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_____________________________________________________________ 

Abstract: A targeted new dioxo molybdenum(VI) ONO Schiff base complex was prepared for 

catalyzing epoxidation of olefins in water. This complex was characterized by FT-IR, NMR, UV-

Vis, and X-ray crystallography techniques. DFT calculations are additionally performed to find 

ground and transition states for finding electronic structure and UV-Vis assignment. Afterward, a 

new protocol was defined for sustainable catalytic epoxidation of olefin in water using this 

complex as a green catalyst, and also remarkable results are obtained, such as turn over number up 

to 1400.   
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1. INTRODUCTION 

 

Epoxidation is a fundamental chemical process for the transformation of olefins into fine chemical 

products, which is fundamental to several industrial applications and for the preparation of 

complex molecules such as pharmaceutical compounds[1]. The constant high interest in the 

epoxidation process is confirmed by numerous publications in the field [2]. Early transition metals, 

containing high oxidation states such as Mo(VI), V(V), Re(VII) and W(VI), are able to catalyze 

epoxidation of olefins effectively [3], and among these high-valent metals, molybdenum is very 

effective [4]. There are various examples of molybdenum(VI), used as catalysts in industry, as in 

the Halcon and Arco processes where homogeneous Mo(VI) catalysts are used for industrial 

epoxidation of olefins [5]. 

Molybdenum(VI) Schiff base complexes containing a cis-MoO2 unit, behave like enzymes such 

as xanthine oxidase and nitrogenase which have active sites containing molybdenum. Endowed 

with the Mo=O unit, these complexes are employed as catalysts in industry for oxygen atom 

transfer reactions [6]. The use of metal-organic complexes of Mo(VI) with Schiff base ligands has 

been reported in many electrochemical applications and biological modeling, as antioxidant and 

antibacterial factors, and also as catalysts for the production of hydrogen, sulfide oxidations and 
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alkene epoxidations [7]. In order to emulate biological systems, a lot of dioxo molybdenum(VI) 

complexes are synthesized and specified so far [6e, 6f, 8].  

Over the past few decades, sustainability principles have been adopted by chemical industry [9]. 

In term of green chemistry, the utilization of environmentally friendly and efficient solvents in 

organic reactions has led to a new chemistry and evident economic benefits [10]. Water, due to its 

safety can be a green alternative, in comparison with classic organic solvents, for a less harmful 

organic synthesis [11].  

Design and synthesis of catalytic systems that show high activity in water, has attracted great 

attention [12]. Due to electronic structures and spatial effects that ligands can provide around a 

central metal, synthesis and utilization of an efficient ligand can transfer unique properties to a 

catalytic system, including solubility and high efficiency in water [13]. On the other hand, despite 

the fact that there is much interest in preparing epoxidation catalytic systems, active in water, few 

works have been published in this area [3i, 12a-c, 14]. In the best of our knowledge, very few 

examples of epoxidation in water, catalyzed by dioxo molybdenum(VI) Schiff base complex, have 

been published so far [4c].  

In this work, a new dioxo molybdenum(VI) complex, chelated by a new Schiff-base ligand, has 

been synthesized and fully characterized. Furthermore, catalytic activity of this complex in 

epoxidation of olefins was studied in water as a green solvent, and remarkable catalytic potential 

has been presented for this catalytic system. In this protocol, water was replaced with traditional 

epoxidation solvent, 1,2-dichloroethane, to reduce toxicity of this toxic solvent to environment. 

As well as, theoretical studies have been conducted in order to obtain optimum geometrical 

parameters for this molybdenum complex. 

2. EXPERIMENTAL 

2.1. Materials and Methods 

5-(chloromethyl)-2-hydroxybenzaldehyde [15] (1) was prepared according to a modified, 

previously published procedure. (3-formyl-4-hydroxy-5-methylbenzyl) triphenyl phosphonium 

chloride [16] (2) and bis(acetylacetonato)dioxo molybdenum(VI) [17] (3) were synthesized 

according to the known literature methods. Acetylacetone was purchased from Fluka and it was 

purified by the previously published method [18]. All other chemicals and solvents were purchased 

from Merck and Sigma-Aldrich companies and were used as obtained from commercial sources, 

without further purification. Elemental analyses for carbon, hydrogen, and nitrogen (CHN) were 

performed on a leco truspec elemental analyzer. FT-IR spectra were obtained employing KBr 

pellets on a Bruker Tensor 27 FT-IR spectrophotometer. The electronic spectra were recorded in 

ethanol on a Varian Cary 100 Spectrophotometer. The NMR spectra were recorded at room 

temperature with a Bruker FT-NMR 500 MHz (1H at 500 MHz, 13C at 125.8 MHz) or Bruker FT-

NMR 400 MHz (1H at 400 MHz, 13C at 100.6 MHz and 31P at 162 MHz) spectrometer in CDCl3, 

DMSO-d6, and methanol-d4. Analyzing 1H NMR spectrum was performed using a previously 



published method.[19] The catalytic reactions’ products were characterized applying an Agilent 

Technologies 6890 N gas chromatography, equipped with a 19091J-236 HP-5, 5% phenyl methyl 

siloxane capillary column. Precise temperature adjustment (for the synthesis of 5-(chloromethyl)-

2-hydroxybenzaldehyde) was conducted by a WiseCircu WCR-P8 precision refrigerated bath. 

2.2. Synthesis of Complex 4 

A 100 mL two-neck round bottom flask equipped with a magnetic stirrer and condenser was 

charged with (3-formyl-4-hydroxy-5-methylbenzyl) triphenylphosphonium chloride (0.866 g, 2 

mmol) in 20 mL of ethanol. The mixture was heated up to reflux and 2-aminophenol (0.218 g, 2 

mmol) in 20 mL of ethanol was added dropwise over 20 min. The reaction was maintained 

refluxing for 3 h. After that, an ethanolic solution of bis(acetylacetonato)dioxo molybdenum(VI) 

(0.652 g, 2 mmol in 20 mL) was poured into the mentioned solution. The reaction mixture was left 

refluxing and stirring in the air atmosphere for 5 h. After the reaction was completed, the volume 

of solution was reduced to 10 mL. Then, 20 mL of diethyl ether was added to the solution and 

resulted red-orange solid was collected by filtration and washed with diethyl ether. (0.988 g, 75% 

yield). Anal. Calc. for Mo2O9N2Cl2P2C64H52: C 58.33, H 3.98, N 2.13%. found: C 58.47, H 3.91, 

N 2.11%.,  1H NMR (400 MHz, methanol-d4) δ = 8.90 (s, 1H), 7.92 – 7.82 (m, 3H), 7.75 – 7.66 

(m, 12H), 7.65 (dd, J=8.1, 1.1, 1H), 7.40 (t, J=2.5, 1H), 7.25 (ddd, J=8.2, 7.3, 1.1, 1H), 7.00 (dt, 

J=8.6, 2.2, 1H), 6.94 (ddd, J=8.1, 7.3, 1.0, 1H), 6.85 (dd, J=8.2, 1.0, 1H), 6.72 (d, J=8.6, 1H), 4.91 

(d, J=14.3, 2H).13C NMR (100.6 MHz, methanol-d4) δ = 163.6 (d, J=3.2), 161.9 (s), 156.8 (s), 

138.4 (d, J=5.9), 138.4 (d, J=4.1), 136.7 (s), 136.5 (d, J=3.0), 135.4 (d, J=9.7), 131.8 (s), 131.5 (d, 

J=12.5), 123.8 (d, J=2.9), 122.3 (s), 121.1 (d, J=8.5), 120.7 (d, J=2.8), 118.9 (d, J=85.9), 118.6 (s), 

117.0 (s), 29.7 (d, J=48.1). 31P NMR (162 MHz, methanol-d4) δ = 22.6 (s). IR (KBr) (νmax/cm-

1): 1612 ν(C=N), 900 and 845 ν(Mo=O). 

2.3. Crystal structure determination 

Single crystals of the complex, suitable for X-ray diffraction analysis, were grown by slow vapor 

diffusion of diethyl ether into ethanol solution. X-ray intensity data were collected using the full 

sphere routine by φ and ω scans strategy on the Agilent SuperNova dual wavelength EoS S2 

diffractometer with mirror monochromated Cu Kα radiation (λ = 1.54184 Ǻ). For all data 

collections, the crystals were cooled to 150 K using an Oxford diffraction Cryojet low-temperature 

attachment. The data reduction, including an empirical absorption correction using spherical 

harmonics, implemented in SCALE3 ABSPACK scaling algorithm [20], was performed using the 

CrysAlisPro software package [21]. The crystal structures were solved by direct methods, 

employing the online version of AutoChem 2.0 [22] in conjunction with OLEX2 [23] suite of 

programs implemented in the CrysAlis software, and then refined by full-matrix least-squares 

(SHELXL2014) on F2 [23]. The non-hydrogen atoms were refined anisotropically. Carbon-bound 

hydrogen atoms were positioned geometrically in idealized positions and refined with the riding 

model approximation, with Uiso(H) = 1.2 or 1.5 Ueq(C). The oxygen-bound hydrogen atoms were 

located from the difference Fourier map and constrained to refine with the parent atom. The 



program SHELXTL was used for the molecular graphics [23]. All geometric calculations were 

carried out applying PLATON software [24]. There are two independent molecules in the unit cell. 

For one molecule the Mo, the axial and equatorial oxo groups and chlorido ligand in MoNO4Cl 

unit are disordered over two positions, in the ratio 0.814(4):0.186(4). For the first compound, the 

two components of one oxo oxygen and the Cl atom were assigned the same position, while the 

two components of Mo atoms and of one oxo atom were assigned the same anisotropic 

displacement parameters. For the second molecule, the triphenylphosphine group was distributed 

over two positions, by rotation around the P—C bond; both components were restrained to have 

the same geometry while all carbon atoms were restrained to have similar anisotropic displacement 

parameters. The final ratio of the two components were 0.559(7):0.441(7). The difference map 

showed a number of peaks, due to disordered diffuse solvent. The contribution to the solvent was 

treated with the SQUEEZE routine of PLATON, the unit cell contained 6 cavities each of which 

was consistent with the presence of 7 molecules of water per cavity (per cavity unit). 

2.4. General procedure for catalytic epoxidation in water  

In a 5 mL round bottom flask equipped with condenser and magnetic stirrer, complex 4 as catalyst 

(0.0013 g, 0.002 mmol), olefin (1 mmol), water (0.5 mL) and TBHP-H2O (tert-butyl hydrogen 

peroxide, 70% in water, 2 mmol, 274 µL) were added and the resulting mixture was left under 

stirring at 80 °C under atmospheric pressure. After 5 h the product was extracted using ethyl acetate 

(2 mL) and dried using sodium sulfate. The reaction progress was monitored by GLC (Gas-Liquid 

Chromatography) system and the conversions and epoxide selectivity were calculated using 

chromatographic peak integration (n-octane (1mmol, 163 µL) was used as internal standard). The 

products were identified by standard samples. 

3. RESULTS AND DISCUSSION 

3.1. Synthesis and characterization 

 

1, 2 and 3 have been synthesized through a routine procedure and characterized by NMR 

spectroscopy (see supporting information for more details). 4 has been synthesized by addition of 

3 to refluxing ethanolic mixture of 2 and 2-aminophenol (Fig. 1). 

 

Figure 1. Synthesis of complex 4 



1H NMR spectrum of 4 (Fig. S8, supporting information) shows a singlet resonance at =8.90 

ppm, which was designated to the aldimine hydrogen atom. Three sets of multiple resonances 

between =7.66-7.92 ppm were allocated to hydrogen atoms of phenyl phosphonium rings. The 

signal between =7.82-7.92 ppm can be allocated to para-hydrogen atoms of phenyl phosphonium 

rings, and also the pattern of this resonance looks like an incomplete doublet of the triplet, due to 

the long-range coupling of these hydrogen atoms with phosphor atom and other hydrogen atoms, 

which makes it difficult to analyze. The resonance of hydrogen atoms of Meta and Ortho positions 

of phenyl phosphonium rings were appeared at =7.71-7.75 ppm and =7.65-7.71 ppm 

respectively, and they were also merged together. These three sets of resonances are correlated 

together, as shown in the 1H-1H COSY NMR spectrum (Fig. S12 and S13). The analysis of 

coupling between hydrogen atoms of the benzyl ring and iminophenol ring is shown in Fig. 2. 

According to Fig. 2, two sets of the doublet of doublet pattern can be observed at = 7.65 and = 

6.85 ppm and they were assigned to hydrogen atoms of ((h)) and ((c)) respectively. Other two sets 

of resonances with a doublet of the doublet of doublet pattern at = 7.25 and = 6.94 ppm can be 

assigned to hydrogen atoms of ((f)) and ((d)) respectively. The hydrogen atoms of ((c)), ((d)), ((f)) 

and ((h)) are correlated together, as observed in 1H-1H COSY NMR spectrum (Fig. S12 and S13). 

The resonances of hydrogen atoms of ((b)) and ((e)) were appeared at = 6.72 and = 7.00 ppm 

respectively. These two hydrogen atoms are correlated together and they split each other into 

doublet signals. In addition, the hydrogen atom ((b)) has a long-range coupling with benzyl 

hydrogen with 4JHH=2.2 Hz, which justifies why it shows a triplet of doublet pattern. Another 

signal at = 7.40 ppm was related to hydrogen atom ((g)) that displays the triplet pattern because 

of correlation with benzylic hydrogen with 4JHH=2.5 Hz. Finally, the resonance of benzylic 

hydrogen atoms was appeared at =4.91 ppm which has a doublet pattern with 2JPH=14.3 Hz. The 

broadening of benzylic hydrogen resonance is due to further coupling with ((g)) and ((e)) hydrogen 

atoms with constant coupling 4JHH=2.5 and 2.2 Hz, respectively. 



 

Figure 2. J-J coupling analysis of 1H NMR spectrum of complex 4 

The 13C NMR spectrum of complex 4 (Fig. S9) showed 18 sets of resonances. In order to assign 

these signals, 1H-13C HSQC and 1H-13C HMBC analyses were performed (Fig. S14-S17). 

According to the 1H-13C HSQC and 1H-13C HMBC NMR spectra, the resonances of carbon atoms 

of ipso, ortho, meta and para positions of phenyl phosphonium rings were appeared as a doublet 

resonance at = 118.9 (1JPC=85.9 Hz), 131.5 (2JPC=12.5 Hz), 135.4 (3JPC=9.7 Hz), and 136.5 

(4JPC=3.0 Hz) ppm, respectively. The doublet resonance in the aliphatic region (29.7 ppm) is 

represented to the benzylic carbon atom with 1JPC=48.1 Hz. The correlation between the singlet 

signal at 156.8 ppm and aldimine hydrogen in 1H-13C HSQC shows that this resonance is related 

to imine carbon. According to Fig S.15, four singlet resonances at =117.0, 118.6, 122.3 and 131.8 

ppm are correlated to ((h)), ((c)), ((d)) and ((f)) hydrogen atoms respectively, and they are assigned 

to ((10)), ((13)), ((11)) and ((12)) carbon atoms, respectively (carbon labeling is illustrated in Fig. 

2). Three doublet signals at = 120.7 (4JPC=2.8 Hz), 138.4 (3JPC=4.1 Hz) and 138.4 (3JPC=5.9 Hz) 

ppm have a correlation with ((b)), ((e)) and ((g)) hydrogen atoms, respectively, and they are 



assigned to ((4)), ((3)) and ((7)) carbon atoms, respectively. Due to the relatively large coupling 

constant of doublet signal at δ = 121.1 ppm (2JPC=8.5 Hz), this signal is represented to the carbon 

atom 2. Two phenolic carbons ((5)) and ((14)) resonances were appeared at δ = 163.6 and 161.9 

ppm as a doublet (5JPC= 3.2 Hz) and a singlet signals, respectively. At last, two other signals at δ 

=136.7 (singlet) and 123.8 (doublet, 4JPC=2.9 Hz) are assigned to carbon nucleus ((6)) and ((9)), 

respectively. 

The 31P NMR spectrum of complex 4 (Fig. S10) shows one signal at = 22.6 ppm, illustrating that 

just one type of phosphorus atom existed in the structure with the chemical shift in the range of 

phosphonium salt chemical shifts [25]. The expansion of the 31P NMR spectrum shows satellite, 

through coupling with 13C nucleus (Fig. S11)  

The FT-IR spectrum of complex 4 shows three important signals in 1612, 900 and 845 cm-1, 

characterized as stretching vibrational mode of imine band and molybdenum dioxo symmetrical 

and unsymmetrical stretching vibrational modes, respectively (Fig. S18) [4d, 26].  

3.2. X-ray crystal characterization 

 

Figure 3. The ORTEP of complex 4 with selected atoms numbering and ellipsoids probability at 40%. The 

hydrogen atoms (except for coordinated aqua ligand) were omitted for clarity and only the major part was shown.  

The ORTEP view of the complexes is shown in Fig. 3. Details of the data collection and refinement 

parameters are summarized in Table 1. Selected bond lengths and angles are summarized in Table 

2. The hydrogen bonding parameters are summarized in Table 3.  

 

 

 

 

 

 



Table 1.  Crystal data and structure refinement for complex 4 

Empirical formula C64 H52 Cl2 Mo2 N2 O9 P2 

Formula weight 1317.80 

Temperature (K) 150(2) 

Wavelength (Å) 1.54184 

Crystal system Hexagonal 

Space group P65 

Unit cell dimensions  

a (Å) 12.2043(3) 

b (Å) 12.2043(3) 

c (Å) 76.2069(17) 

 (deg) 90 

 (deg) 90 

 (deg) 120 

Volume (Å3) 9829.9(5) 

Z 6 

Density (calculated) (Mg/m3) 1.336 

Absorption coefficient (mm-1) 4.780 

F(000) 4020 

Crystal size (mm) 0.13 × 0.11 × 0.05 

Theta range for data collection (deg) 4.2 to 72.091 

Index ranges -14≤h≤13, -14≤k≤13, -59≤l≤93 

Reflections collected 30889 

Independent reflections 8782 [R(int) = 0.065] 

Completeness to theta = 67.684° 99.9 % 

Refinement method Full-matrix least-squares on F2 

Data / restraints / parameters 8782 / 566 / 813 

Goodness-of-fit on F2 1.019 

Final R indices [I > 2 σ(I)] R1 = 0.0510, wR2 = 0.1174 

R indices (all data) R1 = 0.0619, wR2 = 0.1186 

Absolute structure parameter -0.014(9) 

Largest diff. peak and hole 0.43 and -0.44 e. Å-3 

The asymmetric unit of the complex comprises two chemically and crystallographically different 

molybdenum Schiff base complexes. In one of them, M1, the dianionic ONO, two oxo, and the 

chlorido ligands are coordinated to the molybdenum center in a distorted octahedral geometry; the 

compound being neutral. In the other one the dianionic ONO, two oxo, and aqua ligands are 

coordinated to molybdenum center. As this complex is cationic, there is a chloride anion for charge 

balance.  

 

 

 

 



Table 2. Selected bond lengths and angles 

N1–Mo1 2.293(7) 

N2–Mo2 2.302(7) 

O1–Mo1 1.677(9) 

O2–Mo1 1.681(6) 

O3–Mo1 1.979(7) 

O4–Mo1 1.932(6) 

O5–Mo2 1.660(9) 

Cl1–Mo2 2.569(4) 

O6–Mo2 1.679(10) 

O7–Mo2 1.944(7) 

Due to the strong π-donor character of the terminal oxo group, the Mo2–Cl1 [2.569(4) Ǻ] and 

Mo1–O1w [2.278(8) Ǻ] bonds are longer than the normal lengths. These are in agreement with 

the similar complexes reported previously [27]. The crystal packing, Fig. 4, is stabilized by the 

intermolecular O–H…Cl, C–H…O, and C–H…Cl interactions. 

Table 3.  Hydrogen bonds parameters for complex 4 

D–H...A D–H H...A D...A DHA 

O1W–H1WB…Cl4a 0.93 2.30 3.061(7) 139 

C14–H14A...Cl1b 0.97 2.70 3.588(9) 152 

C14–H14B...Cl4b 0.97 2.77 3.716(8) 164 

C16–H16...Cl4b 0.93 2.74 3.627(16) 158 

C22–H22...O5c 0.93 2.53 3.12(2) 121 

C46–H46A...O1d 0.97 2.32 3.262(11) 164 

C49–H49A...O3e 0.93 2.39 3.151(11) 139 

C54–H54A...Cl1f 0.93 2.58 3.364(9) 143 

C54–H54A...O6Af 0.93 2.21 2.86(5) 125 

             (a)1+x,2+y,z+1; (b) x,1+y,z; (c) 1+x, 1+y, z; (d) x,-1+y, z; (e) -1+x,-2+y, z; (f) y, 1-x+y, 1/6+z 

  

 

Figure 4. The crystal packing of the complex 4 viewed down the b-axis, showing the connection of molecules 

through the intermolecular interactions (dashed line) along the a-axis. 

 

 



 

3.3. Electronic structure 

Two different complexes (4a and 4b) were observed in the X-ray single crystal analysis. These 

two complexes are similar to hydrate isomerism derived through the displacement of aqua with 

the chlorido ligand. Hence full geometry optimization was done for both complexes. After 

optimization, the vibrational frequency showed both complexes were in the minimum energy level. 

Optimized structures of 4a and 4b are illustrated in Fig. 5.  (Details of optimized bonds lengths 

and angles are alleged in table S1-S4 in supporting information).  

 

Figure 5. Optimized structure of complex 4a and 4b 

The results obtained from the DFT calculations show that angles and length of the chemical bonds 

have an acceptable agreement with the values obtained from the crystallography experiment. The 

contour map of frontier molecular orbitals of 4a and 4b are illustrated in Fig. 6, Fig. S19 and S20, 

and the energy and composition of them are shown in table S5 and S6 respectively. In overall, it 

is very important to understand the nature of frontier molecular orbitals, because they play a critical 

role in both chemical activity and electronic transition of the complexes. These data confirm that 

both complexes have a closed-shell structure, and also the large energy gap between HOMO and 

LUMO illustrates the low chemical activity and kinetic stability of both complexes [28]. 

According to Fig. 6, and table S5 and S6, for complex 4a and 4b, the HOMO orbitals are 



distributed over the ligand (about 91 % on benzyl and aminophenol rings and imine group for 4a 

and more than 95% on benzyl and aminophenol rings and imine group for 4b) and only 1% of 

HOMO is located on the metal center. Whereas, LUMO has a significant contribution to the metal 

center (41% for 4a and 38% for 4b). These calculations indicate that a nucleophillic attack occurs 

on the metal center. 

Complex 4a Complex 4b 

  

LUMO, -3.02 eV LUMO, -3.23 eV 

  

HOMO, -6.1 eV HOMO, -6.46 eV 

 

Figure 6. Contour map and energy of the HOMO and LOMO orbitals of complex 4a and 4b  

Experimental absorption spectrum of complex 4 and simulated absorption spectra of 4a and 4b are 

compared in Fig. 7.  

 

Figure 7. Experimental and simulated absorption spectra of complex 4  

The selected TD-DFT calculated spectra parameter of complex 4a and 4b along with their 

assignment are summarized in Table 4 (Full parameter of simulated absorption spectra are shown 

in Table S7 and Table S8 in supporting information). As it is observed in Table 4, each of the 



electronic spectrum bands is assigned to a special transition. More than 97% of the transition band 

in 440 nm relates to transitions from the HOMO orbitals to LUMO and according to the nature of 

HOMO and LUMO orbitals, this transition can be assigned as LMCT transition.  

 

Table 4. Selected TD-DFT calculated spectra parameter of complex 4a and 4b   

/nm  assignment /nm  assignment 

Com. 4a   Com. 4b   

497 0.005 H→L (98%) 454 0.026 H→L (97%) 

376 0.030 H-1→L (74%), H→L+2 (15%), 

H→L+3 (7%) 

349 0.074 H→L+2 (45%), H-1→L (44%)  

362 0.084 H-1→L (18%), H→L+2 (62%), 

H→L+3 (9%) 

326 0.036 H-1→L+1 (56%), H→L+3 (24%), H-

2→L (13%) 

330 0.091 H-3→L (28%), H→L+3 (55%), 

H→L+2 (8%) 

320 0.054 H-1→L+1 (40%), H→L+3 (31%), H-

2→L (20%)  

309 0.091 H-5→L (68%), H-3→L (8%) 303 0.432 H-2→L (60%), H→L+3 (22%), 

H→L+2 (8%) 

304 0.200 H-3→L (15%), H-2→L (22%), H-

1→L+2 (29%), H→L+3 (11%), H-

1→L+3 (9%) 

290 0.101 H-1→L+2 (81%), H-1→L+3 (9%) 

300 0.241 H-3→L+1 (12%), H-2→L (11%), H-

2→L+1 (13%), H-1→L+2 (35%), H-

3→L (6%) 

279 0.070 H-2→L+1 (90%) 

299 0.067 H-3→L+1 (29%), H-2→L+1 (33%), 

H-1→L+2 (15%) 

275 0.060 H-1→L+3 (78%), H-1→L+2 (7%) 

265 0.036 H→L+5 (83%), H→L+6 (9%) 245 0.066 H-2→L+3 (84%) 

240 0.028 H-1→L+4 (88%) 244 0.061 H→L+5 (82%), H→L+6 (7%) 

239 0.090 H-3→L+3 (42%), H-2→L+3 (34%), 

H-4→L+3 (6%) 

226 0.050 H-1→L+4 (84%), H-2→L+4 (7%) 

234 0.030 H-9→L (14%), H-5→L+2 (31%), H-

15→L (8%), H-14→L (8%), H-6→L 

(7%) 

217 0.065 H-1→L+5 (39%), H-4→L+1 (35%) 

218 0.072 H-12→L (14%), H-11→L (12%), 

H→L+8 (45%), H-10→L (6%) 

215 0.075 H→L+7 (51%), H-11→L+1 (16%), 

H-10→L+1 (6%), H→L+8 (6%) 

215 0.046 H-14→L+1 (22%), H-13→L+1 

(24%), H-13→L+2 (12%), H→L+8 

(12%), H-13→L+3 (7%) 

214 0.041 H→L+7 (32%), H-11→L+1 (23%), 

H-10→L+1 (10%), H-6→L+1 (6%) 

209 0.070 H-15→L+1 (21%), H-13→L+2 

(44%), H-14→L+2 (9%) 

209 0.036 H→L+8 (19%), H-10→L+2 (15%), 

H-11→L+2 (14%), H-1→L+6 

(14%), H-4→L+2 (13%) 

208 0.033 H→L+9 (25%), H→L+10 (59%) 201 0.034 H-3→L+3 (38%), H-6→L+2 (30%)  

H: HOMO; L: LUMO 

 

 



 

3.4. Catalytic studies 

To evaluate the catalytic capability of 4 in epoxidation of olefins in water, the catalyst, cyclooctene 

and TBHP with the molar ratio of 1:500:1000 were selected as a primitive model in 0.5 mL of 

water and 80 °C (Table 5, entry 11), and the yield was 87.8%. In order to clarify the role of catalyst, 

a reaction was investigated under mentioned conditions in the absence of the catalyst and the yield 

was 17%, which confirms the catalyst’s potential. According to entries, 1-4 (Table 5) the optimum 

ratio for substrate and TBHP was 1:2 (entry 4). Due to the fact that few cases have been reported 

to use water as the solvent of catalytic epoxidation, and the catalyst introduced by authors has 

shown high activity in water, only water was evaluated as the solvent of the catalytic system. In 

this regard, among different volumes of solvent, 0.5 mL was the most efficient volume (entry 6). 

In addition, by examination of different catalyst loadings, 0.2 mol% was chosen as the optimum 

loading amount (entry 12). In the following, the selected initial temperature (80 °C) was the most 

efficient temperature. During all these processes epoxy cyclooctane was the only observed reaction 

product. After optimization of the catalytic system condition, reaction progress was monitored 

based on the time (Fig. 8). Almost after 5 h, no notable progress was observed in the yield.  

 
Figure 8. Reaction profile of the epoxidation of cyclooctene in optimized condition for 4 

According to mechanisms described in different publications [6h, 29], cessation of the reaction 

after 5 h can be due to the coordination of t-BuOH (resulted from TBHP) to the central 

molybdenum. To validate the catalytic reaction results, 10 times scaled-up catalytic reaction was 

investigated under the optimum condition and the conversion obtained 93.4% with 100% 

selectivity to epoxide. This observation shows that large scale experiment gives better output, 

compared with small scale catalytic reaction. 
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Table 5. Effect of the catalyst amount, TBHP amount, water amount and Temperature on the epoxidation of 

cyclooctene using 4 as a catalyst 

Entry Mol% Cat  TBHP 

(mmol) 

Solv 

(mL) 

Temp (°C) Conv%a Sel% TONb 

1 0.1 0 1 80 0 100 0 

2 0.1 1 1 80 13.6 100 136 

3 0.1 1.5 1 80 50.8 100 508 

4 0.1 2 1 80 74.4 100 744 

5 0.1 2 0 80 39.8 100 398 

6 0.1 2 0.5 80 81.2 100 812 

7 0.1 2 1.5 80 61.8 100 618 

8 0.1 2 2 80 43.5 100 435 

9 - 2 0.5 80 17.4 100 - 

10 0.05 2 0.5 80 73.5 100 1470 

11 0.15 2 0.5 80 84.6 100 564 

12 0.2 2 0.5 80 87.8 100 439 

13 0.3 2 0.5 80 88.2 100 294 

14 0.4 2 0.5 80 88.5 100 221 

15 0.5 2 0.5 80 89.1 100 178 

16 0.2 2 0.5 r.t. 3.6 100 18 

17 0.2 2 0.5 50 9.4 100 47 

18 0.2 2 0.5 60 42.1 100 210 

19 0.2 2 0.5 70 72.6 100 363 

20 0.2 2 0.5 Reflux 88.4 100 442 
a Time: 5 h. Cyclooctene: 1 mmol. Solvent: water. Conversions are calculated by GC based on starting alkenes 
b Turnover number= moles of desired product formed/moles of catalyst 

 

The catalytic results are exhibited for various olefins in Table 6. As it is illustrated in entry 1 and 

2, the cyclic alkene with bigger ring undergoes more conversion and selectivity. Also, for cyclic 

alkenes with the same number of ring carbons, the one with more group on C=C shows more 

conversion and selectivity (entries 2, 3). In opposition to alkenes inside the ring, for alkenes outside 

the ring, the one with fewer groups on C=C endures less conversion, but more selectivity (entries 

4, 5). Also for stilbenes, the Trans structure led the reaction to more yield and less selectivity in 

comparison with cis structure (entries 7, 8). In the terminal linear olefins, shorter chains are 

dominant in both conversion and selectivity against longer chains (entries 9, 10) [4d, 30]. 

Additionally, in the linear olefins, the catalyst showed more activity and fewer side products for 

internal C=C (entries 11, 12). Among all the substrates, the lowest yield was obtained for indene 

(entry 6).  

 

 

 



 

 

Table 6. Epoxidation of various olefins using TBHP and 4 

Entry Substrate Conv%a Sel% TONb 

1 cyclooctene 87.8 100 439 

2 cyclohexene 63.2 91 316 

3 1-methylcyclohexene 86.3 100 431 

4 styrene 31.2 14 156 

5 α-methylstyrene 23.5 28 117 

6 Indene 8 20 40 

7 Cis-stilbene 41.3 73 206 

8 Trans-stilbene 56.7 57 283 

9 1-heptene 61.7 85 308 

10 1-octene 36 59 180 

11 Trans-2-octene 64.5 89 322 
a Reaction condition: 0.2 mol% cat, 1 mmol olefin, 2 mmol TBHP, 0.5 mL water solvent, Time 5 h and temperature 
80 °C. Conversions are calculated by GC based on starting alkene. 
b Turnover number= moles of desired product formed/moles of catalyst 

4. Conclusion 

In summary, a new Mo(VI) Schiff base cationic complex was synthesized and fully characterized. 

The asymmetric unit of the complex comprises two chemically and crystallographically different 

molybdenum Schiff base complexes. Therefore, DFT studies were performed for both complexes 

and  the nature of frontier molecular orbitals and electronic transitions were obtained. Afterward, a 

new protocol was defined for catalytic epoxidation of olefin through using this Mo(VI) complex 

as a homogeneous catalyst. In this protocol, 1,2-dichloroethane, a highly toxic solvent commonly 

used in the epoxidation reaction, is substituted with water as a green medium. The catalytic system 

showed good activity in water for epoxidation of varied olefins and the catalyst was successfully 

able to catalyze cyclooctene with a turnover number more than 1400.  
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