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Abstract—In this paper, an evolutionary General Type-2 Radial
Basis Function Neural Network (GT2-RBFNN) for trajectory
planning in Remotely Operated underwater Vehicles (ROVs) is
suggested. The GT2-RBFNN is used as a data-driven learning
system to orient the current position of an ROV in underwater en-
vironments. To determine the parameters of GT2-RBFNN, Galac-
tic Swarm Optimisation (GSO) was implemented. A BlueROV2
and a squared water container of 2.5m × 2.5m × 3.5m were
employed to run all experiments. To control the ROV position,
a sensory system that consists of a compass, a micro data sonar,
a ping sonar and a pressure sensor was integrated. First, a
Proportional Derivative fuzzy controller was implemented to
control the depth and yaw positions of the ROV. Secondly, the
GT2-RBFNN was applied to discriminate between two different
types of contours, i.e. corners and walls in order to follow an
obstacle-free trajectory. To compare the efficiency of the GT2-
RBFNN, a number of learning techniques that are based on
Extreme Learning Machine (ELM) and evolutionary optimisation
were implemented. Based on our results, a high trade-off between
model simplicity and low computational burden are provided by
the GT2-RBFNN.

Index Terms—Neural Networks, GT2 Fuzzy Logic, evolution-
ary computing, Remotely Operated Underwater Vehicles.

I. INTRODUCTION

General Type-2 Fuzzy Logic Systems (GT2 FLSs) are cred-
ited to outperform their Type-1 (T1) and Interval Type-2 (IT2)
counterparts in a number of different applications [1–8]. This
is mainly due to their ability to better deal with uncertainties
inherent in real world problems. Compared to T1 and IT2
FSs, in terms of system’s design, GT2 FSs are characterised
by a footprint of Uncertainty (FOU) that provides an extra
dimension giving more degrees of freedom. In underwater
applications, uncertainties may result specially from sensor’s
measurements, uncertainties in control actions, linguistic un-
certainties due to system’s design and uncertainties that are
present in training data [3, 7, 9]. Such uncertainties may affect
not only the performance of a GT2 FLS, but also the correct

definition of the appropriate Membership Functions (MFs) and
the parameter’s identification of each antecedent and conse-
quent. Within this context, different learning techniques have
been suggested [5]. In particular Gradient-Descent-based (GD)
approaches [5] and Evolutionary Optimisation (EO) [7] are
the most popular for the design of FLSs of high order that use
Karnik-Mendel algorithms (KM). Opposite to GD approaches,
EO does not require the iterative sorting process that is usually
carried out when computing each partial derivative. Moreover,
the application of EO favours the opimisation search to avoid
getting trapped in local minima.

This paper reports the use of Galactic Swarm Optimisation
(GSO) to design a General Type-2 RBF Neural Network (GT2-
RBFNN) that is based on the functional equivalence between
the RBF Neural Network (RBFNN) and General Type-2 Fuzzy
Logic Systems (GT2 FLSs) with a special application to
trajectory planning in Remotely Operated Underwater Vehicles
(ROVs). The computation complexity of GT2 FLSs usually
makes them difficult to be deployed into real applications. In
this sense, two versions of the GT2-RBFNN are implemented
using GSO as a training optimisation are suggested, i.e. a
GT2-RBFNN with a Karnik-Mendel type reduction layer, and
a GT2-RBFNN with a Nie-Tan direct defuzzification layer.
To compare the effectiveness with respect to other learning
techniques such as Covariance Matrix Adaptation Evolution-
ary Strategies CMA-ES, Particle Swarm Optimisation (PSO),
and GD applied to a GT2-RBFNN, as well as neural structures
based on Extreme Learning Machine (ELM).

The rest of this paper is organised as follows: Section II
provides an overview of GT2 FLS theory, GT2-RBFNN and
GSO, while in section III the proposed methods are presented.
Section IV presents experiments and results, and conclusions
and future work are drawn in section V.
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1/Ã1

1
3/Ã 1
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Fig. 1: Some α−planes raised to level α for a GT2 FS.

II. BACKGROUND THEORY

This section provides a brief review of General Type-2
Fuzzy Sets (GT2 FSs) and theory of α-plane representation
as well as the GT2-RBFNN and GSO methods are described.

A. Definition of a General Type-2 Fuzzy Set

A General Type-2 Fuzzy Set (GT2 FS) denoted by Ã (also
called T2 FS) is characterised by a bivariate MF µÃ(x, u) ⊆
[0, 1] on the Cartesian product µÃ : X × [0, 1], where the
primary variable is x ∈ X . And the y − axis is called
secondary variable or primary MF u ∈ Jx ⊆ [0, 1] as
illustrated in Fig. 1. Thus, Ã is represented by:

Ã = {(x, u), µÃ(x, u)|∀x ∈ X,∀u ∈ Jx ⊆ [0, 1]} (1)

{µÃ(u)|u ∈ U} is a vertical slice of µÃ(x, u).

B. α−plane Representation

An α−plane of a GT2 FS Ã is denoted by Ãα, is the union
of the primary MFs of Ã whose secondary grades are greater
than or equal to α (0 ≤ α ≤ 1)

Ãα = {(x, u), µÃ(x, u) ≥ α|x ∈ X,u ∈ [0, 1]} (2)

where the lower and upper limits for Ãα are defined as [10]
[aα̃, bα̃] = [LMF (Ãα), UMF (Ãα)]. That means when Ãα is
raised to level α, it is a plane at that level that can be obtained
by connecting all the corresponding α−cuts of the associated
vertical slices of the secondary MFs of x ∈ X [1]. where the
horizontal-slice representation of a GT2 FS Ã is:

Ã = sup
α∈[0,1]

α/

[∫
x∈X

[aα(x), bα(x)]/x

]
=

⋃
α∈[0,1]

α/Ãα (3)

C. General Type-2 Radial Basis Function Neural Network

According to [5, 11, 12], a Radial Basis Function Neural
Network (RBFNN) can be viewed as Fuzzy Logic System
(FLS) under some mild conditions. This functional equiv-
alence has been extended in order to design higher order
FLSs based on the model of the RBFNN. An RBFNN can
be regarded as an FLSs whose main inference engine is
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Fig. 2: General Type-2 Fuzzy Neural Network (GT2-RBFNN).

interpreted as an adaptive filter [1]. It resembles an additive
weighted combination of the MFs of the fired-rule output
sets in the hidden layer of the RBFNN (See Fig. 2) [1].
Each hidden receptive unit in the RBFNN is functionally
equivalence to a fuzzy rule Ri described by a multivariable
MF µRi(~xp, yp) = µRi [x1, . . . , xn, y] of Gaussian type, whose
input vector ~xp ∈ X1× . . . Xn and the implication engine can
be defined as:

µRi(~xp, y) = µAi→Gi =
[
Tnk1µF ik(xk) ? µGi(y)

]
(4)

Where ? is the minimum t − norm that represents the
shortest Euclidean distance of the input vector ~xp. And the
ith receptive unit is represented as a fuzzy rule in the form:

Ri : IF x1 is F i1 and . . . IF xk is F ik and . . .

IF xn is F in THEN y is Gi; i = 1, . . . ,M (5)

The firing strength fi of each receptive unit is defined as:

µAi→Gi(~xp, y) = fi

(
exp

[
−
∑n
k=1 (xk −mki)

2

σ2
i

])
(6)

The GT2-RBFNN is a Fuzzy Neural Network of general
type-2 (GT2-RBFNN) with a Mamdani inference engine an
a Karnik-Mendel type-reduction layer, where all the FSs are
of GT2. The adopted neural structure for the GT2-RBFNN is a
GT2 FLSs with an uncertain width σi = [σ1

i , σ
2
i ] and a fixed

mean mi
k where the input layer is a singleton fuzzification

with a secondary MF that is convex, a Center-Of-Sets (COS)
type reduction that uses the Karnik-Mendel algorithm and an
average of end-points defuzzification (AED). A horizontal-
slice representation for the GT2-RBFNN is used. In order



to avoid additional parameters and as the secondary MFs are
vertical slices, we choose a isosceles isosceles triangle function
where its base is equal to f0i − f0i and its Apex location is

Apex(~xp) = f0i (~xp) + w[f0i (~xp)− f0i (~xp)] (7)

we choose a value for w = 1/2.

D. GT2-RBFNN Input Layer

The adopted GT2-RBFNN is a Multi-Input-Single-Output
FLS, in which the input data is a multidimensional crisp vector
represented by ~xp = [x1, . . . , xn] ∈ Rn where only the current
state is fed into the layer and then forwarded to next layer.

E. General Type-2 RBF Layer

Singleton fuzzification is employed, i.e. for each value xk
only a T1 vertical slice for an antecedent GT2 FS F̃ ik is
activated. Based on [13], for each fuzzy rule and input ~xp
in the GT2-RBFNN (Mamdani type), only one firing interval
Fαsi is activated for level αs in the GT2 RBF layer as follows
(See Fig. 2) - Fαsi := [fαsi (~xp), f

αs
i (~xp)]

Fαsi :=


fαsi (~xp) = exp

[
−

n∑
k=1

(
xk −mi

k

σ2
i

)2
]
αs

fαsi (~xp) = exp

[
−

n∑
k=1

(
xk −mi

k

σ1
i

)2
]
αs

(8)

Note the term α is not a variable, but a subscript ′s′ to denote
in which level the information in the GT2 RBFNN is being
processed [1].

F. Type-reduction Layer

In the type reduction layer, we use a Center Of Sets Type
Reduction (COS TR). This layer performs a mathematical
operation that maps a GT2 FS into a T1 FS. Due to the adapt-
ability of the GT2 RBFNN, the centroid of each consequent
at the αs-plane can be defined as:CG̃iαs

= αs/[w
i
l,αs

, wir,αs ].
According to [13], for a Mamdani GT2-RBFNN [wil,αs , w

i
r,αs ]

is an Interval Weighted Average (IWA) that is used along
with the firing interval Fαsi to compute the reduced set
[yαsl (~xp), y

αs
r (~xp)] for αs-level as:

yαsl =

∑Lαs
i=1 w

i
l,αs

fαsi +
∑M
i=Lαs+1 w

i
l,αs

fαsi∑Lαs
i=1 f

αs
i +

∑M
i=Lαs+1 f

αs
i

(9)

yαsr =

∑Rαs
i=1 w

i
r,αsf

αs
i +

∑M
i=Rαs+1 w

i
r,αsf

αs
i∑Rαs

i=1 f
αs
i +

∑M
i=Rαs+1 f

αs
i

(10)

where YCOS,αs = 1/[yαsl (~xp), y
αs
r (~xp)].

G. Defuzzification Layer

This layer performs the defuzzification that consists of a
process of aggregation of all horizontal slices. This work uses
the Average of End-Points Defuzzification (AEPD) [3]

yp(~xp) =

S∑
s=1

αs[(y
αs
l (~xp) + yαsr (~xp)) /2]

/
S∑
s=1

αs (11)

H. Simplified GT2-RBFNN based on Nie-Tan Algorithm

To avoid the iterative nature that frequently results from
the number of permutations that are needed to calculate the
reduced set with KM algorithms, simplified structures with
direct-defuzzification have been proposed [5]. Usually, the
term direct-defuzzification or closed-form type reduction is
used indistinctly to refer to the mapping that goes from GT2
FS to a crisp number (type-0). Because of its simplicity and
accuracy with respect to KM algorithms, in this work, a GT2
RBFNN with a Nie-Tan closed-form (NT) as output layer
is suggested as a comparison method to the GT2-RBFNN
using KM. Such method uses the vertical representation of
the Footprint of Uncertainty (FOU) [14] before the process
of dedifuzzification to finally compute the centroid of the IT2
FS. The NT layer can be considered a zero order Taylor series
approximation of Karnik-Mendel+dedifuzzification methods.
It has been proved the Nie-Tan operator is equivalent to an
exhaustive and accurate type-reduction for both discrete and
continuous IT2 FSs [14]. Although there has been improve-
ments on the Nie-Tan operator, in this paper, the centroid
yNT,αs at each α−level is:

yNT,αs =

∑M
i=1 w

αs
i

(
fαsi + fαsi

)∑M
i=1 f

αs
i +

∑M
i=1 f

αs
i

(12)

For each input vector ~xp, the GT2RBFNN output with a NT
method is:

yp(~xp) =

S∑
s=1

αsyNT,αs

/
S∑
s=1

αs (13)
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Algorithm 1: PSEUDOCODE FOR THE EVOLUTION OF AN GT2-

RBFNN USING A GALATIC SWARM OPTIMISATION (GSO)

Input: Input Training Data (xp, tp)
Output: Optimal mk

s , σ
1
k, σ

2
k and wil,αs , w

i
r,αs

1 function Galactic Swarm Optimisation (GSO)
2 Level 1 Initialisation: xij , vij , gbest,i, pbest,ij
3 Level 2 Initialisation: vi, gbest, pbest,i
4 Calculate Jt(xij), j = 1, . . . , Np
5 Initialise the particle’s best position pbest,j ← x̂j
6 while t ≤ EpMAX do
7 Begin PSO: Level 1
8 for i← 1 to Sp do
9 for l1 ← 0 to L1 do

10 for j ← 1 to Np do
11 Update vij and x̂ij (Eq. 19,20)
12 Calculate Jt(x̂j) of solutions x̂ij
13 Select the best GT2 parameters
14 if Jt(xp) < pbest,ij then
15 Update pbest,ij ← xi
16 if pbest,ij < gbest,i then
17 Update gbest,i ← pbest,ij

18 Begin PSO: Level 2
19 Initialise Swarm yi = gbest,i, i = 1, . . . , Sp
20 for l2 ← 0 to L2 do
21 for i← 1 to Np do
22 Update star’s velocity
23 vi = w2vi + c3r3

(
pbest,i − yi

)
+

c4r4 (gbest − yi)
24 Update particle’s position yi ← yi + vi
25 Calculate fitness Jt(x̂j) of each optimal

solution x̂ij
26 if Jt(x̂p) < pbest,i then
27 Update pbest,i ← yi
28 if pbest,i < gbest then
29 Update gbest ← pbest,i

30 t = t+ 1

31 return (mk
s , σ

1
i , σ

2
i , w

i
l,αs

, wir,αs)best

I. Galactic Swarm Optimisation

Galactic Swarm Optimisation (GSO) is a new meta heuristic
technique that mimics the movement of stars, galaxies and
super galaxies [15]. GSO involves two independent levels
of execution, where first multiple ′S′p sub-populations of
′N ′p solutions (stars) are randomly created to explore search
space efficiently. Such populations are small galaxies (also

called subswarms) that interact themselves while updating
their current position x̂ij and minimising their potential energy
[15]. Secondly, a super swarm of stars is recruited from the
best-found solutions gbest,i at each ith sub-population. At each
level, the main search engine is based on the original work of
Particle Swarm Optimisation (PSO) [15]. That is, at first level
every jth star in the ith sub-population moves with a specific
velocity vij while keeping track of its best position pbest,ij .
Thus, at each time step, each particle changes its velocity and
position (direction) xij towards the best location gbest,i. The
associated acceleration of each star is weighted by a random
term. Hence, the velocity and position is defined

vij = wdvij+c1r1
(
pbest,ij − xij

)
+c2r2

(
gbest,i − xij

)
(14)

x̂ij = x̂ij + vij ; j = 1, . . . , Np (15)

where c1, c2 > 0 are acceleration constants; rp and rg are
random numbers between 0 and 1. The term wd is used for
adaptation purposes as an inertial weight. Such parameter is
decreased gradually as the number of generation for the PSO
increases according to the rate:

wd(t) = (wmax − winit)/Maxiter (16)

in which, winit and wmax are the initial and final inertial
weights respectively. Finally, PSO is applied again to find the
set of the best global optimum using the set of gbest,ij .

III. METHODS

A. Evolution of the GT2-RBFNN using GSO

The evolution of the GT2-RBFNN with a Gaussian MF hav-
ing a fixed mean msi and a variable standard deviation [σ1

i , σ
2
2 ]

and KM type-reduction, whose learning methodology is based
on the GSO is described in the Algorithm 1. A Multiple-
Input-Single-Output (MISO) structure for the GT2-RBFNN is
selected. According to Algorithm 1, given a predefined number
of fuzzy rules, the GSO starts from randomly selecting the
values of each GT2 antecedent whose particle’s codification
x̂j ∼ U(lj , uj) is described in Eq. (21) (line 2), where lj
and uj are the lower and upper dimension limits respectively.
The fitness of each candidate model Jt(xp) is estimated using
the Root-Mean-Squared-Error (line 4, Eq. 20) in which Np is
the number of particles. At each iteration, two optimisation
levels are performed (line 7-29). At first level (7-17), the best
candidate (solution, gbest,i) of each sub-population is found
using the fitness function Jt(xp), which is used to create a
super swarm (line 13-17). At second level (line 18-29), the
best solution gbest in the super swarm is used as the final
parameters mk

s , σ1
k, σ

2
k of each antecedent as well as the

optimal value for the consequent vector wil,αs , w
i
r,αs defined

in the output layer of the GT2-RBFNN.

x̂j =

GT2 antecedent 1︷ ︸︸ ︷
mk1, σ

1
1 , σ

2
1 , . . . ,

GT2 antecedent n︷ ︸︸ ︷
mkM , σ

1
M , σ

2
M︸ ︷︷ ︸

Rule 1

, . . . ,

GT2 antecedent 1︷ ︸︸ ︷
mk1, σ

1
M , σ

2
M , . . . ,

GT2 antecedent n︷ ︸︸ ︷
mkM , σ

1
M , σ

2
M︸ ︷︷ ︸

Rule M

, wil,1, w
i
r,1, . . . , w

i
l,αS , w

i
r,αS︸ ︷︷ ︸

Consequent weights

 (17)
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Jt(xp) =

(
1

P

P∑
p=1

(yp − tp)2
)1/2

(18)

Model accuracy of the GT2-RBFNN is calculated as follows:

Model Accuracy(%) =
TN + TP

TP + TN + FP + FN
(19)

Where TP and TN are the true positive and true negative
classification respectively. FP and FN are false positive and
false negative classification correspondingly. in which Np is
the number of particles and EpMAX is used to denote the max
number of evolutionary epochs.

B. Robotic Platform

In this research work, a Remotely Operated Underwater
Vehicle (ROV) with a six-thruster vectored configuration from
Bluerobotics (See Fig. 4) was used for all experiments. The
ROV has an open-source electronics whose sensory system
(See Fig. 5) was integrated at the Laboratory of Submarine
Robotics, (LSR, CIDESI). As detailed in Fig. 4, such system
consists of a pressure sensor that is able to measure up to
30 Bar (300m depth) with a depth resolution of 2mm (Bluer-
obotics), 2) a ping sonar which is an open-source sensor able
to measure distances up to 30 meters with a 30 degree beam
width, b) micro data sonar Titrech with a range resolution of
7.5 mm, a beam width of 3◦, and a variable scanned sector and
d) the Sparton compass that is a micro-sized and light weight
attitude heading sensor with a Static Heading Accuracy of
0.2◦ RMS and full 360◦ rollover capability. As detailed in Fig.
4, the micron data sonar is used as a dynamic echo-sounder
whose scanned sector is defined by a sample window of five
beams separated at 8◦ one to the other. A water container of
2.5×2.5×3.5 metres in height, width and length respectively,
was used to carried the experiments with salty water whose
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Fig. 5: System’s configuration used by the BlueROV2.

density is about 1028kg/m3. As indicated in Fig. 5, the main
computer in the ROV is a Raspberri Pi3, in which ROS
ubiquity (algorithms coded in Python, C++ and Matlab) was
installed in order to implement all machine learning algorithms
and controllers. A line SSH connection between the Raspberri
Pi3 and an Ubuntu computer was used to monitor sensor values
and define parameters of each algorithm.

C. Proposed Methodology for Trajectory Planning based on
an Evolutionary GT2-RBFNN

GT2 Fuzzy Logic has demonstrated to be an efficient
concept to dealing with different types of uncertainties. In par-
ticular, in real modelling and prediction problems [5, 11] GT2
FLSs quantify uncertainty not only from imprecise boundaries
in Fuzzy Sets (FSs) but also as ambiguity due to the variation
in the output system. In this work, the implementation of a
GT2 neural network (GT2-RBFNN) is implemented in the
ROV to discriminate (binary contour classification) between
walls and corners when moving forward in the water container
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Fig. 7: Flow diagram of the processes implemented to the
trajectory planning of the ROV to complete one circuit.

(tank) as it is illustrated in Fig. 4. The idea behind the proposed
methodology is to integrate a number of control algorithms
that guide the to complete a circuit (as shown in Fig. 6(a)) that
consists of the trajectory passing by all walls (from 1 to 4 or
from 4 to 1) either at clockwise or counterclockwise direction,
Fig. 6). As illustrated in Fig. 7 (flow diagram), a compass and
a pressure sensor are used to estimate the yaw angle (See Fig.
4(b)- axis Zb) and the ROV’s depth (axis Zb) respectively. The
ping sonar and the micro data sonar are utilised to estimate
the distance between the ROV and the closest wall. While
the ping sonar estimates a straight distance, as described in
Fig. 4, the micro data sonar obtains five different distances
(estimates) in a predefined scanned sector, where the value of
the reading 180◦ is aligned to the ROV front. In Fig. 8, sample
data obtained by the micro data sonar that corresponds to one
circuit of the ROV in the container and from three different
angles, namely; [148◦, 164◦, 179◦] is presented. Based on
Fig. 6, the reading frequency of the ROV sensory system
is about 0.02Hz. The initial target of the ROV’s trajectory
is to achieve a predefined heading angle that is within the

error range between [−5◦,+5◦] making the heading of the
vehicle parallel to the closest wall. To control the orientation
and depth of the ROV (yaw angle) a PD fuzzy controller
of type-1 (Mamdani) with three and five fuzzy rules were
implemented respectively [16, 17]. Since a dynamic model
of the BlueROV2 is not available, the dynamic properties of
the closed-loop structure have to be derived intuitively and
experimentally. Once the ROV heading is within a predefined
yaw angle range, the ROV employs the ping sonar readings to
move to a position that is within a predefined distance range
[min distance, max distance] parallel to the closest wall as
described in Fig. 6(a). At this position the ROV moves forward
while scanning five different distances to the closest walls at
the angles [148◦, 156◦, 164◦, 172◦, 179◦]. Such data is used by
the evolutionary GT2-RBFNN to discriminate between a wall
and a corner. If a corner is reached by the ROV, then the robot
rotates 90◦ counterclockwise.

0 100 200 300 400 500 600
0

1

2

3

4

17
9°

 - 
M

et
re

s

Sonar Data

0 100 200 300 400 500 600
0

1

2

3

4

16
4°

 - 
M

et
re

s

0 100 200 300 400 500 600
Number of Samples

0

1

2

3

14
8°

 - 
M

et
re

s

Fig. 8: Sample of Sonar measurements used as training data.



IV. EXPERIMENTAL RESULTS

In this section, the efficiency of the proposed framework
is compared to other existing machine learning techniques.
Training data Sonar from five random experiments was col-
lected using the micro data sonar resulting in a collection
586 records (See Fig. 8), where each input vector consists of
five attributes, each one corresponding to a distance measured
at angles {180◦, 172◦, 164◦ 156◦, 148◦} (See Fig. 6(b)). The
sonar data set is an imbalanced binary classification problem
where label 1 is used to denote the presence of a corner, and 0
to denote a wall (438 records out of 582). For cross validation
purposes, a number of ten off-line random experiments were
implemented. From this, the sonar data set was divided into
two subsets, i.e. 80% for training and 20% for testing. For
real experiments, in order to make a decision about the type
of contour, the average classification value of three consecutive
values of yp, (ypt+ yt−1p + yt−2p )/3 > τ are used, where τ is
a predefined threshold. The experimental setup for the GSO
consists of a maximum number of 200 evolutionary epochs,
optimal population size was found to be 40. The GT2-RBFNN
consists of 5 fuzzy rules with three slices (S = 3), τ = 0.7,
and a [min,max] value for σ1

k = [0.3, 3.0], σ2
k = [0.3, 2.0],

and the limits for mk
s = [−1, 1]. wir,α = wil,α = [−5, 5]. As

indicated in Table I, to evaluate the GT2-RBFNN accuracy,
four different training configurations are suggested, i.e. GT2-
RBFNN GSO + KM = GSO used to train a GT2-RBFNN
with a KM type-reduction layer, GT2-RBFNN + GSO +
NT, GT2-RBFNN PSO + KM and GT2-RBFNN + GD +
KM. In Fig. 9, their corresponding evolution performance is
illustrated. In Table I, the average performance of ten random
experiments using seven different machine learning algorithms
is described. ELM, FELM and ML-ELM are neural structures
based on Extreme Learning Machine (ELM), Fuzzy ELM
(FELM) and Multilayer ELM (ML-ELM) respectively. From
Table I, Column time(s) indicates the average training time
required by each algorithm. According to our cross-validation
results, it is clear that ML-EL with two layers of AutoEncoders
(AEs) and one classification layer provides the highest trade-
off between accuracy and computational burden. The number
of Hidden Units (column No. of HU) is selected as [200, 70],
the first and second AEs has 200 and 100 units respectively,
while a No. of HU for the classification layer is 70.

TABLE I: AVERAGE PERFORMANCE FOR CONTOUR CLASSIFICATION.

Model Training Testing

Mean (%) Time(s) Mean (%) No. of HU

G
T

2-
R

B
FN

N

GSO + KM 94.30 31.01 90.29 7

CMA-ES + KM 92.95 28.56 91.22 7

GSO + NT 92.08 29.57 89.37 7

PSO + KM 92.74 24.33 89.01 7

BEP + KM 93.22 22.14 86.12 7

ELM 94.36 1.30 93.98 90

FELM 95.77 3.21 94.19 90

ML-ELM 98.61 1.23 95.01 [200, 70]
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Fig. 9: Average training accuracy for the GT2-RBFNN using
GSO, PSO and CMA-ESs.
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Fig. 10: Average testing accuracy.

Accuracy for Real Experiments: 85.48%
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Fig. 11: Average testing accuracy for real experiments.

For practical purposes, those models trained with an evo-
lutionary optimisation and BEP represent a higher trade-off
between model accuracy and model simplicity. From this, in
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particular, an evolutionary GT2-RBFNN provides a higher
accuracy with better generalisation properties. In Fig. 10, a
confusion matrix that corresponds to average testing perfor-
mance of the evolutionary GSO is presented. To evaluate the
performance of the ROV, five experiments were carried out
using the trained neural structure of the GT2-RBFNN for a
depth of 1.2m, in order to complete a counterclockwise circuit
delineated by the point sequence wall(1)-to-wall(2)-to-wall(3)-
to-wall(4) as described in Fig. 6. The average classification of
five experiments provided by the GT2-RBFNN to recognise
contours (accuracy: 85.48%) is presented in Fig. 11. As can be
noted from Fig. 11, the ability of the GT2-RBFNN to properly
suffers a small decrease when discriminating between walls
and corners. In Fig. 12, the performance achieved by the yaw
and depth fuzzy controllers and the distance that the ROV kept
between its current position and the closest wall throughout a
random circuit is presented respectively. As can be observed
from Fig. 12, the reference distance width established for these
experiments was proposed with limits [0.4− 0.6]m.

V. CONCLUSIONS AND FUTURE WORK

In this paper, an evolutionary General Type-2 Fuzzy Neu-
ral Network (GT2-RBFNN) that is based on the functional
equivalence between RBFNNs and GT2 FLS for trajectory
planning in Remotely Operated underwater Vehicles (ROVs)
is suggested. The proposed GT2-RBFNN is used as a data-
driven learning system to orient the current position of ROVs
in underwater environments. The parameter identification of
the GT2-RBFNN is determined by using Galactic Swarm
Optimisation (GSO). To compare the performance of the GT2-
RBFNN, a number of different techniques based on evolution-
ary computing and Extreme Learning Machine (ELM) were
suggested. A squared water container and an ROV BlueROV2
were employed to run all experiments. To control the ROV’s

position (depth, yaw and motion), a sensory system that
includes a micro data sonar, a pressure sensor, a ping sonar
and a compass was integrated. Based on our results, the GT2-
RBFNN offers a robust trade-off between model accuracy and
model simplicity in underwater environments.

Future work includes underwater environments whose con-
tour is unknown as well as the implementation of online
learning methods that allows the GT2-RBFNN updates its
parameters in the presence of new evidence.
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