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Abstract

Strategic alliances are established between firms to improve their competitiveness in

markets and generally appear in the form of joint ventures. Such collaborative efforts

require centralized planning, and the survival of the alliance largely depends on the

success of joint planning processes. In this regard, we investigate the opportunities

that centralized collaboration can offer to firms when designing their service net-

works. Apart from the classical fixed and variable costs associated with the network

design, we also consider transaction costs induced by the formation of the alliance,
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which can broadly be defined as cost components related to the coordination and

monitoring of the people, efforts and resources. We concentrate on bilateral alliances

and develop alternative models for solving their associated network design problem.

We also adopt a state-of-the-art heuristic to solve large-scale instances. Our findings

confirm that accounting for the transaction cost in network design is vital for the

alliance. These transaction costs can be high enough to even render the collaboration

unattractive. Hence, careful data collection and model treatment are required before

deciding whether to form an alliance.

Keywords: Network design, collaboration, strategic alliances, centralized planning,

transaction costs

1. Introduction

The purpose of this paper is to investigate the opportunities that strategic collab-

oration can offer to firms when designing their service networks. Strategic alliances

exist in sectors such as air, land or maritime transportation and logistics. An exam-

ple in the airline industry is the recent Air Canada and Air China agreement on a

joint venture to expand their collaboration opportunities and hence compete in the

market more aggressively (Reuters, 2018).

1.1. Literature Review

The scientific literature on collaborative transportation planning generally ap-

proaches the network design problem at a tactical or operational level by considering

exchanges of customer service requests between collaborators. In two recent surveys

on collaborative transportation, Verdonck et al. (2013) and Gansterer and Hartl

(2018) discussed order sharing and capacity sharing as two operational approaches

2



in collaboration, in which planning decisions are taken in a centralized or decentral-

ized fashion (Gansterer and Hartl, 2018; Agarwal and Ergun, 2008). In decentral-

ized planning, the decisions are taken by the firms individually using pre-established

mechanisms, which enable the collaborators to exchange orders or capacities. Agar-

wal and Ergun (2008) considered a collaborative multicommodity flow game at an

operational level in which the collaborators own capacities on edges, and the capacity

on a single edge can be shared by multiple players. Each player is assumed to make

selfish routing decisions and shares its excess capacities with the other players for a

predetermined fee. The paper designs a benefit sharing mechanism among the col-

laborators by determining capacity exchange costs using game theory. Houghtalen

et al. (2011) handled capacity exchange costs in a decentralized decision making en-

vironment in air alliances, but assumed a different mechanism than that of Agarwal

and Ergun (2008) in which the use of airplane capacity by other coalition members

is acknowledged a priori and the capacities are reserved for them. In liner ship-

ping, Agarwal and Ergun (2010) also considered decentralized planning, while side

payments to carriers as an added incentive are included.

In the research area of collaborative network design problems, most papers ap-

ply methods from game theory for a fair allocation of benefits and to motivate the

individual firms to participate in the coalition. For a survey on cost allocation meth-

ods in collaborative transportation, we refer the reader to Guajardo and Rönnqvist

(2016). Centralized planning of a coalition of firms, on the other hand, is often as-

sumed to be equivalent to a single firm making the planning with full information

and full control of assets. Examples of centralized planning include freight carrier

collaboration (Krajewska et al., 2008), in which the benefits obtained from managing

distributions as a single body are allocated to the participants by making use of the

Shapley value. Another example is shipper collaboration (Ergun et al., 2007b), where
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multiple shippers manage their distribution networks by minimizing their total deliv-

ery costs. In this context, Ergun et al. (2007b) introduced the lane covering problem

(LCP), in which cycles covering a given set of separated lanes are constructed in

order to minimize the cost of relocating vehicles by the carriers. Ergun et al. (2007a)

developed optimization techniques for the LCP, while Özener and Ergun (2008) dis-

cussed cost allocation strategies among shippers for bundling their lanes to ensure

a sustainable collaboration. Recently, Kuyzu (2017) developed a branch-and-price

algorithm to solve an LCP variant. Özener et al. (2011) also considered the LCP

but in a decentralized manner, where the shippers only exchange lanes for their own

interests rather than for the benefit of the coalition. These applications are again all

operational and consider the costs associated with managing the network, but not

the setup costs for designing the network.

Network design is an umbrella term for several different problems such as ser-

vice network design (Li et al., 2017), supply chain network design (Varsei and

Polyakovskiy, 2017; Choi et al., 2001), humanitarian supply network design (Dufour

et al., 2018; Charles et al., 2016), manufacturing network design (Shi and Gregory,

1998), facility network design (Robinson and Swink, 1995), refueling station network

design (de Vries and Duijzer, 2017; Kuby and Lim, 2005) and fiber optical network

design (Yazar et al., 2016) to name a few. The problem we consider in this paper is

more general, and is in line with the definition of Gendron and Crainic (1994) and

Croxton et al. (2007), where commodities flow between origin and destination pairs

and a subset of arcs of a given graph are selected to minimize the total cost. In this

framework, another conceptually related line of research to the network design prob-

lem at the strategic level is the hub location problem. In this problem, some nodes are

identified as potential hub locations and higher volume of goods being transported

between the hubs leads to reduced transportation costs due to economies of scale. In

4



the hub location problem with fixed costs, both fixed and variable costs are included.

Two surveys on the topic are those of Alumur and Kara (2008) and Campbell and

O’Kelly (2012). The economies of scale between the hubs are generally modeled by

multiplying the hub-to-hub flow with a fixed discount factor α < 1. However, to the

best of our knowledge, the idea of collaboration is not explicitly considered in the

hub location literature.

1.2. The Nature of Strategic Alliances

In this study, we consider collaboration within a centralized planning setting. As

in the previous studies, we assume full information sharing between collaborators but

in contrast to existing works, we consider the problem at a strategic level. In other

words, we can think of this collaboration as one of the extreme cases of horizontal

cooperation, the strategic alliance among multiple firms, in which the firms decide

to share their resources to undertake a mutually beneficial project (The Economist,

2009). We refer the reader to Cruijssen et al. (2007b) for a survey of opportunities

of horizontal collaborations and to Tran and Haasis (2015) for brief review of liner

shipping collaborations.

A strategic alliance is generally formed to enter a foreign market as a joint ven-

ture. A common strategy is adopted, and the resources and investment decisions

are shared for gains by all the collaborators (The Economist, 2009). Hence, concep-

tually, the planning decisions are centralized. In the economic theory, it has long

been acknowledged that such collaborations increase resource utility and, hence,

increase productivity (Cruijssen et al., 2007a). However, besides its many advan-

tages, collaboration among multiple decision making bodies such as firms or gov-

ernments also entails transaction costs related to the coordination of people, efforts

and resources (Dyer, 1997; Krueger and McGuire, 2005). The theory of transaction
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cost economics (TCE) deals with the behaviors of firms and their ruling structures.

The main objective of TCE is to understand the dynamics that govern interfirm al-

liances and cooperation efforts. The transaction cost was initially recognized in early

works on the theory of firms (Coase, 1937). It has since been formalized by Oliver

Williamson (Williamson, 1979), a Nobel Prize laureate for his studies on transaction

cost economics. He broadly defined the transaction costs as the ‘comparative costs

of planning, adapting, and monitoring task completion under alternative governance

structures’ (Williamson, 2005). The transaction costs in strategic alliances are re-

lated to the frequency, intensity and complexity of tasks (Gulati and Singh, 1998;

White and Siu-Yun Lui, 2005), as well as to the size of firms (Nooteboom, 1993)

and the perceptions of equitable behavior (White and Siu-Yun Lui, 2005). A larger

number of collaborating firms implies more transactions taking place and more com-

plications due to additional planning, coordination and monitoring requirements. It

is generally acknowledged that measuring the transaction costs is hard (Collins and

Fabozzi, 1991). In the context of our study, we refer to transaction costs as collab-

oration costs, which are expressed as a function of the number of collaborators. We

use the terms transaction cost and collaboration cost interchangeably.

1.3. Problem Definition

To further elaborate on our problem, which we refer to as ‘the collaborative

strategic network design problem’ (CSNDP), consider a graph representing a physical

road network and a set of firms operating in this network, each of which needs to

select a subset of the arcs of the graph to transport goods between multiple origin-

destination (OD) pairs. In the classical network design problem, selecting an arc

incurs a fixed cost and a variable cost associated with each unit of flow on the arc.

In a non-collaborative scenario, the fixed costs are incurred by each firm separately.
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Furthermore, since the quantities of goods being transported in a non-collaborative

context are generally lower, the unit transportation costs are also higher. In the

CSNDP, the level of integration among firms is strategic. Therefore, rather than

sharing orders and capacities, we consider designing the networks in a centralized

manner. In this regard, both fixed and variable costs are incurred by the central

planning body, and cost reductions can be attained as a result of economies of scale.

Specifically, we assume that there are alternative modes of transportation on the

arcs, each with different fixed and unit transportation cost. Larger quantities of

goods being transported may require a different mode of transportation, which in

turn may change the fixed and variable costs associated with an arc. Beyond the

fixed and variable costs, there also exists an additional cost component, referred to

as the collaboration cost, associated with each arc of the graph. The collaboration

cost is a function of the number of collaborating firms and may result from additional

organizational needs by the collaboration (which require a one-time investment such

as building new headquarters) to coordinate the operations, or it may be related to

a one-time equipment purchase used by the collaborating firms. In summary, the

CSNDP contains three cost components associated with each arc of the graph: a

one-time fixed cost, a collaboration cost depending on the number of collaborators,

and a variable cost affected by the volume of goods being transported.

1.4. Scientific Contribution and Organization of the Paper

The scientific contribution of this paper is fourfold. First, we introduce a new

problem: the strategic collaborative network design problem. To the best of our

knowledge, this is the first study to consider collaboration at a strategic level in

network design. Second, we account for a critical cost component overlooked in the

literature on strategic alliance formations: the collaboration cost. Third, we develop
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models and strengthening valid inequalities to solve this problem. Fourth, we cus-

tomize an effective matheuristic algorithm capable of handling large-size instances.

Through computational experiments, we demonstrate the importance of accounting

for the cost of collaboration in network design, and the fact that this cost compo-

nent may have profound impacts on the total costs that may hamper the benefits of

collaboration and even render it unattractive.

The remainder of the paper is organized as follows: we introduce formulations

and valid inequalities for the CSNDP in Section 2. The matheuristic is also presented

in Section 2. We present the data, experimental results and discussions in Section 3.

Finally, we present our conclusions in Section 4.

2. Problem Representation and Formulation

Consider a directed graph G = (N,A) representing a physical road network with

node and arc sets N and A, respectively. Let F be the set of firms operating in this

network. A commodity k is defined as a triple 〈ok, dk,Wk〉, where ok, dk and Wk are

the origin-destination pair and the demand quantity of commodity, respectively. Let

Kf be the set of commodities of firm f ∈ F . In this regard, multiple modes of trans-

portation (also called vehicles in the following) are available for each arc. The fuel

consumption of a vehicle determines its efficiency and its associated transportation

costs. Therefore, each mode of transportation has a different unit transportation

cost and the total cost depends on the quantity of goods transported. Due to ve-

hicle capacities and cost structures, the preferred mode of transportation depends

on the total quantity of goods being transported on an arc. To account for the fact

that different quantities of flow assigned to an arc may imply the use of different

modes of transport, we consider that each arc (i, j) ∈ A has |Sij| flow segments,

where Sij = {1, . . . , |Sij|} represents the set of flow segments on arc (i, j) ∈ A. Each
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segment s ∈ Sij corresponds to a mode of transportation and can accommodate a

flow range specified by a lower bound lsij and an upper bound usij. Furthermore,

each segment s ∈ Sij induces a fixed cost csij and a variable cost dsij. Let bsij be the

breakpoint for segment s ∈ Sij, which corresponds to its upper bound. We then

have l1ij = 0, lsij = bs−1
ij = us−1

ij for s = 2, . . . , |Sij| and b
|Sij |
ij = u

|Sij |
ij , where u

|Sij |
ij is

also the capacity of arc (i, j). An example of a cost structure on arc (i, j) with three

segments, showing the breakpoints and the fixed and variable costs, is depicted in

Figure 1. The economies of scale, represented by the decreasing slope of the curve

in Figure 1, lead to the fact that collaboration by multiple firms on an arc is always

preferred over non-collaboration under concave cost structures and no collaboration

cost. Furthermore, when firms collaborate, the fixed arc cost is paid only once for

all firms, whereas in the non-collaborative scenario, each firm operating on the arc

pays the fixed cost. The total cost accounted for in the CSNDP includes the collab-

oration cost, in addition to the fixed and variable costs depicted in Figure 1. When

the collaboration cost is very high, the cost function may be non-concave, in which

case collaboration on an arc could be disadvantageous for an individual firm. Nev-

ertheless, empirical evidence shows that this is very unlikely and the collaboration

cost is moderate (Lesmond et al., 1999). Furthermore, the collaboration decision is

taken at the strategic level and no further decision is made at the tactical level. The

model we develop below is used to minimize the cost of network design in strategic

collaborations. An alternative model is developed and presented in the appendix,

in which the collaboration decisions are taken at the tactical level (i.e., at the arc

level). This paper focuses on strategic collaborations.

Let emij denote the collaboration cost on arc (i, j) for m ≥ 2 firms collaborating

on the arc. The variables used in the model are as follows:
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0 b1ij b2ij b3ij

c1ij

c2ij

c3ij

d1ij

d2ij

d3ij

1

Figure 1: Example of a cost structure on arc (i, j) with three segments, showing the breakpoints
and the fixed and variable costs.

xkfij = fraction of commodity k of firm f transported on arc (i, j),

zsij = total flow on arc (i, j) in segment s ∈ Sij,

ysij = 1 if total flow on arc (i, j) is within (lsij, u
s
ij] and 0 otherwise,

wf
ij = 1 if firm f uses arc (i, j) and 0 otherwise,

tmij = 1 if the number of collaborating firms on arc (i, j) is m and 0 otherwise.

We now present a formulation for CSNDP, which we refer to as F1.

(F1) minimize
∑

(i,j)∈A

∑
s∈Sij

(csijy
s
ij + dsijz

s
ij) +

∑
(i,j)∈A

|F |∑
m=2

emij t
m
ij (1)

subject to
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∑
j:(i,j)∈A

xkfij −
∑

j:(j,i)∈A

xkfji =


1 if i = ok

−1 if i = dk

0 otherwise

i ∈ N, f ∈ F, k ∈ Kf (2)

∑
s∈Sij

zsij =
∑
f∈F

∑
k∈Kf

W kxkfij (i, j) ∈ A (3)

lsijy
s
ij ≤ zsij ≤ usijy

s
ij (i, j) ∈ A, s ∈ Sij (4)∑

s∈Sij

ysij ≤ 1 (i, j) ∈ A (5)

∑
k∈Kf

xkfij ≤ |Kf |wf
ij (i, j) ∈ A, f ∈ F (6)

∑
f∈F

wf
ij =

|F |∑
m=1

mtmij (i, j) ∈ A (7)

|F |∑
m=1

tmij ≤ 1 (i, j) ∈ A (8)

xkfij , z
s
ij ≥ 0 (i, j) ∈ A, f ∈ F, k ∈ Kf (9)

tmij , w
f
ij, y

s
ij ∈ {0, 1} (i, j) ∈ A, f ∈ F, s ∈ Sij,m = 1, . . . , |F |. (10)

The objective function minimizes the sum of fixed, variable and collaboration

costs. Constraints (2) are the flow balance equations. Through Constraints (3), (4)

and (5), we determine the segment into which the total flow on arc (i, j) falls, which in

turn determines the corresponding fixed cost incurred. In the case of no flow, no fixed

cost is incurred. In order to count the number of firms collaborating on each arc, we

use wf
ij and tmij variables. If there exists a firm using an arc, then the corresponding

wf
ij variable is forced to one by Constraints (6). The relationship between wf

ij and

tmij variables is enforced by Constraints (7) and Constraints (8). Constraints (9) and
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(10) define the domains of the variables. Note that the tmij variables allow us to model

any collaborative cost function depending on the number of collaborators.

2.1. Valid Inequalities

We now present a set of inequalities valid for formulation F1. The valid inequal-

ities

xkfij ≤
∑
s∈S

ysij (i, j) ∈ A, f ∈ F, k ∈ Kf (11)

imply that if any firm transports a commodity on an arc, then one of the segments

must be selected on this arc.

The disaggregated version of Constraints (6) results in the valid inequalities

xkfij ≤ wf
ij (i, j) ∈ A, f ∈ F, k ∈ Kf , (12)

which imply that if a firm transports a commodity on a given arc, then the corre-

sponding indicator variable wf
ij must be equal to one.

The valid inequalities

∑
s∈S

ysij ≤
∑
f∈F

wf
ij (i, j) ∈ A (13)

imply that if the flow on arc (i, j) belongs to segment s then at least one firm uses

the arc. The final set of valid equalities

∑
s∈S

ysij =

|F |∑
m=1

tmij (i, j) ∈ A (14)

means that a segment on an arc is used if and only if the arc is used by at least one
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firm.

2.2. The Special Case of Bilateral Alliances

In the case of two firms, i.e. |F | = 2, formulation F1 can be simplified. In

particular, the tmij variables are no longer needed since the collaboration cost is only

incurred when both companies collaborate on the arc. This can be modeled by means

of wf
ij variables. For this special case, let variable rij be the collaboration cost on arc

(i, j) ∈ A. We refer to the following model as F2:

(F2) minimize
∑

(i,j)∈A

∑
s∈Sij

(csijy
s
ij + dsijz

s
ij) +

∑
(i,j)∈A

rij (15)

subject to

(2), (3), (4), (5), (6) (16)

(
∑
f∈F

wf
ij − 1)e2

ij ≤ rij (i, j) ∈ A (17)

xkfij , z
s
ij, rij ≥ 0 (i, j) ∈ A, f ∈ F, k ∈ Kf (18)

wf
ij, y

s
ij ∈ {0, 1} (i, j) ∈ A, f ∈ F, s ∈ Sij,m = 1, . . . , |F |. (19)

Constraints (17) force variable rij to be at least e2
ij if both w1

ij and w2
ij equal 1. Note

that valid inequalities (11), (12) and (13) are also valid for F2.

Proposition 1. F2 is a valid reformulation of F1.

Proof. In a network with two firms, constraints (7) state that
∑

f∈F w
f
ij = t1ij + 2t2ij

for all (i, j) ∈ A. Then, constraints (8) imply that
∑

f∈F w
f
ij ≤ 1 + t2ij. Defining

rij = e2
ijt

2
ij and replacing in the previous inequality yields

∑
f∈F w

f
ij − 1 ≤ rij/e

2
ij,

which is the same inequality as (17). Thus, we replace constraints (7) by (17) to
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obtain a new formulation. This allows us to remove t1ij from the formulation without

loss of generality, since it only appears in (9). The new formulation corresponds to

F2.

As we will see in the computational study section, the solution performances of

these two models are quite different, particularly when F1 is strengthened using (14),

which is not valid for F2.

2.3. Matheuristic Based on Iterative Linear Programming

Network design problems are notoriously hard to solve. Different exact solution

techniques have been implemented based on reformulations, Benders decomposition

and Lagrangian relaxation (Gendron, 2011). Heuristics have also been developed for

large-scale instances. One such recently developed heuristic is based on ideas from

iterative linear programming (ILP) (Gendron et al., 2018), in which a restricted

model and a linear relaxation are iteratively solved to find promising solutions. The

ILP heuristic is reported to obtain solutions that compare favorably with most state-

of-the-art heuristics on benchmark instances. In this section, we tailor the ILP to

solve our problem and extend it.

Let P and Q be two models. In the initialization of the algorithm, P equals

either F1 or F2 and Q equals P . A first step is to solve the linear programming (LP)

relaxation of Q, which we refer to as Q. In this LP relaxation, possibly many binary

variables naturally assume integral values. The idea of ILP is to fix those variables

at their values in the LP relaxation and solve a restricted integer programming (IP)

model. Let A0 and A1 be the sets of binary variables that are at their lower and

upper bounds, respectively, in the LP relaxation. The restricted IP model is referred

to as P(A0, A1) and is solved in a time limit of T, which can possibly provide an

optimal solution of P when the assignment of variables in A0, A1 matches their
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optimal values. The algorithm iterates between solving Q and P(A0, A1) for a time

limit of Tmax. In their application, Gendron et al. (2018) only have design variables

in a classical network design problem, which correspond to arc selection decisions.

They are the fixed variables when solving the restricted problem. In our application,

on the other hand, we have the design variables for firms (wf
ij), segment variables

(ysij) and collaboration variables (tmij ), which are all binary. Fixing all binary variables

quickly renders the problem infeasible. Therefore, we customize the ILP algorithm

to fit our model by only fixing the design variables for firms. Next, we append the

following logic-based cut to Q to exclude the considered solution:

∑
f∈F

∑
(i,j)∈A0

wf
ij +

∑
f∈F

∑
(i,j)∈A1

(1− wf
ij) ≥ 1. (20)

We update the best solution v∗ by comparing it to the objective function value of

the restricted problem, v(P(A0, A1)). The algorithm continues for Tmax seconds.

The pseudo-code is presented in Algorithm 1, which we refer to as ILP Heuristic-1

(ILPH-1).

Algorithm 1: ILP Heuristic-1

1 Function ILPH-1(P, T, Tmax);
2 Q ← P, v∗ ← 8;
3 repeat

4 if Q (the LP relaxation of Q) is infeasible then break;

5 Solve Q to obtain A0 and A1;
6 Solve P(A0, A1) using time limit T;
7 if v∗ > v(P(A0, A1)) then v∗ = v(P(A0, A1));
8 Update Q by appending cut (20);

9 until CPUTIME() > Tmax;

In order to possibly improve the results, we modified the ILPH-1 Algorithm as

follows. In large-scale problem instances, the restricted problem P(A0, A1) may not
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provide a feasible solution within the time limit. For this reason, the first modification

is in line 6. We impose both a time limit and the condition that a feasible solution is

obtained. We implement this in CPLEX by MIPInfoCallback, which is called prior

to solving each node in the branch-and-cut search. In order to present the second

modification, we first introduce Q̂ to be the root node relaxation of model Q. The

main difference between the LP relaxation and the root node relaxation is that the

Q̂ formulation is strengthened at the root node by adding various cuts by CPLEX.

Therefore, the optimality gap as well as the solution quality can improve. In the

second modification, we alter line 5 of Algorithm 1 as “Solve Q̂ to obtain A0 and

A1”. We refer to the heuristic we obtain after these two modifications as ILPH-2,

which is shown in Algorithm 2. To implement, we customized CPLEX to solve the

model in a single branch-and-bound tree in order to solve the root node relaxation

only once and not at every iteration. In particular, we build a tree in which every

node has a single child and the corresponding branching cut is the logic-based cut

(20). Therefore, at every node of the tree, we reoptimize the ILP after appending

the new cut. This not only allows us to use CPLEX generated cuts, but also it helps

its heuristic algorithms to generate feasible solutions. When creating the child node

in a BranchCallback, we also solve the restricted ILP to generate a solution.

Algorithm 2: ILP Heuristic-2

1 Function ILPH-2(P, T, Tmax);
2 Q ← P, v∗ ← 8;
3 repeat

4 if Q̂ (the root-node relaxation of Q) is infeasible then break;

5 Solve Q̂ to obtain A0 and A1;
6 Solve P(A0, A1) until a feasible solution is found and a time T is reached;
7 if v∗ > v(P(A0, A1)) then v∗ = v(P(A0, A1));
8 Update Q by appending cut (20);

9 until CPUTIME() > Tmax;

16



3. Experimental Study

In this section, we introduce the datasets and we test the performances of the

models and the valid inequalities presented in the preceding section. We also inves-

tigate the cost differences between scenarios in which the firms prefer to collaborate

and those in which the firms do not collaborate. We then discuss the results and the

impacts of different parameters on the costs.

3.1. Testbed

The Canad instances (Frangioni, 2012), which have been used extensively in the

network design literature (Crainic et al., 2001; Hewitt et al., 2010; Gendron and

Larose, 2014; Chouman et al., 2016), are our main source of data. We note that

these instances were generated assuming only a single firm. The properties of ‘r01-

r09 networks’ in the Canad instances are summarized in Table 1. There are nine

settings for varying fixed costs and capacities for each of these networks, totaling

81 instances. Nine of these instances are infeasible for the classical network design

problem (Chouman et al., 2016). While some of these instances may be feasible

for particular settings in our experimental design, they are still infeasible for others

and thus we choose to exclude them from our experiments. Therefore we consider

72 instances from the R dataset. We also consider ‘C’ and ‘C+’ networks and

their properties are shown in Tables 2 and 3, respectively. There are 43 networks,

all of which are feasible for the non-collaborative case. They are the most difficult

C and C+ instances (Gendron et al., 2018). The ‘F/V’ column in Tables 2 and

3 indicates whether the emphasis is on (F)ixed or (V)ariable costs and the ‘T/L’

column indicates whether the capacities are (T)ight or (L)oose.

Since the arc capacities provided in the dataset are assumed to be for a single

firm, we multiply them by the number of firms in order to ensure the feasibility
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Table 1: R class of networks in Canad instances
name # nodes # arcs # commodities
r01 10 35 10
r02 10 35 25
r03 10 35 50
r04 10 60 10
r05 10 60 25
r06 10 60 50
r07 10 82 10
r08 10 83 25
r09 10 83 50

of the collaborative scenarios. We use these arc capacities in both collaborative

and non-collaborative scenarios for fair comparisons of either scenario type. Let

Cij, Dij and Uij be the fixed cost, variable cost and capacity of arc (i, j) provided

in the dataset. These fixed and variable cost values are assumed to be the values

for the first segment in our study. We assume a concave cost structure similar

to that of Figure 1, since increasing quantities of commodities being transported

imply decreasing variable costs. Let S be the number of segments, which we take

as three. To generate the breakpoints of the segments and the fixed, variable and

collaboration costs for each segment, we follow the same method as in Croxton et al.

(2007) and Gendron and Gouveia (2016). By assumption, the capacity of arc (i, j)

is equal to |F |Uij and we set b0
ij = 0 and bsij = s2

S2 |F |Uij for 1 ≤ s ≤ S. With this

breakpoint assignment, we ensure that the segment lengths increase for increasing s

as it is typical of transportation costs (Balakrishnan and Graves, 1989; Croxton et al.,

2007). Inspired by the hub location literature, we assume a fixed discount factor α

for the variable costs and let d1
ij = Dij and dsij = αds−1

ij for s ≥ 2. Once the variable

costs and the breakpoints have been generated, the fixed costs can be determined as

c1
ij = Cij and csij = cs−1

ij + bs−1
ij (ds−1

ij − dsij) for 2 ≤ s ≤ S. The collaboration cost of a
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Table 2: C class of networks in Canad instances
name # nodes # arcs # commodities F/V T/L
c33 20 230 40 V L
c35 20 230 40 V T
c36 20 230 40 F T
c37 20 230 200 V L
c38 20 230 200 F L
c39 20 230 200 V T
c40 20 230 200 F T
c41 20 300 40 V L
c42 20 300 40 F L
c43 20 300 40 V T
c44 20 300 40 F T
c45 20 300 200 V L
c46 20 300 200 F L
c47 20 300 200 V T
c48 20 300 200 F T
c49 30 520 100 V L
c50 30 520 100 F L
c51 30 520 100 V T
c52 30 520 100 F T
c53 30 520 400 V L
c54 30 520 400 F L
c55 30 520 400 V T
c56 30 520 400 F T
c57 30 700 100 V L
c58 30 700 100 F L
c59 30 700 100 V T
c60 30 700 100 F T
c61 30 700 400 V L
c62 30 700 400 F L
c63 30 700 400 V T
c64 30 700 400 F T
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Table 3: C+ class of networks in Canad instances
name # nodes # arcs # commodities F/V T/L
C+1 25 100 10 F L
C+2 25 100 10 F T
C+3 25 100 10 V L
C+4 25 100 30 F L
C+5 25 100 30 F T
C+6 25 100 30 V T
C+7 100 400 10 F L
C+8 100 400 10 F T
C+9 100 400 10 V L
C+10 100 400 30 F L
C+11 100 400 30 F T
C+12 100 400 30 V T

given number of firms is taken as a multiple of the fixed cost of the last segment on

the arc, emij = m
|F | β c

S
ij for m ≥ 2, where β ≥ 0 is a parameter, which we refer to as

the collaboration constant. Note that β = 0 implies an absolute minimum cost for

the firms, and the problem then boils down to a single body designing the network

with full control of the assets and without any collaboration costs.

Since there are multiple firms in the alliance, their commodities can overlap. To

measure the level of similarity between two firms and to investigate their impacts

on the results, we introduce a ‘similarity index’ (sIndex) of a firm, say Firm 1, with

respect to another firm, Firm 2, defined as the percentage of the commodities that

are common to both firms with respect to the number of Firm 1 commodities. For

example, if Firm 1 has six commodities 1,...,6 and Firm 2 also has six commodities

4,...,9, then three (4, 5 and 6) are common to both firms. This implies that the

sIndex of Firm 1 with respect to Firm 2 is equal to 3/6 = 0.5. That is, 50% of

Firm 1’s commodities are the same as those of Firm 2. Therefore, using the same

logic, the sIndex of Firm 2 with respect to Firm 1 is also 3/6 = 0.5. sIndex = 1.0
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implies a full overlap of commodities while sIndex = 0.0 implies that the firms share

no commodities. In our computational experiments, we consider two firms in the

alliance, three segments for the cost function of each arc in the network. Table 4

shows our design for sIndex ∈ {0.0, 0.5, 1.0} for the 10, 25, 30, 40, 50, 100, 200 and

400 commodities considered in Tables 1 and 3. In our design, both firms have an

equal number of commodities.

Table 4: Similarity index between two firms for different numbers of commodities

Firm 1 Firm 2
commodities commodities Common

Commodities sIndex from to from to commodities
10 0.0 1 5 6 10 –
10 0.5 1 6 4 9 4–6
10 1.0 1 10 1 10 1–10
25 0.0 1 12 13 24 –
25 0.5 1 16 9 24 9–6
25 1.0 1 24 1 24 1–24
30 0.0 1 15 16 30 –
30 0.5 1 20 11 30 11–20
30 1.0 1 30 1 30 1–30
40 0.0 1 20 21 40 –
40 0.5 1 24 13 37 13–24
40 1.0 1 40 1 40 1–40
50 0.0 1 25 26 50 –
50 0.5 1 32 17 49 17–32
50 1.0 1 50 1 50 1–50
100 0.0 1 50 51 100 –
100 0.5 1 64 33 97 33–64
100 1.0 1 100 1 100 1–100
200 0.0 1 100 101 200 –
200 0.5 1 128 65 193 65–128
200 1.0 1 200 1 200 1–200
400 0.0 1 200 201 400 –
400 0.5 1 266 134 399 134–266
400 1.0 1 400 1 400 1–400
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3.2. Computational Results

We test the performance of the models and the valid inequalities using the R

dataset. We have implemented our models using Java and CPLEX 12.8.0.0. All

experiments were conducted on a cluster of 27 machines each having two Intel(R)

Xeon(R) X5675 3.07 GHz processors running on Linux. Each machine has 12 cores

and each experiment was run using a single thread. A three-hour time limit was

set. For performance testing, we take sIndex = 0, α=0.7 and β=0.1. The results

are shown in Table 5. The first column indicates the implementation number. The

second column shows which model is used, while the following three columns show

the setting for the valid inequalities. Since inequalities (13) and (14) have sizes equal

to the number of arcs, they are added a priori to the model. However, inequalities

(11) and (12) are very numerous and therefore only the violated ones are added at

the root node of the branch-and-bound tree in a branch-and-cut (B&C) framework.

The column labeled ‘(11)–(12)’ indicates whether these inequalities are added. The

remaining set of columns show the results. The number of feasible and optimal

solutions are shown in columns 6 and 7, respectively. The feasible instances are

those that could not be solved to optimality within the time limit, but for which a

feasible solution was obtained. The average optimality gap for the feasible instances

is reported in column 8. The average solution time of all instances in seconds is

shown in column 9. The linear programming (LP) relaxations of the models are

reported in column 10. We also report the root node gaps after CPLEX cuts are

added in the rightmost column.

The computational results in implementations 1−4 show that the valid inequal-

ities (13) and (14) are very effective in accelerating the solution process of the F1

model. The second and fourth implementations are more than 50% faster than their

counterparts, i.e., the first and the third implementations, respectively. Furthermore,
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Table 5: Computational results of the models and the valid inequalities

Experimental settings # # Opt.gap Solution Avg LP Avg root
# Model (13) (14) (11)–(12) Feasible Optimal (%) time (s) relaxation (%) node gap (%)
1 F1 – – – 2 70 0.60 671.19 37.41 4.66
2 F1 + + – – 72 0.00 322.36 36.77 2.40
3 F1 – – + 2 70 0.60 668.40 37.41 4.66
4 F1 + + + – 72 0.00 320.81 36.77 2.40
5 F2 – – – 1 71 0.83 422.60 37.16 4.70
6 F2 + N/A – 2 70 0.36 590.46 37.16 4.70
7 F2 – – + 1 71 0.81 429.70 37.16 4.70
8 F2 + N/A + 2 70 0.36 588.44 37.16 4.70

all instances could be solved with valid inequalities (13) and (14) whereas this is not

the case in the first and third implementations without these valid inequalities. We

do not observe similar strong results for the valid inequalities (11)–(12). The solu-

tion times change insignificantly between the first and third implementations, and

likewise between the second and fourth implementations. An important observation

concerns the quality of the cuts added by CPLEX. Even though the LP relaxations

of the models are quite weak, the gaps are significantly reduced at the root node by

CPLEX cuts.

Looking at the fifth implementation in Table 5, we observe that the plain F2

model without any valid inequalities has an average runtime of 422.60 seconds, which

is 248.59 seconds faster than the first implementation. The fifth implementation can

also solve an extra instance to optimality. The valid inequalities do not provide an

advantage for the F2 model. In contrast, adding valid inequalities (13) worsens the

run times. Hence, observing the advantages that the valid inequalities (13) and (14)

provide for the F1, we use F1 model with valid inequalities (13)–(14), i.e., the second

implementation, for the rest of the experiments.
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The above models failed to solve C and C+ instances and terminated with a

large gap or could not even solve the root node relaxation. Therefore, we will test

the ILPH-1 and ILPH-2 heuristics in the second part of the computational study. In

our implementation, we set a time limit of one hour, similar to Gendron et al. (2018).

To implement ILPH-1, we use CPLEX as our solver with the default settings. As in

Gendron et al. (2018), the time limit for the restricted IP is 300 seconds.

ILPH-1 and ILPH-2 solved 88.22% and 70.32% of the R instances to optimal-

ity. The average optimality gaps are 0.12% and 0.26%, respectively. Since we have

obtained very small gaps in both implementations, we tested both in the 43 most

difficult C and C+ networks. For each network, there are 27 different configurations

for sIndex, α and β, totaling 1161 instances. The results are shown in Table 6. The

first column lists the four cases: the objective function values of the two heuristics are

the same (ILPH-1 = ILPH-2), ILPH-2 performs better (ILPH-1 > ILPH-2), ILPH-1

performs better (ILPH-1 < ILPH-2), and both heuristics fail to generate a feasible

solution (Undecided). The second column shows the number of instances in each case

and the third column reports the average difference between the objective functions

of the two heuristics with respect to the smallest of the two. In 40% of the instances,

ILPH-2 performed better providing 9.13% improved solution on average than ILPH-

1. In 27% of the instances ILPH-1 performed better, but the improvement is not as

high as that of ILPH-2.

Table 6: ILPH-1 and ILPH-2 Heuristics Comparison

Obj.Fn. comparison # Instances Diff (%)
ILPH-1 = ILPH-2 154 0.00
ILPH-1 > ILPH-2 466 9.13
ILPH-1 < ILPH-2 313 2.23

Undecided 228 N/A
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3.3. Results and Discussions

Here, we investigate the impact of the similarity index (sIndex), the variable cost

discount factor (α) and the collaboration constant (β) on the cost of the network de-

sign in bilateral alliances. In our experimental design, we have sIndex ∈ {0, 0.5, 1.0},

α ∈ {0.25, 0.50, 0.75} and β ∈ {0.0, 0.1, 0.5} for each instance. We also determine

the network design cost when the firms do not collaborate, and indicate it as NC

(not collaborating) in our results.

The number of commodities is different for each sIndex (Table 4). In order to

make a fair comparison between results, the costs are reported as a percentage of

the minimum cost of all instances for a given sIndex, which is achieved when β = 0

and α = 0.25. In other words, we take a base value and report the cost changes

as percentage with respect to this base value. Table 7 reports the average network

design costs as percentages. The reference cells with the base values (at β = 0

and α = 0.25) are highlighted in bold and are indicated as 0%. The largest cost

increase is when the firms collaborate with high collaboration costs (β = 0.5) and

with a discount factor α = 0.75. The relative increase is 75%, 84% and 107% with

respect to the base cases with sIndex equaling 0.0, 0.5 and 1.0, respectively. The NC

scenarios result in cost increases ranging from 16% to 77% with respect to the base

cases. The cost increase in any NC scenario is always between those of the β = 0.1

and β = 0.5 scenarios.

The capacity utilization in the optimal solutions is an important performance

indicator measuring efficiency. It is the percentage of the capacity used in the final

solution, calculated as
∑

f∈F,k∈Kf

xkfij /u
|Sij |
ij for an arc (i, j) ∈ A with a non-zero flow.

The average capacity utilization percentage in the optimal solutions per similarity

index, α and β parameters is shown in Table 8. The average utilization increases
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Table 7: Network design costs as percentages of the base values per similarity index, which is
achieved when β = 0 and α = 0.25. The reference cells are highlighted in bold.

sIndex β α
0.25 0.50 0.75

0.0 0 0% 22% 49%
0.1 7% 30% 56%
0.5 28% 50% 75%
NC 18% 41% 68%

0.5 0 0% 26% 55%
0.1 8% 33% 62%
0.5 31% 57% 84%
NC 16% 40% 68%

1.0 0 0% 35% 74%
0.1 8% 44% 81%
0.5 34% 71% 107%
NC 19% 45% 77%

from 64.07% on average in the NC scenarios to 71.06% on average in collaborative

scenarios. Increasing sIndex and decreasing α imply higher capacity utilization. The

highest capacity utilization is 78%, which is achieved when sIndex = 1.0 and β = 0,

i.e., when the firms have the same OD pairs and the collaboration comes at no cost.

To isolate and investigate the individual impact of α and β on the total cost, we

change the basis with respect to which we reference the results in Table 7. Table 9

shows the percentage changes by referencing to the minimum cost for each sIndex

and β in order to understand the impact of α constant on the design cost. The

average increase in cost when α = 0.5 with respect to the α = 0.25 case is 22.3%,

25.2% and 33.6% for sIndex = 0, 0.5 and 1.0, respectively, which is shown in Figure

2. When α = 0.75, then the average increase is 48.6%, 53.5% and 69.5% for sIndex

= 0, 0.5 and 1.0, respectively. The cost increase is more pronounced for larger sIndex

values both when α = 0.5 and when α = 0.75. This result is observed because larger
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Table 8: Capacity utilization percentages in the optimal solutions per similarity index, α and β
parameters.

sIndex β α
0.25 0.50 0.75

0 0 73% 68% 63%
0.1 71% 67% 63%
0.5 68% 65% 62%
NC 63% 59% 55%

0.5 0 73% 71% 67%
0.1 74% 72% 67%
0.5 72% 69% 66%
NC 67% 64% 59%

1.0 0 78% 76% 72%
0.1 78% 76% 73%
0.5 77% 76% 74%
NC 72% 68% 64%

sIndex values imply that the firms have more common OD pairs and therefore the

fixed cost is less dominant in the total cost with respect to the case with smaller

sIndex values. In other words, the dominant cost component is the variable cost

for larger sIndex values. Therefore, a change in the variable cost discount factor α

implies a larger change in the cost for greater sIndex values. In Table 9, we also

observe that, when sIndex =1.0, the cost increase is smaller in NC rows than the

cost increase when the firms collaborate. For instance, the cost increase is 58% in the

NC case when sIndex =1.0 and α = 0.75 whereas the increase is 72%, 73% and 74%

for β = 0.5, 0.1 and 0.0, respectively. In the NC case, both firms need to incur the

fixed cost of a selected arc when they design their networks individually. Since the

fixed costs are more dominant than the variable costs, an increase in the α discount

factor has less impact on the total cost.

Finally, Table 10 shows the percentage increase with respect to the minimum
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Table 9: Network design costs as percentages of the base values per similarity index and β parameter,
which is achieved when α = 0.25. The reference cells are highlighted in bold.

sIndex β α
0.25 0.50 0.75

0.0 0 0% 22% 49%
0.1 0% 22% 48%
0.5 0% 22% 47%
NC 0% 23% 50%

0.5 0 0% 26% 55%
0.1 0% 26% 54%
0.5 0% 26% 53%
NC 0% 24% 52%

1.0 0 0% 35% 74%
0.1 0% 36% 73%
0.5 0% 37% 72%
NC 0% 26% 58%
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Figure 2: Cost increase as percentage of the cost in the base case
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cost for each sIndex and α, in order to understand the impact of β on the design

cost. The β = 0 case gives the minimum cost that firms can achieve when designing

their network, in which no collaboration costs are incurred. The largest cost increase

occurs when β = 0.5. For β = 0.1, the cost increase is between 7% and 9%; for

β = 0.5, the increase is between 26% to 36%; and for the NC case, the cost increase

is between 4% and 19%. We note that when β ≥ 0.5, the average cost exceeds that

of the NC case and collaboration is more expensive than when each firm designs its

networks individually. Therefore, it is advantageous to collaborate provided that the

collaboration costs are not unreasonably high. For this reason, the collaboration cost

needs to be carefully determined and taken into account in the strategic alliance.

A bar chart representation of the same results is presented in Figure 3. In terms

of change with respect to sIndex, we observe a decreasing trend in the NC case

as sIndex increases, whereas we observe an increasing trend when the collaboration

cost is at the high setting (β = 0.5). Larger sIndex values imply more OD pairs

being common in both firms. Therefore, the firms can increase the amount of flow

on arcs and gain cost reductions. This would intuitively imply that the higher the

sIndex value, the more savings these firms can achieve. However, the cost for the

β = 0.5 case counterintuitively increases by increasing sIndex. The main reason is

the high collaboration costs being paid. It is at such a high level that firms use an

arc and bear the associated high collaboration costs to minimize their total cost.

Even though we can explain the reason for such an occurrence, it is never wise to

collaborate under such high collaboration costs since the total costs are higher than

the non-collaboration costs.
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Table 10: Network design costs as percentages of the base values per similarity index and α param-
eter, which is achieved when β = 0. The reference cells are highlighted in bold.

sIndex β α
0.25 0.50 0.75

0.0 0 0% 0% 0%
0.1 7% 8% 7%
0.5 28% 28% 26%
NC 18% 19% 19%

0.5 0 0% 0% 0%
0.1 8% 8% 7%
0.5 31% 32% 29%
NC 16% 14% 13%

1.0 0 0% 0% 0%
0.1 8% 9% 8%
0.5 34% 36% 33%
NC 19% 10% 4%

NC 0.1 0.5
0

20

40

60

80

100

Variable cost discount factor (β)

C
os

t
in

cr
ea

se
(%

)

sIndex = 0.0 sIndex = 0.5 sIndex = 1.0

Figure 3: Bar chart representation of results in Table 10 displaying the network design cost increase
with respect to β = 0 case.
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4. Conclusions

It is vital for the survival of the alliances to carefully plan their operations and

accurately determine their costs. In a centralized planning environment with collab-

oration, the fixed and variable costs are often accounted for when designing networks.

In our study, we have argued that considering these two cost components is necessary

but not sufficient. We have taken into account the collaboration cost, have intro-

duced the network design problem for strategic alliances and have developed models

to solve it. Significant gains can be attained by collaborating, but these gains may

be hampered by the costs associated with collaboration. Even further, this cost

component may be high enough to dominate the total cost and hence render the

collaboration unattractive. Hence, a careful data collection and model treatment is

required before deciding to form an alliance.

Appendix

In this appendix, we present a model that makes collaboration decisions at the

tactical (i.e., arc) level. In this model, we represent collaborations by subsets of the

firms on each arc. A subset with a single firm in it represents non-collaboration. If

a firm transports any amount on an arc (i, j), it is required to be in one of these

subsets. The variables used in the model are as follows:

xkfij = fraction of commodity k of firm f transported on arc (i, j),

qij,Λ = 1 if the firms in set Λ ⊂ F are collaborating on arc (i, j) and not collaborating with

any firm in F \ Λ and 0 otherwise,

zsij,Λ = total flow of firms in set Λ ⊂ F on arc (i, j) in segment s ∈ Sij if qij,Λ = 1 and 0 otherwise,

ysij,Λ = 1 if total flow of of firms in set Λ ⊂ F on arc (i, j) is within (lsij, u
s
ij] and 0 otherwise,
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We now present a formulation, which we refer to as F3.

(F3) minimize
∑
Λ⊂F

∑
(i,j)∈A

∑
s∈Sij

(csijy
s
ij,Λ + dsijz

s
ij,Λ) +

∑
Λ⊂F :|Λ|6=1

∑
(i,j)∈A

e
|Λ|
ij qij,Λ (21)

subject to

∑
j:(i,j)∈A

xkfij −
∑

j:(j,i)∈A

xkfji =


1 if i = ok

−1 if i = dk

0 otherwise

i ∈ N, f ∈ F, k ∈ Kf (22)

∑
Λ⊂F

∑
s∈Sij

zsij,Λ =
∑
f∈F

∑
k∈Kf

W kxkfij (i, j) ∈ A (23)

lsijy
s
ij,Λ ≤ zsij,Λ ≤ usijy

s
ij,Λ (i, j) ∈ A, s ∈ Sij (24)∑

Λ⊂F

∑
s∈Sij

ysij,Λ ≤ 1 (i, j) ∈ A (25)

∑
s∈Sij

zsij,Λ ≤
∑
f∈Λ

∑
k∈Kf

W kqij,Λ (i, j) ∈ A,Λ ⊂ F (26)

∑
Λ⊂F :f∈Λ

qij,Λ ≤ 1 (i, j) ∈ A, f ∈ F (27)

xkfij ≤
∑

Λ⊂F :f∈Λ

qij,Λ (i, j) ∈ A, f ∈ F, k ∈ Kf (28)

xkfij , z
s
ij,Λ ≥ 0 (i, j) ∈ A, f ∈ F, k ∈ Kf (29)

qij,Λ, y
s
ij,Λ ∈ {0, 1} (i, j) ∈ A, s ∈ Sij,Λ ⊂ F. (30)

The objective function minimizes the sum of fixed, variable and collaboration

costs. Constraints (22) are the flow balance equations. Through Constraints (23),

(24) and (25), we determine the segment into which the total flow on arc (i, j) falls,

which in turn determines the corresponding fixed cost incurred. In the case of no
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flow, no fixed cost is incurred. In order to determine which firms collaborate on each

arc, we use qij,Λ variables. Constraints (26) ensure the relationship between segment

variables zsij,Λ and qij,Λ variables. If some firms in Λ collaborates on arc (i, j), then

they can have positive flow on this arc. Constraints (27) guarantee that a firm can

only participate in a single collaboration or can be non-collaborating. The subsets of

F also includes sets with a single firm, which represent the non-collaborating firms.

Constraints (28) forces a firm to necessarily participate in a collaboration or be a

non-collaborating firm. Constraints (29) and (30) define the domains of the variables.

Note that due to the exponential number of subsets of the firms set, the model is

naturally limited to only a few collaborating firms.
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Gendron, B., Gouveia, L.E., 2016. Reformulations by discretization for piecewise

linear integer multicommodity network flow problems. Transportation Science 51,

629–649.
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Özener, O.Ö., Ergun, Ö., Savelsbergh, M.W.P., 2011. Lane-exchange mechanisms

for truckload carrier collaboration. Transportation Science 45, 1–17.

37



Reuters, 2018. Air China, Air Canada to sign joint venture agreement. URL:

https://www.reuters.com/article/aircanada-airchina/air-china-air-canada

-to-sign-joint-venture-agreement-idUSB9N1RM01P. accessed June 28, 2018.

Robinson, E.P., Swink, M.L., 1995. A comparative model of facility network design

methodologies. Journal of Operations Management 13, 169–181.

Shi, Y., Gregory, M., 1998. International manufacturing networks: to develop global

competitive capabilities. Journal of Operations Management 16, 195–214.

The Economist, 2009. Strategic alliance. URL: https://www.economist.com/

node/14301470. accessed May 10, 2018.

Tran, N.K., Haasis, H.D., 2015. Literature survey of network optimization in con-

tainer liner shipping. Flexible Services and Manufacturing Journal 27, 139–179.

Varsei, M., Polyakovskiy, S., 2017. Sustainable supply chain network design: A case

of the wine industry in Australia. Omega 66, 236–247.

Verdonck, L., Caris, A., Ramaekers, K., Janssens, G.K., 2013. Collaborative logistics

from the perspective of road transportation companies. Transport Reviews 33,

700–719.

White, S., Siu-Yun Lui, S., 2005. Distinguishing costs of cooperation and control in

alliances. Strategic Management Journal 26, 913–932.

Williamson, O.E., 1979. Transaction-cost economics: the governance of contractual

relations. The Journal of Law and Economics 22, 233–261.

Williamson, O.E., 2005. Transaction cost economics, in: Ménard, C., Shirley, M.M.

(Eds.), Handbook of New Institutional Economics. Springer, Dordrecht, pp. 41–65.

38



Yazar, B., Arslan, O., Karasan, O.E., Kara, B.Y., 2016. Fiber optical network design

problems: A case for Turkey. Omega 63, 23–40.

39


