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Pareto-optimality in Quasi-linear Settings with Public Budgets∗
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Abstract

We study the problem of allocating multiple identical items that may be complements to
budget-constrained bidders with private values. We show that there does not exist a determin-
istic mechanism that is individually rational, strategy-proof, Pareto-efficient, and that does not
make positive transfers. This is true even if there are only two players, two items, and the bud-
gets are common knowledge. The same impossibility naturally extends to more abstract social
choice settings with an arbitrary outcome set, assuming players with quasi-linear utilities and
public budget limits. Thus, the case of infinite budgets (in which the VCG mechanism satisfies
all these properties) is really the exception.
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1 Introduction

It is well known that the possibility of designing strategy-proof and Pareto-efficient mechanisms

depends on the structure of players’ utilities. Most remarkably, when utilities are quasi-linear

in money, the VCG mechanism (Groves (1973)) is strategy-proof and Pareto-efficient. In recent

years, several works study, in the context of auctions, whether this possibility holds if the quasi-

linearity assumption is slightly relaxed, to allow for hard budget constraints. For example, Aggar-

wal, Muthukrishnan, Pal and Pal (2009) and Ashlagi, Braverman, Hassidim, Lavi and Tennenholtz

(2010) construct strategy-proof and Pareto-efficient deterministic auctions for unit-demand bidders

with private values and budget constraints. In addition, naturally, these auctions are individually

rational, and never make positive transfers. In contrast, with multi-unit demand, Fiat, Leonardi,

Saia and Sankowski (2011) show that there does not exist such auctions, even with only two items,

two bidders with multi-unit demand, and public (commonly known) budgets.

For identical items, the situation with multi-unit demand is slightly better: Dobzinski, Lavi

and Nisan (2008) show that Ausubel’s clinching auction (uniquely) satisfies all above-mentioned

properties, assuming public budgets and additive valuations. In this paper we show that when the

identical items are complements, the impossibility returns. Specifically, even with two identical

items, two bidders with valuations that are complements, and even if budgets are public (i.e.,

commonly known), there still does not exist individually rational, strategy-proof, and Pareto-

efficient auctions that make no positive transfers.

The no-positive-transfers requirement that we use is quite weak, as we only require the sum

of players’ payments to be non-negative. This is clearly an important design criterion in most

auction settings. In fact, with an unlimited amount of positive transfers, one can simply increase

the players’ budgets to be ineffective, and then use the VCG mechanism (and indeed the Groves

mechanism can be tuned to make only positive transfers).

Our proof is quite simple, and does not rely on previous impossibilities. In comparison, the

proof of Fiat et al. (2011) for non-identical items relies on the uniqueness result of Dobzinski et al.

(2008). Briefly, the proof is composed of two main claims that contradict each other, but must be

satisfied by any mechanism with the above four properties. Let bi denote the budget of player i,

and assume b2 > b1. We show that if v2(2) > b1 (where vi(q) denotes player i’s value for q items),

player 2 must pay zero when she receives one item. On the other hand, if v2(2) < b1, prices must

be regular VCG prices. These two claims contradict, since when player 2 has low values she prefers

to falsely declare high values.

There are many classic as well as recent results on impossibilities in mechanism design without

the quasi-linearity assumption, starting from Gibbard (1973) and Satterthwaite (1975), where the

typical result is that only dictatorship (or sequential dictatorship) is strategy-proof and Pareto-

efficient. Interestingly, here, even dictatorship is not a candidate, as dictatorship is simply not

efficient when utilities are quasi-linear. Our result implies that there really is no mechanism that
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satisfies the above desired properties, for almost all structures of valuations over some abstract

set of outcomes. The two extremes of zero budgets, and of infinite budgets, are just two rare

exceptions.

A possible way to advance, given these impossibilities, is to study the “constrained efficiency”

problem of maximizing efficiency subject to Bayesian incentive-compatibility constraints, as initi-

ated in Maskin (2000). It is also important to understand the powers and limitations of randomized

mechanisms, as initiated by Bhattacharya, Conitzer, Munagala and Xiax (2010) for the case of a

divisible good.

In section 2 we formally define our model, and state our result. The proof is given in section 3.

2 Problem Statement and Main Result

We study the following very simple setting. The simplicity of the setting only strengthens our

result, since it is an impossibility. There are two identical items and two players 1, 2. Each player

i has a private valuation function vi(q) that denotes i’s non-negative real value for q = 1, 2 items,

where vi(2) ≥ vi(1) (free disposal), and for notational simplicity we also use vi(0) = 0. Each player

additionally has a commonly known budget constraint bi > 0. The utility of player i from obtaining

q = 1, 2 items for a price pi is quasi-linear up to the budget constraint, i.e., it is vi(q)−pi if pi ≤ bi,

and it is some arbitrary negative number if pi > bi. An outcome is a tuple (q1, q2, p1, p2) where

q1, q2 ∈ {0, 1, 2}, q1 +q2 ≤ 2, and pi ≤ bi for i = 1, 2. (since budgets are public it simplifies notation

and it is without loss of generality to disallow outcomes in which a player pays more than her

budget).

Relying on the revelation principle, we consider only direct mechanisms. In a direct determinis-

tic mechanism, each player i reports some type ṽi(·), and, given these reports and the knowledge of

b1, b2, the mechanism decides on an outcome (qi(ṽ1(·), ṽ2(·)), pi(ṽ1(·), ṽ2(·)))i=1,2. Having fixed the

parameters b1, b2, and some direct mechanism, we denote by ui((ṽ1(·), ṽ2(·)), vi(·)) player i’s result-

ing utility from the outcome of the mechanism when her private type is vi(·) and the declarations

are (ṽ1(·), ṽ2(·)).
We consider the following four standard and desirable properties. The first two properties

address strategic issues, and need to be satisfied for any player i, any true valuation vi(·) of i, any

possible declaration ṽi(·) of player i, and any possible declaration of the other player (say j), ṽj(·).

Individual rationality (IR). A mechanism is ex-post individually rational if player i can always

obtain a non-negative utility by truth-telling, i.e., ui((vi(·), ṽj(·)), vi(·)) ≥ 0.

Strategy proofness (SP). A mechanism is strategy-proof if truth-telling is a dominant strategy,

i.e., ui((vi(·), ṽj(·)), vi(·)) ≥ ui((ṽi(·), ṽj)(·), vi(·)).

The last two properties address design issues, and need to be satisfied for any tuple of valua-

tions/declarations (v1(·), v2(·)).
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No Positive Transfers (NPT). A mechanism satisfies no positive transfers if p1(v1(·), v2(·)) +

p2(v1(·), v2(·)) ≥ 0.

Pareto optimality (PO). A mechanism is Pareto-optimal if its outcome is Pareto optimal.

Formally, there does not exist another outcome õ = (q̃1, q̃2, p̃1, p̃2) that is preferred by both bidders,

i.e., vi(q̃i) − p̃i ≥ vi(qi(v1(·), v2(·))) − pi(v1(·), v2(·)) for i = 1, 2, and by the seller, i.e., p̃1 + p̃2 ≥
p1(v1(·), v2(·)) + p2(v1(·), v2(·)), with at least one strict inequality.1

If valuations were additive, Ausubel’s clinching auction would satisfy all these properties, as

Dobzinski et al. (2008) show. Even in our setting, there do exist mechanisms that satisfy any three

of these four properties. Without IR, for example, one can charge each player her full budget, and

choose some arbitrary allocation independently of the declarations. Without NPT, as remarked

earlier, there exists a possible Groves mechanism. This paper shows that combining the four

properties together is unfortunately impossible.

Theorem 1. In our setting, if b1 6= b2, there does not exist any mechanism that satisfies IR, SP,

NPT, and PO.

This theorem implies the same impossibility for all settings that generalize ours, since any mech-

anism for a more general setting can be used to construct a mechanism with the same properties for

our setting. In particular, this gives an impossibility for any number of identical or non-identical

items and any number of players with general valuations over the set of items. Similarly, it implies

the same impossibility for the abstract social choice setting with at least three alternatives and an

unrestricted domain of players’ valuations.

3 Proof

The proof is composed of four components, that together yield a contradiction to the existence of

a mechanism that satisfies the four mentioned properties. Without loss of generality we assume

throughout that b2 > b1.

First component: qi = 0 implies pi = 0. The first component shows that if player i receives

no items, her price is exactly zero. A very similar argument appears in Dobzinski et al. (2008) and

in Fiat et al. (2011), we include it here mainly for completeness, but also since the exact technical

connection is vague (as these papers study a different setting). We should also note that this claim

does not immediately follow from IR and NPT – these requirements only imply that pi ≤ 0, and

a-priori it may well be that pi < 0 (i.e., a positive transfer to i) if the other player who receives

both items has a positive payment that can balance the transfer. We start with a simple case.

1Note that õ must satisfy p̃i ≤ bi by definition. The seller must be included in this definition to preclude the
trivial improvement of bidders’ utilities by reducing prices (e.g., to zero).
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Claim 1. If vi(2) = vi(1) = 0 then pi = 0.

Proof. Let j denote the other player, let vj(·) be her declaration, and let (q1, q2, p1, p2) be the

resulting outcome. If vj(2) = 0, IR implies pi, pj ≤ 0 and NPT then implies pi = pj = 0. Thus,

assume vj(2) > vj(1) > 0. In this case PO implies qj = 2, otherwise the outcome that keeps the

same prices and sets q̃j = 2, q̃i = 0 Pareto improves the previous outcome (player j’s utility strictly

increases since vj(2) > vj(1) > 0 and player i’s utility does not change since vi(2) = vi(1) = 0).

Now, IR implies pj ≤ vj(2). Since for any vj(2) > vj(1) > 0 (having fixed vi(·) = 0), player j

receives both items, strategy-proofness implies that pj ≤ 0, otherwise player j can report some

positive ṽj(2) < pj , still receive both items, and pay strictly less, thus strictly improving her utility

and contradicting SP.

Since pj ≤ 0, and IR requires pi ≤ 0, NPT now implies pj = pi = 0, and the claim follows.

Claim 2. Whenever qi = 0, pi = 0.

Proof. Suppose by contradiction that there exist v1(·), v2(·) such that qi(v1(·), v2(·)) = 0 but

pi(v1(·), v2(·)) 6= 0. By IR, pi(v1(·), v2(·)) < 0, hence i’s utility is strictly positive. Then, in

case i’s true value is v′i(·) = 0, i can increase her utility by misreporting her type to be vi(·) (if

she reports her true value v′i(·), claim 1 implies that her utility will be zero). This contradicts SP.

Thus, pi(v1(·), v2(·)) = 0, as claimed.

Second component: the case where v2(1) = 0. (Recall that we assume b2 > b1.)

Claim 3. Suppose min{b2, v2(2)} > v1(2) > b1, and v2(1) = 0. Then q2 = 2, and q1 = p1 = 0.

Proof. Suppose that the outcome of the mechanism for this tuple of valuations is q1, q2, p1, p2. We

show that the claim directly follows from PO. Suppose by contradiction that q2 < 2. Then, we

argue that the following outcome is a Pareto improvement: q̃1 = 0, p̃1 = p1 −min{b2, v2(2)}, q̃2 =

2, p̃2 = p2 + min{b2, v2(2)}. To verify this, note that p̃2 ≤ b2 since p2 ≤ 0 (by IR, since q2 ≤ 1 and

v2(1) = 0). Also, by definition, p̃1 + p̃2 = p1 + p2. Player 2’s utility does not decrease since the

added value is v2(2) and the added price is at most that. Player 1’s utility strictly increases, since

the decrease in her value is at most v1(2) and the decrease in her price is min{b2, v2(2)} > v1(2).

This shows that we have indeed constructed a Pareto improvement, which is a contradiction. We

conclude that it must be that q2 = 2 and q1 = 0. Claim 2 now implies p1 = 0.

While the last claim requires v2(2) > v1(2) > b1, the next claim allows very large or very small

values, without a connection between the values of the two players.

Claim 4. Suppose v2(1) = 0 and v1(2) > v1(1). Then either q1 = 2 or q2 = 2.

Proof. This again follows directly from PO. Since vi(2) > vi(1) for i = 1, 2, PO implies q1 + q2 = 2.

Thus, we only need to rule out the case that q1 = q2 = 1. This outcome is Pareto dominated by
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the following outcome: q̃1 = 2, p̃1 = p1, q̃2 = 0, p̃2 = p2. (Player 1’s utility strictly increases since

v1(2) > v1(1), player 2’s utility is the same in both cases as v2(1) = 0, and prices are the same.)

Third component: some bounds on prices when v2(2) > b1. We will show a case where

player 2’s price for one item is at most zero. This makes the contradiction very close, as clearly an

efficient mechanism cannot give an item “for free”. We start with 2’s price for two items.

Claim 5. Suppose v2(2) > b1, v2(1) = 0, and v1(2) > v1(1). Then q2 = 2, and p2 ≤ b1.

Proof. This now follows from SP. By Claim 4, either q1 = 2, or q2 = 2. Suppose by contradiction

that q1 = 2, and consider the case where player 1’s true valuation is ṽ1(·), where min{b2, v2(2)} >
ṽ1(2) > b1. By Claim 3, if player 1 truthfully reports ṽ1(·) as her valuation, her resulting utility

will be exactly zero. If, however, player 1 misreports her valuation to be v1(·), she will receive two

items, and by IR will pay at most b1. Since ṽ1(2) > b1, misreporting her value in this case strictly

increases player 1’s utility, contradicting SP. Thus, q2 = 2. Since this is true for every v2(2) > b1,

IR and SP imply p2 ≤ b1.

Claim 6. Suppose v2(2) > v2(1) > b1, v2(2)− v2(1) ≤ b1 < v1(1). Then q2 = 1 and p2 ≤ 0.

Proof. We first show that q2 = 1. If q2 = 0, player 2’s resulting utility is exactly zero by Claim 2.

However, if player 2 will declare a false valuation ṽ2(·) such that ṽ2(2) = v2(2) and ṽ2(1) = 0 she will

receive two items and will pay at most b1 (by Claim 5), hence will obtain a strictly positive utility,

contradicting SP. If q2 = 2, the following outcome is a Pareto improvement: q̃1 = q̃2 = 1, p̃1 =

p1 +∆, p̃2 = p2−∆, where ∆ = v2(2)−v2(1), and this contradicts PO. Thus, q2 = 1. Since player 2

can receive two items and pay at most b1 by declaring ṽ2(1) = 0, SP implies v2(1)−p2 ≥ v2(2)− b1,

i.e. p2 ≤ b1 − (v2(2) − v2(1)). Since this is true also when v2(2) − v2(1) = b1, SP implies that

p2 ≤ 0.

Forth component: allocation and prices when all values are smaller than b1. We now

study the complementary case where values are relatively small. We show that in this case the

mechanism must choose the VCG outcome. In particular, in some cases player 2 receives one item

and pays a strictly positive price. This will imply the theorem by contradicting SP, as if player 2

misreports her value to be larger than b1 she can receive one item “for free”. We start with a

standard claim.

Claim 7. Let i, j be two distinct players, and fix some valuation ṽj for player j. If qi(vi(·), vj(·)) =

qi(ṽi(·), vj(·)) for two valuations vi(·), ṽi(·) of player i, then it must be that pi(vi(·), vj(·)) = pi(ṽi(·), vj(·))
as well.

Proof. Otherwise, if w.l.o.g. pi(vi(·), vj(·)) < pi(ṽi(·), vj(·)), when i’s true valuation is ṽi(·) she can

increase her utility by declaring vi(·) (this way, her price will decrease while the allocation remains

the same), contradicting SP.
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We continue by analyzing the case where all values are smaller than b1. One should not be

surprised that in this case the mechanism must be VCG, as this case is similar to the case when

there are no budgets at all, and for this case it is well known that the unique strategy-proof and

efficient mechanism is VCG. In this sense, the proof of the following claim is quite standard, and

we provide it mainly for completeness in Appendix A.

Claim 8. Suppose mini=1,2 bi > maxi=1,2 vi(2). Then the allocation (q1, q2) maximizes the welfare

v1(q1) + v2(q2), if qi = 2 then pi = vj(2), and if qi = 1 then pi = vj(2)− vj(1), where j is the other

player.

Concluding the proof of Theorem 1. We show how all the above implies that, in our setting,

there does not exist a mechanism that satisfies IR, SP, NPT, and PO. Assume by contradiction

the existence of such a mechanism. Fix valuations v1(·) and v2(·) such that v1(2) > b1 + v1(1) and

v1(1) > b1 > v2(2) > v2(1) > 0. For these valuations, it cannot be that q1 = 0, otherwise a Pareto

improvement is q̃1 = 2, q̃2 = 0, p̃1 = p1 + v2(2), p̃2 = p2− v2(2) (in fact p1 = 0 by claim 2). We next

show q1 6= 1 and q1 6= 2, achieving a contradiction.

Suppose q1 = 1. If b1−p1 ≥ v2(1), a Pareto improvement is q̃1 = 2, q̃2 = 0, p̃1 = p1 +v2(1), p̃2 =

p2−v2(1), which is a contradiction. If b1−p1 < v2(1), player 1 can increase her utility by declaring

a valuation ṽ1(·) such that v2(2) − v2(1) < ṽ1(2) = ṽ1(1) < b1. By claim 8, in this case player 1

will still receive one item, and will pay v2(2) − v2(1) < b1 − v2(1) < p1. Thus, player 1 is able to

strictly increase her utility, contradicting SP. We conclude that q1 6= 1.

Finally, suppose q1 = 2. By claim 2 the utility of player 2 in this case is exactly zero. However, by

claim 6, if player 2 declares a valuation ṽ2(·) such that ṽ2(2) > ṽ2(1) > b1 and ṽ2(2)−ṽ2(1) ≤ b1, she

will receive one item and will pay a non-positive price, resulting in a positive utility. That is, player 2

can increase her utility to be strictly positive instead of zero by declaring ṽ2(·), a contradiction to SP.

We conclude that q1 6= 2 as well, and therefore we have contradicted the existence of a mechanism

that satisfies IR, SP, NPT, and PO. This concludes the proof of Theorem 1.

A Proof of Claim 8

We need to prove that, if mini=1,2 bi > maxi=1,2 vi(2), the allocation (q1, q2) maximizes the welfare

v1(q1) + v2(q2). Furthermore, if qi = 2 then pi = vj(2), and if qi = 1 then pi = vj(2)− vj(1), where

j is the other player.

Allocation. First suppose vi(2) > max{vj(2), v1(1) + v2(1)}. In this case, if qi < 2, the following

outcome is a Pareto improvement: q̃i = 2, p̃i = pi + (vi(2)− vi(qi)), q̃j = 0, p̃j = pj − (vi(2)− vi(qi)).

By IR, pi ≤ vi(qi). Thus, p̃i ≤ vi(2) < bi. Since vi(2) ≥ vi(qi), p̃j ≤ pj ≤ bj . Clearly, p̃1 + p̃2 =

p1+p2, and player i’s utility is exactly the same in both outcomes, as the added value (vi(2)−vi(qi))
is exactly balanced by the increase in price. Finally, since vi(2) − vi(qi) > vj(qj) (whether qi ≤ 1
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and qj ≤ 1, or qj = 2 and qi = 0), player j’s utility strictly increases, as her decrease in value is

vj(qj) and her decrease in price is vi(2) − vi(qi). This shows that we have indeed constructed a

Pareto improvement, contradicting PO. We conclude that in this case qi = 2.

Now suppose v1(1) + v2(1) > maxi=1,2 vi(2). We need to show that q1 = q2 = 1. Suppose by

contradiction that there exists a player i with qi = 0, and let j be the other player. Then, the

following outcome is a Pareto improvement: q̃1 = q̃2 = 1, p̃i = vi(1), p̃j = pj − vi(1). We have

p̃i < bi since vi(1) < bi by assumption, and p̃j < bj since pj < bj by IR. By Claim 2 pi = 0, hence

p1 + p2 = pj = p̃1 + p̃2. Player i’s utility is zero in both outcomes. The utility of player j strictly

increases: vj(q̃j)− p̃j − (vj(qj)− pj) = vj(q̃j)− vj(qj) + vi(1) ≥ vj(1)− vj(2) + vi(1) > 0. We have

therefore showed a Pareto improvement, contradicting PO. Hence, q1 = q2 = 1.

Payments. We first show that qi = 2 implies pi = vj(2). By the allocation part of the proof

qi = 2 for every ṽi(·) such that min(b1, b2) > ṽi(2) > vj(2) and ṽi(1) = 0. Thus, SP and IR imply

pi ≤ vj(2), otherwise player i can declare pi > ṽi(2) > vj(2) and ṽi(1) = 0, still win two items,

and pay at most ṽi(2) which is strictly less than pi. Similarly, again by the allocation part of the

proof, qi = 0 for every ṽi(·) such that vj(2) > ṽi(2) and ṽi(1) = 0. By claim 2, if player i has true

value vj(2) > ṽi(2) and ṽi(1) = 0 her utility is exactly zero. Thus, SP implies that pi ≥ vj(2),

otherwise player i with true value vj(2) > ṽi(2) > pi and ṽi(1) = 0 she can falsely declare vi and

obtain strictly positive utility. As a conclusion, pi = vj(2).

Second, we argue that qi = 1 implies pi = vj(2) − vj(1). Assume vj(1) > 0, otherwise vi(2) ≥
vi(1) + vj(1) and we can assume qi = 2. By the allocation part of the proof qi = 1 for every ṽi(·)
such that min(b1, b2) > ṽi(2) = ṽi(1) > vj(2) − vj(1), and qi = 0 for every ṽi(·) such that ṽi(2) =

ṽi(1) < vj(2) − vj(1). Similarly to the previous paragraph, by SP this implies pi = vj(2) − vj(1)

(if pi > vj(2) − vj(1), i can increase utility by declaring pi > ṽi(2) = ṽi(1) > vj(2) − vj(1), and if

pi < vj(2)− vj(1), when i’s true utility is pi < ṽi(2) = ṽi(1) < vj(2)− vj(1) she can increase utility

by declaring vi). This concludes the proof of claim 8.
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