒬(𝑧, 𝑣) ≤ 𝜃 (11.4)

where 𝐸[𝑄(𝑧, 𝑣, 𝝃)] is shown by 𝒬(𝑧, 𝑣) for simplicity.

In the L-shaped method, the idea is to relax 𝒬(𝑧, 𝑣) ≤ 𝜃, successively add optimality cuts to better

approximate 𝒬(𝑧, 𝑣) until an optimal solution satisfying 𝜃∗ = 𝒬(𝑧∗, 𝑣∗) is found. When the second-stage problem is

a linear program, the optimality cuts are simply generated using optimal dual solutions as discussed in Section 2.

However, when the second-stage problem is an integer program, the optimality cuts cannot be obtained using LP

duality anymore. Laporte and Louveaux (1993) define a new integer optimality cut for stochastic integer programs

with binary first-stage decision variables as follows:

𝜃 ≥ (𝒬(𝑠) − 𝐿)(∑ 𝑠𝑖𝑖∈К(𝑠) − ∑ 𝑠𝑖𝑖∉К(𝑠) − |К(𝑠)|) + 𝒬(𝑠) (12)

where 𝑠 is a binary first-stage solution, set К(𝑠) is defined as К(𝑠) ≔ {𝑖: 𝑠𝑖 = 1} and 𝐿 is a lower bound on 𝒬(𝑠).

Note that we can assume 𝐿 is zero for our problem since there is no second-stage cost if there is a facility with an

adequate size at every node. This optimality cut ensures 𝜃 ≥ 𝒬(𝑠) for solution 𝑠 since ∑ 𝑠𝑖𝑖∈К(𝑠) − ∑ 𝑠𝑖𝑖∉К(𝑠) −

|К(𝑠)| is equal to zero at that point. Note that this integer optimality cut is not tight for any other solution.

The solution algorithm by Laporte and Louveaux (1993) utilizes the integer optimality cuts as well as a

branch-and-cut scheme in the master problem. That is, the algorithm proceeds by fixing the value of first-stage

decision variables on a branch-and-bound tree and the master problem is solved by considering these fixed values in

the corresponding node of the tree. In this procedure, when a solution (𝑧, 𝑣, 𝜃) is found satisfying (11.2) and (11.3),

the algorithm checks whether (11.4) is also satisfied; i.e. 𝒬(𝑧, 𝑣) ≤ 𝜃. If this condition is not satisfied, then the

optimality cut of the form (12) is added to the master problem of all pending nodes of the tree. Their approach requires

the exact evaluation of 𝒬(𝑧, 𝑣) every time a feasible first-stage solution (𝑧, 𝑣) is obtained; however, 𝒬(𝑧, 𝑣) may not

be easy to compute since it requires solving a MIP for each realization of uncertain parameters. Angulo et al. (2016)

modify the procedure so that the same solution can be cut off by checking whether 𝜃 is less than 𝒬𝐿𝑃(𝑧, 𝑣), i.e. the

expected value of the LP relaxation of the second-stage problem for the solution. If this condition holds, this solution

is removed by adding ‘the continuous L-shaped optimality cuts’ obtained from optimal dual solutions without exactly

evaluating 𝒬(𝑧, 𝑣). In case 𝜃 is greater than or equal to 𝒬𝐿𝑃(𝑧, 𝑣), the algorithm continues comparing 𝜃 with 𝒬(𝑧, 𝑣)

as originally proposed by Laporte and Louveaux (1993).

The key point in Angulo at al. (2016) is to use 𝜃 < 𝒬𝐿𝑃(𝑧, 𝑣) as a sufficient condition to reject solution

(𝑧, 𝑣, 𝜃) since 𝒬𝐿𝑃(𝑧, 𝑣) ≤ 𝒬(𝑧, 𝑣). Then, this solution can be simply removed by the continuous L-shaped optimality

cuts. Note that these cuts alone are not sufficient for the convergence of the algorithm; however, unlike the integer

optimality cuts which are only non-trivial at a specific solution, they provide valid lower bounds on 𝒬(𝑧, 𝑣) for

several values of (𝑧, 𝑣).

18

 We employ this improved version of the integer L-shaped method to solve our integrated two-stage stochastic

programming model. We also made several alterations to the implementation of the method to attain improved

solution times. We discuss these changes after we formally describe the algorithm as suggested by Angulo et al.

(2016).

The master problem solved at the current node of the branch-and-bound tree takes the form as follows:

 (13) min 𝑓𝑇𝑧 + 𝑒𝑇𝑣 + 𝜃 (13.1)

s.t. 𝑧 ∈ 𝒵 (13.2)

 𝑣 ∈ 𝒱 (13.3)

 𝜃 ≥ 𝑜𝑗 − 𝑂𝑗
𝐹𝑧 − 𝑂𝑗

𝐸𝑣 𝑗 = 1, 2, … , 𝐽 (13.4)

𝜃 ≥ 𝒬(𝑧𝑘, 𝑣𝑘) (∑ 𝑧𝑖

𝑖∈К(𝑧𝑘)

− ∑ 𝑧𝑖

𝑖∉К(𝑧𝑘)

+ ∑ 𝑣𝑖

𝑖∈К(𝑣𝑘)

− ∑ 𝑣𝑖

𝑖∉К(𝑣𝑘)

− |К(𝑧𝑘)| − |К(𝑣𝑘)| + 1)

 𝑘 = 1, 2, … , 𝐾 (13.5)

In this formulation, 𝐽 and 𝐾 denote the number of continuous L-shaped optimality cuts and integer optimality cuts

generated until the current node, respectively. Note that we discuss the derivation of the continuous optimality cuts

in Section 2. Also, note that we do not include feasibility cuts here since the problem has the relative complete

recourse property.

Step 0: Define 𝑈𝐵 as the upper bound on the optimal objective function value and set 𝑈𝐵 to the objective function

value of the solution found by the two-step sequential approach. Initialize the branch-and-bound tree by defining the

only pendant node as the root node (The master problem at the root node is Problem (13) without constraints (13.4)

and (13.5)).

Step 1: Select a pendant node. If none exists, stop.

Step 2: Solve the master problem corresponding to the current node. If the master problem is infeasible, fathom this

node and go to Step 1. Else, let (𝑧, 𝑣, 𝜃) denote the optimal solution of the current master problem and go to Step 3.

Step 3: If 𝑓𝑇𝑧 + 𝑒𝑇𝑣 + 𝜃 > 𝑈𝐵, fathom this node and go to Step 1. Else, check whether 𝑧 ∈ {0,1}𝑛𝑧 and 𝑣 ∈ {0,1}𝑛𝑣.

If all decision variables are binary, go to Step 4. Otherwise, choose a decision variable violating the binary restriction,

create two new branches and append the new nodes to the list of pendant nodes, go to Step 1.

Step 4: Compute 𝒬𝐿𝑃(𝑧, 𝑣). If 𝒬𝐿𝑃(𝑧, 𝑣) ≤ 𝜃, go to Step 5. Else, add the corresponding continuous L-shaped

optimality cut (13.4) to the master problem and go to Step 2.

Step 5: Compute 𝒬(𝑧, 𝑣). If 𝑓𝑇𝑧 + 𝑒𝑇𝑣 + 𝒬(𝑧, 𝑣) < 𝑈𝐵, update 𝑈𝐵 = 𝑓𝑇𝑧 + 𝑒𝑇𝑣 + 𝒬(𝑧, 𝑣). If 𝒬(𝑧, 𝑣) ≤ 𝜃, fathom

this node and go to Step 1. Else, generate the corresponding integer optimality cut (13.5) and go to Step 2.

 We change two aspects of the algorithm given above.

19

Modification 1: Instead of branching on 𝑧 and 𝑣, we consider only 𝑧 for branching. That is, the branch-and-

bound tree nodes only impose restrictions on 𝑧. Whenever the first-stage variables for the emergency response

facilities are all fixed, the model in the second step of the two-step sequential approach is solved to determine the

first-stage variables for the restoration equipment. This solution provides the best upper bound that could be obtained

by branching on 𝑣. Therefore, we do not need to continue branching from this point on. This allows us to reduce the

number of branch-and-bound tree nodes; however, this modification requires us to solve the second-step model every

time 𝑧 is fixed. Nevertheless, this model is much easier to solve compared to the integrated model as discussed in

Section 3.

Modification 2: We keep the binary restrictions on 𝑧 and 𝑣 in the master problem. In the original algorithm,

if the first-stage decision variables obtained from the master problem are binary, i.e. 𝑧 ∈ {0,1}𝑛𝑧 and 𝑣 ∈ {0,1}𝑛𝑣,

the next step is to compute 𝒬𝐿𝑃(𝑧, 𝑣) and check whether 𝒬𝐿𝑃(𝑧, 𝑣) ≤ 𝜃. In our modified version of the algorithm,

the master problem never returns a fractional first-stage decision variable. Therefore, we check whether 𝒬𝐿𝑃(𝑧, 𝑣) ≤

𝜃 for any solution (𝑧, 𝑣, 𝜃) obtained by solving the master problem. Until this condition is satisfied, we add the

continuous L-shaped optimality cuts to the master problem. We only start branching when 𝒬𝐿𝑃(𝑧, 𝑣) = 𝜃 at the root

node. This means that before we start our branch-and-cut procedure, we obtain the optimal solution for the stochastic

program with the LP relaxation of the second-stage problem. This modification results in a 0/1 mixed-integer master

problem which is more challenging to solve, especially as the size of the problem gets larger with the added optimality

cuts. On the other hand, the lower bound obtained from the master problem is improved which helps to remove more

nodes of the branch-and-bound tree from our consideration. In this modified version of the algorithm, we also use

another branching scheme instead of branching on a fractional decision variable. We first detect the candidate nodes

in the network which are chosen to locate an emergency response facility in the solution obtained from the master

problem. This facility can be of any size. Without loss of generality, let us assume there are two levels available for

the facilities: small and large facilities. Then, we append three nodes to the list of pendant branch-and-bound nodes:

one node for imposing there is a small facility, one node for imposing there is a large facility, and one node for

imposing there is no facility. If we cannot detect any candidate node in the network with an open facility which is

not fixed in the branch-and-bound tree before, we move on to the candidate nodes without any open facilities. Then,

we apply the same branching rule.

We illustrate the difference in the branch-and-bound trees generated without and with these two

modifications on a small example. Let us consider a network with 𝑚 candidate nodes to locate emergency response

facilities and 𝑚 candidate nodes to locate restoration equipment. There are two levels available for both emergency

response facilities and restoration equipment. In the original branch-and-cut scheme as applied by Laporte and

Louveaux (1993) and Angulo et al. (2016), the master problem solved at the root node may result in a non-integer

solution. Let us assume that 𝑍11 (indicating whether node 1 is selected to locate a facility of level 1) has a fractional

value in the solution obtained from this master problem. Then, two branches are created from the root node. One

branch enforces 𝑍11 to be 0 and the other branch enforces 𝑍11 to be 1. Let us continue with the branch-and-bound

20

node fixing the value of 𝑍11 to 0 in the master problem. This time 𝑍12 has a fractional value between 0 and 1. We

continue branching in this manner any time the master problem returns a first-stage decision variable with a fractional

value. Figure 4 depicts a part of this branch-and-bound tree.

Now, let us examine the branch-and-bound tree generated after our two modifications. Let us assume that

the solution found at the root node satisfying 𝒬𝐿𝑃(𝑧, 𝑣) = 𝜃 locates one small facility at node 1 and one large facility

at node 3. There are no facilities at the other 𝑚 − 2 nodes of the network. In the first level of our branch-and-bound

tree, we create three branches: one branch enforcing there is a small facility at node 1 (𝑍11 = 1), one branch enforcing

there is a large facility at node 1(𝑍12 = 1), and one branch enforcing there are no facilities at node 1 (𝑍11 =

0 and 𝑍12 = 0). We continue with the branch-and-bound node generated by the first branch. In the second level, we

again create three branches: one branch enforcing there is a large facility at node 3 (𝑍32 = 1), one branch enforcing

there is a small facility at node 3 (𝑍31 = 1), and one branch enforcing there are no facilities at node 3 (𝑍31 =

0 and 𝑍32 = 0). As observed from these two levels, we start branching on the nodes with facilities in the solution

obtained at the root node. Then, we continue branching on the other nodes of the network with no facilities as partially

illustrated in Figure 4.

Figure 4 Comparison between the branch-and-bound trees without/with modifications

5. COMPUTATIONAL RESULTS

Sanci and Daskin (2019) apply the integrated model to generate a preparedness strategy for an anticipated earthquake

in Istanbul. This case study shows that the model locates facilities with larger capacity at the centers of intense

demand regions, and facilities with smaller capacity at the remote demand nodes with intense damage. Moreover,

the restoration resources are either located in close proximity to the emergency response facilities or in remote

regions. Sanci and Daskin (2019) also study the value of integrating the network restoration problem with the

prepositioning problem. The results show that the increase in the satisfied demand will be very limited even if the

21

pre-disaster investment for emergency response facilities is raised immensely. On the other hand, the total demand

can be satisfied within a short time by investing in purchasing restoration equipment, which is typically less costly

than establishing facilities.

 In this study, our computational results focuses on the solution time. We compare the performance of the

CPLEX solver and the integer L-shaped algorithm with and without our modifications. We code the algorithms in C

++ using Microsoft Visual Studio 2015, and solve the mathematical models by IBM ILOG Cplex 12.7.1 on Intel

Xeon E3-1505M v5 2.80 GHz, 32 GB RAM using Windows 10.

Before we present our results, we restate the sets and parameters in the case study introduced in Sanci and

Daskin (2019) with a few changes. Istanbul has 39 districts with borders defined by the Grand National Assembly of

Turkey (See Appendix B for the Istanbul map). We assume that each of these districts is a demand node in the

network. We also assume that there is an arc connecting two demand nodes if the corresponding districts share a

border and the distance between the district centers is less than or equal to 100 km. We define two demand nodes

connected by an arc as neighbor nodes. We assume that the decision makers have identified 10 nodes out of 39 nodes

for the sets of candidate facility nodes and candidate restoration equipment nodes separately. As mentioned in Sanci

and Daskin (2019), the solution time of the CPLEX solver is extremely long even for a small number of scenarios

when the candidate node sets include all 39 nodes. CPLEX also runs into memory problems as the number of

scenarios increases when all these nodes are candidate nodes to locate emergency response facilities and restoration

equipment. In this paper, we limit the candidate node sets to contain 10 nodes to be able to obtain a solution from

CPLEX for scenario sets with up to 50 scenarios and compare its performance with our algorithm. Furthermore, in

some cases, the decision makers can indeed pinpoint a subset of nodes which are more suitable to locate emergency

response facilities and restoration equipment. In this section, we choose these nodes by generating 1,000 scenarios,

solving the deterministic equivalent MIP for each scenario independently, and identifying 10 nodes with the highest

number of times selected in these 1,000 solutions.

The sets of levels for facilities and restoration equipment both include two levels. This means that there are

two capacity levels available for an open facility. Similarly, if a node is chosen for restoration resources, either one

piece or two pieces of restoration equipment can be located at this node. Finally, the number of time periods is limited

to three days, since it is widely accepted that the immediate response activities mainly takes place in the first three

days after the disaster. We summarize the deterministic parameters in Table 1.

Table 1 Deterministic parameters and their values in the Istanbul case

Parameter Name Parameter Description Value

𝑓1 fixed cost of opening a small facility $7.5 million

𝑓2 fixed cost of opening a large facility $10 million

𝑞1 capacity of a small facility 500,000 units of items

𝑞2 capacity of a large facility 1,500,000 units of items

22

𝑒1 cost of acquiring one piece of restoration equipment $0.50 million

𝑒2 cost of acquiring two pieces of restoration equipment $1 million

𝑤1 number of pieces of restoration equipment for level one 1

𝑤2 number of pieces of restoration equipment for level two 2

𝑐𝑎 travel cost per unit relief item flowing on arc 𝑎 $0.50 × length of arc 𝑎

𝑐𝑎
′ travel cost per unit equipment flowing on arc 𝑎 $0.50 × length of arc 𝑎

𝑏 cost per unit unmet demand per time period $170

 Sanci and Daskin (2019) also present a scenario generation algorithm to generate a joint realization of the

uncertain parameters in every iteration of the algorithm. This algorithm is called 𝑛 times within the SAA method to

generate 𝑛 disaster scenarios. The proposed algorithm considers the spatial correlation between neighbor nodes

through the logistic normal distribution. The main input that the scenario generation algorithm utilizes is the number

of damaged buildings for the most probable scenario and the worst-case scenario for the anticipated Istanbul

earthquake. These two scenarios were developed as a part of the research project of the Istanbul Metropolitan

Municipality with the Japan International Cooperation Agency (JICA, 2002).

In every iteration of the algorithm, the first step is to generate damage ratios of the demand nodes using the

data in JICA (2002). Then, demand for relief items are generated by taking into consideration the damage ratios and

population of the districts. Finally, the repair time of each arc is generated using the damage ratios of the two

corresponding nodes. Sanci and Daskin (2019) assume that the probability that arc (𝑖, 𝑗) is damaged is equal to the

maximum of the damage ratios; i.e. 𝑚𝑎𝑥{𝜌𝑖, 𝜌𝑗}. Furthermore, they assume that the repair time of a damaged arc has

a discrete uniform distribution between one day and five days; however, we take the repair time of a damaged arc as

one day for simplicity in this paper. Note that the repair time is zero if an arc is not damaged.

Before we start our analysis, we emphasize that the problem instances solved in this paper and Sanci and

Daskin (2019) are not the same due to the differences in the set of candidate nodes and the probability distribution

of the repair time. Therefore, the results in these two papers are not comparable.

Using the scenario generation algorithm, we generate scenario samples with varying sizes. Note that Sanci

and Daskin (2019) show that the SAA algorithm converges for a sample size of 50 scenarios for a larger instance of

the same problem. Therefore, we do not present our SAA analysis in this paper. Instead, we report our results for

sample size of |Ω| = 10, 20, 30, 40 and 50. Also, note that we use 30 replications for each sample size. We solve the

corresponding problems by the CPLEX solver, the integer L-shaped algorithm and the integer L-shaped algorithm

with our modifications. Figure 5 shows the box plots of the CPU times to find a solution whose objective value is

within 1% of the optimal objective value for each sample size. This figure illustrates the dramatic increase in the

CPU time of CPLEX as the number of scenarios increases. Moreover, the variance of the CPU time is also high when

CPLEX is used. The integer L-shaped algorithm is able to reduce the CPU time to an extent; however, the variance

is still high for larger scenario sets. On the other hand, the CPU time increases in a linear fashion as the number of

23

scenarios increases after our modifications in the integer L-shaped algorithm. Next, we analyze the performance of

each solution approach in more detail.

Figure 5 Box plots of the CPU times for different sample sizes

5.1. Results for the CPLEX Solver

We start our analysis with solving the deterministic equivalent MIP of our integrated model by CPLEX. Table 2

gives the average/standard deviation/minimum/maximum CPU time (in seconds) to find a solution whose objective

value is within 1% of the optimal objective value (Table C.1 in Appendix C presents the CPU times for all

replications). As we can observe from this table, the solution times increase significantly as we increase the number

of scenarios in the second-stage problem. To illustrate, the average solution time when |Ω| = 50 is approximately 91

times of the average solution time when |Ω| = 10.

Table 2 CPU time (seconds) to solve the integrated model by CPLEX

Average

CPU Time

St. Dev

CPU Time

Minimum

CPU Time

Maximum

CPU Time

|𝛀|=10 653 616 59 2399

|𝛀|=20 6030 4083 473 16862

|𝛀|=30 16440 11177 2896 47767

|𝛀|=40 29522 18322 3297 86582

|𝛀|=50 59692 30265 16209 144962

We perform regression analysis to find the relationship between the CPU time (𝑦𝐶𝑃𝐿𝐸𝑋) and the number of

scenarios using the data provided in Table C.1. Our analysis shows that Box-Cox transformation with 𝜆 = 1/3 fits

the following regression equation with 𝑅2 = 0.96:

𝑦𝐶𝑃𝐿𝐸𝑋
1/3

= 0.77 × 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠 (equivalently 𝑦𝐶𝑃𝐿𝐸𝑋 = 0.46 × 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠 3)

24

The fitted regression equation with the corresponding data points are shown in Figure 6.

Figure 6 Relationship between the CPU time of CPLEX and the number of scenarios

5.2. Results for the Integer L-shaped Algorithm

The growth in the problem size results in a dramatic increase in the solution time in MIPs. However, the L-shaped

method decomposes the second-stage problem into subproblems for each scenario. Therefore, the effect of having

larger scenario sets on the solution time is expected to be less significant. In Table 3 we report the average/standard

deviation/minimum/maximum CPU time (in seconds) to find a solution with again 1% optimality gap using the

integer L-shaped method without the first and second modifications proposed in Section 4 (Table C.2 in Appendix

C presents the CPU times for all replications). Therefore, both facility location and restoration equipment location

decisions are considered for branching, and the master problem does not impose binary restrictions on these

decisions. Let us name this algorithm as ILS I. One can observe that the solution time of CPLEX is shorter than the

solution time of ILS I for smaller scenario sets; however, as we increase the number of scenarios, ILS I becomes

more advantageous in terms of the solution time.

Table 3 CPU time (seconds) to solve the integrated model by ILS I

Average

CPU Time

St. Dev

CPU Time

Minimum

CPU Time

Maximum

CPU Time

|𝛀|=10 2232 1660 392 7073

|𝛀|=20 5449 4754 1108 19824

|𝛀|=30 10524 9936 1882 41192

|𝛀|=40 14822 11521 4642 56635

|𝛀|=50 25657 14410 10053 66442

25

We report the average number of branch-and-bound nodes generated (average #nodes), the average number

of nodes fathomed (average #fathomed), and the average number of nodes at the final level of the branch-and-bound

tree (average #final) in Table 4. Note that the final level corresponds to the case in which all first-stage decision

variables are fixed and the expected second-stage cost can be computed by solving the subproblems for the given

first-stage decisions. Therefore, #final denotes how many times this computation is performed.

Table 4 Branch-and-bound metrics for ILS I

Average

#nodes

Average

#fathomed

Average

#final

|𝛀|=10 6292 4195 20

|𝛀|=20 11365 7577 26

|𝛀|=30 13509 9006 42

|𝛀|=40 14130 9420 25

|𝛀|=50 20143 13429 29

We again perform regression analysis to find the relationship between the CPU time (𝑦𝐼𝐿𝑆1) and the number

of scenarios using the data provided in Table C.2. This time we use 𝜆 = 1/2.5 = 0.4 for the Box-Cox transformation.

We fit the following regression equation with 𝑅2 = 0.92:

𝑦𝐼𝐿𝑆1
0.4 = 1.18 × 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠 (equivalently 𝑦𝐼𝐿𝑆1 = 1.51 × 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠2.5)

Figure 7 (scaled to be comparable with Figure 6) shows the fitted regression equation and the corresponding

data points.

Figure 7 Relationship between the CPU time of the integer L-shaped method and the number of scenarios

26

5.3. Results for the Integer L-shaped Algorithm with the First Modification

Next, we discuss the effect of applying the modifications we proposed to the integer L-shaped algorithm. Let ILS II

be the first modified algorithm which uses only facility location decisions for branching. Whenever, all first-stage

location decisions for emergency response facilities are fixed, the model in the second step of the sequential approach

is solved to determine the location of restoration equipment. Table 5 presents the average/standard

deviation/minimum/maximum CPU time (in seconds) to find a solution with 1% optimality gap using ILS II (Table

C.3 in Appendix C presents the CPU times for all replications). Although the second-stage is decomposed into

subproblems here, this algorithm cannot exploit this structure effectively. This is mainly due to the fact that there are

a large number of final nodes for many of the problem instances, and the second-step MIP is solved for each final

node. Note that this second-step MIP is much easier to solve compared to the deterministic equivalent MIP as

discussed in Section 3; however, this algorithm requires us to solve this MIP multiple times which may again end up

in increased solution times. Table 6 together with Table 5 suggests that the solution time increases as the nodes

cannot be fathomed effectively and the number of final nodes is large.

Table 5 CPU time (seconds) to solve the integrated model by ILS II

Average

CPU Time

St. Dev

CPU Time

Minimum

CPU Time

Maximum

CPU Time

|𝛀|=10 745 495 291 2201

|𝛀|=20 4309 4679 1138 20627

|𝛀|=30 14247 19605 1610 92408

|𝛀|=40 20867 15928 4052 84211

|𝛀|=50 71653 44391 22052 193291

Table 6 Branch-and-bound metrics for ILS II

Average

#nodes

Average

#fathomed

Average

#final

|𝛀|=10 692 462 25

|𝛀|=20 1594 1063 82

|𝛀|=30 2044 1363 125

|𝛀|=40 2200 1467 125

|𝛀|=50 2908 1939 211

5.4. Results for the Integer L-shaped Algorithm with the First and Second Modifications

Our second modification, which is to impose the original binary restrictions in the master problem, focuses on

improving the lower bounds obtained in the branch-and-bound tree so that non-promising nodes are detected in the

27

upper levels of the tree. Let us name the algorithm with both modifications as ILS III. The average/standard

deviation/minimum/maximum CPU time (in seconds) to find a solution with 1% optimality gap and the

corresponding branch-and-bound metrics are reported in Table 7 and Table 8, respectively. (Table C.4 in Appendix

C presents the CPU times for all replications.) We can see from Table 7 that the solution times are improved by ILS

III for the larger set of scenarios. As we can infer from Table 8, this algorithm effectively prunes the branch-and-

bound tree. It eliminates the need to solve the second-step MIP since a solution’s objective function value is proven

to be within 1% of the optimal objective function before reaching the final level of the search tree.

Table 7 CPU time (seconds) to solve the integrated model by ILS III

Average

CPU Time

St. Dev

CPU Time

Minimum

CPU Time

Maximum

CPU Time

|𝛀|=10 1180 515 506 2463

|𝛀|=20 3123 1335 1048 8275

|𝛀|=30 6075 3880 1978 21233

|𝛀|=40 7525 2190 4615 13429

|𝛀|=50 11910 3166 6825 18092

Table 8 Branch-and-bound metrics for ILS III

Average

#nodes

Average

#fathomed

Average

#final

|𝛀|=10 6 4 0

|𝛀|=20 6 4 0

|𝛀|=30 9 6 0

|𝛀|=40 5 3 0

|𝛀|=50 5 3 0

Using the data provided in Table C.4, we repeat our regression analysis to find the relationship between the

CPU time (𝑦𝐼𝐿𝑆3) and the number of scenarios. We fit the following regression equation with 𝑅2 = 0.87:

𝑦𝐼𝐿𝑆3 = 209.63 × 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑐𝑒𝑛𝑎𝑟𝑖𝑜𝑠

Figure 8 (scaled to be comparable with Figure 6) shows the fitted regression equation and the corresponding

data points.

28

Figure 8 Relationship between the CPU time of the integer L-shaped method (with modifications)

and the number of scenarios

The reason that ILS III outperforms ILS II for the larger set of scenarios is its ability to obtain tight lower

bounds even in the root node of the search tree. Table 9 shows the relative gap between the lower bound at the root

node and the upper bound when the algorithm terminates. In this table, we report the minimum/average/maximum

relative gap when the master problem is a linear program and a mixed-integer program. As one can observe from

Table 9, the lower bounds in the latter case are considerably tighter than the ones obtained in the former case.

Table 9 Minimum/average/maximum relative gap corresponding to the lower bound at the root node

 LP Master Problem MIP Master Problem

 Minimum Average Maximum Minimum Average Maximum

|𝛀|=10 0.3% 3.8% 8.7% 0.1% 0.7% 1.5%

|𝛀|=20 2.7% 5.1% 7.3% 0.3% 0.8% 1.5%

|𝛀|=30 2.4% 5.2% 7.5% 0.2% 0.8% 1.5%

|𝛀|=40 3.2% 5.6% 7.7% 0.4% 0.8% 1.4%

|𝛀|=50 3.6% 5.7% 7.0% 0.5% 0.8% 1.2%

5.5. Results for the Two-Step Sequential Approach

Finally, we discuss the performance of the two-step sequential approach. As we mention earlier, we use the solution

obtained from this heuristic procedure to start with a good upper bound on the optimal objective function value.

Having a tight upper bound initially is important since it leads the branch-and-bound tree to search for more

promising regions of the tree. Table 10 presents the minimum/average/maximum relative gap between the upper

bound found by the two-step sequential procedure and the objective function value of the solution which is proven

29

to be within 1% of the optimality (Table C.5 in Appendix C presents the relative gaps for all replications). We can

see from this table that this heuristic provides very good upper bounds in general.

Table 10 Relative gap corresponding to the upper bound obtained from the heuristic

Minimum

Relative Gap

Average

Relative Gap

Maximum

Relative Gap

|𝛀|=10 0.00% 0.20% 1.80%

|𝛀|=20 0.00% 0.40% 1.60%

|𝛀|=30 0.00% 0.35% 2.00%

|𝛀|=40 0.00% 0.36% 1.80%

|𝛀|=50 0.00% 0.54% 2.00%

Table 11 provides the minimum/average/maximum CPU time to solve the stochastic programming models

in the first and second steps of the two-step sequential procedure as well as the minimum/average/maximum total

CPU time of the procedure. As we can observe from this table, the run time of this procedure is fairly short even for

|Ω| = 50. Table 10 and Table 11 together suggest that the two-step sequential approach generally provides a tight

upper bound in a reasonably short time.

Table 11 Minimum/average/maximum CPU time of the two-step approach

First Step

CPU Time (sec)

Second Step

CPU Time (sec)

Two-Step

Total CPU Time (sec)

 Min Avg Max Min Avg Max Min Avg Max

|𝛀|=10 2 9 21 6 10 15 12 19 29

|𝛀|=20 15 39 95 15 26 135 36 64 163

|𝛀|=30 43 79 135 27 89 983 77 168 1037

|𝛀|=40 77 161 312 46 163 932 136 324 1086

|𝛀|=50 113 276 523 61 212 976 220 488 1131

 We use the upper bound obtained from the two-step sequential approach to initialize the integer L-shaped

algorithm with and without our modifications. However, we do not use this information in the deterministic

equivalent MIP solved by CPLEX. To see if this heuristic solution helps to improve the solution time of CPLEX, we

add a constraint ensuring that the objective function value does not exceed the objective value of this solution. Figure

9 illustrates the CPU time of CPLEX before and after the addition of the constraint. Note that the latter includes the

CPU time of the two-step sequential procedure as well. This figure suggests that the upper bound information does

not have a significant effect on the CPU time of CPLEX.

30

Figure 9 Scatter plot for CPU time of CPLEX with/without heuristic solution vs. the number of scenarios

6. SUMMARY

In this paper, we propose an exact solution approach to solve the integrated location and network restoration model.

This solution approach is based on the integer L-shaped method developed by Laporte and Louveaux (1993) to solve

two-stage stochastic programs with binary first-stage decision variables and mixed-integer second-stage decision

variables. We implement the improved version of the algorithm (Angulo et al., 2016) with two modifications to better

exploit the structure of our integrated model. Our computational results show that our modified integer L-shaped

algorithm outperforms the CPLEX solver and the integer L-shaped algorithm without our modifications in terms of

the solution time. We empirically show that the solution time of our algorithm increases only linearly as the number

of scenarios increases.

Incorporating chance constraints and considering the deprivation costs in the objective function are

increasingly becoming popular in disaster relief management literature. An interesting future research direction might

be to approach the integrated location and network restoration problem using these frameworks and develop efficient

solution algorithms. Another intriguing direction might be to investigate the performance of our modified integer L-

shaped algorithm to solve similar two-stage stochastic programming models integrating two problems in the first and

second stages.

ACKNOWLEDGMENTS

This work was funded by a variety of internal University of Michigan funding sources.

REFERENCES

Ahmadi, M., Seifi, A., and Tootooni, B. (2015). A humanitarian logistics model for disaster relief operation

considering network failure and standard relief time: A case study on San Francisco district. Transportation

Research Part E, 75, 145-163.

31

Ahmed, S. (2010). Two-stage stochastic integer programming: A brief introduction. In Cochran et al. (eds.), Wiley

Encyclopedia of Operations Research and Management Science. Wiley.

Ahmed, S., Tawarmalani, M., and Sahinidis, N.V. (2004). A finite branch-and-bound algorithm for two-stage

stochastic integer programs. Mathematical Programming, 100, 355-377.

Alem, D., Clark, A. and Moreno, A. (2016). Stochastic network models for logistics planning in disaster relief.

European Journal of Operational Research, 255, 187-206.

Angulo, G., Ahmed, S., and Dey, S.S. (2016). Improving the Integer L-shaped Method. INFORMS Journal on

Computing, 28(3), 483-499.

Aslan, E. and Çelik, M. (2018). Pre-positioning of relief items under road/facility vulnerability with concurrent

restoration and relief transportation. IISE Transactions, 51(8), 847-868.

Balcik, B. and Beamon, B.M. (2008). Facility location in humanitarian relief. International Journal of Logistics:

Research and Applications, 11(2), 101-121.

Caroe, C.C. and Tind, J. (1998). L-shaped decomposition of two-stage stochastic programs with integer recourse.

Mathematical Programming, 83, 451-464.

Caroe, C.C. and Schultz, R. (1999). Dual decomposition in stochastic integer programming. Operations Research

Letters, 24, 37-45.

Çelik, M., Ergun, O., Johnson, B., Keskinocak, P., Lorca, A., Pekgun, P., and Swann, J. (2014). Humanitarian

Logistics. In INFORMS TutORials in Operations Research. Published online: 14 Oct 2014; 18-49.

https://dx.doi.org/10.1287/educ.1120.0100

Çelik, M., Ergun, Ö., and Keskinocak, P. (2015). The post-disaster debris clearance problem under incomplete

information. Operations Research, 63(1), 65-85.

Döyen, A., Aras, N., and Barbarosoğlu G. (2012). A two-echelon stochastic facility location model for

humanitarian relief logistics. Optimization Letters, 6, 1123-1145.

Duran, S., Gutierrez, M.A., and Keskinocak, P. (2011). Pre-positioning of emergency items for CARE

International. Interfaces, 41(3), 223-237.

Elçi, Ö. and Noyan, N. (2018). A chance-constrained two-stage stochastic programming model for humanitarian

relief network design. Transportation Research Part B, 108, 55-83.

Gade, D., Kucukyavuz, S., and Sen, S. (2014). Decomposition algorithms with parametric Gomory cuts for two-

stage stochastic integer programs. Mathematical Programming, 144, 39-64.

Gendreau, M., Laporte, G., and Seguin, R. (1995). An exact algorithm for the vehicle routing problem with

stochastic demands and customers. Transportation Science, 29(2), 143-155.

Grass, E. and Fischer, K. (2016). Two-stage stochastic programming in disaster management: A literature survey.

Surveys in Operations Research and Management Science, 21, 85-100.

JICA (2002). The study on a disaster prevention/mitigation basic plan in Istanbul including seismic microzonation

in the Republic of Turkey. Final Report. Japan International Cooperation Agency.

32

Holguin-Veras, J., Perez, N., Jaller, M., Van Wassenhove, L., and Aros-Vera, F. (2013). On the appropriate

objective function for post-disaster humanitarian logistics models. Journal of Operations Management, 31, 262-

280.

Hong, X., Lejeune, M.A., and Noyan, N. (2015). Stochastic network design for disaster preparedness. IIE

Transactions, 47(4), 329-357.

Hu, S., Han, C., Dong, Z.S., and Meng, L. (2019). A multi-stage stochastic programming model for relief

distribution considering the state of road network. Transportation Research Part B, 123, 64-87.

Kara, B.Y. and Savaşer, S. (2017). Humanitarian Logistics. In INFORMS TutORials in Operations Research.

Published online: 03 Oct 2017; 263-303. https://doi.org/10.1287/educ.2017.0171

Kovacs, G. and Moshtari, M. (2019). A roadmap for higher research quality in humanitarian operations: A

methodological perspective. European Journal of Operational Research, 276, 395-408.

Kucukyavuz, S. and Sen, S. (2017). An introduction to two-stage stochastic mixed-integer programming. In

INFORMS TutORials in Operations Research. Published online: 03 Oct 2017; 1-27.

https://doi.org/10.1287/educ.2017.0171

Laporte, G. and Louveaux, F.V. (1993). The integer L-shaped method for stochastic integer programs with

complete recourse. Operations Research Letters, 13, 133-142.

Laporte, G., Louveaux, F.V., Mercure, H. (1994). A priori optimization of the probabilistic traveling salesman

problem. Operations Research, 42(3), 543-549.

Laporte, G., Louveaux, F.V., van Hamme, L. (1994). Exact solution to a location problem with stochastic demands.

Transportation Science, 28(2), 95-103.

Laporte, G., Louveaux, F.V., van Hamme, L. (2002). An integer L-shaped algorithm for the capacitated vehicle

routing problem with stochastic demands. Operations Research, 50(3), 415-425.

Liberatore, F., Ortuno, M.T., Tirado, G., Vitoriano, B., and Scaparra M.P. (2014). A hierarchical compromise

model for the joint optimization of recovery operations and distribution of emergency goods in Humanitarian

Logistics. Computers & Operations Research, 42, 3-13.

Mete, H.O. and Zabinsky, Z.B. (2010). Stochastic optimization of medical supply location and distribution in

disaster management. International Journal of Production Economics, 126, 76-84.

Moreno, A., Alem, D., Ferreira, D., and Clark, A. (2018). An effective two-stage stochastic multi-trip location-

transportation model with social concerns in relief supply chains. European Journal of Operational Research, 269,

1050-1071.

Miller-Hooks, E., Zhang, X., and Faturechi, R. (2012). Measuring and maximizing resilience of freight

transportation networks. Computers & Operations Research, 39, 1633-1643.

Noyan, N., Balcik, B., and Atakan, S. (2016). A stochastic optimization model for designing last mile relief

networks. Transportation Science, 50(3), 1092-1113.

Noyan, N. and Kahvecioglu, G. (2018). Stochastic last mile relief network design with recourse reallocation. OR

Spectrum, 40, 187-231.

Paul, J.A. and MacDonald, L. (2016). Location and capacity allocations decisions to mitigate the impacts of

unexpected disasters. European Journal of Operational Research, 251, 252-263.

https://doi.org/10.1287/educ.2017.0171
https://doi.org/10.1287/educ.2017.0171

33

Paul, J.A. and Wang, X.J. (2019). Robust location-allocation network design for earthquake preparedness.

Transportation Research Part B, 119, 139-155.

Paul, J.A. and Zhang, M. (2019). Supply location and transportation planning for hurricanes: A two-stage

stochastic programming framework. European Journal of Operational Research, 274, 108-125.

Ransikarbum, K. and Mason S.J. (2016). Multiple-objective analysis of integrated relief supply and network

restoration in humanitarian logistics operations. International Journal of Production Research, 54(1), 49-68.

Rawls, C.G. and Turnquist, M.A. (2010). Pre-positioning of emergency supplies for disaster response.

Transportation Research Part B, 44, 521-534.

Rosing, K.E. and ReVelle, C.S. (1997). Heuristic concentration: two-stage solution construction. European Journal

of Operational Research, 97, 75-86.

Salman, F.S. and Yücel, E. (2015). Emergency facility location under random network damage: Insights from the

Istanbul case. Computers & Operations Research, 62, 266-281.

Salmeron, J. and Apte, A. (2010). Stochastic optimization for natural disaster asset prepositioning. Production and

Operations Management, 19(5), 561-574.

Sanci, E. and Daskin, M.S. (2019). Integrating location and network restoration decisions in relief networks under

uncertainty. European Journal of Operational Research, 279, 335-350.

Schultz, R. (1995). On structure and stability in stochastic programs with random technology matrix and complete

integer recourse. Mathematical Programming, 70(1), 73-89.

Sen, S. (2005). Algorithms for stochastic mixed-integer programming models. In Aardal et al. (eds.), Handbook in

OR & MS: Discrete Optimization. Elsevier.

Sen, S. and Higle, J. (2005). The 𝐶3 theorem and a 𝐷2 algorithm for large scale stochastic mixed-integer

programming: Set convexification. Mathematical Programming, 104, 1-20.

Sen, S. and Sherali, H.D. (2006). Decomposition with branch-and-cut approaches for two-stage stochastic mixed-

integer programming. Mathematical Programming, 106, 203-223.

Sherali, H.D. and Fraticelli, B.M.P. (2002). A modification of Benders’ decomposition algorithm for discrete

subproblems: An approach for stochastic programs with integer recourse. Journal of Global Optimization, 22, 319-

342.

Sherali, H.D. and Zhu, X. (2006). On solving discrete two-stage stochastic programs having mixed-integer first-

and second-stage variables. Mathematical Programming, 108, 597-616.

Van Slyke, R.M. and Wets, R. (1969). L-shaped linear programs with applications to optimal control and stochastic

programming. SIAM Journal on Applied Mathematics, 17(4), 638-663.

Zhang, M. and Kucukyavuz, S. (2014). Finitely convergent decomposition algorithms for two-stage stochastic pure

integer programs. SIAM Journal on Optimization, 24(4), 1933-1951.

APPENDIX A

Sets

• 𝑁: set of nodes.

• 𝑁(𝑖): set of neighbor nodes of node 𝑖.

First-Stage Decision Variables

• 𝑍𝑖𝑙= 1 if a facility is located at node 𝑖 with

level 𝑙 and 0 otherwise.

34

• 𝑁𝐹: set of candidate nodes for facilities.

• 𝑁𝐸: set of candidate nodes for equipment.

• 𝐿𝐹: set of levels for facilities.

• 𝐿𝐸: set of levels for equipment.

• 𝐴: set of arcs.

• 𝑇: set of time periods.

Deterministic Parameters

• 𝑓𝑙: fixed cost of opening a facility at level 𝑙.

• 𝑞𝑙: capacity of the facility at level 𝑙.

• 𝑒𝑙: cost of acquiring restoration equipment

at level 𝑙.

• 𝑤𝑙: pieces of restoration equipment at level

𝑙.

• 𝑐𝑎: travel cost per unit relief item flowing

on arc 𝑎.

• 𝑐𝑎
′ : travel cost per unit equipment flowing

on arc 𝑎.

• 𝑏: cost per unit unmet demand per time

period.

Uncertain Parameters

• 𝑑𝑖
𝜉
: demand at node 𝑖 in realization 𝜉.

• 𝜌𝑖
𝜉
: damage ratio at node 𝑖 in realization 𝜉.

• 𝑝𝑎
𝜉
: repair time of arc 𝑎 in realization 𝜉.

• 𝑉𝑖𝑙= 1 if restoration equipment is located at

node 𝑖 with level 𝑙 and 0 otherwise.

• 𝑍 and 𝑉 denote the decision vectors for

facility locations and restoration

equipment, respectively.

Second-Stage Decision Variables

• 𝑎 and 𝑎̅ denote 𝑖 → 𝑗 and 𝑗 → 𝑖 directions.

• 𝑌𝑎𝑘𝑡
𝜉

, 𝑌𝑎̅𝑘𝑡
𝜉

= fraction of demand at node 𝑘

flowing on arc 𝑎 at time 𝑡 in realization 𝜉.

• 𝑊𝑖𝑘𝑡
𝜉

= fraction of demand at node 𝑘 served

by the facility at node 𝑖 at time 𝑡 in

realization 𝜉.

• 𝑈𝑘𝑡
𝜉

= fraction of unmet demand at node 𝑘

at time 𝑡 in realization 𝜉.

• 𝑌𝑅𝑎𝑡
𝜉

, 𝑌𝑅𝑎̅𝑡
𝜉

= number of pieces of

restoration equipment flowing on arc 𝑎 at

time 𝑡 in realization 𝜉.

• 𝑊𝑅𝑖𝑡
𝜉

= number of pieces of restoration

equipment available at node 𝑖 at time 𝑡 in

realization 𝜉.

• 𝑋𝑎𝑡
𝜉

= 1 if arc 𝑎 is operational at time 𝑡 in

realization 𝜉 and 0 otherwise.

• 𝐻𝑎𝑡
𝜉

, 𝐻𝑎̅𝑡
𝜉

= number of pieces of restoration

equipment repairing arc 𝑎 at time 𝑡 in

realization 𝜉.

𝑚𝑖𝑛 ∑ ∑ 𝑓𝑙𝑍𝑖𝑙

𝑙∈𝐿𝐹𝑖∈𝑁𝐹

+ ∑ ∑ 𝑒𝑙𝑉𝑖𝑙

𝑙∈𝐿𝐸𝑖∈𝑁𝐸

+ 𝔼[𝑄(𝑍, 𝑉, 𝝃)]

s.t. ∑ 𝑍𝑖𝑙𝑙∈𝐿𝐹 ≤ 1 ∀𝑖 ∈ 𝑁𝐹

 ∑ 𝑉𝑖𝑙𝑙∈𝐿𝐸 ≤ 1 ∀𝑖 ∈ 𝑁𝐸

 𝑍𝑖𝑙 ∈ {0,1} ∀𝑖 ∈ 𝑁𝐹 , 𝑙 ∈ 𝐿𝐹

 𝑉𝑖𝑙 ∈ {0,1} ∀𝑖 ∈ 𝑁𝐸 , 𝑙 ∈ 𝐿𝐸

𝑄(𝑍, 𝑉, 𝜉) = 𝑚𝑖𝑛 ∑ (∑ ∑ 𝑐𝑎𝑑𝑘
𝜉

(𝑌𝑎𝑘𝑡
𝜉

+ 𝑌𝑎̅𝑘𝑡
𝜉

)

𝑘∈𝑁𝑎∈𝐴

+ ∑ 𝑐𝑎
′

𝑎∈𝐴

(𝑌𝑅𝑎𝑡
𝜉

+ 𝑌𝑅𝑎̅𝑡
𝜉

) + 𝑏 ∑ 𝑑𝑘
𝜉

𝑈𝑘𝑡
𝜉

𝑘∈𝑁

)

𝑡∈𝑇

s.t. ∑ 𝑌𝑎̅𝑖𝑡
𝜉

𝑗∈𝑁(𝑖) + 𝑊𝑖𝑖𝑡
𝜉

+ 𝑈𝑖𝑡
𝜉

= ∑ 𝑌𝑎𝑖𝑡
𝜉

𝑗∈𝑁(𝑖) + 1, ∀𝑖 ∈ 𝑁, 𝑡 = 1

 ∑ 𝑌𝑎̅𝑖𝑡
𝜉

𝑗∈𝑁(𝑖) + 𝑈𝑖𝑡
𝜉

= ∑ 𝑌𝑎𝑖𝑡
𝜉

𝑗∈𝑁(𝑖) + 𝑈𝑖,𝑡−1
𝜉

, ∀𝑖 ∈ 𝑁, ∀ 𝑡 ∈ 𝑇\{1}

 ∑ 𝑌𝑎̅𝑘𝑡
𝜉

𝑗∈𝑁(𝑖) + 𝑊𝑖𝑘𝑡
𝜉

= ∑ 𝑌𝑎𝑘𝑡
𝜉

𝑗∈𝑁(𝑖) , ∀𝑖 ∈ 𝑁, ∀𝑘 ∈ 𝑁\{𝑖}, ∀ 𝑡 ∈ 𝑇

35

 ∑ ∑ 𝑑𝑘
𝜉

𝑊𝑖𝑘𝑡
𝜉

𝑡∈𝑇𝑘∈𝑁 ≤ (1 − 𝜌𝑖
𝜉

) ∑ 𝑞𝑙𝑍𝑖𝑙𝑙∈𝐿𝐹 , ∀𝑖 ∈ 𝑁𝐹

 𝑊𝑖𝑘𝑡
𝜉

≤ ∑ 𝑍𝑖𝑙𝑙∈𝐿𝐹 , ∀𝑖 ∈ 𝑁𝐹 , ∀𝑘 ∈ 𝑁, ∀ 𝑡 ∈ 𝑇

 𝑊𝑖𝑘𝑡
𝜉

= 0, ∀𝑖 ∈ 𝑁\𝑁𝐹 , ∀𝑘 ∈ 𝑁, ∀ 𝑡 ∈ 𝑇

 𝑌𝑎𝑘𝑡
𝜉

≤ 𝑋𝑎𝑡
𝜉

, ∀𝑎 ∈ 𝐴, ∀𝑘 ∈ 𝑁, ∀ 𝑡 ∈ 𝑇

 𝑌𝑎̅𝑘𝑡
𝜉

≤ 𝑋𝑎𝑡
𝜉

, ∀𝑎 ∈ 𝐴, ∀𝑘 ∈ 𝑁, ∀ 𝑡 ∈ 𝑇

 ∑ 𝑌𝑅𝑎̅𝑡
𝜉

𝑗∈𝑁(𝑖) + ∑ 𝑤𝑙𝑉𝑖𝑙𝑙∈𝐿𝐸 = ∑ 𝑌𝑅𝑎𝑡
𝜉

𝑗∈𝑁(𝑖) + 𝑊𝑅𝑖𝑡
𝜉

, ∀𝑖 ∈ 𝑁𝐸 , ∀ 𝑡 ∈ 𝑇

 ∑ 𝑌𝑅𝑎̅𝑡
𝜉

𝑗∈𝑁(𝑖) = ∑ 𝑌𝑅𝑎𝑡
𝜉

𝑗∈𝑁(𝑖) + 𝑊𝑅𝑖𝑡
𝜉

, ∀𝑖 ∈ 𝑁\𝑁𝐸 , ∀ 𝑡 ∈ 𝑇

 𝑌𝑅𝑎𝑡
𝜉

≤ 𝑀𝑋𝑎𝑡
𝜉

, ∀𝑎 ∈ 𝐴, ∀𝑡 ∈ 𝑇

 𝑌𝑅𝑎̅𝑡
𝜉

≤ 𝑀𝑋𝑎𝑡
𝜉

, ∀𝑎 ∈ 𝐴, ∀𝑡 ∈ 𝑇

 ∑ 𝐻𝑎𝑡
𝜉

𝑗∈𝑁(𝑖) ≤ 𝑊𝑅𝑖𝑡
𝜉

, ∀𝑖 ∈ 𝑁, ∀ 𝑡 ∈ 𝑇

 𝑝𝑎
𝜉

𝑋𝑎𝑡
𝜉

= 0, ∀𝑎 ∈ 𝐴, 𝑡 = 1

 𝑝𝑎
𝜉

𝑋𝑎𝑡
𝜉

≤ ∑ (𝐻
𝑎𝑡′
𝜉𝑡−1

𝑡′=1 + 𝐻
𝑎̅𝑡′
𝜉

), ∀𝑎 ∈ 𝐴, ∀ 𝑡 ∈ 𝑇\{1}

 ∑ (𝐻
𝑎𝑡′
𝜉

+ 𝐻
𝑎̅𝑡′
𝜉

)𝑡
𝑡′=1 ≤ 𝑝𝑎

𝜉
, ∀𝑎 ∈ 𝐴, ∀ 𝑡 ∈ 𝑇

 𝐻𝑎𝑡
𝜉

+ 𝐻𝑎̅𝑡
𝜉

≤ 𝑝𝑎
𝜉 ∑ 𝑈𝑙𝑡

𝜉
𝑙∈𝑁 , ∀𝑎 ∈ 𝐴, ∀ 𝑡 ∈ 𝑇

 0 ≤ 𝑌𝑎𝑘𝑡
𝜉

, 𝑌𝑎̅𝑘𝑡
𝜉

≤ 1, ∀𝑎 ∈ 𝐴, ∀𝑘 ∈ 𝑁, ∀ 𝑡 ∈ 𝑇

 0 ≤ 𝑊𝑖𝑘𝑡
𝜉

≤ 1, ∀𝑖, 𝑘 ∈ 𝑁, ∀ 𝑡 ∈ 𝑇

 0 ≤ 𝑈𝑘𝑡
𝜉

≤ 1, ∀𝑘 ∈ 𝑁, ∀𝑡 ∈ 𝑇

 𝑌𝑅𝑎𝑡
𝜉

, 𝑌𝑅𝑎̅𝑡
𝜉

∈ ℤ+, ∀𝑎 ∈ 𝐴, ∀ 𝑡 ∈ 𝑇

 𝑊𝑅𝑖𝑡
𝜉

∈ ℤ+, ∀𝑖 ∈ 𝑁, ∀ 𝑡 ∈ 𝑇

 𝑋𝑎𝑡
𝜉

∈ {0,1}, ∀𝑎 ∈ 𝐴, ∀ 𝑡 ∈ 𝑇

 𝐻𝑎𝑡
𝜉

, 𝐻𝑎̅𝑡
𝜉

∈ ℤ+, ∀𝑎 ∈ 𝐴, ∀ 𝑡 ∈ 𝑇

APPENDIX B

Figure B.1 39 nodes in the Istanbul network

36

APPENDIX C

Note that each cell in Table C.1 corresponds to the same problem instance of the cells in Table C.2, Table C.3, Table

C.4, and Table C.5.

Table C.1 CPU time (seconds) to solve the integrated model by CPLEX

Table C.2 CPU time (seconds) to solve the integrated model by ILS I

 Replications

 1 2 3 4 5 6 7 8 9 10

|𝛀|=10 3037 1328 1692 5523 2066 7073 3856 684 2160 1118

|𝛀|=20 2719 3286 8636 4285 1853 1680 8671 14440 4611 7181

|𝛀|=30 18466 14870 8328 4300 21506 10641 3479 3974 3704 6565

|𝛀|=40 4642 14327 5800 15797 25898 11002 7249 56635 10002 7402

|𝛀|=50 10053 31608 45201 29254 14245 16747 66442 11429 36293 12635

Replications

1 2 3 4 5 6 7 8 9 10

|𝛀|=10 858 781 2399 295 59 910 1696 88 1667 222

|𝛀|=20 1067 15483 4090 3722 7166 6491 7725 9496 5348 5234

|𝛀|=30 15911 22374 20999 11883 8132 15172 8516 4122 10659 47441

|𝛀|=40 9136 38272 13753 27370 17886 40290 31103 21793 42811 86582

|𝛀|=50 21313 124660 99408 90255 41345 60480 16209 50822 19980 53015

Replications

11 12 13 14 15 16 17 18 19 20

|𝛀|=10 989 649 106 71 631 88 2100 524 288 452

|𝛀|=20 13310 8969 4048 5800 1827 16862 11751 2367 4558 2151

|𝛀|=30 14878 5531 8463 20706 24154 12096 5063 10832 2896 47767

|𝛀|=40 17652 25361 33414 40987 10238 54538 25601 32431 26271 30916

|𝛀|=50 83243 52271 50662 41651 73702 41176 49715 40049 25806 59703

Replications

21 22 23 24 25 26 27 28 29 30

|𝛀|=10 920 912 697 79 875 406 177 273 207 167

|𝛀|=20 4490 2572 8725 2883 2383 5358 473 4999 6693 4872

|𝛀|=30 15832 18103 19130 2986 22225 7602 14895 22045 18516 34256

|𝛀|=40 75393 27557 9460 24426 15655 30766 8212 3297 29286 35199

|𝛀|=50 70091 65470 34402 53122 22055 66633 144962 67345 97398 73804

37

 Replications

 11 12 13 14 15 16 17 18 19 20

|𝛀|=10 4649 624 4626 863 442 1787 3368 3356 596 809

|𝛀|=20 17898 2702 3869 5851 1108 4971 3584 6584 2800 3585

|𝛀|=30 8428 4729 3965 16560 5511 4198 1882 6440 11245 5450

|𝛀|=40 10855 39650 6318 5783 7328 13964 10423 21637 26284 23190

|𝛀|=50 22527 11792 20556 14058 58491 26877 22016 12364 32144 20766

 Replications

 21 22 23 24 25 26 27 28 29 30

|𝛀|=10 3052 1298 2061 2539 628 2983 2237 1039 1085 392

|𝛀|=20 5331 2145 1333 1458 11066 2190 2290 19824 4700 2805

|𝛀|=30 11954 6968 38260 2381 3181 8451 41192 4382 7805 26893

|𝛀|=40 13037 5486 5435 17776 24768 20164 8669 5103 5618 14405

|𝛀|=50 24123 19211 19151 12505 19990 19916 21670 34340 28164 55150

Table C.3 CPU time (seconds) to solve the integrated model by ILS II

 Replications

 1 2 3 4 5 6 7 8 9 10

|𝛀|=10 1340 491 1922 425 477 755 1348 506 678 538

|𝛀|=20 1167 3503 5971 3221 5271 1697 20627 2685 1930 2679

|𝛀|=30 10126 9967 30661 4172 8808 6727 6427 1610 10963 6005

|𝛀|=40 7504 21094 9530 15928 16359 9467 10908 84211 43149 32559

|𝛀|=50 31153 193291 96686 35329 82864 137531 33660 28716 22052 51655

 Replications

 11 12 13 14 15 16 17 18 19 20

|𝛀|=10 2201 535 448 523 426 480 2015 525 436 662

|𝛀|=20 7274 5422 2276 6391 1138 2929 6315 2132 6266 1489

|𝛀|=30 12292 10282 4482 68083 5329 4161 2587 5164 5632 10275

|𝛀|=40 7427 22670 9300 17124 13053 15887 4309 24055 32174 36860

|𝛀|=50 95805 65882 52794 84463 148445 32449 22922 27456 147596 68924

 Replications

 21 22 23 24 25 26 27 28 29 30

|𝛀|=10 615 681 540 601 594 507 554 616 634 291

38

|𝛀|=20 1831 2894 3289 1770 1390 2164 1221 19734 1978 2609

|𝛀|=30 8427 16278 32161 1890 8211 4594 21019 11265 7410 92408

|𝛀|=40 25583 20081 7219 24282 9476 40298 16896 4052 19562 24982

|𝛀|=50 48015 80134 32494 82357 45791 114045 91787 28281 50597 116414

Table C.4 CPU time (seconds) to solve the integrated model by ILS III

 Replications

 1 2 3 4 5 6 7 8 9 10

|𝛀|=10 1777 1443 2463 726 755 1774 1561 641 1880 957

|𝛀|=20 2301 3329 3385 2812 2301 4493 8275 4062 2139 2415

|𝛀|=30 5874 8175 4879 2799 4476 4342 5807 1978 4124 5006

|𝛀|=40 7812 7468 5183 7331 6161 4861 6880 13429 9732 12983

|𝛀|=50 9919 16887 13351 8595 14202 11092 6825 8283 7728 12949

 Replications

 11 12 13 14 15 16 17 18 19 20

|𝛀|=10 2081 878 640 1799 1126 732 1209 1210 506 1535

|𝛀|=20 5057 2957 2054 4825 2315 3207 3733 2969 2813 3038

|𝛀|=30 5895 5266 4339 21233 4891 4417 3236 3992 4490 6851

|𝛀|=40 4615 7297 6746 7686 5726 9593 4646 7932 6351 11237

|𝛀|=50 14541 13515 11619 12575 16805 8121 8796 10180 10171 14489

 Replications

 21 22 23 24 25 26 27 28 29 30

|𝛀|=10 796 1195 1044 741 715 627 1021 1819 976 765

|𝛀|=20 3027 2392 3905 2101 1732 2393 1048 3518 2010 3070

|𝛀|=30 5402 4869 13157 3215 5520 4798 7750 5622 5204 14652

|𝛀|=40 7998 8675 4935 7211 8007 7387 7125 5201 7737 7806

|𝛀|=50 7996 15034 8785 18092 11013 14326 13317 8205 15633 14241

Table C.5 Relative gap corresponding to the upper bound obtained from the heuristic

 Replication

 1 2 3 4 5 6 7 8 9 10

|𝛀|=10 0.6% 0.0% 0.0% 0.3% 0.0% 0.3% 0.0% 0.0% 0.0% 0.2%

|𝛀|=20 0.0% 0.0% 0.3% 0.3% 0.6% 0.0% 1.6% 0.3% 0.4% 0.1%

39

|𝛀|=30 0.2% 0.5% 0.2% 0.2% 0.3% 0.2% 0.2% 0.2% 0.4% 0.3%

|𝛀|=40 0.0% 0.0% 0.6% 0.9% 1.8% 0.5% 0.0% 1.3% 0.0% 0.0%

|𝛀|=50 0.4% 0.9% 0.9% 0.1% 0.2% 0.7% 2.0% 1.6% 0.1% 0.4%

 Replication

 11 12 13 14 15 16 17 18 19 20

|𝛀|=10 0.2% 0.0% 0.4% 0.0% 0.0% 0.0% 0.0% 0.5% 0.0% 0.0%

|𝛀|=20 0.5% 0.9% 0.7% 0.3% 0.2% 0.4% 0.4% 0.2% 0.3% 0.5%

|𝛀|=30 0.0% 0.3% 0.4% 0.6% 0.0% 0.0% 0.0% 0.2% 2.0% 0.2%

|𝛀|=40 0.0% 0.3% 0.0% 0.1% 0.1% 0.1% 0.0% 0.2% 1.0% 0.1%

|𝛀|=50 0.4% 0.1% 0.4% 0.3% 0.8% 1.1% 0.1% 0.1% 0.5% 0.7%

 Replication

 21 22 23 24 25 26 27 28 29 30

|𝛀|=10 0.0% 0.0% 0.0% 0.2% 0.0% 0.8% 1.8% 0.0% 0.8% 0.0%

|𝛀|=20 0.0% 1.5% 0.0% 0.7% 0.0% 0.2% 0.5% 0.0% 0.2% 1.0%

|𝛀|=30 0.1% 0.0% 1.7% 0.5% 0.0% 0.3% 0.8% 0.0% 0.1% 0.5%

|𝛀|=40 0.4% 0.0% 0.5% 0.5% 0.9% 0.0% 0.5% 0.2% 0.0% 0.7%

|𝛀|=50 0.0% 0.2% 0.5% 0.6% 0.3% 0.5% 0.1% 0.4% 0.3% 1.6%

