Citation for published version:
Wøhlk, S \& Laporte, G 2019, 'A districting-based heuristic for the coordinated capacitated arc routing problem', Computers and Operations Research, vol. 111, pp. 271-284. https://doi.org/10.1016/j.cor.2019.07.006

DOI:
10.1016/j.cor.2019.07.006

Publication date:
2019

Document Version
Peer reviewed version

Link to publication

Publisher Rights
CC BY-NC-ND

University of Bath

Alternative formats
 If you require this document in an alternative format, please contact: openaccess@bath.ac.uk

[^0]
Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

A Districting-Based Heuristic for the Coordinated Capacitated Arc Routing Problem

Sanne Wøhlk ${ }^{\mathrm{a}, *}$, Gilbert Laporte ${ }^{\text {b }}$
${ }^{a}$ CORAL - Cluster for Operations Research, Analytics, and Logistics, Department of Economics and Business Economics, Aarhus University, Fuglesangs Allé 4, DK-8210 Aarhus V, Denmark.
${ }^{b}$ GERAD and Canada Research Chair in Distribution Management, HEC Montréal, 3000, chemin de la Côte-Sainte-Catherine, Montréal, Canada H3T 2 A7

Abstract

The purpose of this paper is to solve a multi-period garbage collection problem involving several garbage types called fractions, such as general and organic waste, paper and carboard, glass and metal, and plastic. The study is motivated by a real-life problem arising in Denmark. Because of the nature of the fractions, not all of them have the same collection frequency. Currently the collection days for the various fractions are uncoordinated. An interesting question is to determine the added cost in terms of traveled distance and vehicle fleet size of coordinating these collections in order to reduce the inconvenience borne by the citizens. To this end we develop a multi-phase heuristic: 1) small collection districts, each corresponding to a day of the week, are first created; 2) the districts are assigned to specific weekdays based on a closeness criterion; 3) they are balanced in order to make a more efficient use of the vehicles; 4) collection routes are then created for each district and each waste fraction by means of the FastCARP heuristic. Extensive tests over a variety of scenarios indicate that coordinating the collections yields a routing cost increase of 12.4%, while the number of vehicles increases in less than half of the instances.

Keywords: Garbage collection, districting, arc routing, heuristics

1. Introduction

The purpose of this paper is to solve a multi-period garbage collection problem involving several garbage types called fractions. In our application these are

[^1]general and organic waste, paper and carboard, glass and metal, and plastic.
5 Our study is motivated by a real-life problem arising in Denmark. In this country, garbage collection falls under the responsibility of the counties. There are 98 Danish counties and we obtained data for six of them under a cooperative research agreement (see Figure 1). These counties represent several areas of Denmark. Two are rural (North (N) and South (S) Djurs), two are semi-rural
10 (Skanderborg and Odder (K)) and will be treated as one in our experiments, and two are urban (Frederiksberg (F) and Odense (O)). Because of the nature of the fractions (for example, organic waste attracts animals), not all of them require the same collection frequency. While general or organic garbage may require weekly or biweekly collections, recyclable materials such as glass and
15 paper may have longer collection intervals. Under the current practice, the collection days for different fractions are uncoordinated. To illustrate, general and organic waste can be collected every Monday, paper and cardboard every fourth Tuesday, glass and metal every third Thursday, and plastic every second Friday (see Figure 2).

Figure 1: The counties providing the data.
${ }_{20}$ However, in places like Denmark, where the citizens have to move their waste bins from the backyard to the sidewalk the evening before collection, and back the next day, such a schedule means that the citizens must relocate bins multiple
days each week. It would be easier for them to perform such operations all at once, and they would not have to be constantly preoccupied with garbage collection. For this reason, a more coordinated collection schedule, such as the one depicted in Figure 3, could be preferable. In this schedule, garbage collection always takes place on a Monday for all fractions, even though the garbage type varies from week to week. The idea of introducing coordinated collection schedules for garbage collection, where all collections would always occur on
30 the same weekday for each citizen, was recently proposed in [1]. Clearly, a coordinated schedule may not be possible in some old towns with narrow streets where there is not sufficient space to put many bins all at once. However, in the majority of the places underlying our study in Denmark, there are no real practical problems with a coordinated schedule.

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week9	Week 10	Week 11	Week 12
General and organic	x	x	x	x	x	x	\times	x	x	x	x	x
Paper and cardboard	x				x				x			
Glass and metal			x			x			x			x
Plastic		x		x		\times		x		\times		x

Figure 2: Example of an inconvenient schedule for the citizens.

	Week 1	Week 2	Week 3	Week 4	Week 5	Week 6	Week 7	Week 8	Week9	Week 10	Week 11	Week 12
General and organic	x	x	x	x	x	x	x	x	x	x	x	x
Paper and cardboard	x				x				x			
Glass and metal			x			x			x			x
Plastic		x		\times		x		x		x		x

Figure 3: Example of a more convenient schedule for the citizens.
35 There is yet no hard computational evidence that the uncoordinated collection schedules are beneficial in terms of collection costs. Some of our partners have expressed their interest in an investigation of the relative collection cost of the coordinated and uncoordinated schedule. The research question that motivates this paper is therefore to determine by how much implementing a coordinated
40 collection schedule would increase the collection costs, measured as the number of vehicles needed (assuming that a vehicle can perform a single route each day), as well as the total distance driven. In order to provide an input to the decision process, we have developed a districting-based heuristic for the design of coordinated garbage collection schedule, and we have compared the solutions to
45 those obtained under an uncoordinated collection scheme. Our computational results indicate that the increase in distance is 12.4% and the number of vehicles increases in less than half of the cases. Whether such increases are acceptable or not is up to the administrators to decide.

The problem under consideration is of very large scale, which imposes severe ${ }_{50}$ practical restrictions on our solution methodology. To give the reader an idea of the large size of these instances, in the five areas considered in this study, there are between 26 and 11,656 nodes, between 33 and 12,691 edges, between 19 and 8,651 required edges, and between two and 54 vehicles over all fractions. These
very large sizes preclude the use of any exact algorithm (for example, the largest CARP instances that can be solved optimally involve around 190 edges (see 2)). The use of metaheuristics such as tabu search, adaptive large neighbourhood search, or genetic algorithms (see [3] for a survey) is also impractical since such techniques must apply several destroy and repair operators over a very large number of iterations in order to produce high quality results. Typically,
${ }_{60}$ if a problem instance involves n nodes, then the complexity of most standard operators tends to be at least $O\left(n^{2}\right)$. As a result, we must contend ourselves with relatively simple low-complexity heuristics. It soon became clear to us that as a first step we would have to partition the counties into more manageable districts in each of which a routing heuristic would have to be applied separately. One
65 such heuristic, used as a subroutine in this work, is the FastCARP algorithm recently proposed by [4] for the CARP. As we will show, the use of districts not only reflects the current managerial practice, but it is instrumental in the design of coordinated collection schedules. However, the districting process is not without some inherent difficulties, as we will explain in the following.

70 As far as we are aware, the problem under study has never been previously studied. Related papers are those of [5], [6], and [7] for territorial districting in an arc routing context, [8, [9] and [10] for the study of multi-fractions garbage collection problems, [3] for the design of heuristics for the CARP in general, and 11 and [12 for the CARP in a garbage collection context. The papers
75 by [13] and [14] also describe interesting case studies in the context of curbside garbage collection, while [15] takes a broader perspective on research of garbage collection operations. However, it looks as if the design of coordinated multifractions collection schedules has never been investigated. Furthermore, we refer the reader to [16] and [17] for thorough surveys of the CARP.
${ }_{80}$ The remainder of this paper is organized as follows. Section 2 contains a detailed description of our problem. In Section 3, we discuss different approaches to decomposing the problem into districts and explain why our approach to districting makes sense not only in terms of working with smaller and more manageable territorial entities, but also as a means of coordinating the collec-
85 tion schedules. Our solution approach is described in Section 4 and Section 55 describes our base of comparison without enforcing coordination. Extensive computational experiments are presented in Section 6, followed by conclusions in Section 7 .

2. Formal Problem Description

90 The problem just introduced is known as the Coordinated Capacitated Arc Routing Problem (C-CARP) and was first presented in [1]. In the following, we will describe the problem formally, using a slightly simplified notation.

The C-CARP is defined on an undirected connected graph $\mathcal{G}=(\mathcal{N}, \mathcal{E})$, where \mathcal{N} is the set of nodes and \mathcal{E} is the set of edges. The edges are defined as unordered cost $c_{i j}>0$. With every pair of nodes i and j, we associate a cost $s_{i j}$ equal to the shortest distance between i and j, which can easily be determined. Node $0 \in \mathcal{N}$ represents the depot.

In order to describe the time perspective of the problem, let τ be the number mo of service days in a week, i.e. τ is typically 5 or 6 . Let $\mathcal{T}=\{1,2,3, \ldots\}$ be the set of service days in the planning horizon. Note that \mathcal{T} excludes non-service days, and therefore, if $\tau=5$, then days $1,6,11, \ldots$ are Mondays.
We denote by \mathcal{F} the set of all waste fractions to be collected, and for each fraction $f \in \mathcal{F}$, a demand $q_{i j}^{f} \geq 0$ must be collected from edge (i, j) every l^{f} days with biweekly collection, respectively) We define $\mathcal{E}^{f}=\left\{(i, j) \in \mathcal{E}: q_{j}^{f}>0\right\}$. By definition, we have either $\left(l^{f} \bmod \tau\right)=0$ or $\left(\tau \bmod l^{f}\right)=0$ for every fraction $f \in \mathcal{F}$, i.e., $l^{f} \in\{\ldots, \tau / 3, \tau / 2, \tau, 2 \tau, 3 \tau, \ldots\}$. We refer to waste fractions with $l^{f}<\tau$ as frequent fractions and to those with $l^{f} \geq \tau$ as non-frequent fractions.

To collect the waste, a set \mathcal{K}^{f} of identical vehicles are available for each waste fraction $f \in \mathcal{F}$. Each vehicle for collection of fraction f has a capacity equal to W^{f}.

A feasible solution of the C-CARP is characterized by sets of routes for the vehicles satisfying the following requirements:

The primary objective of the C-CARP is to minimize the total number of vehi${ }^{30}$ cles used, while the secondary objective is the minimization of the total routing cost over the $|\mathcal{T}|$ days of the planning horizon, defined as the total distance traversed by the vehicles.

3. Decomposition of the problem

When solving very large scale and complex problems such as the one considered in this paper, it is highly sensible to apply some kind of decomposition. The most natural approach would be to decompose the problem by waste fraction such that each waste fraction is treated separately. However, this is not possible due to the coordination constraints, and this approach was therefore discarded. An alternative approach is to decompose the problem graphically. While this would decrease the size of each subproblem, it does not reduce the complexity of the problem.

Finally, the problem can be decomposed along the time horizon and through the use of districts. A district is defined as a set of edges serviced on a specific day of the week. There are two ways this decomposition can be implemented. ${ }_{145}$ First, the problem can be decomposed by calendar day, so that each day in \mathcal{T} is handled separately. To this end, we can create the planning horizon $|\mathcal{T}|$ districts, one for each day, and assign each waste fraction of each edge to several districts that are l^{f} days apart in time and in such a way that the demand for each fraction is balanced across the districts. This would result in 12 to 60 districts, depending on the instance. While performing this assignment and possibly adjusting the assignment, the coordination requirements 2 and 3 is Section 2 must be respected. Once the districts are designed, routes must be created to service the edges of each district. During the routing phase, requirement 8 must be ensured, possibly by replication of the same set of routes for several districts.

Second, the problem can be decomposed on the basis of weekdays, as opposed to specific days of the planning horizon, by forming one district for Mondays, one for Tuesdays, and so forth. This approach results in τ districts, each edge in the graph being assigned to exactly one district, thereby automatically enforcing the coordination requirements 2 and 3 . When seeking to obtain well-balanced districts, the demand of frequent edges needs extra care, as illustrated in the next paragraph, but non-frequent edges are handled in a straightforward manner. After creating routes for each district and each fraction, a finalization procedure needs to be performed. To illustrate this, consider the Monday district for a fraction with $l^{f}=3 \tau$, and assume that 15 routes are created for it. Now, the first five routes are executed on Monday in the first week, the next five on Monday the second week, and the final five on Monday the third week, and this plan is repeated the following Mondays in a cyclic manner. This is the approach we have chosen for decomposing the problem in this paper because the coordination can be handled more naturally and the balancing of districts is easier due to the smaller number.

Under this approach, the handling of non-frequent fractions is straightforward, but extra attention still needs to be given to frequent fractions when balancing the districts. This is illustrated in the following example with $\tau=6$, and three fractions with $l^{1}=6, l^{2}=3$, and $l^{3}=2$. Here, six districts are created and each edge is assigned to one district. The districts are assigned to weekdays: district

		Weekdays					
		1	2	3	4	5	6
	1	1	2	3	4	5	6
	2	14	25	36	14	25	36
	3	135	246	135	246	135	246

Table 1: Districts associated with each waste fraction and each weekday in the example of Section 3

1 is assigned to Mondays, district 2 to Tuesdays, and so forth. In Table 1 we show, for each waste fraction, which district is being collected each weekday. In the figure, we have marked in bold the district that is assigned to the weekday. For instance, we see that on weekday 3 , we collect waste fraction 3 from the edges assigned to districts 1,3 , and 5 . In our algorithm, we ensure that the same routes are used for collecting fraction 3 on weekdays $1,3,5$, when these districts are serviced.

4. Description of the algorithm

Our overall solution strategy for the C-CARP is outlined in Algorithm 1 and detailed in the following sections. We start with a short overview.

Algorithm 1 Overview of the full algorithm	
Create initial districts	\triangleright Section 4.1
Assign districts to weekdays	\triangleright Section 4.2
if the districts are unbalanced then	
\quad Balance districts using Algorithm 3	\triangleright Section 4.3
end if	
for each $f \in \mathcal{F}, d \in\left\{1, \ldots, \min \left\{\tau, l^{f}\right\}\right\}$ do	
\quad Call FASTCARP (f, d)	\triangleright Section 4.4
end for	
Finalize solution	\triangleright Section 4.5

We start by partitioning \mathcal{G} into τ initial districts in such a way that every edge is assigned to exactly one district. Because the demands of the different waste fractions across the edges are not perfectly correlated, and because the frequent fractions need to be collected on multiple weekdays, the algorithm does not attempt to generate perfectly balanced districts at this point. Each district will subsequently be assigned to a day of the week d such that all waste fractions of the edges in the district are collected on day d (frequent fractions are also collected at one or more additional days). Thereby, the districts will ensure the coordination, which is the purpose of their creation. Applying this procedure ensures that requirement 1 of Section 2 is satisfied and that the coordination requirements 2 and 3 are also dealt with. Creation of the initial districts is detailed in Section 4.1 .

After the creation of the initial weekday districts, we assign them to specific weekdays based on a combination of closeness of the districts and of the inter-

Based on the knowledge of collection intervals for each waste fraction and the edges assigned to the district, we know the total amount to be collected on each day, and hence we can estimate the number of vehicles needed to collect that waste. For non-frequent fractions, this is relatively straightforward. But fraction with $l^{f}=3(\tau=6)$, both the edges assigned to the district of day 1 and those assigned to the district of day 4 must be serviced on both days. Next, we calculate a slack value for each waste fraction and each district based on the initial districts and their assignment to days of the week. Intuitively, this tells us whether a district requires more vehicles than predicted by a lower bound (if the slack is positive) or fewer vehicles (if the slack is negative). If any of the districts requires too many vehicles, we seek to obtain a better balancing among the districts. The main challenges in the balancing phase comes from the fact that we work with multiple waste fractions simultaneously, not all of which require collection from all edges, as well as from the frequent fractions because they affect multiple districts when moved. The purpose of this balancing phase is to favour the primary objective of the problem: minimizing the total number of vehicles needed. The balancing phase preserves the coordination and is described in Section 4.3 .

220 After the districts have been determined and assigned to days of the week, the problem reduces to a CARP for each day of the week and each waste fraction, thus satisfying requirements 5,6 , and 7 . This problem is solved by means of the FastCARP heuristic developed in 4, which is summarized in Section 4.4 It is also here that we handle requirement 8. This heuristic aims to favour the 25 secondary objective: minimizing the total routing cost.

The solution is then finalized by determining which routes to service each week while satisfying requirement 4 , and the final total cost calculation is performed. This is detailed in Section 4.5. During this process, we also ensure that the waste of an edge is always collected by the same vehicles, one for each fraction.

4.1. Creation of the Initial Districts

Our districting algorithm consists of two phases. We first create a number of small districts, and then merge them into weekday districts.
In the first phase, we first determine the minimum number $\hat{\Phi}$ of small districts that we aim for. Based on preliminary tuning, we set $\hat{\Phi}=2 \tau$. However, due to 235 variations in demand, we tend to end up with significantly more than $\hat{\Phi}$ small districts, in particular when the vehicles are relatively small compared with the demand, or when the demand for different fractions is unevenly spread over the graph. For each fraction $f \in \mathcal{F}$, we define $L^{f}=\left(\sum_{(i, j) \in \mathcal{E}_{R}^{f}} q_{i j}^{f}\right) / \hat{\Phi}$ as the amount
of demand of each fraction we aim for in each small district. To create a small
\square is minimized, and we designate that node as the seed of the district. With this definition, the seed represents a "centre of gravity" of the required edges in the district.

Figure 4: Illustration of the modified distance function. Based on that, $\operatorname{dist}(i, j)=4$ and $\operatorname{dist}\left(i, j^{\prime}\right)=2$.

In the second phase, we make use of a modified distance function, which defines the distance between any two nodes as the number of districts that the shortest path between the nodes intersects. This is illustrated in Figure 4. In this phase, we merge the Φ small districts into τ weekday districts by repeatedly selecting a father district and a non-father district to merge as described below, letting the seed of the joint district be the new centre of gravity of the joint district. For this process, we define \bar{L}^{f} similarly to L^{f}, but now with the goal of creating τ weekday districts, hence $\bar{L}^{f}=\left(\sum_{(i, j) \in \mathcal{E}_{R}^{f}} q_{i j}^{f}\right) / \tau$. We also define a buffer ρ which, based on preliminary tuning, is initially set to 1.2 . We first identify a set of τ father districts, one for each service day of the week, as follows. The first father district is selected as the one that maximizes the distance between the depot 65 and the seed of the district. The remaining $\tau-1$ father districts are selected iteratively as the district whose seed node is furthest away from the closest seed node of the existing father districts. In case of a tie, we use the modified distance function as secondary criterion. We now repeatedly consider all father - non-father pairs, and among the pairs we select one for which the joint demand
minimization of the modified distance function, and the secondary criterion is the minimization of the shortest distance between the seeds of the districts. We merge the non-father district with the father district and update the seed to represent the centre of gravity of the joint district. This process is repeated while pairs are found within the limit of $\rho \bar{L}^{f}$. When no further pair can be identified, ρ is multiplied by 1.2 , and the search process is reiterated. The full process if repeated until only τ districts remain and these are the initial weekday districts. The logic behind this 2-phase process is that the demand is very unevenly distributed over the graph based on distances, but that it is more evenly distributed over the small districts and using the modified distance function. This eases the creation of relatively balanced districts. Figure 5 provides an example of the initial districts in one of our instances.

Figure 5: Example of initial districts. Here showing instance O1_A.

4.2. Assigning the Districts to Weekdays

When $l^{f} \geq \tau$ for all waste fractions f, it does not matter how the districts are assigned to weekdays since there will be no interaction between the districts. Hence we perform the assignment in a straightforward manner. However, this is not the case when frequent fractions are present. Consider, for example a fraction requiring service twice a week, with $\tau=6$. In this example, the districts assigned to days 1 and 4 will both be serviced for this fraction on both days (as well as districts assigned to days 2 and 5 , for instance). In Figure 6, we show two different assignments of districts to weekdays. In the straightforward assignment shown in the lower part of the figure, the districts to be collected jointly are geographically distant, whereas in the upper assignment the joint collection occurs from neighbouring districts. To foster good routing, our procedure aims 295 to create assignments with the characteristics of the upper assignment. Viewed

Figure 6: Illustration of two different assignments of six districts to weekdays, where each square represent a district. The numbers in the districts represent weekdays and the arcs represent districts to be collected jointly for a waste fraction with $l^{f}=3$.
in a different way: the more interaction between two weekdays in terms of coinciding collections, the more important is it that the districts assigned to those days are not too distant from each other. This is the motivation behind the following procedure for the assignment of districts to weekdays when at least one waste fraction f has $l^{f}<\tau$.

To measure the distance between two districts, we use the shortest path distance $s_{i j}$ between the seeds of the districts, as representatives of the centre of gravities. To measure the interrelation between the weekdays, we construct a matrix A of size $\tau \times \tau$. For each pair of days, $i, j \in\{1, \ldots, \tau\}$, the value of $A_{i j}$ is the number of days during the week for which the districts assigned to i and j, respectively, will be collected jointly. The values of the A matrix are determined by Algorithm 2.

```
Algorithm 2 Construction of the \(A\) matrix
    \(A_{i j}=0 \forall i, j \in\{1, \ldots, \tau\}\)
    for all \(f\) frequent do
        for all \(i, j \in\{1, \ldots, \tau\}, i \neq j\) do
            if \(\left(i \bmod l^{f}\right)=\left(j \bmod l^{f}\right)\) then \(A_{i j} \leftarrow A_{i j}+\tau / l^{f}\)
            end if
        end for
    end for
```

To illustrate this algorithm, consider an example with $\tau=6$ and two frequent fractions: fraction 1 with collection interval $l^{1}=3$ (two collections per week), and fraction 2 with collection interval $l^{2}=2$ (three collections per week). Table 2 shows the A matrix for this example. Here, $A_{14}=2$ means that twice during the week, the districts assigned to weekdays 1 and 4 must be collected together (this will happen on weekdays 1 and 4); $A_{13}=3$ means that three times per week, the districts assigned to days 1 and 3 must be collected together (this will happen on weekdays 1,3 , and 5). Therefore, the higher the value $A_{i j}$, the more costly it is for the districts assigned to weekdays i and j to be far from each
other.

	1	2	3	4	5	6
1	0	0	3	2	3	0
2	0	0	0	3	2	3
3	3	0	0	0	3	2
4	2	3	0	0	0	3
5	3	2	3	0	0	0
6	0	3	2	3	0	0

Table 2: Illustration of matrix A.
Let \mathcal{O} be the set of all possible vectors O of length τ representing assignments of district seeds to weekdays $i(i=1, \ldots, \tau)$. This definition of O induces a one-to-one correspondence between weekdays and districts. We seek the least costly assignment in terms of joint collection from multiple districts on the same day, and thereby we select the assignment

$$
O^{*}=\arg \min _{O \in \mathcal{O}}\left\{\sum_{i=1}^{\tau} \sum_{j=1}^{\tau} s_{O(i) O(j)} A_{i j}\right\}
$$

The number of distinct assignments is $(\tau-1)$! which is not very large since τ is the number of service days per week (120 if $\tau=6$). We therefore determine O^{*} by full enumeration.
Finally, and independently of the method used for assigning districts to weekdays, we renumber the districts in such a way that the district assigned to day i is indexed by i.

4.3. Balancing of the Districts

325 To motivate the next part of the algorithm, we consider an example, where, for some waste fraction, two vehicles are needed to collect the waste of edges of the district assigned to Mondays, while four are needed on Tuesdays, and six are needed on Wednesdays. To collect the waste in this manner, six vehicles are necessary. A more balanced assignment of edges to districts would result in only four vehicles being needed in this example. When multiple waste fractions are available, obtaining balanced districts is more involved than with a single fraction because the same district may need too many vehicles for one fraction, while at the same time needing too few vehicles for another fraction. As an additional complication, we face the fact that for frequent fractions, moving an
${ }_{335}$ edge from one district to another not only affects the waste to be collected in these two districts, but also affects the districts assigned to the other days when this edge must be serviced. In this section, we describe our algorithm to move edges between districts in order to obtain a more balanced partitioning of the graph into districts, and thereby favour the primary objective of the problem.

To describe the balancing procedure, we need some additional notation. With the renumbering at the end of Section 4.2, we know that district number d is assigned to weekday d. We use \mathcal{E}_{d} to denote the set of edges assigned to district d. For each frequent fraction f and each weekday d, we define P_{d}^{f} as the set of weekdays that are multiples of l^{f} days away from d, i.e. $P_{d}^{f}=\left\{d^{\prime} \in\{1, \ldots, \tau\}\right.$: $d^{\prime}=d+\alpha l^{f}, \alpha$ integer, $\left.\alpha \neq 0\right\}$. Hence, on day d, when collecting fraction $f \in \mathcal{F}$, we must collect from the district assigned to day d as well as from the districts assigned to the days in P_{d}^{f}.

For every waste fraction $f \in \mathcal{F}$ and every weekday d, we compute a lower bound \hat{K}_{d}^{f} on the number of vehicles needed to service the demand of fraction f assigned to that day. For non-frequent waste fractions, this bound is computed as $\hat{K}_{d}^{f}=\left\lceil\frac{\tau}{l^{f} W^{f}} \sum_{(i, j) \in \mathcal{E}_{d}} q_{i j}^{f}\right\rceil$. For frequent fractions, both the demand of the district assigned to day d and the demand in districts assigned to days that are a multiple of l^{f} away from d must be serviced on day d. Hence, the number of vehicles needed is at least $\hat{K}_{d}^{f}=\left\lceil\frac{1}{W^{f}}\left(\sum_{(i, j) \in \mathcal{E}_{d}} q_{i j}^{f}+\sum_{d^{\prime} \in P_{d}} \sum_{(i, j) \in \mathcal{E}_{d^{\prime}}} q_{i j}^{f}\right)\right\rceil$.
We also compute the overall minimum number of vehicles needed for each fraction if the demand is evenly spread over all days as $\bar{K}^{f}=\left\lceil\frac{\tau}{l^{f} W^{f}} \sum_{(i, j) \in \mathcal{E}_{R}^{f}} q_{i j}^{f}\right\rceil$ for both frequent and non-frequent fractions.
Next, we define the slack S_{d}^{f} of each fraction $f \in \mathcal{F}$ and each weekday d as $S_{d}^{f}=\hat{K}_{d}^{f}-\bar{K}^{f}$. Intuitively, the slack is the additional number of vehicles needed to service the demand for f on weekday d, compared to the theoretical lower bound on the number of vehicles needed. Therefore, $S_{d}^{f}>0$ is an indication that some demand for fraction f needs to be removed from district d (or from a district in P_{d}^{f} if f is frequent) in order to obtain a balanced distribution, whereas $S_{d}^{f}<0$ means that district d (or $d^{\prime} \in P_{d}^{f}$ if f is frequent) can safely receive some additional demand for f. We also define $\overline{S_{d}}=\max _{f \in \mathcal{F}}\left\{S_{d}^{f}\right\}$ and $\underline{S_{d}}=\min _{f \in \mathcal{F}}\left\{S_{d}^{f}\right\}$, as well as $\bar{S}=\max _{d \in D}\left\{\overline{S_{d}}\right\}$ and $\underline{S}=\min _{d \in D}\left\{\underline{S_{d}}\right\}$, where a perfect balancing will result in these values differing by no more than one.

The idea behind our balancing algorithm as outlined in Algorithm 3, is to decrease \bar{S} as long as possible, then increase \underline{S}, and repeat this exchange mechanism as long as changes are found for either to the two values. During the course of the algorithm, we keep track of the boundary B_{d} of the districts, which we define as the set of nodes adjacent to at least one edge in the district, but also to at least one edge in another district. Whenever an edge is moved from a district d^{\prime} to another district $d^{\prime \prime}$, both $B_{d^{\prime}}$ and $B_{d^{\prime \prime}}$ may need to be updated regarding the two end nodes of the edge.

We move demand in two different ways in the algorithm, corresponding to the two 'while blocks', both of which will be detailed below. We first consider the situation where we seek to move edges away from a given weekday d^{\prime}. In this case, d^{\prime} is selected to be the district of a weekday with the largest slack \bar{S}. We seek to move edges that are adjacent to the boundary $B_{d^{\prime}}$ to neighbouring districts until the largest slack $\overline{S_{d^{\prime}}}$ of d^{\prime} is decreased by one unit (this is controlled

```
Algorithm 3 Balance districts
    Compute \(\overline{S_{d}}\) and \(\underline{S_{d}} \forall d\), and \(\bar{S}\) and \(\underline{S}\). \(\triangleright\) Keep them updated
    Set improved \(=\) true
    while improved \(=\) true do \(\quad \triangleright\) Repeat while improvement is obtained
        Set improved \(=\) false
        Set \(U=\{1, \ldots, \tau\}\)
        while \(U \neq \emptyset\) and \(\bar{S}>0\) do
            Set \(d^{\prime}=\arg \max _{d \in\{1, \ldots, \tau\}}\left\{\overline{S_{d}}\right\} \quad \triangleright\) Most positive slack
            Set \(m=\overline{S_{d^{\prime}}}\)
            while Possible and \(\overline{S_{d^{\prime}}}=m\) do
                            Move edges from \(d^{\prime}\) to neighbouring districts
            end while
            if \(\overline{S_{d^{\prime}}}=m-1\) then \(\quad \triangleright\) Decrease slack of weekday \(d^{\prime}\)
                    improved \(=\) true
            else \(\quad\) No improvement was obtained for \(d^{\prime}\)
                    \(U=U \backslash\left\{d^{\prime}\right\}\)
            end if
        end while
        Set \(U=\{1, \ldots, \tau\}\)
        while \(U \neq \emptyset\) and \(\underline{S}<0\) do
            Set \(d^{\prime}=\arg \min _{d \in\{1, \ldots, \tau\}}\left\{\underline{S_{d}}\right\} \quad \triangleright\) Most negative slack
            Set \(m=\underline{S_{d^{\prime}}}\)
            while Possible and \(\underline{S_{d^{\prime}}}=m\) do
                    Move edges from neighbouring districts to \(d^{\prime}\)
            end while
            if \(\underline{S_{d^{\prime}}}=m+1\) then \(\quad \triangleright\) Increase slack of weekday \(d^{\prime}\)
                improved \(=\) true
            else \(\triangleright\) No improvement was obtained for \(d^{\prime}\)
                    \(U=U \backslash\left\{d^{\prime}\right\}\)
            end if
        end while
    end while
```

by the variable m in the algorithm). This is done in the following way. The nodes i in $B_{d^{\prime}}$ are considered in decreasing order of to their distance to the seed of district d^{\prime}, and the edges adjacent to i which are in district d^{\prime} are then considered in arbitrary order. For each such edge (i, j), we consider the other weekday districts d that also have i on their boundary. Among those, we move (i, j) to the district where the seed of d is closest to (i, j), and where S_{d}^{f} will not be increased for any fraction f by the addition of (i, j) to d. This movement may cause i or j to be added to or removed from the boundaries of d^{\prime} or d. It may happen that no district can receive (i, j) under the given restrictions, in which case we proceed without moving the edge. The process stops when the largest slack of d^{\prime} is decreased by one unit or when all edges adjacent to the boundary have been considered. At this point, if $\overline{S_{d^{\prime}}}$ has not decreased, we temporarily exclude d^{\prime} from consideration (this is controlled by the set U in the algorithm). The whole process is then repeated until no further improvement in the slack can be found and all districts have been temporarily excluded.

When no further improvement can be found by moving edges from specific districts, we start to seek improvements by moving edges to specific districts with a negative slack. To this end, we select d^{\prime} among the weekdays with the most negative slack $\underline{S_{d^{\prime}}}$, and we seek to increase the slack by one unit (this is again controlled by \bar{m} in the algorithm). Now, the nodes i in $B_{d^{\prime}}$ are considered in increasing order of their distance to the seed of district d^{\prime}, and the edges adjacent to i that are not in the district d^{\prime} are then considered in arbitrary order. The edge is moved from its current district d to district d^{\prime} provided that the movement does not cause $S_{d^{\prime}}^{f}>0$ for any waste fraction in the receiving district and does not cause the slack $\underline{S_{d}}$ to become smaller than the current worst slack \underline{S} (note that because we move edges away from d, we risk decreasing the slack of d). Again, the process continues until $\underline{S_{d^{\prime}}}$ is improved or until all edges adjacent to the boundary of d^{\prime} have been explored, and the process is reiterated as above. This alternating process is repeated as long as improvements are obtained in either of the two parts.
In Table 3, we illustrate the effect of our balancing procedure on an example. The top of the table shows the least number of vehicles, \hat{K}_{d}^{f} needed to collect each waste fraction in each district before (left) and after (right) balancing, as well as the global lower bound on the number of vehicles for each fraction, \bar{K}^{f}. The lower part of the table shows the slack S_{d}^{f} for each district and each waste fraction, as well as the upper and lower bounds for each district, before (left) and after (right) balancing. In the left part of the table, we see that $\bar{S}=\max _{d \in D}\left\{\overline{S_{d}}\right\}=3$, which is obtained for districts 1 and 5 . We arbitrarily select one of them: 1. The algorithm thus starts by attempting to move demand from district 1 to the other districts. After moving sufficient demand away from district 1, the slack of that district decreases to $\overline{S_{1}}=2$, but we still have $\overline{S_{5}}=3$, and thereby $\bar{S}=3$. The algorithm now attempts to move demand from district 5 to the other districts until $\overline{S_{5}}$ decreases to 2 , at which point $\bar{S}=2$. This value is again obtained for both districts 1 and 5 , and the algorithm will now

	District				District					
	12	3	4	5	1	2	3	4	5	
	\hat{K}_{d}^{f} before balancing				\hat{K}_{d}^{f} after balancing					\bar{K}^{f}
	64	5	4	6	5	5	5	5	5	5
	$17 \quad 11$	15	12	17	15	14	14	14	14	14
	$5 \quad 3$	5	4	5	4	4	5	4	4	4
	S_{d}^{f} before balancing				S_{d}^{f} after balancing					
	$1-1$	0	-1	1	0	0	0	0	0	
	$3-3$		-2	3	1	0	0	0	0	
	1 -1	1	0	1	0	0	1	0	0	
$\begin{aligned} & \overline{S_{d}} \\ & \underline{S_{d}} \end{aligned}$	$3-1$	1	0	3	1	0	1	0	0	
	$1-3$	0	-2	1	0	0	0	0	0	

Table 3: Example of balancing of instance O10_B.
proceed by first moving demand from one of these, then from the other, and so on. The right-hand side of Table 3 shows that the districts after completion of the balancing algorithm are better balanced. In fact, the estimated need for vehicles after balancing is $25(5+15+5)$, compared to $28(6+17+5)$ before the balancing procedure. Figure 7 shows the districts in our example from Figure 5 after the balancing process.

Figure 7: Example of balanced districts. Here showing the same instance as in Figure 5

4.4. Creation of Routes

At this point in the algorithm, we know which edges to service on each weekday and the route creation can start. For each non-frequent fraction $f \in \mathcal{F}$, the with the purpose of improving that part of the routes. process, the merged PGT is separated into two individual PGTs again. Then the whole process is repeated by merging one of the just processed PGTs with the next PGT in line.

4.5. Finalizing the Solution

To formalize this, we consider first the non-frequent fractions $f \in \mathcal{F},{ }_{\mathcal{L}} \geq \tau$ with a set \mathcal{R}_{d}^{f} of routes created for each of τ weekdays d. With a collection frequency of l^{f} days, there are l^{f} collection days in a cyclic plan, of which l^{f} / τ are the same weekday as d, and the plan is repeated $\gamma^{f}=|\mathcal{T}| / l^{f}$ times over the planning horizon. We partition the routes in \mathcal{R}_{d}^{f} into l^{f} / τ groups, containing ${ }_{475}\left\lceil\left|\mathcal{R}_{d}^{f}\right| /\left(l^{f} / \tau\right)\right\rceil$ routes in the first $\left(\left|\mathcal{R}_{d}^{f}\right| \bmod \left(l^{f} / \tau\right)\right)$ groups and $\left\lfloor\left|\mathcal{R}_{d}^{f}\right| /\left(l^{f} / \tau\right)\right\rfloor$
routes in the remaining $l^{f} / \tau-\left(\left|\mathcal{R}_{d}^{f}\right| \bmod \left(l^{f} / \tau\right)\right)$ groups. These groups are then assigned to each of the l^{f} / τ days of that weekday, and the routes of each group are repeated in a cyclic manner γ^{f} times over the planning horizon. This plan for fraction f requires $K^{f}=\max _{d \in\{1, \ldots, \tau\}}\left\{\left\lceil\left|\mathcal{R}_{d}^{f}\right| /\left(l^{f} / \tau\right)\right\rceil\right\}$ vehicles and

Fast onde with the full graph as input to obtain a set of routes \mathcal{R}^{f}
Since fraction f needs collection with an interval of l^{f} days, the $\left|\mathcal{R}^{f}\right|$ routes are evenly spread over l^{f} days. As a result, we need $K=\sum_{f \in \mathcal{F}}\left\lceil\frac{\left|\mathcal{R}^{f}\right|}{\left.l^{f}\right\rceil}\right.$ vehicles to 10 collect all waste fractions.

Each route for collection of f is executed $\frac{|\mathcal{T}|}{l f}$ times during the time horizon, resulting in a total cost of $C=\sum_{f \in \mathcal{F}} \frac{|\mathcal{T}|}{l f} C\left(\mathcal{R}^{f}\right)$ for collecting all fractions,
where $C\left(\mathcal{R}^{f}\right)$ is used to denote the total cost of the routes in \mathcal{R}^{f}. This is summarized in Algorithm 4.

```
Algorithm 4 Route construction without coordination
    for each \(f \in \mathcal{F}\) do
        \(\mathcal{R}^{f} \leftarrow \operatorname{FAStCARP}(f)\)
    end for
    \(K=\sum_{f \in \mathcal{F}}\left\lceil\frac{\left|\mathcal{R}^{f}\right|}{l f}\right\rceil\)
    \(C=\sum_{f \in \mathcal{F}} \frac{|\mathcal{T}|}{l f} C\left(\mathcal{R}^{f}\right)\)
``` 10,352 nodes and four waste fractions to be coordinated, two of which are frequent, using a total of 43 vehicles over a planning horizon of 12 days.

We have used the part of the benchmark data presented in [1] with homogeneous fleets for each waste fraction, with few modifications. We have made the 530 following adjustments to the original data. 1) For all instances in sets C and E, we have made all days service days such that \(\tau=6\) instead of five. 2) To ensure that \(W^{f} \geq q_{i j}^{f}\) for all \(f\) and for all \((i, j)\), we have created new vehicles for the following four instances: F11_D, F12_D, F13_D, and S1_D. All data are available at http://www.optimization.dk/CARP/.

535 The data set consists of 125 instances, most of which are of very large scale, ranging up to 11,656 nodes and 12,691 edges. Underlying the 125 instances are 25 graphs: five from each of the five areas of Denmark considered in our study (F, K, N, O, and S). The total amount of waste on the edges in each of these graphs has been partitioned in different ways, and the collection intervals have 540 been varied to create five instances based on each graph. These constitute five datasets (A,..., E), each containing 25 instances, one for each graph.
Table 4 shows some characteristics of the data sets after our adjustments. The instances in sets A, B, and D contain only non-frequent fractions, whereas sets

C and E also contain frequent fractions. Set C mainly differs from set B by
imposing shorter frequencies for collection resulting in lower demands, and a change in \(\tau\), and the same holds for sets D and E .
\begin{tabular}{lccccc}
\hline & A & B & C & D & E \\
\hline Number of instances & 25 & 25 & 25 & 25 & 25 \\
Time horizon (weeks) & 6 & 6 & 6 & 12 & 2 \\
Time horizon \((\mathcal{T})\) (service days) & 30 & 30 & 36 & 60 & 12 \\
Service days per week \((\tau)\) & 5 & 5 & 6 & 5 & 6 \\
\hline Number of waste fractions & 2 & 3 & 3 & 4 & 4 \\
Intervals (lf) (days) & 10,15 & \(5,10,15\) & \(3,12,18\) & \(5,10,15,20\) & \(2,3,6,12\) \\
Intervals (weeks) & 2,3 & \(1,2,3\) & \(1 / 2,2,3\) & \(1,2,3,4\) & \(1 / 3,1 / 2,1,2\) \\
\hline Av. percentage of edges not req. service & 36.2 & 36.2 & 36.2 & 36.2 & 36.2 \\
Av. percentage of edges req. 1 fraction & 14.0 & 1.2 & 1.2 & 1.2 & 1.2 \\
Av. percentage of edges req. 2 fractions & 49.8 & 13.7 & 13.7 & 0.6 & 0.6 \\
Av. percentage of edges req. 3 fractions & & 48.9 & 48.9 & 17.9 & 17.9 \\
Av. percentage of edges req. 4 fractions & & & & 44.1 & 44.1 \\
\hline
\end{tabular}

Table 4: Characteristics of the five sets of C-CARP instances used in our experiments.

\subsection*{6.2. Results}

We now present our computational results. The first part of each of Tables 711 provides detailed information about the instances. The first two columns provide names of the graphs and of the vehicle files. Jointly these constitute the instance. The next three columns give the number of nodes, edges, and waste fractions in the instance. Column 6 gives the number of service days in a week, while column 7 provides the number of weeks in the time horizon.

The results of our algorithm with coordination are provided in the second part of Tables \(7 \sqrt{11}\). Here we give the total number of vehicles \(K\) used in the solution across all the waste fractions, the total routing cost \(C\) over all waste fractions during the whole time horizon, and the total computing time for the algorithm in seconds.

Since this paper is the first to solve this problem, we do not have a direct comparison basis. However, we analyze how the two quality measures (number of vehicles and total routing cost) are affected by the requirement that different waste fractions must be collected on the same weekday. We therefore provide the total number of vehicles \(K\) used in the solution across all the waste fractions, the total routing cost \(C\) over all waste fractions during the whole time horizon obtained with the algorithm without coordination presented in Section 5, as well as the computing time of that algorithm. These values are provided in the third part of Tables 7711 . The computing times with and without coordination are essentially the same since they depend on the number of required edges for each waste fraction.

The last part of Tables 711 provides the percent increase in number of vehicles and cost caused by the requirement to coordinate collections. The increase in the number of vehicles is computed as \(\Delta K=100 \frac{K_{\text {with }}-K_{\text {without }}}{K_{\text {without }}}\), and the
increase in cost is computed similarly. Figure 8 plots \(\Delta K\) as a function of the number of nodes in the graphs, while Table 5 gives the frequency of the need for extra vehicles over all 125 instances. In total, 96 more vehicles are needed when considering all instances and all waste fractions, and extra vehicles are needed in 59 of the 125 instances. Figure 9 shows the percent increase in routing cost as a function of the number of nodes.

Figure 8: Percent increase in the number of vehicles as a consequence of coordination.
\begin{tabular}{lrrrrrrr}
\(K_{\text {with }}-K_{\text {without }}\) & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
\hline Frequency & 66 & 35 & 17 & 4 & 1 & 1 & 1 \\
\hline
\end{tabular}

Table 5: Frequency of the observed differences in number of vehicles.

When comparing the results with and without coordination, we observe that the routing cost with coordination increases on average by \(12.4 \%\) over all 125 instances, whereas the number of vehicles increases in only 59 instances, by an average of \(9.1 \%\) over all 125 instances. Figure 9 shows that the increase in routing cost caused by coordination is significantly larger for small instances than for the larger ones. We observe a cost difference of more than \(10 \%\) in very few of the instances with more than 4,000 nodes. The explanation is probably that once the graph reaches a certain size, and the number of routes is likewise large, routing can still be done quite efficiently even if a coordination constraint is imposed. We observe a similar, but less clear, tendency regarding the number of vehicles in Figure 8

Table 6 shows details of the results aggregated for each set in the left part and for each area in the right part. The four columns in each part of the table show 1) the number of the 25 instances in each set (or each area) (\(|>0|\)) where coordination caused a need for extra vehicles, 2) the total number of extra vehicles needed in the sets (or areas) \(\left.\left(\sum\right), 3\right)\) the average percent increase in

Figure 9: Percent increase in routing cost as a consequence of coordination.
\begin{tabular}{lrrrr|l|l|rr}
\hline & \multicolumn{4}{c|}{ Partitioned by set } & & \multicolumn{4}{c}{ Partitioned by area } \\
& \(|>0|\) & \(\sum\) & \(\Delta K\) & \(\Delta C\) & & \(|>0|\) & \(\sum\) & \(\Delta K\) \\
\(\Delta C\) \\
\hline A & 10 & 12 & 11.7 & 11.5 & F & 12 & 18 & 12.2 \\
\hline & 17.8 \\
B & 12 & 16 & 8.9 & 12.8 & K & 12 & 26 & 7.6 \\
C & 12 & 16 & 8.9 & 12.2 & N & 11 & 14 & 7.7 \\
D & 11 & 21 & 5.9 & 12.4 & O & 12 & 17 & 9.6 \\
E & 14 & 31 & 10.1 & 13.2 & S & 12 & 21 & 8.3 \\
E & & 15.1 \\
\hline Total & 59 & 96 & & & Total & 59 & 96 & \\
Avg. & & & 9.1 & 12.4 & Avg. & & & 9.1 \\
\hline
\end{tabular}

Table 6: Average results for each dataset in the left part, and for each area in the right part. Legend: \(|>0|\) : Number of instances in each set (or each area) where coordination caused a need for extra vehicles; \(\sum\) : Total number of extra vehicles needed in the sets (or areas); \(\Delta K\) : Average percent increase in the number of vehicles; \(\Delta C\) : Average percent increase in routing cost.
the number of vehicles \((\Delta K)\), and 4) the average percent increase in routing \(\operatorname{cost}(\Delta C)\).

When we look across the five sets in the left of Table 6, we observe only small variations regarding the increase in routing cost. The largest changes are generally observed in set E which has both many fractions and frequent collections, both of which are factors that can complicate the solution of the problem. At the other end of the scale, we observe that set A is generally affected the least regarding routing cost. This was to be expected since the A-instances have only two fractions to coordinate. The results regarding the percent increase in vehicles also vary little across the sets, and the total number of extra vehicles needed increases, as expected, with the number of waste fractions. The set D stands out with a smaller percent increase in vehicles than the others. This may
be explained by the fact that this set generally uses more vehicles per fraction than the others, as can be seen from Tables 7,11 .

Comparing the five geographical areas in Table 6, we first observe that area F exhibits larger changes than the other areas. This is consistent with Figures 8 and 9 since the instances in the F area are significantly smaller than the other instances, the largest having less than 1,000 nodes. Among the other four areas, areas K and S show a larger increase in routing cost. A possible explaining factor for this behaviour may lie in the non-convex shape of these two areas, which exacerbates the consequences of poor routing decisions.

\section*{7. Conclusions}

We have considered a multi-period garbage collection problem involving several garbage types called fractions, such as organic waste, paper and cardboard, glass and metal, and plastic. This study was motivated by a real-life problem arising of coordinating these collections such that each household would always have its collection on the same day of the week.

Since the problem is of very large scale, we have developed an efficient constructive heuristic that does not resort to the application of computationally in Denmark. We have obtained data for six counties, two of which are rural, two are semi-rural (and were considered as a single area in our experiments), and two are urban. The instances sizes are very large and can reach 11,656 nodes and 12,691 edges. Because of the nature of the fractions and variations in volumes, not all of them have the same frequency. The purpose of the paper was to assess the added cost in terms of traveled distance and vehicle fleet size o expensive exchange mechanisms. Our heuristic was made up of four phases: 1) collection districts, each corresponding to a day of the week, are first created; 2) the districts are then assigned to specific weekdays based on a closeness criterion; 3) they are then balanced in order to make a more efficient use of the vehicles; 4) collection routes are then created for each district and each waste fraction by means of the FastCARP heuristic. The objective minimized in this problem is hierarchical, the fleet size being more important than the routing cost.

The heuristic was extensively tested over 125 instances made up of 25 graphs for each of the five counties considered in the study. We show that coordinating of \(9.1 \%\) in the number of vehicles. The number of vehicles increased in only 59 of all instances. We observed a smaller cost increase in the larger instances, and a larger increase in the instance set that has both many fractions and frequent collections, both of which are complicating factors. The instance sets that use more vehicles per fraction are those in which the percent increase in the number of vehicles is the smallest. Comparing the five geographical areas, we found that the cost increase is larger in the smaller areas and in those that have irregular
shapes. Deciding whether such cost increases are acceptable in order to provide better service for the citizens is left to the counties.

\section*{Acknowledgements}

This project was funded by the Danish Council for Independent Research Social Sciences. Project 'Transportation issues related to waste management' [grant number 4182-00021] and by the Natural Sciences and Engineering Research Council of Canada [grant number 2015-06189]. This support is gratefully acknowledged. Thanks are due to the Editor, the Associate Editor, and the referees for their support and valuable comments.

\section*{References}
[1] L. Kiilerich, S. Wøhlk, New large-scale data instances for CARP and variations of CARP, INFOR: Information Systems and Operational Research 56 (1) (2018) 1-32.
[2] E. Bartolini, J.-F. Cordeau, G. Laporte, Improved lower bounds and exact algorithm for the capacitated arc routing problem, Mathematical Programming 137 (1-2) (2013) 409-452.
[3] C. Prins, The capacitated arc routing problem: Heuristics, in: A. Corberán, G. Laporte (Eds.), Arc Routing: Problems, Methods, and Applications, Society for Industrial and Applied Mathematics, Philadelphia, 2015.
[4] S. Wøhlk, G. Laporte, A fast heuristic for very large-scale capacitated arc routing problems, Journal of the Operational Research Society, 69 (12) (2018) 1877-1887.
[5] L. Muyldermans, D. Cattrysse, D. Van Oudheusden, District design for arcrouting applications, Journal of the Operational Research Society 54 (11) (2003) 1209-1221.
[6] M.C. Mourão, A. Nunes, C. Prins, Heuristic methods for the sectoring arc routing problem, European Journal of Operational Research 196 (3) (2009) 856-868.
[7] A. Butsch, J. Kalcsics, G. Laporte, Districting for arc routing, INFORMS Journal on Computing 26 (4) (2014) 809-824.
[8] L. Muyldermans, G. Pang, On the benefits of co-collection: Experiments with a multi-compartment vehicle routing algorithm, European Journal of Operational Research 206 (1) (2010) 93-103.
[9] H. Zbib, Variants of the path scanning construction heuristic for the nosplit multi-compartment capacitated arc routing problem, Working Paper, Aarhus University (2017).
[10] H. Zbib, S. Wøhlk, A multi-move chain descent algorithm for large-scale arc routing problems in curbside waste collection, submitted (2018).
[11] M.C. Mourão, L. Amado, Heuristic method for a mixed capacitated arc routing problem: A refuse collection application, European Journal of Operational Research 160 (1) (2005) 139-153.
[12] G. Ghiani, M.C. Mourão, L. Pinto, D. Vigo, Routing in waste collection applications, in: A. Corberán, G. Laporte (Eds.), Arc Routing: Problems, Methods, and Applications, Society for Industrial and Applied Mathematics, Philadelphia, 2015.
[13] C. Mora, R. Manzini, M. Gamberi, A. Cascini, Environmental and economic assessment for the optimal configuration of a sustainable solid waste collection system: a kerbside case study, Production Planning \& Control 25 (9) (2014) 737-761.
[14] A.M. Rodrigues, J.S. Ferreira, Waste collection routing - limited multiple landfills and heterogeneous fleet, Networks 65 (2) (2015) 155-165.
[15] X. Bing, J.M. Bloemhof, T.R.P. Ramos, A.P. Barbosa-Povoa, C.Y. Wong, J.G.A.J. van der Vorst, Research challenges in municipal solid waste logistics management, Waste Management 48 (2016) 584-592.
[16] A. Corberán, G. Laporte (Eds.), Arc Routing: Problems, Methods, and Applications, Society for Industrial and Applied Mathematics, Philadelphia, 2015.
[17] M.C. Mourão, L.S. Pinto, An updated annotated bibliography on arc routing problems, Networks 70 (3) (2017) 144-194.
[18] A. Hertz, G. Laporte, P. Nanchen-Hugo, Improvement procedures for the undirected rural postman problem, INFORMS Journal on Computing 11 (1) (1999) 53-62.
[19] A. Hertz, G. Laporte, M. Mittaz, A tabu search heuristic for the capacitated arc routing problem, Operations Research 48 (1) (2000) 129-135.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Characteristics of the data} & \multicolumn{3}{|l|}{With coordination} & \multicolumn{3}{|l|}{Without coordination} & \multicolumn{2}{|l|}{Change \%} \\
\hline Graph & Veh. & \(|\mathcal{N}|\) & \(|\mathcal{E}|\) & \(|\mathcal{F}|\) & \(\tau\) & \(|\mathcal{T}| / \tau\) & K & C & Time(s) & K & C & Time(s) & \(\Delta K\) & \(\Delta C\) \\
\hline F1_A & A5 & 812 & 1124 & 2 & 5 & 6 & 12 & 2401325 & 90.7 & 12 & 2388166 & 90.6 & 0.0 & 0.6 \\
\hline F10_A & A4 & 415 & 565 & 2 & 5 & 6 & 7 & 617137 & 43.5 & 7 & 581697 & 43.5 & 0.0 & 6.1 \\
\hline F11_A & A3 & 191 & 267 & 2 & 5 & 6 & 5 & 197028 & 20.0 & 3 & 175792 & 20.0 & 66.7 & 12.1 \\
\hline F12_A & A2 & 80 & 110 & 2 & 5 & 6 & 4 & 106199 & 8.3 & 4 & 96107 & 8.2 & 0.0 & 10.5 \\
\hline F13_A & A2 & 26 & 33 & 2 & 5 & 6 & 2 & 23987 & 1.8 & 2 & 17114 & 2.2 & 0.0 & 40.2 \\
\hline K1_A & A5 & 11656 & 12691 & 2 & 5 & 6 & 10 & 18613350 & 880.0 & 8 & 17328677 & 890.0 & 25.0 & 7.4 \\
\hline K10_A & A4 & 5102 & 5518 & 2 & 5 & 6 & 7 & 6994405 & 371.8 & 6 & 6347496 & 371.7 & 16.7 & 10.2 \\
\hline K11_A & A4 & 3114 & 3361 & 2 & 5 & 6 & 4 & 4564074 & 220.4 & 4 & 4150641 & 217.1 & 0.0 & 10.0 \\
\hline K12_A & A2 & 1132 & 1221 & 2 & 5 & 6 & 3 & 2071799 & 75.1 & 3 & 1888493 & 75.2 & 0.0 & 9.7 \\
\hline K13_A & A1 & 394 & 422 & 2 & 5 & 6 & 2 & 890754 & 27.8 & 2 & 657314 & 27.8 & 0.0 & 35.5 \\
\hline N1_A & A4 & 8573 & 9761 & 2 & 5 & 6 & 10 & 23222524 & 689.0 & 10 & 22311251 & 696.0 & 0.0 & 4.1 \\
\hline N10_A & A4 & 3698 & 4187 & 2 & 5 & 6 & 5 & 6250800 & 291.3 & 5 & 5765363 & 292.3 & 0.0 & 8.4 \\
\hline N11_A & A3 & 2142 & 2419 & 2 & 5 & 6 & 3 & 3405377 & 182.7 & 3 & 3295233 & 183.0 & 0.0 & 3.3 \\
\hline N12_A & A1 & 930 & 1040 & 2 & 5 & 6 & 6 & 2106575 & 81.4 & 6 & 1955748 & 81.3 & 0.0 & 7.7 \\
\hline N13_A & A2 & 454 & 502 & 2 & 5 & 6 & 3 & 716054 & 42.4 & 2 & 638472 & 42.3 & 50.0 & 12.2 \\
\hline O1_A & A5 & 10352 & 11943 & 2 & 5 & 6 & 17 & 14744723 & 1040.4 & 16 & 14281659 & 1038.6 & 6.3 & 3.2 \\
\hline O10_A & A5 & 5882 & 6982 & 2 & 5 & 6 & 12 & 8334158 & 564.7 & 12 & 8041716 & 567.7 & 0.0 & 3.6 \\
\hline O11_A & A4 & 2822 & 3281 & 2 & 5 & 6 & 7 & 4273669 & 248.8 & 6 & 3976822 & 248.0 & 16.7 & 7.5 \\
\hline O12_A & A2 & 761 & 852 & 2 & 5 & 6 & 4 & 1070036 & 62.2 & 4 & 975441 & 62.1 & 0.0 & 9.7 \\
\hline O13_A & A1 & 228 & 247 & 2 & 5 & 6 & 3 & 310397 & 19.9 & 2 & 276880 & 19.8 & 50.0 & 12.1 \\
\hline S1_A & A3 & 6149 & 7110 & 2 & 5 & 6 & 7 & 7889720 & 349.4 & 6 & 7547090 & 352.7 & 16.7 & 4.5 \\
\hline S10_A & A3 & 3404 & 3921 & 2 & 5 & 6 & 5 & 4874394 & 200.0 & 4 & 4485731 & 200.7 & 25.0 & 8.7 \\
\hline S11_A & A1 & 1564 & 1805 & 2 & 5 & 6 & 6 & 2580274 & 87.9 & 5 & 2433250 & 87.8 & 20.0 & 6.0 \\
\hline S12_A & A1 & 755 & 866 & 2 & 5 & 6 & 3 & 1197031 & 39.5 & 3 & 962642 & 39.5 & 0.0 & 24.3 \\
\hline S13_A & A2 & 322 & 374 & 2 & 5 & 6 & 2 & 479302 & 18.6 & 2 & 368330 & 18.6 & 0.0 & 30.1 \\
\hline
\end{tabular}

Table 7: Detailed results for data set A.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Characteristics of the data} & \multicolumn{3}{|l|}{With coordination} & \multicolumn{3}{|l|}{Without coordination} & \multicolumn{2}{|l|}{Change \%} \\
\hline Graph & Veh. & \(|\mathcal{N}|\) & \(|\mathcal{E}|\) & \(|\mathcal{F}|\) & \(\tau\) & \(|\mathcal{T}| / \tau\) & K & C & Time(s) & \(K\) & C & Time(s) & \(\Delta K\) & \(\Delta C\) \\
\hline F1_B & B5 & 812 & 1124 & 3 & 5 & 6 & 18 & 3954765 & 131.5 & 18 & 3931002 & 131.4 & 0.0 & 0.6 \\
\hline F10_B & B4 & 415 & 565 & 3 & 5 & 6 & 11 & 1093377 & 62.2 & 10 & 1047282 & 62.2 & 10.0 & 4.4 \\
\hline F11_B & B3 & 191 & 267 & 3 & 5 & 6 & 6 & 342678 & 28.7 & 4 & 310819 & 28.6 & 50.0 & 10.3 \\
\hline F12_B & B2 & 80 & 110 & 3 & 5 & 6 & 5 & 155263 & 12.0 & 4 & 144128 & 11.9 & 25.0 & 7.7 \\
\hline F13_B & B2 & 26 & 33 & 3 & 5 & 6 & 3 & 46917 & 3.2 & 3 & 30401 & 3.2 & 0.0 & 54.3 \\
\hline K1_B & B5 & 11656 & 12691 & 3 & 5 & 6 & 22 & 44324717 & 1399.7 & 18 & 41496404 & 1449.3 & 22.2 & 6.8 \\
\hline K10_B & B4 & 5102 & 5518 & 3 & 5 & 6 & 13 & 16458253 & 598.1 & 13 & 15085359 & 600.7 & 0.0 & 9.1 \\
\hline K11_B & B4 & 3114 & 3361 & 3 & 5 & 6 & 9 & 10947338 & 358.1 & 8 & 9771948 & 356.5 & 12.5 & 12.0 \\
\hline K12_B & B2 & 1132 & 1221 & 3 & 5 & 6 & 3 & 4513520 & 123.4 & 3 & 4035806 & 123.5 & 0.0 & 11.8 \\
\hline K13_B & B1 & 394 & 422 & 3 & 5 & 6 & 3 & 1953171 & 44.8 & 3 & 1441544 & 44.7 & 0.0 & 35.5 \\
\hline N1_B & B4 & 8573 & 9761 & 3 & 5 & 6 & 17 & 46227612 & 1079.0 & 17 & 43889725 & 1092.9 & 0.0 & 5.3 \\
\hline N10_B & B4 & 3698 & 4187 & 3 & 5 & 6 & 9 & 13567568 & 459.8 & 8 & 12369617 & 461.5 & 12.5 & 9.7 \\
\hline N11_B & B3 & 2142 & 2419 & 3 & 5 & 6 & 5 & 7035739 & 278.9 & 5 & 6573564 & 279.9 & 0.0 & 7.0 \\
\hline N12_B & B1 & 930 & 1040 & 3 & 5 & 6 & 7 & 3846423 & 123.3 & 7 & 3361446 & 123.5 & 0.0 & 14.4 \\
\hline N13_B & B2 & 454 & 502 & 3 & 5 & 6 & 4 & 1255040 & 64.2 & 3 & 1100487 & 64.2 & 33.3 & 14.0 \\
\hline O1_B & B5 & 10352 & 11943 & 3 & 5 & 6 & 36 & 32315804 & 1572.0 & 35 & 31630511 & 1572.6 & 2.9 & 2.2 \\
\hline O10_B & B5 & 5882 & 6982 & 3 & 5 & 6 & 25 & 18696113 & 853.4 & 25 & 17923742 & 859.7 & 0.0 & 4.3 \\
\hline O11_B & B4 & 2822 & 3281 & 3 & 5 & 6 & 12 & 8921980 & 374.6 & 11 & 8445946 & 375.0 & 9.1 & 5.6 \\
\hline O12_B & B2 & 761 & 852 & 3 & 5 & 6 & 6 & 2052871 & 94.3 & 5 & 1779378 & 94.4 & 20.0 & 15.4 \\
\hline O13_B & B1 & 228 & 247 & 3 & 5 & 6 & 3 & 574172 & 30.1 & 3 & 523543 & 30.0 & 0.0 & 9.7 \\
\hline S1_B & B3 & 6149 & 7110 & 3 & 5 & 6 & 11 & 16942833 & 578.5 & 10 & 16141139 & 592.3 & 10.0 & 5.0 \\
\hline S10_B & B3 & 3404 & 3921 & 3 & 5 & 6 & 8 & 10710252 & 335.2 & 7 & 9566159 & 335.9 & 14.3 & 12.0 \\
\hline S11_B & B1 & 1564 & 1805 & 3 & 5 & 6 & 7 & 5235439 & 145.8 & 7 & 4713532 & 145.7 & 0.0 & 11.1 \\
\hline S12_B & B1 & 755 & 866 & 3 & 5 & 6 & 3 & 2308505 & 64.0 & 3 & 1948421 & 64.0 & 0.0 & 18.5 \\
\hline S13_B & B2 & 322 & 374 & 3 & 5 & 6 & 3 & 1041566 & 29.2 & 3 & 784412 & 29.1 & 0.0 & 32.8 \\
\hline
\end{tabular}

Table 9: Detailed results for data set C.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Characteristics of the data} & \multicolumn{3}{|l|}{With coordination} & \multicolumn{3}{|l|}{Without coordination} & \multicolumn{2}{|l|}{Change \%} \\
\hline Graph & Veh. & \(|\mathcal{N}|\) & \(|\mathcal{E}|\) & \(|\mathcal{F}|\) & \(\tau\) & \(|\mathcal{T}| / \tau\) & K & C & Time(s) & K & C & Time(s) & \(\Delta K\) & \(\Delta C\) \\
\hline F1_D & D4 & 812 & 1124 & , & 5 & 12 & 20 & 8249938 & 148.7 & 20 & 7935147 & 148.6 & 0.0 & 4.0 \\
\hline F10_D & D3 & 415 & 565 & 4 & 5 & 12 & 12 & 2227101 & 73.0 & 11 & 2112499 & 73.0 & 9.1 & 5.4 \\
\hline F11_D & D2-C & 191 & 267 & & 5 & 12 & 13 & 1037292 & 34.2 & 11 & 922890 & 34.2 & 18.2 & 12.4 \\
\hline F12_D & D1-B & 80 & 110 & 4 & 5 & 12 & 8 & 394254 & 14.2 & 6 & 350423 & 14.4 & 33.3 & 12.5 \\
\hline F13_D & D1-B & 26 & 33 & 4 & 5 & 12 & 4 & 109389 & 3.2 & 4 & 76752 & 3.9 & 0.0 & 42.5 \\
\hline K1_D & D4 & 11656 & 12691 & 4 & 5 & 12 & 30 & 112076288 & 1912.5 & 27 & 105507020 & 2004.6 & 11.1 & 6.2 \\
\hline K10_D & D3 & 5102 & 5518 & 4 & 5 & 12 & 18 & 40552422 & 823.4 & 17 & 37612885 & 832.2 & 5.9 & 7.8 \\
\hline K11_D & D2 & 3114 & 3361 & 4 & 5 & 12 & 16 & 31952347 & 494.1 & 16 & 29605868 & 494.5 & 0.0 & 7.9 \\
\hline K12_D & D1 & 1132 & 1221 & 4 & 5 & 12 & 5 & 11328959 & 171.4 & 5 & 9935390 & 172.0 & 0.0 & 14.0 \\
\hline K13_D & D1 & 394 & 422 & 4 & 5 & 12 & 4 & 4443555 & 61.6 & 4 & 3339915 & 61.6 & 0.0 & 33.0 \\
\hline N1_D & D3 & 8573 & 9761 & 4 & 5 & 12 & 25 & 114391864 & 1459.2 & 23 & 110656848 & 1490.2 & 8.7 & 3.4 \\
\hline N10_D & D3 & 3698 & 4187 & 4 & 5 & 12 & 11 & 33014866 & 627.4 & 10 & 30105246 & 630.1 & 10.0 & 9.7 \\
\hline N11_D & D2 & 2142 & 2419 & 4 & 5 & 12 & 11 & 19347509 & 374.8 & 11 & 18495565 & 375.7 & 0.0 & 4.6 \\
\hline N12_D & D1 & 930 & 1040 & 4 & 5 & 12 & 9 & 8473102 & 165.1 & 8 & 7604034 & 165.4 & 12.5 & 11.4 \\
\hline N13_D & D1 & 454 & 502 & 4 & 5 & 12 & 5 & 3289028 & 86.0 & 5 & 2873883 & 86.2 & 0.0 & 14.4 \\
\hline O1_D & D4 & 10352 & 11943 & 4 & 5 & 12 & 54 & 81748354 & 2081.0 & 52 & 79120550 & 2102.9 & 3.8 & 3.3 \\
\hline O10_D & D4 & 5882 & 6982 & 4 & 5 & 12 & 36 & 46908913 & 1143.8 & 36 & 45600014 & 1152.8 & 0.0 & 2.9 \\
\hline O11_D & D3 & 2822 & 3281 & 4 & 5 & 12 & 16 & 22480164 & 502.2 & 16 & 20894297 & 503.6 & 0.0 & 7.6 \\
\hline O12-D & D2 & 761 & 852 & 4 & 5 & 12 & 7 & 4867828 & 126.4 & 7 & 4276153 & 126.5 & 0.0 & 13.8 \\
\hline O13_D & D1 & 228 & 247 & 4 & 5 & 12 & 4 & 1362899 & 40.3 & 4 & 1193420 & 40.2 & 0.0 & 14.2 \\
\hline S1_D & D2-B & 6149 & 7110 & 4 & 5 & 12 & 25 & 53145421 & 808.0 & 22 & 50567563 & 829.7 & 13.6 & 5.1 \\
\hline S10_D & D2 & 3404 & 3921 & 4 & 5 & 12 & 18 & 32561313 & 467.2 & 15 & 31061867 & 470.9 & 20.0 & 4.8 \\
\hline S11_D & D1 & 1564 & 1805 & 4 & 5 & 12 & 8 & 12166313 & 203.4 & 8 & 10875143 & 204.3 & 0.0 & 11.9 \\
\hline S12_D & D1 & 755 & 866 & 4 & 5 & 12 & 4 & 5541355 & 88.4 & 4 & 4559321 & 88.5 & 0.0 & 21.5 \\
\hline S13_D & D1 & 322 & 374 & & 5 & 12 & 4 & 2621767 & 39.7 & 4 & 1947317 & 39.7 & 0.0 & 34.6 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|l|}{Characteristics of the data} & \multicolumn{3}{|l|}{With coordination} & \multicolumn{3}{|l|}{Without coordination} & \multicolumn{2}{|l|}{Change \%} \\
\hline Graph & Veh. & \(|\mathcal{N}|\) & \(|\mathcal{E}|\) & \(|\mathcal{F}|\) & \(\tau\) & \(|\mathcal{T}| / \tau\) & K & C & Time(s) & \(K\) & C & Time(s) & \(\Delta K\) & \(\Delta C\) \\
\hline F1_E & E4b & 812 & 1124 & 4 & 6 & 2 & 16 & 2238077 & 148.7 & 16 & 2077676 & 148.7 & 0.0 & 7.7 \\
\hline F10_E & E3b & 415 & 565 & 4 & 6 & 2 & 12 & 816671 & 73.0 & 9 & 734129 & 73.0 & 33.3 & 11.2 \\
\hline F11_E & E2b & 191 & 267 & 4 & 6 & 2 & 10 & 335000 & 34.2 & 9 & 299806 & 34.2 & 11.1 & 11.7 \\
\hline F12_E & E1b & 80 & 110 & 4 & 6 & 2 & 7 & 151859 & 14.4 & 6 & 125631 & 14.4 & 16.7 & 20.9 \\
\hline F13_E & E1b & 26 & 33 & 4 & 6 & 2 & 4 & 55024 & 3.9 & 4 & 32005 & 3.9 & 0.0 & 71.9 \\
\hline K1_E & E4b & 11656 & 12691 & 4 & 6 & 2 & 29 & 42966426 & 1911.4 & 23 & 40801377 & 2038.9 & 26.1 & 5.3 \\
\hline K10_E & E3b & 5102 & 5518 & 4 & 6 & 2 & 15 & 15766300 & 833.9 & 13 & 14974819 & 836.1 & 15.4 & 5.3 \\
\hline K11_E & E2b & 3114 & 3361 & 4 & 6 & 2 & 15 & 11417656 & 494.1 & 13 & 10719154 & 497.7 & 15.4 & 6.5 \\
\hline K12_E & E1b & 1132 & 1221 & 4 & 6 & 2 & 5 & 5043402 & 171.5 & 5 & 4663654 & 172.4 & 0.0 & 8.1 \\
\hline K13_E & E1b & 394 & 422 & 4 & 6 & 2 & 4 & 1969899 & 61.7 & 4 & 1608421 & 61.7 & 0.0 & 22.5 \\
\hline N1_E & E3b & 8573 & 9761 & 4 & 6 & 2 & 20 & 37461703 & 1466.6 & 18 & 35060302 & 1494.6 & 11.1 & 6.8 \\
\hline N10_E & E3b & 3698 & 4187 & 4 & 6 & 2 & 9 & 13386191 & 630.0 & 8 & 12555732 & 638.6 & 12.5 & 6.6 \\
\hline N11_E & E2b & 2142 & 2419 & 4 & 6 & 2 & 10 & 7832986 & 375.7 & 9 & 7486471 & 377.7 & 11.1 & 4.6 \\
\hline N12_E & E1b & 930 & 1040 & 4 & 6 & 2 & 7 & 3316374 & 165.2 & 7 & 3007867 & 165.9 & 0.0 & 10.3 \\
\hline N13_E & E1b & 454 & 502 & 4 & 6 & 2 & 5 & 1273235 & 86.0 & 5 & 1145434 & 86.1 & 0.0 & 11.2 \\
\hline O1_E & E4b & 10352 & 11943 & 4 & 6 & 2 & 45 & 30928479 & 2103.6 & 43 & 30367398 & 2122.2 & 4.7 & 1.8 \\
\hline O10_E & E4b & 5882 & 6982 & 4 & 6 & 2 & 31 & 16876108 & 1154.0 & 30 & 16256512 & 1154.9 & 3.3 & 3.8 \\
\hline O11_E & E3b & 2822 & 3281 & 4 & 6 & 2 & 14 & 8587787 & 502.6 & 14 & 7597222 & 506.4 & 0.0 & 13.0 \\
\hline O12_E & E2b & 761 & 852 & 4 & 6 & 2 & 6 & 2071192 & 126.4 & 4 & 1797778 & 126.8 & 50.0 & 15.2 \\
\hline O13_E & E1b & 228 & 247 & 4 & 6 & 2 & 4 & 577311 & 40.3 & 4 & 519967 & 40.4 & 0.0 & 11.0 \\
\hline S1_E & E2b & 6149 & 7110 & 4 & 6 & 2 & 24 & 19955327 & 811.5 & 19 & 18180766 & 831.0 & 26.3 & 9.8 \\
\hline S10_E & E2b & 3404 & 3921 & 4 & 6 & 2 & 14 & 11863491 & 468.9 & 12 & 10767274 & 473.9 & 16.7 & 10.2 \\
\hline S11_E & E1b & 1564 & 1805 & 4 & 6 & 2 & 7 & 5005755 & 203.6 & 7 & 4456864 & 204.4 & 0.0 & 12.3 \\
\hline S12_E & E1b & 755 & 866 & 4 & 6 & 2 & 4 & 2399297 & 88.4 & 4 & 2039757 & 88.5 & 0.0 & 17.6 \\
\hline S13_E & E1b & 322 & 374 & 4 & 6 & 2 & 4 & 1124471 & 39.7 & 4 & 905298 & 39.7 & 0.0 & 24.2 \\
\hline
\end{tabular}
Table 11: Detailed results for data set E .```

[^0]: General rights
 Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

[^1]: * Corresponding author

 Email addresses: sanw@econ.au.dk (Sanne Wøhlk), gilbert.laporte@cirrelt.ca (Gilbert Laporte)

