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Abstract. We present a collaborative prepositioning strategy to strengthen the disaster preparedness of the

Caribbean countries, which are frequently hit by hurricanes. Since different subsets of countries are affected

in each hurricane season, significant risk pooling benefits can be achieved through horizontal collaboration,

which involves joint ownership of prepositioned stocks. We worked with the inter-governmental Caribbean

Disaster and Emergency Management Agency to design a collaborative prepositioning network in order to

improve regional response capacity. We propose a novel insurance-based method to allocate the costs incurred

to establish and operate the proposed collaborative prepositioning network among the partner countries. We

present a stochastic programming model, which determines the locations and amounts of relief supplies to

store, as well as the investment to be made by each country such that their premium is related to the cost

associated with the expected value and the standard deviation of their demand. We develop a realistic data

set for the network by processing real-world data. We conduct extensive numerical analyses and present

insights that support practical implementation. We show that a significant reduction in total inventory

can be achieved by applying collaborative prepositioning as opposed to a decentralized policy. Our results

also demonstrate that reducing the replenishment lead time during the hurricane season and improving sea

connectivity is essential to increasing the benefits resulting from the network.
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1. Introduction

We design a collaborative prepositioning network for disaster preparedness in the Caribbean,

a region vulnerable to a variety of disasters, including storms, hurricanes, floods and earth-

quakes. We focus on hurricanes which have been a consistent burden on the small islands of

the Caribbean, and have inflicted significant losses in the region (Kirton, 2013). For instance,

in 2004, the direct losses and property damage in the Caribbean were estimated at USD two

billion. The year 2017 was the second most costly in history, when three major hurricanes,

Harvey, Irma and Maria, affected the United States and the Caribbean (CRED, 2018). That

year, 96% of Dominica’s population was affected by hurricane Maria, while the British Virgin

Islands lost the equivalent of 284% of their GDP following hurricane Irma (CRED, 2018).

The Caribbean countries are often hit by multiple storms during an Atlantic hurricane season,

which extends from June 1 to November 30, with a peak in September. These storms form in

the warm waters of the Atlantic, which can be as far east as Africa. Each storm may follow a

different track while passing through the Caribbean, and the severity of a storm may change

along its track. Therefore, a storm reaching the Caribbean region may affect multiple countries

simultaneously at different levels. Historical data indicate that different subsets of Caribbean

countries have been affected in each season. It therefore makes sense to develop a disaster

preparedness strategy based on risk pooling in order to enhance the region’s response capacity.

The inter-governmental Caribbean Disaster and Emergency Management Agency (CDEMA)

was established to strengthen regional integration in disaster management (Kirton, 2013). To

coordinate the relief efforts, CDEMA divides the region into four subregions, each headed by a

subregional focal point. However, logistical and material limitations have hindered the efficient

functioning of the current system. In particular, due to the absence of dedicated storage facilities

and transportation assets, ad hoc measures must be put into place after the occurrence of

a disaster, which prevents a quick mobilization of the resources (Kirton, 2013). The current

head of CDEMA mentioned to us that the regional prepositioning decisions (location of the

warehouses and amount of inventory) have not been determined by scientific methods, and it

would be useful to evaluate the current network by considering logistical infrastructure and

capacity, as well as disaster risks (CDEMA, 2018). We introduce a systematic methodology that

can support CDEMA’s decisions for the design and management of a strongly coordinated and

adequately financed regional prepositioning network to better cope with the effects of strong

weather events in the Caribbean.

Prepositioning, which involves storing relief supplies at strategic locations to reach disaster-

prone regions when needed, is a widely applied disaster preparedness strategy. For instance,

the United Nations Humanitarian Response Depot (UNHRD) and the International Federation

of Red Cross and Red Crescent Societies (IFRC) operate several facilities around the world,

which keep emergency stocks to provide immediate assistance to the affected areas. However,

in the humanitarian sector, the prepositioned stocks are traditionally owned and managed by
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a single agency, and different agencies make prepositioning decisions independently (Acimovic

and Goentzel, 2016). Given the uncertainties in the timing, location and impact of disasters,

prepositioning can be very expensive, and only a few agencies can cover the warehousing and

inventory holding costs associated with it (Balcik and Beamon, 2008).

Our collaborative prepositioning strategy should help different countries coordinate their

actions and generate risk pooling benefits. The proposed network keeps a cumulative amount of

inventory of relief supplies in warehouses, which can reach the countries affected by a hurricane

within a preset response time by air or by sea. We characterize the uncertainties related to

hurricane occurrences and impacts by discrete scenarios. Specifically, each scenario specifies

the set of countries that may be affected in a hurricane season, the timing of the hurricane,

and the estimated demand for relief supplies in these countries. Moreover, we assume that

warehouses may be damaged and that transportation capacity and connectivity may decrease

depending on the severity of the hurricane. Hence, the decisions associated with the physical

infrastructure of the proposed collaborative network involve determining the locations of the

regional warehouses and the amount of inventory to store at each warehouse. Furthermore, in

order for the network to be sustainable, it is essential to develop a transparent and fair cost

sharing system that specifies the benefits and costs associated with this collaborative mechanism

for the partner countries. In this study, we present a novel methodology to determine the amount

of investment to be made by each partner country to establish and run the collaborative network.

In particular, inspired by the Caribbean Catastrophic Relief Insurance Facility (CCRIF), which

is a risk pooling mechanism for providing catastrophe funds to the Caribbean countries affected

by disasters, we develop an insurance framework to determine the costs and benefits for each

country. Accordingly, the payoff for the partners is the demand coverage and logistical service

provided, while the premiums depend on the costs and risks transferred by the countries to the

partnership. We develop a two-stage stochastic programming model that links network design

decisions with cost allocation decisions. To test our model and obtain implementable results, we

gathered real-world data from our project partners and public data sources. We illustrate the

implementation of the proposed model on the Caribbean network, present numerical analyses to

test the effect of different system parameters, and generate insights. While we particularly focus

on the Caribbean region in this study, the proposed approach is generalizable to other settings

in which regional integration can yield risk pooling benefits for the collaborating entities such

as countries that are prone to similar disasters or agencies that respond to them.

The remainder of the paper is structured as follows. In §2, we position our study within

the related literature. In §3, we provide an overview of the disaster management efforts in the

Caribbean. In §4, we describe the collaborative prepositioning network design problem, present

the mathematical model, and discuss its analytical properties. We explain the details of the

data collection process and perform numerical analyses in §5. Finally, we conclude and discuss

future work in §6.
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2. Positioning of the Study

In this section, we position our study within the relevant streams of the literature.

2.1. Prepositioning Network Design

Problems related to designing humanitarian prepositioning networks have received considerable

attention over the past decade. A growing number of studies address prepositioning problems

and present mathematical models to determine the location of the warehouses and the amount

of inventory to hold at each facility. We refer the reader to Anaya-Arenas et al. (2014) and

Balcik et al. (2016), which review relevant prepositioning problems.

Our study shares similarities with some known relief prepositioning problems. We consider

strategic prepositioning of supplies to prepare for hurricanes, as in Rawls and Turnquist (2010)

and Galindo and Batta (2013). We note that Lodree et al. (2012), Davis et al. (2013) and

Pacheco and Batta (2016) also consider prepositioning for hurricane preparedness; however,

their studies focus on short-term prepositioning of supplies after a hurricane warning has been

received. Similarly to the majority of prepositioning studies, we consider the possibility of dam-

ages to the facilities, stocks and transportation network as a result of the disaster. One of the

differentiating aspects of our study is that we consider multiple events that may occur through-

out a hurricane season, each of which may affect multiple countries. Furthermore, we model the

replenishment of warehouses within a season, which has not been considered by studies that

focus on strategic prepositioning. Since the exact location, timing and impact of disasters are

not known in advance, prepositioning decisions are made under uncertainty. Two-stage stochas-

tic programming has already been used to model the uncertainties in prepositioning problems

(e.g., Salmerón and Apte, 2010). In general, prepositioning decisions are made in the first stage

(before the disaster), while considering the implications of supply distribution decisions made in

the second stage once uncertainty has been lifted (after the disaster). The uncertainties related

to disaster occurrences are generally represented by a set of discrete scenarios, which are gen-

erated by using historical data. We refer the reader to Grass and Fischer (2016) for a review of

two-stage stochastic programming applications in humanitarian logistics.

Relatively few studies are empirically grounded and performed in collaboration with human-

itarian agencies. Duran et al. (2011) focus on designing a global prepositioning network for

CARE International. McCoy and Brandeau (2011) develop stockpiling and shipping policies

for the United Nations High Commissioner for Refugees (UNHCR) to support internally dis-

placed people. Jahre et al. (2016) also focus on the UNHCR and present a prepositioning model

that integrates short-term emergency response and longer-term development operations. Charles

et al. (2016) develop a model to support IFRC’s global warehouse location decisions. Toyasaki

et al. (2017) consider multi-agency inventory planning within a UNHRD depot. Dufour et al.

(2018) solve a network design problem for the UNHRD operations in East Africa. Arnette and

Zobel (2018) model and solve a prepositioning problem encountered by the American Red Cross

to locate the assets needed to open shelters for temporarily displaced people. Here we conduct a

study in collaboration with an inter-governmental agency, CDEMA, which coordinates disaster

preparedness and response efforts of several Caribbean countries.
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2.2. Collaborative Humanitarian Supply Chains

While the benefits and needs of improving collaboration among humanitarian stakeholders have

been consistently highlighted (Balcik et al., 2010; Jahre and Jensen, 2010), very few studies

analytically explore collaborative humanitarian settings. Davis et al. (2013) focus on the allo-

cation of prepositioned supplies among local agencies, which relocate the existing inventory

among facilities based on short-term forecasts for an approaching hurricane. Bhattacharya et al.

(2014) address the coordination of agencies running independent programs funded by earmarked

donations. Coles et al. (2018) apply game theory to find compatible partners to work with

during disaster response. Ergun et al. (2014) focus on using information technology tools col-

laboratively to manage multiple camps serving internally displaced people after an earthquake,

and present a game theory framework to allocate the associated costs and benefits among the

agencies. Toyasaki et al. (2017) use non-cooperative game theory to explore the horizontal coop-

eration of multiple agencies to manage their inventories in a UNHRD depot by exchanging stocks

after a disaster. Acimovic and Goentzel (2016) introduce metrics to describe system capacity

across many agents that store inventory at different locations and show that the system can be

improved through coordination and inventory repositioning.

Traditionally, both in the scientific literature and in the real world, emergency relief stocks

have been owned and managed by a single agency, which determines the locations of the ware-

houses and the amount of inventory to hold at each facility. However, such independent preposi-

tioning decisions may result in imbalanced and ineffective distribution of stocks (Acimovic and

Goentzel, 2016). Moreover, for each agency, stocking supplies in anticipation of low-probability

disastrous events may lead to disproportionate investments and costs (Kunz et al., 2014). In

practice, some established structures such as UNHRD, IFRC, and Logistics Cluster encourage

resource sharing among humanitarian actors. De Leeuw et al. (2010) discuss the efforts of the

Water Sanitation and Hygiene (WASH) cluster, which involves 17 organizations led by UNICEF,

to generate shared humanitarian stockpiles, which can support up to 50,000 beneficiaries and

must be positioned around the world so that materials can be delivered to the agencies within

one week.

To the best of our knowledge, our study is the first to model and solve a multi-country collab-

orative prepositioning network design problem. While this study was conducted in collaboration

with CDEMA, it can be adapted to other multi-country or multi-agency settings.

2.3. Insurance Framework

Whereas there exists abundant research on insurance theory, the ideas and methods from this

field have not been widely utilized to mitigate risks in humanitarian supply chains or in commer-

cial supply chains (Friday et al., 2018). As discussed by Lodree and Taskin (2008), an insurance

framework can easily be related to quantifying the risks and benefits associated with disaster

preparedness. Lodree and Taskin (2008) use such a framework to determine the amount of inven-

tory that a single agency must preposition in order to prepare for a disaster. Some management
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science papers also make use of insurance-based methods to mitigate business interruptions. For

example, Serpa and Krishnan (2016) study a two-firm setting in which insurance is used as a

commitment mechanism to avoid free riding when coping with business interruptions. Lin et al.

(2010) and Dong and Tomlin (2012) study the interactions between insurance and inventory

management to mitigate supply chain disruption risks for a single firm.

Here we present an insurance framework to allocate the costs associated with the collaborative

network among its members. To our knowledge, our study is the first to use insurance premium

calculation principles to support collaboration among humanitarian actors.

3. Background: Caribbean Disaster Management

The Caribbean community views regional integration as an important means of improving effi-

ciency, generating economies of scale, and promoting stable growth, because the region consists

mainly of states with small and geographically isolated economies, which may not have sufficient

resources to make large public investments (Bishop et al., 2011). Several institutions have been

established to support regional integration in various dimensions (such as trade, environment

and security). Quite importantly, the Caribbean Community and Common Market (CARICOM)

is a free-trade zone that was launched in 1973 to promote regional integration and cooper-

ation. CARICOM currently has 15 member states: Antigua and Barbuda (ATG), Bahamas

(BHS), Barbados (BRB), Belize (BLZ), Dominica (DMA), Grenada (GRD), Guyana (GUY),

Haiti (HTI), Jamaica (JAM), Montserrat (MST), Trinidad and Tobago (TTO), Saint Kitts and

Nevis (KNA), Saint Lucia (LCA), Saint Vincent and the Grenadines (VCT), and Suriname

(SUR). There are also five associate members: Anguilla (AIA), Bermuda (BMU), the British

Virgin Islands (BVI), the Cayman Islands (CYM), and the Turks and Caicos Islands (TCA).

These 20 CARICOM states, which constitute our region of interest, are depicted in Figure 1.

Two important initiatives were established to improve regional disaster management capacity

in the Caribbean, which are also unique examples for the humanitarian community; namely, the

CDEMA and the Caribbean Catastrophic Relief Insurance Facility (CCRIF) support horizontal

coordination in disaster management, which will be briefly described below.

3.1. The Caribbean Disaster and Emergency Management Agency (CDEMA)

CDEMA is a regional inter-governmental agency for disaster management, established in 2007

to “strengthen capacity for the mitigation, management and response to all hazards at the

regional, national and community levels and to ensure coordination in all phases of disasters”

(Kirton, 2013). It currently comprises 18 participating states, including all of the CARICOM

members, except BMU and the CYM. It is headquartered in BRB, and the national disaster

offices at each country execute CDEMA’s activities (Kirton, 2013).

To manage and coordinate regional disaster relief efforts, CDEMA designated four countries

as subregional focal points, each responsible for three or four countries in the region (Figure

1). The focal points were selected by considering their proximity, as well as their cultural and
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Figure 1 Region of interest with the current subregional focal points and the 18 countries covered by CDEMA

economic similarities to other countries in the subregion (Kirton, 2013). To meet the operating

expenses of this system, the member states contribute to an annual budget on the basis of their

economic standing and risk factors (CDEMA, 2018). Specifically, each country pays a pre-agreed

fixed percentage of the total prepositioning costs.

We present to CDEMA a systematic methodology for the design of a collaborative preposi-

tioning network by incorporating important regional factors such as hurricane risks, transporta-

tion infrastructure, logistical connectivity, and costs. Furthermore, we propose a cost allocation

strategy linked with the network design decisions.

3.2. The Caribbean Catastrophic Relief Insurance Facility (CCRIF)

The CCRIF is a not-for-profit structure designed to limit the financial impact of devastating

hurricanes and earthquakes in the Caribbean by quickly providing financial liquidity to the

affected countries in order to support the relief efforts (CCRIF, 2018). The CCRIF was estab-

lished in 2004 after Hurricane Ivan, through funding from multiple donors such as Canada, the

Caribbean Development Bank, the European Union, France, Japan, the United Kingdom, and

the World Bank, and through membership fees from the participating governments (CCRIF,

2018). Currently, 16 of the 20 CARICOM countries are involved in CCRIF.

The CCRIF is the first “multi-country, multi-peril pooled catastrophe risk insurance facility”

in the world, which allows pooling the catastrophe risks of multiple countries into a single port-

folio (World Bank, 2012). Since disaster losses in the Caribbean countries can exceed multiples

of their GDP, these countries cannot individually absorb the financial impact of the disasters

(World Bank, 2012). Through CCRIF, the members can obtain insurance coverage at lower

prices. More specifically, the price that the countries pay to CCRIF is less than half what they

would pay for purchasing insurance individually through international markets (CCRIF, 2012).
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Through CCRIF, the countries can receive a prompt cash payout within 14 days following a

covered event, which is made possible because CCRIF pays based on parametric triggers such as

predetermined wind speeds for hurricanes, but not on the actual losses, which can take months

to assess on-site (CCRIF, 2018). The CCRIF policies are renewed for one year at the beginning

of the hurricane season. Countries buy coverage up to USD 100 million for a given year, and

there is no limit on the number of events a policy can cover (CCRIF, 2018). The payouts are

based on the estimated losses calculated through a hazard loss model, and on the purchased

coverage amounts. To date, CCRIF has made 22 payments to 10 countries, totaling USD 69

million (CCRIF, 2017). The country premiums are based on the coverage chosen by a country

and on its risk profile, which depends on historical events. The premiums, which vary typically

from USD 200,000 to USD 4,000,000, are paid by countries and donors (CCRIF, 2017).

In our study, we are motivated by CCRIF and we integrate an insurance-based framework

into collaborative prepositioning, which determines country contributions by considering the

needs of the partner countries and the risk they translate to the network, and also the regional

logistical connectivity and costs.

4. Collaborative Prepositioning Network Design

We now define the collaborative prepositioning network design problem (§4.1) and present our

mathematical model (§4.2).

4.1. Problem Definition

We focus on designing a collaborative prepositioning network in the Caribbean to support

CDEMA’s efforts to improve disaster preparedness and response capacity. Since extreme weather

events such as hurricanes occur frequently in the Caribbean, and each event may affect a dif-

ferent set of states depending on its path, collaborative prepositioning could help the CDEMA

countries benefit from risk pooling and resource sharing in order to cope with the immediate

consequences of disasters. In the proposed collaborative prepositioning strategy, CDEMA will

serve as an umbrella organization and will engage its members to become partners for keeping

joint stocks for emergency relief supplies in a set of warehouses strategically located in the region.

Additionally, we present an insurance-based framework to provide a sustainable financing mech-

anism. More specifically, the collaborative prepositioning network design problem determines i)

the number and location of the warehouses to be established in the region, ii) the amount of

inventory for emergency relief supplies to hold at each warehouse, iii) the investment needed to

set up this collaborative network and to manage it for the first year, and iv) the premium to be

paid by each partner country, while considering the uncertainties in demands for relief supplies,

which may occur in multiple countries due to possible storm events throughout a hurricane

season. We next describe the collaborative prepositioning network design problem in detail.
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4.1.1. Network We consider a set of Caribbean countries affected by weather-related

events such as hurricanes. Due to the geographical positions of these countries, a storm may

hit several countries at different levels, and each country may be hit by multiple storms in the

same season. Once a strong storm occurs, people may lose access to basic items and needs may

arise for large amounts of emergency relief supplies. If a country’s national response capacity is

overwhelmed by the disaster, it is critical to quickly send relief items to the affected regions to

save lives and support the survivors. We assume that all CARICOM states, which are under risk

of being affected by a strong storm, can be partners of the collaborative prepositioning network.

The candidate warehouse locations are also selected among these countries by evaluating their

logistical infrastructure, connectivity to the region, and disaster risk. We assume that there can

be multiple warehouses at each chosen location; however, the maximum number of warehouses

per country is limited. Each warehouse has a fixed capacity in terms of the number of items it

can store.

4.1.2. Planning Horizon and Scenarios The collaborative prepositioning network will

hold sufficient inventory to cover the needs of the partners over the planning horizon, which

is one hurricane season. While the Atlantic hurricane season is officially between June 1 and

November 30, there may be off-season storms in some years. Based on our analysis of historical

hurricane data, the planning horizon in our study extends from May 1 to December 31. These

data show that multiple events have occurred in 80% of the seasons and that multiple countries

have been affected simultaneously in 55% of the events. For instance, 10 events hit the Caribbean

region in 2005, affecting nine countries throughout the season, four of which at least twice.

To assign a time period for each event, we divide the planning horizon into two-week periods.

Anytime multiple events occur in the same two-week period, we aggregate the demand of these

events and work with a single event with the accumulated demand.

While making collaborative prepositioning network decisions, one should consider the uncer-

tainties in the number, severity and timing of strong storms that may hit the region in future

seasons. To this end, we use a set of discrete scenarios to represent these uncertainties. Each sce-

nario specifies the number of storm events occurring throughout a hurricane season, the period

and the severity of each event, the set of affected countries, and the estimated demand in each

country. Note that because there is enough time to replenish the warehouses between two hurri-

cane seasons (four months), the demand between two consecutive seasons is memoryless. Thus,

modelling demand uncertainty using several scenarios representing a single season is equivalent

to considering multiple seasons over a longer planning horizon. We assume that the availabil-

ity of supplies at the warehouses and the connectivity of the transportation network are also

scenario-dependent; that is, if a country with a warehouse is hit by a storm, a percentage of its

supplies may not be used. Additionally, we assume that the logistical connectivity of an affected

country may decrease due to effects of the hurricane on the country’s logistical infrastructure.
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4.1.3. Targeted Demands We consider storing family kits in the network, which contain

a set of relief items such as blankets and hygiene kits necessary to support a family of five

people after a hurricane. Since the proposed collaborative network works like an insurance, it

must guarantee that the promised coverage amounts for the family kits can be provided to each

partner country within a preset response time. We assume that the collaborative network will

be designed to cover the targeted demands specified by the countries for each event category.

In other words, the total capacity of the network does not aim to cover all of the needs of

the affected countries in each event, but only the targeted demands. While implementing this

network, each country can specify its targeted demand by evaluating relevant country-specific

factors such as risk and vulnerability, national response capacity, logistical infrastructure, and

capacity of handling external aid such as the maximum estimated receiving port capacity (Starr

and Van Wassenhove, 2014). Since the countries’ actual evaluations on their targeted demands

are not currently available, in our numerical analyses, we set a country’s targeted demands

based on the historical percentage of the affected population and the number and strength of

previous events, as detailed in Appendix A. In this way, the targeted demands and the resulting

demand scenarios reflect the population exposure of the countries. Moreover, we impose that the

targeted demands do not exceed a prespecified maximum coverage limit (MCL) in our insurance-

inspired collaborative prepositioning network. In insurance theory, limits on coverage are used to

help insurers deal with huge losses (Cummins and Mahul, 2004), and most insurance contracts

involve a limit on coverage (Zhou et al., 2010). We set the base MCL value at 12,000 family kits

in numerical experiments, which is based on IFRC Panama’s weekly response capacity in the

region. In our numerical analyses, we test for different levels of MCL and also show the effects

of not using MCL on the network, on the costs and on the country premiums.

4.1.4. Transportation and Logistics When a disaster occurs, the supplies at the ware-

houses are mobilized immediately. Each warehouse can serve each country in each scenario as

long as the response time requirements are met. That is, in contrast to CDEMA’s current sys-

tem, we do not assign a fixed service area (subregion) to the chosen warehouses. We consider

two response time levels in our network: fast response (three days) and slower response (seven

days). The collaborative network must be able to satisfy a preset percentage of the targeted

demand of a country at the fast response level. We assume that the supplies can be shipped

from the warehouses to the affected countries via air or sea, depending on the transit times and

costs, and that the warehouses are located next to airports or ports, and hence do not require

extensive inland transportation.

4.1.5. Replenishment of the Warehouses There could be opportunities to replenish the

stocks at the warehouses throughout an eight-month hurricane season. This can be advantageous

since i) it allows the system to store less inventory and operate smaller warehouses, and ii) the

risk of losing supplies due to damaged warehouses can be reduced. The amount of replenishment

depends on the timing of individual events and on the lead time. In Figure 2, we illustrate
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Figure 2 Example of a hurricane season with three events. Between the first two there is time for replenish-

ment while this is not the case between the second and the third events.

an example focusing on the 1961 hurricane season, in which three hurricanes (Anna, Frances

and Hattie) hit the Caribbean in periods 6, 11 and 12. In such a case, when the lead time

is four periods, there is enough time for receiving orders made after the first event, while the

third event occurs before the warehouses can be replenished after the second event. In the

collaborative prepositioning network, replenishment orders are made at the end of each period.

The order amount at each warehouse is equal to the sum of the items used and damaged over

the past period. We assume a fixed lead time for each warehouse. The orders are received at

their respective warehouses at the beginning of the period after the lead time. Note that there is

enough time between the first and the second hurricanes to replenish the used supplies. However,

since there is no time for replenishment between the second and third hurricanes, there must

be sufficient items in the network at the beginning of time period 11 to cover the demands

of both hurricanes Frances and Hattie. Since the amount of storage needed in the network is

calculated by also considering the probability that some supplies may be damaged if warehouses

are affected, at time period 11 there will be enough items to respond to the disasters, even if

some warehouses will be hit by hurricanes Frances and Hattie. At the end of each hurricane

season, once the last replenishment orders have been received, the warehouses become full.

Therefore, between the end of the last season and the beginning of the next one (from January

to May), the inventory at the warehouses is not utilized in our setting. However, given that

the Caribbean is prone to a variety of disasters, the stocks can be used during this period to

respond to other events in the region. Additionally, it would be possible to share these stocks

with the humanitarian agencies operating in the region, such as the IFRC and the World Food

Programme. If any supplies are used during the off-season, they need to be replaced in the

warehouses before the beginning of the next hurricane season.

4.1.6. Costs and Budget The total initial investment required to set up the collabora-

tive prepositioning network includes the budget necessary to cover disaster preparedness and

emergency response costs for the first year. In particular, it includes the fixed cost of locating

warehouses (i.e., rent, equipment, and staff), the purchase cost of supplies for building the initial

cumulative inventory, the inventory holding cost, and the largest emergency response cost that

may occur in a season to cover the transportation and replenishment of supplies. Note that

the budget allocated to emergency response expenses can be held in the form of monetary liq-

uidities until needed. In our network, transportation costs depend on the transportation modes
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used, and on the origin and destination countries. Moreover, although the inventory level at

the warehouses may go down and up during a season, we charge inventory costs for the initial

cumulative amount since replenishment orders for the used stocks are given immediately at the

end of each period, and the warehouses are replenished up to their order-up-to level. Since the

warehouses and their contents are insured, any costs resulting from possible damages are not

additionally considered. Once the network is set up, at the end of each hurricane season, the

countries that have used supplies will pay for the materials and logistical services they have

received during the past season. Therefore, at the beginning of each season, the network will

have a fixed amount of prepositioned inventory and fixed monetary reserves to cover possible

emergencies.

After the first year, countries will have to pay an annual membership fee to maintain the

network (i.e., to cover costs for rent, staff, equipment maintenance, etc.). That is, to be a member

of the collaborative network, each country first makes a contribution to cover the total initial

investment (i.e., country premiums), and then pays for annual usage and membership fees. Our

collaborative prepositioning problem only focuses on optimizing the significant amount of total

initial investment required to cover the first year setup and management cost, whereas the annual

usage and membership fees can be calculated a posteriori. We next present a methodology

to fairly allocate the total initial investment among the countries through an insurance-based

framework.

4.1.7. Insurance Framework The proposed collaborative prepositioning network works

like an insurance, which specifies a payoff and a premium for each country. The payoff is the

demand coverage and logistical services provided to a country throughout a hurricane season.

More specifically, the network ensures that the targeted demands can be satisfied within a

week after a hurricane. In return, each partner country must pay a premium to cover the cost

associated with the total initial investment. We present a methodology, inspired by premium

calculation methods from actuarial science, to determine the contribution of each partner coun-

try to the total investment and set its premium by considering the costs a country transfers to

the partnership.

An insurance plan sets a relatively small premium to gain protection against a potentially

large future loss (Grossi et al., 2005). If an insuree is more susceptible to a specific risk, then the

cost for coverage against a loss from that risk is greater. Since insurance rates are regulated and

there is market competition, the premium may not fully reflect the underlying risk. Nevertheless,

several actuarial models can be used to estimate the risks. Natural disasters pose a challenging

set of problems for insurers compared with more frequent and non-extreme events such as car

accidents and fire, partly because of the absence of data available to model the risks and losses

for natural disasters, which occur infrequently and yield huge losses. For an insurance market to

be profitable, it must be able to issue a large number of policies whose losses are independent.

By pooling the uncorrelated risks faced by a large number of individuals, insurers can use the
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law of large numbers to essentially eliminate aggregate risk (Duncan and Myers, 2000). Since

the losses from catastrophes can be huge, having a large number of entities spread over different

regions would be beneficial, so that the insurer can collect sufficient premiums to cover large

losses from a single disaster. However, this is not the case when a multi-country setting is

considered. Our Caribbean network is made up of only 20 countries, which need to be insured

for the losses resulting from the same disasters. Fortunately, historical data indicate that a

different subset of countries is affected by the hurricanes in each season. Therefore, there may

be sufficient diversity in this setting to achieve risk pooling benefits.

Calculating an insurance premium implies determining “the price of risk” for a customer or

a group of customers (Deelstra and Plantin, 2014), and numerous premium calculation meth-

ods exist (Landsman and Sherris, 2001). We adopt one of the most common methods which

considers the expected value and the variability of risk. Specifically, let S denote a positive

real random variable, which represents future insurance claim amounts, and let Π(S) be the

premium associated to risk S. The pure premium principle states that the premium is equal

to the average risk level, that is, Π(S) =E(S). However, for catastrophic types of risk, setting

premiums based solely on the expected value may not be sufficient to cover losses associated

with extreme events. Therefore, insurees are often charged larger premiums than their expected

losses (Froot, 2001). There exist alternative premium calculation principles that consider other

characteristics of the risk distribution (Deelstra and Plantin, 2014; Kaluszka, 2001). Here, we

adopt the standard deviation principle, which adds a safety margin to the pure premium pro-

portional to the standard deviation of the risk: Π(S) = E(S) +
√
V ar(S)Z, where Z ≥ 0 is a

dimensionless deviation variable to be minimized.

Denote by Dc the random variable representing total targeted demand that may occur in

country c ∈ C in a hurricane season, and by E(Dc) and V ar(Dc) the expected value and the

variance of the demand. Moreover, let Yc denote the amount of investment allocated to part-

ner country c ∈ C, let B denote the total investment required for setting up the network, and

let b denote the estimated logistics cost per unit of supply in the network. We estimate b as

the average of some benchmark solutions obtained by solving a restricted version of the col-

laborative prepositioning network design problem, which does not involve cost sharing aspects.

The following two constraints are used to adapt the standard deviation procedure for setting

premiums in our problem:

bE(Dc)≤ Yc ≤ bE(Dc) + b
√
V ar(Dc)Z ∀c∈C (1)∑

c∈C

Yc ≥B. (2)

By minimizing Z, we will allocate costs among the countries in a fair way, so that each country

pays an amount that reflects the expectation and variance of its needs. Moreover, minimizing

Z implies that the network must be established by using the least investment possible.
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4.2. Mathematical Model

Given a set of countries, a set of candidate countries in which to locate warehouses, and a set

of scenarios that represent hurricane occurrences and demands, the collaborative prepositioning

network design problem determines the number and locations of the warehouses, the inventory

to hold at each warehouse, the required investment to set up and run the network, and the

country premiums. We next present the notation to formulate the problem.

Sets

S: set of scenarios; s∈ S
T : set of disaster periods in a hurricane season; t∈ T
C: set of countries in the partnership; c∈C
W : set of candidate warehouse locations; w ∈W
Ĉst: set of countries affected by a hurricane in period t∈ T of scenario s∈ S; c∈ Ĉst

M : set of transportation modes; m∈M
L: set of response levels; l= 1 for fast response and l= 2 for slower response; l ∈L
Ŵ s
cml: set of candidate warehouses that can cover country c ∈ C at response level l ∈ L via

transportation mode m∈M under scenario s∈ S; w ∈ Ŵ s
cml.

Parameters

dstc : targeted demand at country c∈C in period t∈ T in scenario s∈ S
ps: probability associated with scenario s∈ S
αstw : percentage of damaged supplies at location w ∈W in period t∈ T in scenario s∈ S
τ : replenishment lead time

ustwcm: unit transportation cost for shipping a family kit to country c∈C from location w ∈W s
c

via mode m∈M in period t∈ T in scenario s∈ S
κw: maximum capacity of a warehouse at candidate location w ∈W
nw: maximum number of warehouses that can be located at candidate location w ∈W
fw: fixed location and operating costs for the first year for a warehouse at location w ∈W

(includes rent, equipment, staff and insurance for these assets)

rw: unit cost of purchasing a family kit for a warehouse at location w ∈W (includes purchasing,

insurance and inbound transportation costs)

gw: rw plus unit cost of holding an item in a warehouse at location w ∈W
βstc : percentage of demand of country c∈C to be covered at response level l= 1 during period

t∈ T in scenario s∈ S
b: estimated unit logistics cost (prepositioning and shipping one family kit in the network),

obtained by averaging some benchmark solutions of a restricted model

λ: weight for the deviation objective.

First-stage decision variables

Xw: number of warehouses to locate at candidate location w ∈W
Iw: amount of inventory to hold at candidate location w ∈W
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Yc: premium of partner country c∈C
Z: maximum deviation variable

B0: total budget required to cover disaster preparedness costs

B1: total budget required to cover emergency response costs.

Second-stage decision variables

Qst
wcm: amount of supplies delivered to country c ∈ C from candidate location w ∈ W s

c via

transportation mode m∈M in period t∈ T in scenario s∈ S
Astw : amount of supplies available at candidate location w ∈W at the beginning of period t∈ T

in scenario s∈ S
Rst
w : amount of replenishment that arrives at candidate location w ∈W at the beginning of

period t∈ T in scenario s∈ S.

We present a two-stage stochastic programming model for the collaborative prepositioning net-

work design problem below:

minimize λZ +
∑
w∈W

fwXw +
∑
w∈W

gwIw +
∑
s∈S

ps
∑
t∈T

∑
w∈W s

cm

∑
c∈C

∑
m∈M

(ustwcm + rw)Qst
wcm (3)

subject to

Iw ≤ κwXw ∀w ∈W (4)

Xw ≤ nw ∀w ∈W (5)∑
c∈Ĉst

∑
m∈M

Qst
wcm ≤ (1−αstw )Astw ∀s∈ S, t∈ T,w ∈W (6)

∑
m∈M

∑
l∈L

∑
w∈Ŵ s

cml

Qst
wcm = dstc ∀s∈ S, t∈ T, c∈ Ĉst (7)

∑
m∈M

∑
w∈Ŵ s

cm1

Qst
wcm ≥ βstc dstc ∀s∈ S, t∈ T, c∈ Ĉst (8)

As1w = Iw ∀w ∈W,s∈ S (9)

As, t+1
w = (1−αstw )Astw −

∑
c∈Ĉst

∑
m∈M

Qst
wcm +Rs t+1

w ∀w ∈W,s∈ S, t= 1, ..., |T | − 1 (10)

Rst
w = αs, t−τ−1

w As, t−τ−1
w +

∑
c∈Ĉst

∑
m∈M

Qs, t−τ−1
wcm ∀w ∈W,s∈ S, t= τ + 2, ..., |T | (11)

Rst
w = 0 ∀w ∈W,s∈ S, t= 1, ..., τ + 1 (12)

B0 =
∑
w∈W

fwXw +
∑
w∈W

gwIw (13)

B1 ≥
∑
t∈T

∑
w∈W s

cm

∑
c∈C

∑
m∈M

(ustwcm + rw)Qst
wcm ∀s∈ S (14)∑

c∈C

Yc ≥B0 +B1 (15)

bE(Dc)≤ Yc ≤ bE(Dc) + b
√
V ar(Dc)Z ∀c∈C (16)

Xw, Iw ∈Z+ ∀w ∈W (17)

Qst
wcm ∈Z+ ∀w ∈W,c∈C,m∈M,s∈ S, t∈ T (18)
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Rst
w , Astw ∈Z+ ∀w ∈W,s∈ S, t∈ T (19)

Z ≥ 0 (20)

Yc ≥ 0 ∀c∈C (21)

B0, B1 ≥ 0. (22)

The first term of the objective function (3) minimizes the value of the maximum deviation

variable, which is used to determine premiums paid by the countries. Specifically, by minimizing

the maximum deviation, we minimize the amount of extra investment a country will make

beyond the costs associated with its expected demand. Note that the deviation is a dimensionless

variable, and is expected to take a small value. Therefore, we multiply the deviation objective

by a large weight λ (see §5.2.1). The second and third terms in (3) represent the sum of the fixed

costs associated with warehouses, and the cost associated with acquiring and holding inventory,

respectively. The last term in (3) is the expected emergency response costs associated with

transportation supplies and replenishing warehouses after a disaster occurs.

Constraints (4)–(12) are associated with the network design, while constraints (13)–(16) are

related to the cost allocation decisions. Constraints (4) ensure that the amount of inventory

to preposition at each opened warehouse does not exceed its capacity. Constraints (5) bound

the number of warehouses to locate in each country. Constraints (6) limit the amount of sup-

plies than can be shipped from a warehouse by the amount of available (undamaged) supplies.

Constraints (7) ensure that the targeted demands are fully met. Constraints (8) are imposed to

satisfy a preset proportion of the targeted demand at the first response level. Constraints (9) set

the amount of inventory at the beginning of the hurricane season. Constraints (10) control the

flow at each warehouse and for each period by considering the amount of undamaged supplies

at a warehouse at the beginning of the previous period, the amount of shipped supplies from the

warehouse during the previous period, and the replenishment amount arriving at the warehouse

at the beginning of the period. Constraints (11) set the replenishment amount arriving at a

warehouse in each period, which is equal to the total amount of used and damaged supplies

during the lead time. Constraints (12) set the replenishment to zero for the initial periods of

the hurricane season that are smaller than the lead time.

Constraints (13) and (14) determine the investment required to cover the disaster prepared-

ness and emergency response costs. Specifically, constraint (13) sets the preparedness budget,

which covers the expenses related to locating warehouses and acquiring and holding inventory.

Constraints (14) determine the emergency response budget, which must be sufficient to cover

the post-disaster transportation and replenishment costs for all scenarios. Constraint (15) guar-

antees that the country premiums cover the total initial investment. Constraints (16) bound

the country premiums, as explained in Section 4.1.7. Finally, constraints (17)–(22) define the

domains of the variables.

4.3. Properties of the Model

We now discuss some important properties of the proposed model.
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4.3.1. Effect of λ and the Restricted Model In our model, the network design and

the cost allocation decisions are linked through the deviation variable Z, which determines

country premiums. Minimizing Z in (3) implies minimizing the total initial investment, which

covers the disaster preparedness and the emergency response budgets (i.e., B0 + B1). Recall

that the emergency response budget must be sufficiently large to cover the response expenses

in each scenario (constraint (14)), while the last term of the objective function (3) minimizes

the expected value of the emergency response cost. Therefore, the objective function considers

both the worst-case value and the expected value of the emergency response cost, which will be

affected by the network design decisions.

Since the deviation value Z is much smaller than the other cost values minimized in the

objective function, we set a large value for the λ parameter. As λ increases, reducing the largest

emergency response costs becomes more important than minimizing the expected response cost.

In our numerical analyses, we choose a λ value that minimizes the total initial investments plus

the annual costs over a fixed payback period (see §5.2.1). Note that when λ is zero, the problem

ignores the cost allocation (premium setting) decisions. In other words, constraints (13)–(16)

are no longer binding. The resulting model then reduces to designing a prepositioning network

to minimize preparedness and expected emergency response costs, and ignores the fact that the

total initial investment must be shared fairly among the partners. We use this restricted model

to estimate an average cost associated with prepositioning and shipping one family kit in the

network (i.e., to set the value of parameter b).

4.3.2. Fairness of the Country Premiums Each country’s premium is set by consid-

ering the expectation and the standard deviation of its demand. Proposition 1 proves that the

deviation associated with each country is the same in the optimal solution.

Proposition 1 In any optimal solution of (3)–(22), the right-hand side of constraints (16) is

satisfied at equality, i.e., given the optimal value of the deviation variable Z, denoted by Z∗, each

country’s premium is equal to its estimated expected logistics cost, plus Z∗ times the estimated

standard deviation of its logistics cost.

Proof. Assume, for the sake of contradiction, that Z∗ is the minimum value that Z can take,

and that one right-hand side of (16) is not satisfied at equality. Without loss of generality, let

c = 1 be such that Y ∗1 < bE(D1) + b
√
V ar(D1)Z∗. Then, there exists a value x > 0 such that

Y ∗1 +x= bE(D1)+b
√
V ar(D1)Z∗. Moreover, as Y ∗1 ≥ bE(D1) due to constraints (16), bE(D1)+

x ≤ bE(D1) + b
√
V ar(D1)Z∗, and therefore x/b

√
V ar(D1) ≤ Z∗, since b

√
V ar(D1) > 0. Let

∆ = x/
∑

c∈C b
√
V ar(Dc), it is easy to see that ∆ = x/

∑
c∈C b

√
V ar(Dc)≤ x/b

√
V ar(D1)≤Z∗,

and therefore Z∗−∆≥ 0. Define Ȳ ∗c , for c= 1, . . . , |C|, as Ȳ ∗c = bE(Dc) + b
√
V ar(Dc)(Z

∗−∆).

These values of Ȳ ∗c , for c = 1, . . . , |C|, satisfy the left-hand side of (16). If we show that they



18

also satisfy constraints (15), we would find a value smaller than Z∗ such that all constraints are

satisfied, but this is in contradiction with the hypothesis that Z∗ is minimum. Since∑
c∈C

Ȳ ∗c =
∑
c∈C

bE(Dc) +
∑
c∈C

b
√
V ar(Dc)(Z

∗−∆)

=
∑
c∈C

bE(Dc) +
∑
c∈C

b
√
V ar(Dc)Z

∗−
∑
c∈C

b
√
V ar(Dc)∆

= bE(D1) + b
√
V ar(D1)Z∗−

∑
c∈C

b
√
V ar(Dc)∆ +

∑
c∈C\{1}

Y ∗c

= bE(D1) + b
√
V ar(D1)Z∗−

∑
c∈C

b
√
V ar(Dc)

x∑
c∈C b

√
V ar(Dc)

+
∑

c∈C\{1}

Y ∗c

= bE(D1) + b
√
V ar(D1)Z∗−x+

∑
c∈C\{1}

Y ∗c =
∑
c∈C

Y ∗c ≥B0 +B1,

(23)

there must exist a value (Z∗−∆)≤Z∗ such that all constraints are satisfied, which contradicts

our initial hypothesis that Z∗ was the minimal value.

4.3.3. The Minimum Required Amount of Inventory In the proposed network, the

total inventory on hold is sufficient to cover the full demand of a hurricane season, which is

represented by a scenario, possibly involving multiple hurricanes occurring at different periods.

However, the minimum inventory needed for a given scenario is not equal to the total demand of

that scenario because it depends on the timing on the hurricane events over the season, on their

demands, and on the lead times. We next calculate the minimum required amount of inventory

in the network to cover the needs that will occur throughout the season. We denote by Ωτ the

minimum required amount of inventory corresponding to a fixed replenishment lead time τ . In

each season, whenever a disaster occurs in a given period, we need to have enough inventory

to cover the associated demand. At the end of the period, a replenishment order is given for

the used supplies, and the orders arrive after the lead time. Therefore, in each period t, the

network inventory must include the available inventory needed to cover the sum of the demands

that occur in that period, plus the replenishment amount ordered and that will arrive after the

lead time, i.e., the sum of the demands that occurred between max{0, t− τ} and max{0, t− 1}.

Specifically, let ωsτ represent the minimum amount of inventory required to meet the needs in

scenario s under a lead time τ > 0. Then, ωsτ and Ωτ can be computed as

ωsτ = max
t∈T

{∑
c∈C

{
dstc +

max{0,t−1}∑
t̄=max{0,t−τ}

dst̄c

}}
and Ωτ = max

s∈S

{
ωsτ

}
. (24)

The optimal amount of inventory in the network, I∗ =
∑

w∈W I∗w, may be larger than Ωτ

due to i) the possibility of destroyed stocks at the affected warehouses, ii) the distribution of

the inventory within the network driven by the logistical connectivity and costs, and iii) the

coverage requirements (i.e., βstc ).
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4.3.4. The Benefits of Collaboration To evaluate and measure the benefits of a collab-

orative network, we compare the solutions obtained from our collaborative prepositioning model

with a benchmark solution in which each country implements an independent prepositioning

strategy by only considering its own risks. To this end, we generate a scenario set exclusive to

each country and compute the minimum required amount of inventory for each country, denoted

by Ω̃c,τ , by adapting (24), as follows:

Ω̃c,τ = max
s∈S

{
max
t∈T

{
dstc +

max{0,t−1}∑
t̄=max{0,t−τ}

dst̄c

}}
. (25)

Proposition 2 The minimum required amount of inventory needed in the collaborative net-

work does not exceed the sum of the minimum required inventories that each country must hold

independently, i.e.,

Ωτ ≤
∑
c∈C

Ω̃c,τ . (26)

Proof. Let ω̄s,cτ be the minimum amount of inventory needed in country c in period t in a given

scenario s with lead time τ > 0, which is equal to dstc +
∑max{0,t−1}

t̄=max{0,t−τ} d
st̄
c . Then

Ωτ =max
s∈S

{
ωsτ

}
= max

s∈S

{
max
t∈T

{∑
c∈C

{
dstc +

max{0,t−1}∑
t̄=max{0,t−τ}

dst̄c

}}
t∈T

}
s∈S

≤max
s∈S

{∑
c∈C

{
max
t∈T

{
dstc +

max{0,t−1}∑
t̄=max{0,t−τ}

dst̄c

}}
t∈T

}
s∈S

= max
s∈S

{∑
c∈C

{
ω̄s,cτ

}}
≤
∑
c∈C

{
max
s∈S

{
ω̄s,cτ

}}
=
∑
c∈C

Ω̃c,τ

(27)

5. Numerical Analyses

We first present test instances generated from real data related to the Caribbean network.

This will be followed by the results of our numerical analyses. We calculate the benefits of

collaboration and the extent of risk pooling achieved in the network.

5.1. The Caribbean Network Data Set

There appears to exist no available data set for multi-country humanitarian networks. The

collaborative network considered in this study includes 20 CARICOM countries. We collected

data from various publicly available sources, and also from CDEMA and IFRC. Since the avail-

able raw data were unstructured and fragmented, we applied a systematic approach to develop

realistic estimates for each parameter of our model, which we now describe.

5.1.1. Hurricane Scenarios Each scenario corresponds to a season during which multiple

hurricanes may occur. We developed hurricane scenarios based on historical data by validating

and merging the information contained in three databases: the Emergency Events Database

(EM-DAT) (EM-DAT, 2018), the National Oceanic & Atmospheric Administration (NOAA)

database, known as HURDAT (NOAA, 2018), and a local database, known as the Caribbean
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Hurricane Network (CHN) (CHN, 2018). We examined historical hurricane tracks from these

sources focusing on a period between 1950 and 2017, and we generated a database containing the

timing of each storm, the set of countries on the storm track, the strength of the storm affecting

each country, and the affected population in each country. This yielded 188 events spread over 62

seasons. No two seasons are identical in terms of the number, severity and timing of events and

the countries affected. For each of the 62 seasons, we generated five scenarios having the same

hurricane tracks and timing, but different severities and demands. In particular, to generate

scenario demands, we first assigned a severity category to the countries on each track, according

to the percentage of past events affecting a country at different strengths. We classified a storm

having a category less than or equal to 2 as mild (M), a storm of category 3 as strong (S),

and those with larger categories as very strong (VS). Based on the assigned category of the

storm and the largest percentage of affected population in that country over the years, which

we obtained from historical data, we generated an estimate of the affected number of people

in each country. We then divided the affected population values by five, which is the average

family size, to obtain the targeted demand values. Recall that in our insurance framework a

maximum coverage limit (MCL) specifies the maximum amount that can be covered for each

country per hurricane event. Therefore, if the number of family kits generated by our procedure

is larger than the prespecified MCL value, we accept the MCL value as the targeted demand. In

our experiments, MCL is set to 5,000, 8,000 and 12,000. Finally, based on the generated demand

values, we calculated the expected value and the variance of the demand for each country. As

a result, we obtained 310 different and equiprobable scenarios. We provide more details about

data processing and scenario generation in Appendix A.

5.1.2. The Extreme Scenarios The required initial investment for establishing the col-

laborative network can be quite large if a full coverage against all possible events is envisaged.

It is therefore worthwhile to evaluate the implications of disregarding some of the rare and

extreme scenarios on network design decisions and costs. As widely discussed in the literature,

systems are not typically designed for either the average case nor for the most extreme condi-

tions (Daskin et al., 1997). A variety of methods are used to design networks under uncertainty

while addressing the effects of worst-case scenarios endogenously, including chance-constrained

programming, risk-averse models, and robust models (see Snyder (2006) for a review). In this

study, we use a simple approach, in which we define a restricted scenario set by removing some

extreme scenarios before solving the model, where extreme scenarios are specified based on the

minimum amount of inventory required to meet the needs of that scenario (i.e., ωsτ value). That

is, we use the ωsτ value as a proxy for measuring the implications of including a scenario in

our data set. Then, given a scenario set S and the ωsτ values for all scenarios, we remove a

subset of worst scenarios with the largest ωsτ values and obtain the restricted scenario set Sq.
More specifically, q represents the percentage of the worst scenarios, measured in terms of the

minimum amount of inventory required to meet the need of a scenario (ωsτ ), to be removed from
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S. To illustrate, in our numerical experiments, we generate |S| = 310 equiprobable scenarios

based on historical data, and consider instances with q= 5, which disregards bq|S|c = 15 worst

scenario in terms of ωsτ , and instances with q= 10, which eliminates bq|S|c = 31 scenarios.

We denote by Ωq
τ the minimum required inventory in the collaborative network for a given

value of q, and by Ω̃q
c,τ the minimum required amount of inventory for a given country c

if the country applies an independent prepositioning strategy based on the scenario set Sq.

As expected, removing extreme scenarios decreases the required minimum amount of inven-

tory needed. In our numerical analyses, we evaluate the benefits of collaboration for different

restricted scenario sets.

Three parameters affect the demand distributions and the minimum inventory levels: MCL, q

and τ . The MCL cuts some large demand values, and hence may affect the expected value and

variance of the demand for some countries. The parameter q affects demand distribution since

we remove some extreme scenarios from consideration. Note that changing the MCL value only

affects size of demands while keeping the number of scenarios fixed, and increasing q decreases

the number of scenarios in our data set. The lead time parameter τ directly affects the ωsτ value

as shown in (24). We consider different combinations of MCL, q and τ in our analyses.

5.1.3. Relief Supplies Family kits are stored and distributed in the network. The speci-

fications of the items in a family kit, presented in Table 8 of Appendix B, were obtained from

IFRC Panama, which operates in our region of interest. A family kit costs approximately USD

147.5, weighs 41 kilograms and has a volume of 0.14 cubic meters. We assume that a pallet

holds 20 kits, and a standard 20-foot container can hold 200 kits. We add insurance costs and

handling costs for each family kit purchased, estimated on hourly country-specific labor cost.

The cost of holding one unit of a purchased item is equal to the cost of holding items in the

warehouse, plus the opportunity capital cost. The unit inventory holding cost is equal to 6% of

the purchase cost.

5.1.4. Candidate Warehouses There are fundamental differences among the profiles of

the CARICOM countries in terms of their population, disaster risk and logistical connectiv-

ity. We chose candidate warehouse locations among the 20 CARICOM countries based on an

exploratory study. Specifically, we asked CDEMA to evaluate each country as a potential ware-

house location by considering three attributes: i) risk exposure, ii) logistical infrastructure and

connectivity, and iii) political stability and safety. Publicly available global indices such as the

INFORM 2018 Risk Index (INFORM, 2018), the Logistics Performance Index (World Bank,

2018), and the Worldwide Governance Index (World Bank, 2017) were used by CDEMA to score

the countries. Each country’s performance was classified as very poor, below average, average

and above average for each attribute. When a country’s performance was lower than average in

at least one attribute or there was no index data about the country, then that country was elim-

inated from the list of potential warehouse locations. In the end, 10 countries were considered

as candidates. In Table 1, we present data related to the candidate warehouse locations.
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We assume that a number of 10,000 square feet warehouses can be rented in these candidate

locations, each capable of storing 600 pallets and hence 12,000 family kits. We set the maximum

number of warehouses to locate in each location at a large value and we let the model determine

the optimal number of warehouses. The fixed cost of locating a warehouse for the first year in

a country was estimated by considering the annual costs of renting the facility and hiring staff,

and also the purchasing cost of one forklift. The rental cost was calculated for each country

based on publicly available rent indices, and considering DMA as a benchmark country, for

which the warehouse rental costs were obtained from the Dominican Red Cross. We assumed the

presence of one permanent worker at each warehouse. We further assumed that additional staff

and equipment could be temporarily obtained; the associated costs were considered as variable

costs, proportional to the amount of inventory held, and incorporated into the holding cost.

We added a 1% insurance charge to the total fixed costs to cover expenses related to possible

damages.

The base case fixed costs are also listed in Table 1. Additionally, in our numerical experiments,

we explored solutions that could be obtained by having the same fixed cost across all candidate

locations. This could be possible if the hosting governments subsidized the cost of warehousing,

as was done in previous similar initiatives in the region (Balletto and Wertheimer, 2010). In this

case, we assigned the average fixed cost value to each candidate warehouse. We also considered

a setting in which the current subregional focal points of CDEMA have smaller fixed costs than

all other locations, such as half of the network average.

Table 1 Data related to the candidate warehouse locations

Candidate Fixed Average Average unit Number Mild Strong Very Strong
location cost transit time transit cost of events events events events

(USD) (days) (USD) (%) (%) (%)

Air Sea Air Sea

Antigua and Barbuda 209,067 1 4.86 99.85 5.52 26 73 15 12
Bahamas 288,131 1 5.97 99.10 12.58 62 79 11 10
Belize 104,452 1 6.63 98.25 12.99 22 68 0 32
Barbados 149,741 1 4.93 77.37 6.26 22 91 9 0
Dominica 96,754 1 4.84 133.98 9.03 28 82 4 14
Grenada 110,987 1 4.89 79.19 9.11 16 81 13 6
Guyana 105,020 1 5.64 99.72 6.79 0 0 0 0
Jamaica 119,307 1 5.53 109.28 5.77 26 77 8 15
Suriname 92,899 1 5.85 99.15 6.32 0 0 0 0
Trinidad and Tobago 139,930 1 5.08 99.69 6.27 13 85 15 0

5.1.5. Sea Transportation We collected data from various publicly available sources to

estimate sea transportation times and costs. The IFRC Panama uses sea transportation to

serve the Caribbean region. Based on their data, it takes two to 10 days to arrange and ship

items. However, both IFRC and CDEMA agree that it is possible to use sea transportation

more effectively, for example by having dedicated ships. Many shipping lines carry passengers

and cargo among the islands, which can be effectively used after a hurricane. To estimate

sea transportation times, we first identified the major sea ports in each of the 20 CARICOM

countries. We then used Internet sources (e.g., Sea Distances (2019)) to calculate the distance

and travel time between each port pair by assuming a speed of 20 knots. We added a three-day
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allowance to the transportation times to account for handling. We conducted tests for a larger

four-day allowance. Since sea transportation takes more than three days, it can only be used to

serve countries during the slower response phase in our network. Furthermore, if a warehouse

location is hit by a disaster, we assume that it cannot serve other countries by sea for that

disaster due to possible damages and access problems. To estimate sea transportation costs, we

used the container cargo prices between country pairs from World Freight Rates (2019). We

also added a fixed cost per container to cover additional expenses such as port charges and

documentation. This cost is assumed to be USD 80 from the IFRC data, based on its pre-agreed

transportation providers in the Caribbean. We then extracted raw data from Maritime Routes in

the Greater Caribbean (2019) and identified the number of shipping lines between each country

pair. To reflect the connectivity of the countries, we multiplied these base costs by 1.5 whenever

there was no shipping line operating between two countries, and by 0.98, 0.975, 0.97 and 0.95,

if there were three, four, five or more lines, respectively. Finally, for each originating country we

added cargo handling costs on the basis of local labor costs.

5.1.6. Air Transportation Air transportation costs were estimated based on cargo price

data obtained from the IFRC, Caribbean Airlines and Cayman Airways. The IFRC has agree-

ments with cargo companies, which provide IFRC a fixed cargo rate every year for shipping

supplies from Panama to the Caribbean countries. Whereas several airlines operate in the region,

the two airlines we considered publish their cargo rates in their webpages. Hence, we computed

the average price of shipping a kilogram of cargo for each origin and destination pair. Further-

more, when two countries were not connected by any airline, we increased the price by 5% since

then private planes must be used, while we reduced the unit price by 2.5% when there were

multiple airlines serving the same link. Similar to sea transportation, we added handling charges

per kit based on country-specific labor costs, as well as a fixed cost to account for port charges,

which was estimated to be USD 0.17 per kilogram from the IFRC data. Air transportation is the

only mode that can be used to meet the coverage requirements at the first response time level.

However, if a warehouse location is affected by a disaster, we prevent the affected warehouse

from serving other countries by air in the first three days after the disaster. Furthermore, if the

amount of demand to be covered at the first response level corresponds to a partially loaded

plane, we increase the amount to be covered at this level to a multiple of a plane capacity, to

encourage full shipments by plane.

5.1.7. Other Parameters In the base case, the lead time τ was set at two months (four

periods), which was estimated based on IFRC’s average replenishment time in the Panama

warehouse. In our analyses, we explored the effects of a shorter lead time period, such as one

month, to understand the potential effects of a faster procurement strategy on our collaborative

prepositioning network.

The percentage of damaged supplies was estimated according to the hurricane categories. We

considered three settings with respect to the αstw parameter. In the base case, supplies are lost
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only due to destructive effects of strong hurricanes. Specifically, we assumed that 20% supplies

are lost if the hurricane category is S, and 50% are lost if the category is VS. We also considered

instances in which no supplies are destroyed in any event. Finally, we considered instances in

which 20%, 50% and 100% of the available inventory is lost in hurricanes with M, S and VS

categories, respectively. We set the minimum percentage of supplies to be satisfied within the

first three days (the βstc parameter) as 10% in our base case. We explored the effects of increasing

response time requirements by setting this parameter to 30%.

To summarize, we used three levels of MCL and q, and two levels of τ in the base case,

which leads to 18 base case instances. For each of these instances, we conducted experiments

by modifying the other parameters. Specifically, we tested for different levels of fixed costs, sea

transportation times, damaged supplies percentages, and response requirements. In total, we

used 126 instances to test our methodology.

5.1.8. Model Implementation We coded our model by using Java Concert Technology

and we used CPLEX 12.7 to obtain solutions on a 64-bit Windows Server with two 2.0 GHz

Intel Xeon CPU’s and 32 GB RAM. We set a one-hour time limit for each instance. Some

instances were solved within a few minutes, while others could not be solved to optimality

within one hour. Therefore, to speed up the solution process for these instances, we imposed

the valid inequalities
∑

w,c,m,s,tQ
st
wcm ≤ Iw to help CPLEX set the values of the Q variables. We

also set the associated values of the Q variables equal to zero, when i) a country does not have

a demand in a given scenario and time period, ii) a country’s demand cannot be covered by a

candidate warehouse by any transportation mode, or iii) a candidate warehouse is out of service

due to effects of a disaster. We solved the restricted model to estimate the value of parameter b

by assuming that the second-stage variables R, A and Q can be continuous. The effect of this

relaxation on the b value is negligible.

5.2. Results and Discussion

Here we present and discuss the results of our numerical analyses.

5.2.1. Setting a λ Value The λ value in (3) affects the tradeoff between the amount

of initial investment required to establish the collaborative network and the expected annual

costs, which includes expected replenishment and transportation costs as well as fixed costs

(i.e., renting, holding, staff, and insurance). Specifically, setting λ to a small value could yield

a network with the lowest expected annual costs, but this choice may require large initial

investments. By incurring smaller yearly total costs, the large initial investment can be recovered

quickly. In contrast, by setting λ to a large value, the minimization of the initial investment

needed to set up the network is prioritized, and the total yearly costs are higher. To identify

the best λ value, we considered a fixed payback period for the network, and we calculated an

annual equivalent value for the sum of the initial investments and the expected annual costs

over this period. Specifically, we considered three alternative payback periods, of five, 10 and
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15 years, and calculated annualized total investments by assuming three interest rates equal

to 3%, 4% and 5%. We ran tests on our 126 instances, setting b = 196.74 (value obtained by

solving the 126 instances on a restricted model and averaging the solution values), for seven

different values of λ, ranging between 104 and 1010. By fixing the payback period, the interest

rate, and the MCL value, we calculated an average value over different q values for the sum

of the annualized initial investments and expected annual costs for each value of λ. According

to these results, if the desirable payback period is short, it is better to give more weight to

minimizing the country investments, and as the payback period increases it becomes preferable

to have a smaller value of λ and build a network that engenders smaller costs each year. While

we observed these trends in individual solutions, we found λ= 108 to be the best choice since

it yields the minimum values on most instances.

5.2.2. Collaborative Network Analysis: Identifying the Strong Candidate Loca-

tions We first analyzed the optimal solutions of our 126 instances and identified the most

desirable countries where to locate warehouses. Specifically, we counted the number of times a

country was selected as a warehouse location under different settings. Each setting involves 18

instances obtained by fixing a parameter and considering different combinations of MCL, q and

τ values; the remaining parameters are assigned to their base case value. In each setting, if a

country belongs to the top three selected locations over the 18 instances, we assigned a score of

2 to that country, while if it is among the next three locations its score is 1 (see Table 2).

Table 2 Scores of the candidate warehouse locations (the best six locations are shown in boldface)

Instances

Candidate Base No Higher Larger Increased Smaller Identical Sum
location case damage damage sea fast focal points fixed of

transit time coverage fixed cost cost scores

Antigua 2 2
Bahamas 1 1 2 4
Belize 2 2 1 2 2 1 2 12
Barbados 2 2 2 1 2 2 2 13
Dominica 1 2 1 2 1 7
Grenada 1 1 2 1 1 6
Guyana 2 2 2 1 7
Jamaica 1 1 1 3
Suriname 2 2 2 2 2 10
Trinidad and Tobago 1 2 1 4

The candidate warehouse location with the largest total score is BRB, which is relatively

expensive in terms of fixed costs; however, it has not yet been hit by a VS event, and has the

lowest air transportation costs, as well as low sea transportation costs (Table 2). The next most

popular candidate is BLZ, which has been affected by VS events, but is advantageous in terms of

fixed costs and air transportation costs. SUR and GUY are the third and fourth best candidates.

They are never affected by hurricanes and have low fixed location costs. We also considered

DMA and GRD among the strong candidates. Note that DMA and GRD have been affected

by VS events, but they are good candidates due to their logistical connectivity and costs. In

particular, DMA has relatively low fixed costs and high air and sea transportation costs, but a

very good sea connectivity. Therefore, when other less expensive countries become less connected

by sea due to higher sea transportation times, DMA becomes a preferred location. GRD is a
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bit more expensive in terms of fixed costs, but is cheap for air transportation. Moreover, like

DMA, it has a good sea connectivity, therefore it is among the best locations when considering

higher sailing times. Note that three of the CDEMA subregional focal points, ATG, JAM and

TTO, do not have high scores. These locations are chosen mainly when their fixed costs are

decreased (Table 2). JAM is the cheapest location for sea transportation and can serve HTI by

sea. For this reason, it is among the best six locations when higher sea transportation times are

considered. However, JAM has been affected by a number of VS hurricanes, which makes it a

poor warehouse location. Since there are already strong candidates in the Eastern Caribbean

that are geographically close to ATG and TTO, such as BRB, DMA, GUY and SUR, and

BLZ in the Western Caribbean that is geographically close to JAM, we do not consider these

countries among the strong candidates.

5.2.3. The Recommended Collaborative Prepositioning Network Having identified

the best six candidate countries (BRB, BLZ, SUR, GUY, DMA, and GRD), we performed

additional tests to design the collaborative prepositioning network. We considered different

values of MCL and q and set other parameters to their base case values, and we applied our

model by only considering CDEMA’s current four subregional focal points, which are ATG,

BRB, JAM and TTO. Note that in reality CDEMA has fixed service regions as shown in Figure

1, while in our problem we do not force single sourcing constraints, since i) we assume that

warehouses can be affected by a disaster and supplies may be lost, which would prevent a

warehouse from serving its assigned countries, and ii) risk pooling benefits may decrease in the

region when service regions are fixed. The results for different sets of candidate locations are

presented in Table 3.

Table 3 Description of the solutions obtained by solving our model (Recommended prepositioning network)

and by fixing the focal points (Optimized current prepositioning network)
Instance

q = 0 q = 5 q = 10

MCL = 12,000 MCL = 8,000 MCL = 12,000 MCL = 8,000 MCL = 12,000 MCL = 8,000

Recommended prepositioning network

Warehouse locations(#) BLZ(3), BRB(1), DMA(2), BLZ(2), BRB(1), DMA(1), BLZ(1), DMA(1), GRD(2), BLZ(1), BRB(1), DMA(1), DMA(1), GRD(1), GUY(2), BLZ(1), BRB(1), GUY(2),
GRD(1), SUR(3) GRD(1), SUR(3) GUY(2) GUY(2) SUR(2) SUR(1)

Deviation (Z) 0.167 0.161 0.150 0.139 0.135 0.123
Total inventory 116,927 89,275 69,763 51,559 61,123 46,543
Maximum Premium 6,413,974 4,236,715 5,641,772 3,621,375 4,587,978 3,010,144
Average premium 2,283,631 1,739,541 1,898,231 1,414,421 1,582,684 1,178,457
Tot required investment 41,105,350 31,311,733 34,168,161 25,459,586 28,488,312 21,212,226
Expected emergency 5,737,162 4,626,316 5,296,909 4,306,228 4,980,248 4,007,110
response cost

Optimized current prepositioning network

Warehouse locations(#) ATG(3), BRB(1), JAM(2), ATG(2), BRB(1), JAM(1), ATG(1), BRB(1), TTO(4) BRB(2), JAM(1), TTO(1)
TTO(1) TTO(1)

Deviation (Z) 0.153 0.142 0.137 0.126
Total inventory Infeasible Infeasible 75,620 54,450 61,745 47,800
Maximum Premium 5,730,025 3,676,601 4,639,641 3,069,609
Average premium 1,929,377 1,438,435 1,601,497 1,205,019
Tot required investment 34,728,781 25,891,829 28,826,942 21,690,334
Expected emergency 5,236,083 4,284,502 4,888,821 3,957,826
response cost

According to the results, when MCL = 12,000 and q = 0, 10 warehouses are located in five

countries, which hold a total of 116,927 kits. When q = 5, six warehouses are needed, and the

total inventory to cover all scenarios is 40% smaller, which is 69,763 units. Furthermore, a

17% decrease in average country premiums is observed, and the country premiums are equal or

smaller for every country in the recommended prepositioning network. If we further eliminate
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scenarios with large minimum required inventory and set q = 10, six warehouses are located in

four countries. However, the change in inventory and costs are not that dramatic in this case

compared with eliminating the worst 5% from the base scenario set. We observe this trend when

MCL = 8,000; that is, a large reduction of 42% in inventory is obtained if 5% of the worst

scenarios are ignored when making prepositioning decisions. Given the significant saving in the

amount of inventory and corresponding investments, it is reasonable to design the collaborative

prepositioning network based on q = 5, which can cover 95% of the scenarios generated from

historical data. Therefore, for the base case with MCL = 12,000, we recommend operating six

warehouses in four countries.

When we ran the model by fixing CDEMA’s current locations, we could not find a feasible

solution in settings with q= 0. This is because there are some hurricane seasons in which all of

the candidate warehouse locations are affected simultaneously by a hurricane. Since an affected

warehouse is out of service for the first three days after a hurricane, no feasible solution exists.

When q = 5 or 10, the current warehouse locations yield feasible solutions. However, the total

amount of inventory and the required investment are larger compared with the recommended

collaborative prepositioning network. Note that the solutions obtained by solving our model by

fixing CDEMA’s current locations do not correspond to the real current setting of CDEMA’s

network. Indeed, they are obtained by relaxing CDEMA’s fixed subregions, which would impose

that each country can be served from exactly one warehouse, making the model always infeasible.

Table 3 provides the optimized solutions of the current network, for different MCL and q values.

Table 4 Difference between the optimized current and recommended prepositioning network

Difference between

q MCL total total maximum average
investment inventory premium premium

Base case
5

12,000 560,621 5,857 88,254 31,146

8,000 432,243 2,891 55,226 24,014

10
12,000 338,630 622 51,664 18,813

8,000 478,108 1,257 59,464 26,562

Higher damage
5

12,000 1,855,585 17,710 292,108 103,088

8,000 1,468,251 12,320 187,593 81,570

10
12,000 854,897 5,603 130,429 47,494

8,000 888,869 4,029 110,553 49,382

Table 4 shows the differences between the solution of the optimized current and of the sug-

gested prepositioning network, for different values of MCL and q, and for two sets of instances.

For the base case instances, when q = 5 and MCL = 12,000, the optimized current network

requires a total investment of UDS 560,621 larger than the suggested network and 5,857 more

items. This leads to larger maximum and average premiums. These differences become more

important when considering the set of instances with a higher damage level, i.e. those where

more supplies are lost in case a warehouse is affected. When q= 5 and MCL = 12,000, the opti-

mized current network requires the storage of 17,710 more items than the suggested network

to cover all the demand, and a total investment of almost USD 1.9 million more. Considering
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these numbers we believe that CDEMA could decide to keep its current focal points and use

our model to optimize the inventory. However, if there is a risk of higher damages, since some

of the current subregional focal points, such as JAM, are often hit and have a higher degree of

exposure, we suggest some changes in the current warehouse locations.

Table 5 Investment and the usage of the network with MCL = 12,000 and when allowing a complete

demand coverage, by setting MCL = ∞
Distribution of the scenarios as a function of
the average interval of used inventory (%)*

q MCL Tot required # opened Total Maximum Average [0, 10] ]10, 20] ]20, 30] ]30, 40] ]40, 50] ]50, 80] ]80, 100] ]100, ∞[
investment facilities inventory Premium Premium

0
12,000 41,105,350 10 116,927 6,413,974 2,283,631 19.35 21.29 18.39 14.19 11.61 9.68 4.52 0.97

∞ 826,022,649 188 2,245,701 606,679,168 45,890,147 67.42 11.94 6.45 2.90 5.81 3.87 0.65 0.97

5
12,000 34,168,161 6 69,763 5,641,772 1,898,231 13.22 13.90 11.53 10.85 11.86 26.78 6.44 5.42

∞ 423,298,682 92 1,098,848 285,584,130 23,516,593 58.64 12.20 8.81 3.73 3.73 5.76 5.76 1.36

10
12,000 28,488,312 6 61,123 4,587,978 1,582,684 12.19 11.83 12.90 10.75 8.96 30.11 10.04 3.23

∞ 379,039,292 75 888,018 232,720,182 21,057,738 58.78 10.04 11.47 5.73 2.15 7.89 2.15 1.79
* For example, for q = 0 and MCL =∞, 67.42% of all scenarios use at most 10% of the total inventory, equal to 2,245,701 family kits. For q = 5 and MCL =
12,000, 26.78% of all scenarios use between 50% and 80% of the total inventory, equal to 69,763 family kits.

Table 5 compares the solutions with MCL = 12,000 and without a maximum coverage limit

(MCL =∞) in terms of the total required investment, number of open warehouse facilities,

total inventory, average and maximum premiums, and utilization of the inventory for different

q values. As observed from this table, if MCL is unbounded, the required inventory, the number

of facilities and the total investment become unaffordable. Moreover, the stock utilization drops

significantly, which implies that most of the family kits would sit in the warehouse for several

years before being used. Note that in more than 58% of the scenarios corresponding to potential

hurricane seasons, the average percentage of used stocks is less than 10%, and this is for all

q values. When designing the network with q = 0 and MCL = 12,000 units, we note that the

average percentage of used stock is less than 10% for less than 20% of the scenarios, whereas this

is the case for less than approximately 13% of the scenarios when q = 5 and q = 10. Thus, the

utilized capacity increases significantly when imposing a maximum coverage limit. The results

presented in Table 5 show that designing a prepositioning network without imposing a maximum

coverage limit (MCL =∞) would lead to unreasonable investments and important inefficiencies,

i.e., to several mostly unused facilities, low stock utilization rate, deterioration risks, excess

storage capacities and costs. They also show that using q = 5 and MCL = 12,000 units yields

interesting solutions in terms of investment and inventory utilization, while providing a good

coverage.

In the recommended network, the affected countries are served by warehouses located in

different countries under different scenarios. Table 6 shows the average percentage of demand

satisfied by each warehouse location and mode per affected country. It identifies the primary

hubs and the transportation modes used to serve each affected country, when it is served from

at least two different locations by sea and by air in different scenarios. For both air and sea, the

demand of a country in a single event is usually served from the same warehouse. Therefore, our

results do not suggest fixing service regions a priori as in CDEMA’s current system. However, for
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Figure 3 Country premiums, expected demands and standard deviations of demands

each approaching event, the affected countries can be assigned to the most logistically convenient

warehouses. Moreover, air and sea connectivity can be improved on the most frequently used

links in order to fully benefit from the collaborative prepositioning network.

Table 6 Average percentage of demand served from the warehouses via air and sea

Belize Dominica Grenada Guyana

Air Sea Air Sea Air Sea Air Sea

AIA 3.05 50.96 41.26 1.95 2.78
ATG 0.86 33.40 21.02 24.42 20.31
BHS 0.51 69.80 9.12 12.03 8.39 0.15
BLZ 0.82 39.89 2.38
BMU 38.19 49.18 12.63
BRB 3.70 49.33 12.82 23.74 2.41 8.00
BVI 0.87 0.34 48.34 21.56 17.14 11.75
CYM 0.54 4.31 56.93 17.71 18.42 2.09
DMA 0.33 15.74 15.82 0.82 5.85
GRD 13.57 4.37 5.53 3.96
GUY
HTI 0.41 0.09 35.55 8.14 27.04 1.48 27.29
JAM 1.52 1.27 10.55 8.84 49.88 0.45 27.48
KNA 1.38 20.53 29.62 31.79 16.67
LCA 2.80 30.62 15.65 39.64 0.38 10.90
MST 2.21 87.47 2.93 4.09 3.30
SUR
TCA 1.10 16.18 36.69 21.14 4.37 20.52
TTO 6.01 30.82 3.37 15.56 2.70 41.54
VCT 10.08 33.13 21.93 26.78 1.98 6.10

[0,5] (5,10] (10,20] (20,30] (30,50] (50,100]

The total investment required to establish the recommended collaborative network is about

USD 34.2 million. The country premiums needed to cover this investment range between USD

138,139 and USD 5,641,772. Figure 3 shows the premium of each country, as well as the expected

value and the standard deviation of the demand. As indicated by these graphs, the premiums

reflect the countries’ average demands as well as their standard deviations. The optimal Z

value is 0.15, which is the same for all countries as shown by Proposition 1. Interestingly, a

similar range of premiums is reported for the CCRIF policies, as discussed in §3.2. Similarly

to the CCRIF experience, highly vulnerable countries such as HTI, may not have sufficient

financial resources to pay the annual premiums and may need external donors to sustain their

membership.
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5.2.4. Observations and Insights We present our observations related to the effects of

the model parameters on the network design decisions and costs, based on the solutions of the

126 test instances, and also on some experiments performed on the proposed network.

• Lead time. In the proposed network, the lead time τ is set to two months, based on the

IFRC current replenishment times. We observe that decreasing the lead time to one month could

make a significant impact on the structure of the recommended solution. Specifically, for q = 5

and MCL = 12,000, although the number of warehouses to locate would be the same, the total

network inventory would decrease by 8% and the total required country investment would go

down by 2.9%. We observe similar trends in the solutions of the 126 test instances. Specifically,

the inventory held in the network is on average 6.83% larger in instances with longer lead

times, which corresponds to 1.75% larger investments. Furthermore, the location and number

of facilities is affected by the lead time in 46% of the instances. These results suggest that the

replenishment lead time is a critical parameter, which could help reduce the inventory held in

the collaborative network. Therefore, it would be beneficial to have arrangements in place to

achieve a faster replenishment during the hurricane season. This could be possible by i) making

framework agreements with the suppliers to expedite shipments, and ii) having additional stocks

in close hubs such as the UNHRD depot located in Panama. The cost savings achieved by the

reduced lead time could be used to finance these strategies.

• Sea connectivity. In the base case, we set sea transportation times by adding a three-day

delay to the pure sea transportation times to account for handling. When this delay becomes

longer, some country pairs lose connectivity by sea. Since sea shipments are much cheaper than

air shipments, reduced sea connectivity can have a major effect on the network and costs. In the

proposed network, decreased sea connectivity primarily affects the warehouse in GUY, which

is a critical location for serving HTI, JAM, TCA and TTO (see Table 6). If sea transportation

times are increased by one day, GUY cannot cover three of these countries within one week.

Therefore, the warehouses in GUY are shifted to other locations. However, this change could

lead to significant respective increases of 7.56% and 5.04% in the expected transportation costs

and in the emergency response budget. Therefore, in our recommended propositioning network,

it would be useful to make arrangements to maintain and improve the sea connectivity of GUY.

We also observe the criticality of sea connectivity in the results of other test instances. Pri-

marily, the elongated sea trips consistently lead to a larger difference between the minimum

inventory required in the network (Ωq
τ ) and the optimal amount of inventory (I∗) more than

any other parameter. Specifically, over all instances with q = 5, increased sea transportation

times lead to a 2.3% larger inventory compared with the minimum required amount, which cor-

responds to 1,180 units on average. In many instances, the number and locations of warehouses

are also affected. Because of the relative advantage of sea transportation, the model chooses to

store additional inventory rather than relying on air shipments. Our discussions with CDEMA

and IFRC also validated the criticality of improving sea transportation in the region. Acquiring
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and positioning dedicated ships for moving relief supplies among the islands is one of the options

considered, which would highly enhance the network’s effectiveness.

• Coverage requirements. Increasing the coverage requirements in the first three days from

10% to 30% implies using more air shipments to serve the affected locations. For the proposed

network, the expected transportation costs increase by 71.55%, compared with the base case.

The warehouse locations are not very sensitive to faster response requirements; indeed, only the

capacities of the existing locations are changed because more supplies are stored in locations

that are cheaper for air transportation. Therefore, to economically improve the response times

in the network, it would be beneficial to negotiate better rates with air transportation providers,

especially for the most frequently used links shown in Table 6.

• Destroyed warehouses and supplies. When the risk of losing supplies in the warehouses

located in hurricane-prone countries increases, more warehouses are located in GUY and SUR,

which have not previously been hit by any hurricane. Whereas the total amount of inventory held

in the network is not significantly affected (only 1.53% larger), since the network becomes more

centralized, the expected transportation cost increases by 10.31%, and the emergency response

budget goes up by 2.83%. These results highlight the importance of adequately evaluating the

risks associated with losing supplies when determining the warehouse locations.

We stress that the solutions are generally more sensitive to changes in the parameters as q

increases. When q = 0, the network holds excess inventory in order to cover all scenarios, and

therefore, small changes in parameter values do not considerably affect warehouse locations and

the amounts of prepositioned inventory.

5.2.5. Analysis of Collaboration Benefits The collaborative prepositioning network

achieves risk pooling benefits by centralizing inventory, which is shown in Proposition 2 for

q = 0. To measure this benefit for any value of q, we propose the following performance metric

φ, which calculates the savings gained by using joint prepositioned stocks, as opposed to each

country prepositioning stocks independently:

φ= 1− Ωq
τ∑

c∈C Ω̃q
c,τ

. (28)

This metric can be calculated based on scenarios and without solving our optimization model.

Accordingly, given a set of scenarios Sq, if the minimum inventory required in the collaborative

network is close to the sum of inventories that countries would hold independently, then φ takes

a small value, which indicates that the collaboration benefits are small. Conversely, when there

is a large gap between the minimum amount of the joint stocks and the sum of the independent

stocks, then φ becomes larger, reflecting higher benefits from collaboration.

For MCL = 12,000 and τ = 4, Table 7 shows the values of φ computed for different values

of q between 0 and 50. We obtain similar values and trends for the other MCL and τ values.

When q= 0, φ is about 0.56, which means that the total inventory needed from all countries if
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each of them would store independently, is more than twice the amount that would be needed in

our collaborative prepositioning network to cover all disasters. Interestingly, this ratio is aligned

with what CCRIF reports for the country premiums, as discussed in §3.2. The value of φ tends

to increase with q. The largest jump occurs when q increases from 0 to 5. This justifies our

choice of designing a collaborative network with q = 5, which yields a large φ value, equal to

more than 0.70 in all settings, and ensures a good service level.

Table 7 φ values for different q values, MCL = 12,000 and τ = 4

q 0 5 10 15 20 25 30 35 40 45 50

φ 0.56 0.71 0.74 0.77 0.78 0.80 0.81 0.83 0.84 0.83 0.83

These results encourage us to develop extensions of our multi-country collaboration mecha-

nism to other parts of the world, for example, to South-East Asia and Oceania, which are often

hit by hurricanes and where risk pooling benefits may be achieved by keeping joint emergency

stocks. Existing regional disaster response mechanisms in these regions may facilitate the devel-

opment and implementation of a collaborative prepositioning strategy. For instance, national

agencies of the IFRC, which operate worldwide, could implement collaborative prepositioning

solutions to generate risk pooling benefits in their respective regions.

6. Conclusions

To close this paper, we summarize the main contributions of our study and we point to new

avenues of research.

6.1. Summary of our Scientific Contributions

We have proposed a new collaborative prepositioning network design strategy to improve

regional disaster management capacity in the Caribbean. We believe our study is the first ever to

develop a systematic method for collaborative propositioning in a multi-country setting. Specif-

ically, given a set of countries frequently affected by hurricanes, we determine the locations

and amounts of joint stocks to be kept in the network so that the affected countries can be

served quickly after a hurricane. Since different subsets of countries are affected by each event,

risk pooling benefits can be achieved by keeping joint stocks. In order to sustain the proposed

multi-country horizontal coordination mechanism, the required investments must be allocated

fairly among the partner countries. We have developed a model inspired by insurance theory to

allocate these costs among the partners in such a way that the country premiums are related

to the costs associated with the expected value and the variance of their demand.

We have constructed a realistic data set to test and solve our model. We have conducted

extensive numerical analyses to derive insights in order to support implementation. Our results

demonstrate that important risk pooling benefits can be achieved by implementing a collab-

orative mechanism among the Caribbean countries affected by hurricanes. The benefits from

collaboration increase significantly if the warehouse replenishment lead time during a hurricane
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season can be decreased and if regional logistical connectivity can be improved. The Caribbean

setting constitutes an ideal example to illustrate the proposed collaborative approach since

the CARICOM countries are connected to each other through economic, social and cultural

ties. Furthermore, there exist established institutions such as CDEMA and CCRIF, which can

support establishing and operating a collaborative prepositioning network in this region.

6.2. New Avenues of Research

Several avenues of research can be envisaged. In this study, we have concentrated on the

Caribbean because it is one of the most hurricane-prone region in the world and we had a close

collaboration with CDEMA and the IFRC. Extensions of the proposed multi-country horizontal

collaboration mechanism to other parts of the world are possible. For instance, the proposed

methodology can be adopted to South-East Asia and Oceania, which are often hit by hurricanes.

Some of our methodology can also be adapted to regions that are frequently affected by earth-

quakes. While CDEMA, which facilitates the collaboration among the Caribbean countries, is

an inter-governmental agency, the proposed methodology can be extended to other contexts,

where umbrella organizations and members of the collaboration may be humanitarian agencies

such as the IFRC and its national agencies.

Given that lead time has appeared as a critical parameter in our study, one could develop

models that consider alternative procurement options, such as framework agreements with global

suppliers and local sourcing. Recently, it was suggested by CDEMA that we look into local

markets for procuring supplies. The evaluation of local market capacity would be important

for that region. Moreover, potential costs that may be incurred while transitioning to the new

collaborative network, such as moving the existing inventory from the current facilities to the

new ones, can be explicitly considered in future models. The reallocation of supplies among

the warehouses could also be incorporated in the response phase (second-stage) of the model

by considering the dynamic information updates related to wind speed intensity and the path

of a hurricane. Another concern of CDEMA is the state of the countries’ infrastructure in the

aftermath of a hurricane. While our model already considers the destruction of relief items as

well as the temporary unavailability of access to infrastructure, such as port facilities, piers,

warehouses and mechanical handling equipment, more accurate estimates could be obtained

through the study of past data to try and predict the future absorption and onward distribution

capacities of each state. In the same vein, there should be some consideration for transport

modes used outside the existing commercial infrastructure, such as chartered vessels and aircraft,

as well as military assets. We are currently supporting CDEMA in conducting a study on the

assessment of the logistics infrastructure and post-disaster capacities in the Caribbean (e.g., local

market, port and airport capacities after a strong hurricane). This will enable the development

of future optimization models that incorporate disaster response operations in this region in a

more explicit way.
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Our work can also lead to future methodological advances in multiple directions. For instance,

the model we have developed rests on the generation of scenarios based on historical data. More

accurate predictions could be obtained through the use of climate change models pertaining to

hurricanes, namely those that exploit the estimated influence of anthropogenic climate change

(Mann and Emmanuel, 2006) and long-term trends in the frequency and intensity of tropical

cyclones (Knutson et al., 2010). Considering some Latin American countries and also other

types of disasters affecting the region such as earthquakes and floods may help achieve larger

collaboration savings and improve regional capacity and integration. Therefore, it would be

of interest to explore how to maximize risk pooling benefits in collaborative prepositioning

networks and how to include other type of disasters in our demand scenarios.

In addition, the proposed insurance-based methodology can be adapted to other collaborative

settings for cost and risk sharing. Furthermore, our work extends naturally to the adaptation

of alternative insurance principles in order to model the risks associated with humanitarian

supply chains. An interesting application of insurance theory to our collaborative prepositioning

network could focus on setting country-specific upper coverage limits (i.e., MCL) by considering

the demand distributions of the countries. However, the implications of country-specific MCL

on total investments, country premiums and fairness of the cost allocation must be carefully

evaluated. Since demand scenarios depend on MCL values, incorporating MCL as a decision

variable may require devising a new methodology for cost allocation. Finally, alternative cost

sharing methods can be developed to fairly allocate the costs associated with the collaborative

prepositioning network among the members. One option is the use of the Shapley value (Shapley,

1953) which has been applied to apportion costs and benefits among several collaborating actors

in a variety of logistics contexts, for instance in the horizontal cooperation of freight carriers

(Krajewska et al., 2008). Other fair allocation methods that can be adopted to collaborative

prepositioning include the alternative cost avoided method (Tijs and Driessen, 1986) and the

equal profit method (Frisk et al., 2010), which were considered by Verdonck et al. (2016) in a

cooperative facility location problem setting.
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Appendix A. Processing Hurricane Data and Generating Scenarios

We have examined historical hurricane tracks from three different databases focusing on a period

between 1950 and 2017, but the characteristics of the events reported by different databases

are sometimes different. We have therefore validated and merged the available information from

these three databases. While EM-DAT involves information related to the total number of

affected people, it does not report the category of the hurricane hitting a country. On the other

hand, HURDAT and the CHN database report the categories, but do not contain information

related to the affected population. In cases where HURDAT and the local database reported

different categories for the same hurricane and the same affected country, we accepted the

category provided by HURDAT. Moreover, there exist some hurricane events that are only listed

in EM-DAT. To assign a category to such event, we explored the Internet to find related reports

(e.g., from the NOAA, The Weather Network (2019) and ReliefWeb (2019)), and we identified

the category of the storm hitting country.

EM-DAT reports the number of affected people for some of the 188 events in our data set.

When we analyzed data on the number of affected people in a given country, we found the

population of the country in the year of the event and we calculated the percentage of affected

population. In most of the countries, the population has changed significantly over the years.

For instance, MST’s population decreased significantly. We recorded the largest percentage of

affected population for each country, denoted by Lc, which is later used to develop demand

scenarios associated with a hurricane of a given strength. For some countries such as BVI

and MST, EM-DAT does not report any data on the number of affected people for the past

hurricanes. For such countries, we considered the percentage of population affected by the same

event and the same category in the close neighbouring countries, and we calculated the largest

percentage of affected population accordingly.

The data on the category of the hurricanes were also used to estimate effects of a hurricane,

based on their wind speed. The storms are classified into mild (M), strong (S) and very strong

(VS) categories. We kept the mild storms in our data set since i) they may still cause disastrous

situations due to rainfall and flooding, ii) the strength of a storm may change along its track

and a country hit mildly may later be affected by a stronger event. As a result, for each country

we kept the total number of events, and the percentage of events with different categories.

After processing the historical hurricane data, we developed hurricane scenarios. For each of

the 62 seasons, we kept the hurricane tracks and their timing fixed, and randomly generated five

scenarios differing from each other in terms of the severity of the hurricane hitting a country and

of the size of the affected population. The size of the affected population was generated consid-

ering both the severity category and Lc. In total, we generated 310 different and equiprobable

scenarios. We assigned a category to the countries on a track according to the percentage of the

past events with M, S and VS categories. For example, JAM was hit by 26 events between 1950

and 2017, 77% of which belonged to the M category, while 8% of them were S, and 15% were
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VS. Based on these percentages, we determined the number of scenarios with a specific strength

for each country starting from the VS category. Specifically, for the JAM example, we generated

d5× 0.15e= 1 event from the category VS, d5× 0.08e= 1 event from S, and 5− 1− 1 = 3 events

from M. For each scenario, we then generated an estimate for the affected number of people in

the hit countries. In particular, for each country c ∈C, we considered its population Popc, Lc,

and the category of the hurricane. We then calculated Πc = max{50,Lc} ×Popc, which repre-

sents the size of the largest population that we target in our planning. An integer number chosen

randomly from the interval [0,Πc × 20/100] was assigned as number of affected population in

country c, due to a hurricane of category M. For categories S and VS, we randomly generated the

number of affected people from the intervals (Πc× 20/100,Πc× 50/100] and (Πc× 50/100,Πc],

respectively. This allowed us to take into account the exposure of the countries to the hurricanes

and the impact that hurricanes of different categories can have on the number of affected people.

We then divided these population values by five, which is the average family size. Finally, if

the number of family kits (targeted demand) generated by this procedure was larger than the

prespecified MCL value, we accepted the MCL value as the demand of a country in a scenario.

We generated scenarios following this procedure because we did not have data on the countries’

targeted demand. However, if such information was provided, the number of family kits could

be replaced by the targeted demands and adjusted (bounded) according to the MCL value.

Appendix B. Data Used for the Computational Experiments

Table 8 Family kit contents and characteristics

Item Quantity Unit price Unit weight Unit volume
(USD) (kg) (m3)

Hygiene kit 1 24.15 7.80 0.037
Jerrycan 2 6.30 0.35 0.004
Blanket 5 25.20 3.30 0.010
Mosquito net 2 8.40 0.86 0.003
Tarpaulin 2 29.40 9.36 0.022
Shelter tool kit 1 26.25 11.30 0.035
Kitchen set 1 24.15 6.40 0.019
Plastic bucket 1 3.68 0.89 0.008

Total 147.53 40.26 0.137
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