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Abstract

Compared with conventional freight vehicles, electric freight vehicles create less local pollution

and are thus generally perceived as a more sustainable means of goods distribution. In urban

areas, such vehicles must often perform the entirety of their delivery routes without recharging.

However, their energy consumption is subject to a fair amount of uncertainty, which is due to

exogenous factors such as the weather and road conditions, endogenous factors such as driver

behaviour, and several energy consumption parameters that are difficult to measure precisely.

Hence we propose a robust optimization framework to take into account these energy consump-

tion uncertainties in the context of an electric vehicle routing problem. The objective is to

determine minimum cost delivery routes capable of providing strong guarantees that a given

vehicle will not run out of charge during its route. We formulate the problem as a robust mixed

integer linear program and solve small instances to optimality using robust optimization tech-

niques. Furthermore, we develop a two-phase heuristic method based on large neighbourhood

search to solve larger instances of the problem, and we conduct several numerical tests to assess

the quality of the methodology. The computational experiments illustrate the trade-off between

cost and risk, and demonstrate the influence of several parameters on best found solutions. Fur-

thermore, our heuristic identifies 42 new best solutions when tested on instances of the closely

related robust capacitated vehicle routing problem.

Keywords: electric vehicle routing, robust optimization, city logistics, metaheuristics

1. Introduction

There currently exists a strong interest on the part of the transportation science community in the

design of distribution schemes that may reduce the environmental impact of goods distribution,

namely in the context of city logistics. Whereas some researchers have focused on taking emission

costs into account when routing conventional vehicles (e.g., Jabali et al. 2012, Bektaş and Laporte

2011), others have dealt with the challenges arising from the use of cleaner alternatives such as

electric freight vehicles (EFVs) (Pelletier et al. 2016). Indeed, EFVs create less local air pollution

and less noise than conventional vehicles, and are therefore considered to be a more sustainable

means of goods distribution. Despite the environmental benefits of EFVs, there exist significant



issues associated with their integration into goods distribution schemes, most notably their high

initial investments, limited range and payload, long recharging times, and the scarcity of public

charging stations. In an urban environment, however, delivery routes tend to be shorter than the

range of currently available EFVs (Feng and Figliozzi 2013), which means that some of the afore-

mentioned issues, namely those concerning recharging times and public charging infrastructures,

can be averted by recharging the batteries at a central depot. Indeed, companies that use EFVs

for goods distribution will usually charge them on company grounds overnight and will rarely use

public charging stations (Naberezhnykh et al. 2012, E-Mobility NSR 2013, Quak et al. 2017, Mor-

ganti and Browne 2018). This practice also mitigates cargo security concerns and avoids inefficient

use of drivers’ time during en route charging. Furthermore, depot charging offers the possibility

of benefiting from lower energy costs through commercial off-peak electricity rates at the depot

(Pelletier et al. 2018).

In the case of exclusive charging EFVs at the depot, vehicle routes must be planned carefully as

a result of the limited range of the vehicles, and in a way that ensures that the vehicles will be able

to perform their full route with their departing battery charge. This is particularly important in

the presence of strong uncertainties surrounding the energy consumption of the vehicles along the

planned routes. Indeed, Asamer et al. (2016) show that several parameters of the comprehensive

emissions model of Barth et al. (2005) commonly used to estimate energy consumption in electric

vehicle routing problems (EVRPs) are difficult to measure or depend on uncontrolable exogenous

factors, and it is therefore wiser to think of their value as lying within an uncertainty range. Yi

and Bauer (2017) also demonstrate how environmental factors such as wind speed, weather, road

surface conditions, and temperature can significantly alter the achievable range of electric vehicles.

Bingham et al. (2012) reach similar conclusions concerning the influence of driver behaviour, and

note that driving less aggressively (e.g., with fewer acceleration phases) can yield substantial energy

consumption savings.

The scientific aim of this paper is to introduce, model and solve a practical transportation prob-

lem in which EFVs must be optimally routed with strong guarantees that they never get stranded

along their routes regardless of the realization of energy consumption uncertainties. We refer to

this problem as the electric vehicle routing problem with energy consumption uncertainty (EVRP-

ECU) and solve it by means of a robust optimization framework. With this goal in mind, Section

2 provides a short review of the literature related to goods distribution with electric vehicles and

robust vehicle routing problems. Section 3 describes the EVRP-ECU and presents its mathematical

formulation. Section 4 details two robust optimization approaches that can be used to solve small

instances of the problem to optimality. Section 5 presents a two-phase heuristic method for larger

instances in which candidate routes are generated via a first phase based on large neighbourhood

search (LNS) and are then assembled via a set partitioning (SP) formulation in the second phase.

Section 6 provides the results of extensive computational experiments. Finally, Section 7 presents

our conclusions.
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2. Related literature

Several new routing problems associated with the use of EFVs have been studied since 2010 in

order to ease their integration into distribution operations (e.g., Conrad and Figliozzi 2011, Preis

et al. 2014, Schneider et al. 2014, Felipe et al. 2014, Goeke and Schneider 2015, Montoya et al.

2017, Schiffer and Walther 2017, Hiermann et al. 2016, 2019). The generic objective in these

problems is to use a fleet of EFVs to deliver goods to a set of customers at minimal cost. A

recurring feature of the proposed models is that the vehicles can stop at charging stations along

their delivery routes to recharge their batteries if needed, thus distinguishing these problems from

conventional vehicle routing problems (VRPs) for which the planning of intraroute refueling stops

is rarely required. Indeed, many fuel stations are available for conventional vehicles and refueling

times are negligible regardless of the fuel station, whereas for EFVs the recharging infrastructure

is scarce and recharging times are longer and can vary significantly depending on the type of

recharging station. Although en route recharging is rarely needed in urban delivery routes, such

studies remain relevant since they could facilitate the use of EFVs outside urban environments

(e.g., for mid- and long-haul goods distribution).

In addition, because of the limited battery capacity and the resulting shorter achievable range

of EFVs, such routing problems require solution methods that can accurately monitor the vehicles’

energy consumption in order to ensure they never get stranded. Some studies assume that the

battery discharges itself at a linear rate with respect to distance (e.g., Felipe et al. 2014, Schneider

et al. 2014, Hiermann et al. 2016). Others have considered a more detailed energy consumption

model based on the comprehensive emissions model of Barth et al. (2005) which computes the

required energy to traverse any given arc based on certain vehicle and arc characteristics (e.g.,

speed, acceleration, mass, elevation, frontal area, rolling friction, air drag). This energy consump-

tion model was first applied in a VRP setting for the pollution-routing problem to estimate fuel

consumption and emissions (Bektaş and Laporte 2011), and subsequently in many EVRP studies

to track the state of charge of the vehicles’ batteries (e.g., Preis et al. 2014, Goeke and Schneider

2015, Lebeau et al. 2015).

Many existing studies have also considered stochastic variants of the VRP in which the objective

is to minimize the total expected cost. The problem inputs that are assumed to be uncertain in

such problems are usually customer demands, travel and service times, or customer presence, and

these uncertainties are generally handled via a priori optimization or through the reoptimization

modeling paradigm (Gendreau et al. 2016). The issue of uncertain energy consumption has not yet

been studied in VRP settings due to the ease with which intraroute refueling stops for conventional

vehicles can be incorporated in a solution.

Robust optimization is a methodology that has increased in popularity in the last two decades,

as witnessed by the growing number of publications on this topic. The main benefit of robust
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optimization lies in its ability to incorporate uncertainty into a problem in a relatively tractable

way. This is typically achieved by defining uncertainty sets containing realizations of the uncertain

parameters. Moreover, strong probabilistic guarantees can often be attained with very limited

information regarding the underlying distribution of the uncertain parameters, while still achieving

less conservative solutions than by working with worst-case values (Ben-Tal et al. 2009).

To the best of our knowledge, only Fontana (2013) has considered the uncertainty surrounding

the energy consumption of electric vehicles and has modeled the problem within a robust optimiza-

tion framework. However, this author considers the idea of uncertainty surrounding the energy

consumption of electric vehicles in an optimal path problem setting, while we extend it to a VRP

setting in which the vehicle loads influence energy consumption. Schiffer and Walther (2018) have

also used a robust optimization framework in an EVRP context, but their work considers the

problem of simultaneously routing EFVs and locating charging stations to be used en route in

the presence of uncertain customer locations, demand, and service time windows. Examples of

other studies on robust VRPs include the work of Sungur et al. (2008), Gounaris et al. (2013)

and Gounaris et al. (2016) on the capacitated VRP with demand uncertainty; the work of Agra

et al. (2012) and Braaten et al. (2017) on the VRP with time windows and travel time uncertainty;

the work of Hu et al. (2018) on the VRP with time windows and both demand and travel time

uncertainties; and the work of Lee et al. (2012) on the VRP with deadlines, as well as demand and

travel time uncertainties.

In summary, the main contributions of this study are to model and solve a practical

problem resulting from the fact that EFVs must be able to perform their full delivery

routes in urban areas with their departing battery charge, despite uncertainties sur-

rounding their energy consumption. We believe that this paper constitutes a valuable

complement to the existing EVRP studies on the design of routes that incorporate

en route recharging. We note that such studies relate to the use of EFVs for mid-

and long-haul goods distribution, while our objective is to support the use of EFVs

for urban operations specifically. This paper is indeed the first to consider the im-

portant issue of uncertain energy consumption in an EVRP setting without en route

recharging. We use a robust optimization approach to take into account such energy

consumption uncertainties (both exact and heuristic solution methods are proposed),

and we conduct extensive numerical tests to demonstrate the quality of our method-

ology. We therefore believe that this study successfully deals with a key challenge

arising from the use of EFVs as a more sustainable means of goods distribution, which

should be of interest to both transportation scientists and fleet managers.
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3. The electric vehicle routing problem with energy consumption

uncertainty

The objective of this section is to formally introduce the EVRP-ECU. The section is organized as

follows. We first provide a general description of the EVRP-ECU in Section 3.1. In Section 3.2 we

elaborate on how the expected values for the arcs’ uncertain energy consumption parameters can be

approximated. Section 3.3 provides comments on the incorporation of the uncertainty surrounding

those energy consumption parameters. The mathematical formulation of the EVRP-ECU is then

given in Section 3.4, and finally we present in Section 3.5 the uncertainty sets that we use in our

computational experiments.

3.1 Problem description

The EVRP-ECU is defined on a complete directed graph G = (N,A). The node set N is partitioned

into {N0, {0}}, where N0 is the set of n customers, and node 0 is the depot. The set of arcs is

denoted by A. We denote by K the set of homogeneous EFVs that must be used to visit the

customers. Each vehicle has a load capacity L (kg) and a battery capacity Q (kWh). Each node i

has a demand qi (kg), with qi > 0 for i ∈ N0 and q0 = 0.

Each arc (i, j) is assigned a length dij (m), an expected empty-vehicle energy consumption aij

(kWh), and an expected load-dependent energy consumption bij (kWh/kg). We assume that the

realized empty-vehicle and load-dependent energy consumption values along the arcs will deviate

from the expected ones due to the uncertainty surrounding several parameters in the underlying

energy consumption model used to estimate aij and bij . This will be explained in more detail

in Section 3.3. A fixed cost of cF is incurred for dispatching a vehicle, representing the daily

salary of a driver. Parameters cE and cM represent energy ($/kWh) and maintenance ($/m) costs,

respectively.

The following decision variables are required for the formulation of the EVRP-ECU. Binary

variables xijk take value 1 if and only if vehicle k travels on arc (i, j). Variables fijk refer to the

load (kg) carried on arc (i, j) by vehicle k. Variables wk refer to the worst-case energy

consumption (kWh) that could occur for vehicle k out of all energy consumption

realizations in the uncertainty set Uk (which will be formally defined in Section 3.3).

We assume that the uncertainty sets Uk are calibrated so as to ensure a probability

of at most β that the realized energy consumption of vehicle k will be larger than wk

(with β chosen by the decision maker). For example, if parameter β is set to 0.01

and variable wk is assigned a value of 40 kWh in an optimal solution to the EVRP-

ECU for some vehicle k, then the probability that the delivery route of vehicle k will

consume more than 40 kWh will be at most 1%. The objective of the EVRP-ECU is to
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determine a set of routes that minimizes the sum of fixed, maintenance and worst-case

energy costs. Furthermore, each customer demand is satisfied by exactly one vehicle,

routes start and end at the depot, and total route loads are at most L. Finally, the

worst-case energy consumption wk of each vehicle is at most Q (i.e., the probability

that vehicle k can complete its route without getting stranded is at least 1− β).

3.2 Estimating the expected values of the arcs’ uncertain energy consumption

parameters

The expected values aij and bij for the arcs’ energy consumption parameters can be approximated

using a two-phase approach similar to those discussed by Goeke and Schneider (2015) and Basso

et al. (2019). Acknowledging that an arc (i, j) in a VRP graph typically represents a precomputed

shortest path between nodes i and j on a more detailed road graph, the idea is to first compute

such shortest paths in the road graph, and then determine values representing the expected empty-

vehicle and load-dependent energy consumption of a vehicle traveling that path. First assume

that each vehicle in K has a curb mass w (kg), a frontal area A (m2), an air drag coefficient Cd,

and an auxiliary power demand P (W). Let R = (NR, AR) be a directed graph representing the

underlying road graph in which the shortest paths representing the arcs in G are computed. The

nodes in set NR can be assumed to be road intersections, and the arcs in set AR can be assumed

to be road segments. Then if a road segment (l,m) ∈ AR (i.e., a road section between intersections

l ∈ NR and m ∈ NR) is traveled at constant speed vlm (m/s) by a vehicle in K, then the amount

of mechanical energy elm (kWh) required for that vehicle to travel that road segment with a load

f is computed with the longitudinal dynamics model from Asamer et al. (2016), which estimates

energy consumption in a similar way to the comprehensive emissions model of Barth et al. (2005):

elm =
1

3.6 · 106

(
(w + f)gdlm sin θlm + (w + f)gCrdlm cos θlm + 0.5ACdρv

2
lmdlm

)
, (1)

where g is the gravitational constant, ρ is the air density (kg/m3), Cr is the rolling friction

coefficient, and dlm and θlm are the length (m) and road angle (rad) of the road segment (l,m).

With a travel time of tlm = vlm/dlm associated with road segment (l,m) and assuming the vehicles

have a total drivetrain efficiency of φ, the amount of energy Blm (kWh) required from the battery

on road segment (l,m) is then

Blm =

φ · elm + 1
3.6·106

· P · tlm, if elm ≥ 0

1
3.6·106

· P · tlm if elm < 0.
(2)

Although electric vehicles can sometimes recharge their battery when braking and driving down-

hill by using the electric motor as a generator, for sake of simplicity we do not consider energy

recuperation in this study. This also makes the EVRP-ECU solution even more protected against

6



energy consumption uncertainties (i.e., if the vehicle ends up occasionally recuperating some energy

while performing its route, the solution becomes even more robust).

Note that acceleration can also be incorporated into the estimation of elm if necessary. We

first show how this can be done for the simple case of constant acceleration throughout an entire

road segment, and we then illustrate how this simple case can be used to establish more involved

structures of elm. If road segment (l,m) is traveled by starting at time t = 0 at an initial speed

of vI and accelerating or decelerating at a constant acceleration a during the entire road segment,

then a speed of

vlm =
√
v2
I + 2adlm (3)

will be reached at the end of the road segment at time

tlm =
2dlm

vI + vlm
. (4)

.In this case, the amount of mechanical energy elm (kWh) required for vehicle k ∈ K to travel that

road segment with a load of f becomes

elm =
1

3.6 · 106

(
(w+ f)αadlm + (w+ f)gdlm sin θlm + (w+ f)gCrdlm cos θlm +

∫ tlm

0

0.5ACdρ(vI + at)3dt

)
, (5)

where α is a mass factor greater than one to account for the rotational inertia of the vehicle’s

moving parts (Asamer et al. 2016). The integral in the last term can be developed to yield

elm =
1

3.6 · 106

(
(w+f)αadlm +(w+f)gdlm sin θlm +(w+f)gCrdlm cos θlm +0.5ACdρdlm(v2I +

v2lm − v2I
2

)

)
. (6)

Equations (4)–(6) can then be used in (2) to compute Blm. Finally, if road segment (l,m) is traveled

by starting at an initial speed vI at time t = 0, accelerating at a constant rate a+ until reaching a

speed of vlm, traveling at a constant speed vlm for a certain period of time and then decelerating at

a constant rate a− to reach a speed vF at time t = tlm, then the distance and time traveled in each

phase (i.e., acceleration, constant speed, and deceleration) can be computed through equations (3)

and (4), respectively. Equations (1) and (6) can then be used to determine the required mechanical

energy during each phase. Each of these values can subsequently be used in (2) to compute the

amount of energy required by the battery during each phase.

Regardless of the case, the final equation for Blm will always be linear in f . We derive alm

and blm so that Blm = alm + blm · f . Thus, once a shortest path Sij has been found for each arc

(i, j) ∈ A, we can aggregate the road segment energy consumption parameters of each path to

determine the net expected values for the empty-vehicle and load-dependent energy consumption

of the fleet vehicles when traveling arc (i, j):
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aij =
∑

(l,m)∈Sij

alm ∀(i, j) ∈ A (7)

bij =
∑

(l,m)∈Sij

blm ∀(i, j) ∈ A. (8)

3.3 Incorporating uncertainty

An issue associated with the values aij and bij describing the expected energy consumption on arc

(i, j) is of course that several uncertain parameters are needed to estimate them. As discussed by

Asamer et al. (2016) and Yi and Bauer (2017), many parameters in the energy consumption model

used in the previous section may vary according to some operating conditions, or are difficult to

measure precisely. For example, the rolling friction coefficient Cr is difficult to measure and depends

on the road surface, the tires, the travel speed, and even the temperature. The air drag coefficient

Cd may vary depending on vehicle shape, opened windows, wind speed, and the vehicle’s angle

of attack. The air density ρ depends on factors such as temperature, atmospheric pressure, and

humidity. The drivetrain efficiency φ can vary with speed and power. The auxiliary power P

depends on driver behaviour and environmental conditions (air conditioning, heating, light, radio).

Moreover, driver behaviour and external factors such as traffic conditions may influence the vehicle’s

travel speed and acceleration cycle. Therefore, even if we compute aij and bij with expected values

for all these uncertain parameters, it is likely that the realized empty-vehicle and load-dependent

energy consumption along some arcs will deviate from aij and bij for each vehicle.

To deal with these uncertainties, we derive a robust optimization model by integrating uncer-

tainty on how much the realized energy consumption of a given vehicle k on each arc in A will

deviate from its expected value through uncertainty set Uk. Hence we assume that the maximum

deviations âij ≥ 0 and b̂ij ≥ 0 from aij and bij , respectively, are known. For example, the method-

ology described in Section 3.2 could be applied with worst-case values for the uncertain parameters

mentioned in the previous paragraph to estimate âij and b̂ij . Asamer et al. (2016) report worst-case

values for some of the uncertain parameters in the energy consumption model (e.g., Cr, Cd, ρ, φ,

P ), based on the literature and on measurements from an electric vehicle. Uncertainty ranges for

speed and acceleration can then be estimated on the basis of the road graph and of the driver’s

behaviour, which can further be used with worst-case values of Cr, Cd, ρ, φ, and P to determine

âij and b̂ij . Of course, historical data can also be used to determine âij and b̂ij when available.

Let Zk ∈ R|A| be a random vector with known support [−1, 1] representing the deviation

of vehicle k’s empty-vehicle and load-dependent energy consumption along each arc from their

expected values. Once we pick a solution to the EVRP-ECU (i.e., in terms of the variables xijk,

fijk and wk), we assume an adversary can select any ζk ∈ Uk to make vehicle k’s route energy-

infeasible, where ζk is a realization of Zk. A given element ζk ∈ Uk thus provides a ζijk value that
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sets the realized empty-vehicle and load-dependent energy consumption parameters for vehicle k

along arc (i, j) as aij + âij · ζijk and bij + b̂ij · ζijk, respectively. The idea is to choose and calibrate

sets Uk so as to achieve the desired protection level β by covering enough realizations of the random

vectors Zk. We will use sets Uk to approximate the following chance constraint for each vehicle in

the mathematical formulation of Section 3.4:

P

( ∑
(i,j)∈A

(
aij · xijk + bij · fijk + (âij · xijk + b̂ij · fijk) · Zijk

)
≤ wk

)
≥ 1− β. (9)

We assume that the expected values aij and bij as well as the maximum deviations âij and b̂ij are

the same for each vehicle for a given arc (i, j), and hence we do not index them by vehicle.

3.4 Mathematical formulation

The EVRP-ECU is formulated as the following robust mixed integer optimization model:

minimize
∑
k∈K

∑
j∈N0

cF · x0jk +
∑
k∈K

∑
(i,j)∈A

cM · dij · xijk +
∑
k∈K

cE · wk (10)

subject to∑
j∈N0

x0jk ≤ 1 k ∈ K (11)

∑
k∈K

∑
j∈N\{i}

xijk = 1 i ∈ N0 (12)

∑
j∈N\{i}

xjik =
∑

j∈N\{i}

xijk i ∈ N, k ∈ K (13)

qj · xijk ≤ fijk ≤ (L− qi) · xijk (i, j) ∈ A, k ∈ K (14)∑
k∈K

∑
j∈N\{i}

fjik −
∑
k∈K

∑
j∈N\{i}

fijk = qi i ∈ N0 (15)

∑
(i,j)∈A

(
(aij + âij · ζijk) · xijk + (bij + b̂ij · ζijk) · fijk

)
≤ wk k ∈ K, ζk ∈ Uk (16)

0 ≤ wk ≤ Q k ∈ K (17)

xijk ∈ {0, 1} (i, j) ∈ A, k ∈ K. (18)

The objective function (10) minimizes total fixed, maintenance and worst-case energy costs.
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Constraints (11) ensure that each vehicle is dispatched at most once. Constraints (12) force each

customer node to be visited exactly once. Constraints (13) are flow conservation equations. Con-

straints (14) ensure that the load capacity is respected, that a load can only be carried along an

arc if a vehicle travels that arc, and bound that load appropriately for each arc. Constraints (15)

state that the incoming load minus the outgoing load for each customer node must be equal to its

demand. These constraints also serve as subtour elimination constraints. Constraints (16) are used

to determine the worst-case total energy consumption wk that could occur for vehicle k out of all

possible scenarios in the uncertainty set Uk, which is assumed to have been calibrated to approxi-

mate the chance constraint (9). Constraints (17) ensure that the worst-case energy consumption of

each vehicle is at most the battery capacity Q. Finally, constraints (18) define the domain of the

xijk variables.

Note that once the problem is solved, even if the optimal values for the wk variables are much

smaller than Q, the information they provide can still be useful from both a depot scheduling

and a battery degradation perspective. Indeed, frequently charging a battery to a high level (and

keeping it at this level for a lenghty period) can shorten its expected lifespan (see, e.g., Lunz et al.

2012). Hence companies using EFVs should ideally try to charge the minimum required for their

operations, and do this as closely as possible to the vehicles’ departure times (Pelletier et al. 2017).

This is especially true considering that having to replace the battery of EFVs over the course of

their lifetime has been shown to significantly impact their business case (Davis and Figliozzi 2013,

Feng and Figliozzi 2013, Lee et al. 2013). The EVRP-ECU can thus provide valuable informa-

tion regarding the smallest “safe” amount of energy to recharge in each vehicle. Moreover, when

charging is only performed at the depot, full charges may not be possible nor optimal because of

time-dependent energy costs, demand charges, battery degradation, depot charging infrastructures

or multi-shift operational contexts (Pelletier et al. 2018). The information given by the solution

to the EVRP-ECU can thus also help plan the depot charging activities by knowing the smallest

departing battery level wk required for each vehicle.

3.5 Uncertainty sets

As mentioned in Section 3.3, the uncertainty sets Uk used in constraints (16) are assumed to be

designed so as to ensure a probability at most equal to β that the real energy consumption of vehicle

k be larger than wk, i.e., we want to approximate chance constraint (9) for each vehicle through

constraints (16). It is ultimately up to the decision maker to choose and calibrate the uncertainty

sets based on what is known about the random vectors Zk so as to reach the desired trade-off

between cost and risk. In what follows we present five uncertainty sets to illustrate how different

alternatives can be considered depending on the desired protection level and on the assumptions

made about the distribution of the uncertain parameters. For example, in order to have a zero

probability that the real energy consumption of vehicle k will be larger than wk, one could use the
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entire support of random vector Zk through the following box uncertainty set (Ben-Tal et al. 2009):

U1
k = {ζk ∈ R|A| | −1 ≤ ζijk ≤ 1 ∀(i, j) ∈ A}, (19)

which is equivalent to solving the problem with the worst-case energy parameter values (aij + âij)

and (bij + b̂ij) for each arc. However, one does not expect the worst-case value to occur on every

arc simultaneously, and cost savings may be achievable by being less conservative but still ensuring

that the real energy consumption of vehicle k is almost never larger than wk. Budgeted uncertainty

sets calibrated through parameter Γ could therefore be used (Ben-Tal et al. 2009):

U2
k = {ζk ∈ R|A| | −1 ≤ ζijk ≤ 1 ∀(i, j) ∈ A,

∑
(i,j)∈A

|ζijk| ≤ Γ}, (20)

thereby only allowing up to Γ arcs to deviate from their expected energy consumption values on

each route in order to render that route energy-infeasible. There also exist studies (e.g., Poss

2013) that show how allowing the size of the uncertainty set to depend on the number of non-zero

decisions in combinatorial problems can often yield less conservative solutions while providing the

same probabilistic guarantees. Hence one may consider route-dependent budgeted uncertainty sets

calibrated with parameters θ0 and θ:

U3
k = {ζk ∈ R|A| | −1 ≤ ζijk ≤ 1 ∀(i, j) ∈ A,

∑
(i,j)∈A

|ζijk| ≤ θ0 + θ
∑

(i,j)∈A

xijk} ∀k ∈ K, (21)

where the budget of uncertainty that can affect vehicle k now depends on the length of the route.

Hu et al. (2018) have proposed similar route-dependent uncertainty sets. Another option to prevent

all parameters from taking their worst-case value simultaneously may be to use the known support

of Zk intersected with a ball of radius γ centered at the origin (Ben-Tal et al. 2009):

U4
k = {ζk ∈ R|A| | −1 ≤ ζijk ≤ 1 ∀(i, j) ∈ A, ||ζk||2 ≤ γ}. (22)

If all that is known about Zk is that it is symmetrically distributed on the interval [−1, 1]

and that its components are independent, then any of the sets U2
k , U3

k or U4
k can be calibrated

to approximate (9) (see, e.g., Ben-Tal et al. 2009, Poss 2013). There also exist some uncertainty

sets that can be used to account for the correlation between the components of Zk, which may

be relevant for the EVRP-ECU considering that driver behaviour and external conditions like the

weather and road conditions should not differ too much along a given route. For example, ellipsoidal

uncertainty sets defined by the following can be useful if all that is known about Zk is that it is

distributed with a mean of zero and a covariance matrix
∑
∈ R|A|×|A|:

U5
k = {ζk ∈ R|A| |

√
ζTk

∑
−1ζk ≤ r}, (23)

where the parameter r determines the cardinality of the set and can hence be chosen according

to the desired level of protection and any additional assumptions on the distribution of Zk, e.g.,

normal or arbitrary (El Ghaoui et al. 2003). A few other uncertainty sets that can be used to deal

with the correlation among the components of Zk can be found in Bandi and Bertsimas (2012),
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Yuan et al. (2016), Jalilvand-Nejad et al. (2016) and Gounaris et al. (2013, 2016). Some ideas on

how to construct uncertainty sets in the presence of historical data are also discussed in Bertsimas

et al. (2018). In Section 6, we conduct numerical tests with each of the above uncertainty sets

except U2
k , since it can be viewed as a special case of U3

k with θ = 0.

4. Exact methods

Non-discrete uncertainty sets such as those presented in Section 3.5 amount to having an infinite

number of constraints (16) in the robust optimization model, thus rendering the model intractable

for commercial solvers, even for small instances. We have therefore implemented robust optimiza-

tion techniques in order to solve small instances of the problem to optimality. These include 1)

reformulating the model of Section 3.4 so as to obtain a tractable deterministic mixed integer linear

program in the case of polyhedral uncertainty sets, and 2) using a cutting-plane method. In what

follows we briefly present these methods. Their results will be used to evaluate the performance of

the metaheuristic presented in Section 5.

4.1 Reformulation

If the uncertainty set is polyhedral, then the model of Section 3.4 can be reformulated to yield a

tractable deterministic mixed integer linear program. We illustrate this with the budgeted uncer-

tainty sets U2
k and U3

k . First, because we assume that âij , b̂ij ≥ 0 ∀(i, j) ∈ A, it is never beneficial

for the adversary to set ζijk < 0 for an arc. Hence we can reformulate sets U2
k and U3

k by setting

0 ≤ ζijk ≤ 1 instead of −1 ≤ ζijk ≤ 1, and by dropping the absolute value in the sums.

In the case of the route-independent budgeted sets U2
k , for a given solution of the EVRP-ECU

(i.e., for fixed variables) we can check whether constraints (16) are satisfied for vehicle k by verifying

whether the optimal solution value of the following linear program is at most wk−
∑

(i,j)∈A

(
aij ·xijk+

bij · fijk
)
:

maximize
∑

(i,j)∈A

(
âij · xijk + b̂ij · fijk

)
· ζijk (24)

subject to∑
(i,j)∈A

ζijk ≤ Γ (25)

0 ≤ ζijk ≤ 1 (i, j) ∈ A. (26)

The dual of the above linear program can be written with variables λk and σijk as
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minimize Γ · λk +
∑

(i,j)∈A

σijk (27)

subject to

λk + σijk ≥ âij · xijk + b̂ij · fijk (i, j) ∈ A (28)

λk ≥ 0 (29)

σijk ≥ 0 (i, j) ∈ A. (30)

Hence we obtain a tractable deterministic mixed integer linear programming formulation of the

EVRP-ECU by replacing constraints (16) in the model of Section 3.4 with∑
(i,j)∈A

(
aij · xijk + bij · fijk + σijk

)
+ Γ · λk ≤ wk k ∈ K, (31)

and by adding constraints (28)–(30) for each vehicle k ∈ K, since duality theory ensures that

Γ · λk +
∑

(i,j)∈A
σijk ≥ max

ζk∈Uk

{ ∑
(i,j)∈A

(
âij · xijk + b̂ij · fijk

)
· ζijk

}
for vehicle k as long as constraints

(28)–(30) are satisfied. Note that λk and σijk are variables in the reformulation.

In the case of the route-dependent budgeted uncertainty sets U3
k , we would instead need to solve

the following to check if constraints (16) are satisfied for k in a given solution:

maximize
∑

(i,j)∈A

(
âij · xijk + b̂ij · fijk

)
· ζijk (32)

subject to∑
(i,j)∈A

ζijk ≤ θ0 + θ
∑

(i,j)∈A

xijk (33)

0 ≤ ζijk ≤ 1 (i, j) ∈ A. (34)

The dual of the above linear program can once again be written with variables λk and σijk:

minimize θ0 · λk +
∑

(i,j)∈A

(
θ · xijk · λk + σijk

)
subject to (28)–(30).

Constraints (16) are therefore equivalent to

∑
(i,j)∈A

(
(aij + θ · λk) · xijk + bij · fijk + σijk

)
+ θ0 · λk ≤ wk k ∈ K (35)

λk + σijk ≥ âij · xijk + b̂ij · fijk k ∈ K, (i, j) ∈ A (36)

λk ≥ 0 k ∈ K (37)

σijk ≥ 0 k ∈ K, (i, j) ∈ A. (38)
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Since the xijk variables are binary, as in Poss (2013) we linearize constraints (35) by introducing

real variables uijk to represent the product of variables xijk and λk. Constraints (35) can thus be

replaced with∑
(i,j)∈A

(
aij · xijk + θ · uijk + bij · fijk + σijk

)
+ θ0 · λk ≤ wk k ∈ K (39)

uijk ≥ λk −M(1− xijk) k ∈ K, (i, j) ∈ A (40)

uijk ≥ 0 k ∈ K, (i, j) ∈ A, (41)

where M is a large constant. We can therefore obtain a tractable deterministic mixed integer linear

programming formulation of the EVRP-ECU with route-dependent budgeted uncertainty sets as

well. The robust problem can also be reformulated through duality theory as a deterministic

problem in the presence of non-polyhedral uncertainty sets like those defined by U4
k and U5

k , but

in this case the reformulation gives rise to a second-order cone problem. We therefore present a

cutting plane method for these cases in the next section.

4.2 Cutting-plane method

An alternative to reformulating the robust optimization model is to initiate a branch-and-cut pro-

cedure on the nominal version of the problem (i.e., without uncertainty), and whenever an integer

feasible solution is found, to verify the worst-case energy consumption of each route and add cuts

accordingly (Bertsimas et al. 2016). To this end, we need to solve the following problem for each

route k in the current integer feasible solution of the search tree:

maximize
∑

(i,j)∈A

(
aij · xijk + bij · fijk +

(
âij · xijk + b̂ij · fijk

)
· ζijk

)
(42)

subject to

ζk ∈ Uk, (43)

where Uk is the considered uncertainty set. Let Hk be the value of the optimal solution of (42)–(43)

for the route of vehicle k, achieved with scenario ζk ∈ Uk. If 1) the uncertainty sets used are not

route-dependent, 2) Hk is larger than the value of variable wk in the current solution, and 3) the

uncertainty sets are the same for all vehicles, then we add the following cuts:∑
(i,j)∈A

(
(aij + âij · ζijk) · xijl + (bij + b̂ij · ζijk) · fijl

)
≤ wl l ∈ K, (44)

since the realization ζk is valid for any other route that could be assigned to any vehicle. Constraints

(44) force a sufficient worst-case energy consumption of Hk whenever a vehicle performs the route

that vehicle k was performing in the current solution, thereby simultaneously forbidding the route
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whenever Hk > Q, due to constraints (17). If the branch-and-cut procedure eventually finds an

optimal solution in which all routes are robust, only a subset of constraints (16) would have been

added. The solution is therefore also optimal for the entire problem.

However, if the uncertainty set is route-dependent, we cannot add constraints (44) since realiza-

tion ζk it is not necessarily valid for other route lengths. Alternatively, we can add cuts similar to

those proposed by Laporte and Louveaux (1993) for the integer L-shaped method. Letting Rk be

the set containing the arcs in the route of vehicle k and assuming once again that the uncertainty

sets are the same for each vehicle, the following cuts are added if Hk is larger than the value of

variable wk in the current solution, and the uncertainty sets are route-dependent:

Hk ·

 ∑
(i,j)∈Rk

xijl −
∑

(i,j)/∈Rk

xijl

−Hk · (|Rk| − 1) ≤ wl l ∈ K. (45)

If Hk ≤ Q, then constraints (45) will ensure that the worst-case energy consumption of the

vehicle performing route Rk be at least Hk. If Hk > Q, then constraints (45) will ensure that no

vehicle performs route Rk due to constraints (17). Note that although this is not optimal, some

feasible solutions encountered during the branch-and-cut procedure could have vehicles returning

to the depot carrying loads. Therefore, one should update the load carried along the route so as to

have no returning loads before solving (42)–(43) to obtain Hk and subsequently adding constraints

(45). If not, constraints (45) could forbid a route that would otherwise be feasible by making this

correction. Finally, we mention that the method discussed here for route-dependent uncertainty

sets is also valid for those sets that are not, and that if the uncertainty sets are the same for each

vehicle, then (42)–(43) only needs to be solved the first time a specific route is encountered in the

search tree.

5. Two-phase metaheuristic

In order to solve large instances of the EVRP-ECU, we propose a two-phase heuristic in which a

pool of candidate routes is generated in a first phase, and then combined via an SP formulation in

the second phase. Similar two-phase methods have been shown to be quite successful in both de-

terministic and stochastic routing problem settings (see, e.g., Mendoza and Villegas 2013, Montoya

et al. 2016, Mendoza et al. 2016, Montoya et al. 2017). The first phase uses the LNS framework first

proposed by Shaw (1998) to construct a pool of routes, thereby destroying and repairing large por-

tions of the solution at each iteration to move from one area of the search space to another. Rather

than forcing solutions to remain energy-feasible during the first phase of the procedure with respect

to their routes’ worst-case energy consumption, we only ensure energy feasibility with respect to

their routes’ expected energy consumption. However, after destroying and repairing the current

solution at each iteration of the LNS in the first phase of the method (and occasionally during
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and after an additional local search phase), we check whether the resulting solution contains any

new robust routes, i.e., routes with a worst-case energy consumption that is less than the battery

capacity. If so, we add them to the pool of robust routes. In the second phase, after a number of

iterations of the LNS, we solve a set partitioning problem over this pool to generate a complete

robust solution. This allows 1) to only have to evaluate the robustness of routes once moves have

been implemented, rather then when evaluating a potential move (which could significantly increase

the solution times), 2) to generate infeasible solutions during the search in terms of energy, which

can act as a diversification mechanism, and 3) to easily adapt the implementation of the algorithm

when solving the problem with new uncertainty sets.

In contrast to earlier LNS methods that used only one operator to remove customers and one

operator to insert them, we apply several removal and insertion operators, as in the adaptive LNS

(ALNS) introduced by Ropke and Pisinger (2006). ALNS is an extension of the LNS framework

in which several destroy and repair operators compete against each other to modify the current

solution. The probabilities of selecting the different operators are dynamically updated through an

adaptive mechanism, thereby allowing operators that perform well on a given instance to be used

more frequently. The LNS heuristic we have implemented in the first phase of our heuristic contains

all the ingredients of an ALNS procedure besides the adaptive layer. We initially implemented our

method within the ALNS framework, but we observed that the adaptive component did not improve

solution quality significantly. We therefore opted to keep the probability of selecting each operator

fixed throughout the search in order to reduce the number of parameters of the algorithm.

The main steps of our solution method are as follows. We first build an initial solution with a

simple constructive heuristic (Section 5.1). Then, at each iteration, random numbers are drawn to

determine which removal and insertion operators to apply. Most of our operators are inspired by

those used in Ropke and Pisinger (2006), Demir et al. (2012), and Goeke and Schneider (2015). The

selected removal operator is then applied to remove a random number of customers nr between nc

and nc, or to eliminate an entire route (Section 5.2). The removed customers are then placed in a

removal list until they are reinserted in the solution (Section 5.3). A local search (LS) phase is then

performed when the repaired solution seems promising (Section 5.4), and the resulting solution is

then accepted or rejected according to the simulated annealing mechanism (Section 5.5). Solutions

are checked for new robust routes before, after, and occasionally during the LS phase. It is therefore

important to efficiently compute the worst-case energy consumption of new routes (Section 5.6).

We also update the best found (if any) robust solution during the LNS phase when a solution

only contains robust routes. Finally, a robust LS is performed on the best found nominal solution

(which is not necessarily robust) throughout the procedure prior to the set partitioning phase, and

on the robust solution obtained after solving the set partitioning problem (Section 5.7). The best

candidate between the resulting solution and the best found robust solution over the course of the

LNS phase is then chosen as the final solution. An outline of the method is provided in Algorithm

1.
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Algorithm 1 Two-phase heuristic method
Input: parameters ω, δ, τ , r, and κ
Output: a robust solution XFinal

1: Generate an initial solution XInitial with the savings algorithm
2: Initiate temperature T according to XInitial and ω
3: Check robustness of routes in XInitial and add all robust routes to ΩR

4: if All routes in XInitial are robust then
5: XBestRobust ← XInitial

6: XCur ← XInitial, XBestNominal ← XInitial

7: repeat
8: Select a removal operator and an insertion operator and apply them on XCur to get XTemp

9: Check robustness of any new routes in XTemp and add all new robust routes to ΩR

10: if All routes in XTemp are robust and CR(Xtemp) < CR(XBestRobust) then
11: XBestRobust ← XTemp

12: if C(XTemp) ≤ δ · C(XBestNominal) then
13: if C(XTemp) ≤ τ · C(XBestNominal) then
14: Perform local search on XTemp to get XNew, add all new robust routes encountered during the search

to ΩR, and update XBestRobust during the search
15: else
16: Perform local search on XTemp to get XNew and add all new robust routes in XNew to ΩR

17: if All routes in XNew are robust and CR(XNew) < CR(XBestRobust) then
18: XBestRobust ← XNew

19: else
20: XNew ← XTemp

21: if C(XNew) < C(XBestNominal) then
22: XCur ← XNew

23: XBestNominal ← XNew

24: else
25: if C(XNew) < C(XCur) or the Random insertion was applied then
26: XCur ← XNew

27: else
28: Generate a random number p ∈ [0, 1]
29: if p ≤ exp[−(C(XNew)− C(XCur))/T ] then
30: XCur ← XNew

31: T ← r · T
32: until κ iterations have been performed
33: Perform robust local search on XBestNominal to get XLNS/RLS and add any new robust routes encountered during

the search to ΩR

34: if All routes in XLNS/RLS are robust and CR(XXLNS/RLS
) < CR(XBestRobust) then

35: XBestRobust ← XXLNS/RLS

36: Solve set partioning problem to find a robust solution XSP

37: Perform robust local search on XSP to get the robust solution XSP/RLS

38: if XBestRobust 6= ∅ and CR(XBestRobust) < CR(XSP/RLS) then
39: XFinal ← XBestRobust

40: else
41: XFinal ← XSP/RLS
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5.1 Initial solution construction

In order to construct an initial solution XInitial, we apply the Clarke and Wright savings algorithm

(1964). An initial solution is constructed by creating n back-and-forth routes, followed by merging,

at each iteration, a route ending at customer i with a route starting at customer j so as to maximize

the distance saving sij = di0 + d0j − dij . We only merge routes when feasibility can be maintained

with respect to capacity and expected energy consumption. The initial back-and-forth routes are

checked for robustness and added to the pool of robust routes accordingly.

5.2 Removal operators

We now briefly describe the operators that we use in the LNS phase of our method. At the start

of each iteration, one of the following removal operators is randomly chosen to remove a certain

number of customers from the current solution XCur.

Random removal randomly selects nr customers and removes them from the current solution.

Worst removal assigns a value to each customer indicating the difference between the solution value

with the customer and without it. These are then stored in an ordered set S and the customer with

the b|S| · ελWRcth largest value is removed from the solution (with the 0th referring to the highest

value). The parameter ε is randomly drawn in [0, 1) according to a continuous uniform distribution

and the parameter λWR is used to randomize the removal. The procedure is reiterated until nr

customers have been removed. Note that when evaluating the difference between the solution value

with a customer and without it, the energy costs are computed with the vehicles’ expected energy

consumption.

Worst energy removal is similar to Worst removal, but the cost assigned to a customer j is given by

(aij + bij · fijk) + (ajl + bjl · fjlk), where i and l are the nodes immediately preceding and following

j in its route in the current solution. As with Worst removal, a parameter λWE is introduced to

randomize the removal.

Worst distance removal is the same as Worst energy removal, but the cost assigned to a customer

j is given by dij + djl, where i and l are the nodes directly preceding and following j in its route

in the current solution. The parameter λWD is introduced to randomize the removal as with the

previous two removal operators.

Shaw removal is intended to remove customers that are similar, based on predetermined criteria.

First, a customer i is randomly selected and removed from the solution. The relatedness R(i, j)

between customer i and a customer j in our implementation is defined as

R(i, j) = µ1 ·
dij

max
(l,m)∈A

(dlm)
+ µ2 · sij + µ3 ·

|qi − qj |
max
l∈N0

(ql)− min
m∈N0

(qm)
+ µ4 ·

aij
max

(l,m)∈A
(alm)

,
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where sij = −1 if i and j are on the same route, and sij = 1 otherwise. The customers in the solution

are then stored in S and the customer with the b|S| ·ελShawcth smallest relatedness value is removed

(with the 0th referring to the smallest value). As with the previous three operators, ε is randomly

selected in [0, 1), and λShaw is a parameter used to introduce some randomness in the search process.

The procedure is then repeated by setting i as the last removed customer until nr customers have

been removed. The parameters µ1, µ2, µ3, and µ4 are used to attribute weights to

similarities regarding different (normalized) criteria. Our implementation defines the

relatedness R(i, j) between customers i and j based on the distance separating them

(weight µ1), on whether they are in the same route or not (weight µ2), on the difference

between their demands (weight µ3), and on the expected energy consumption required

for an empty vehicle to travel from i to j (weight µ4).

Node neighbourhood removal first selects a customer i randomly and removes it from the solution.

It then removes the nr − 1 nodes closest to i.

Random route removal randomly selects a route in the solution and removes all its customers.

Distance-based route removal removes the longest route from the current solution.

Energy-based route removal removes the route with the largest expected energy consumption from

the current solution.

5.3 Insertion operators

Once the removal phase is completed, one of the following insertion operators is randomly chosen

to insert the removed customers back into the partially destroyed solution. The insertion opera-

tors only ensure energy feasibility with respect to the vehicles’ expected energy consumption, and

evaluate energy costs with the vehicles’ expected energy consumption when comparing solution

values.

Greedy insertion determines the best position where each removed customer can be inserted in

the solution, and inserts the customer whose best insertion position yields the smallest increase in

the solution value. This process is then reiterated until all removed customers have been inserted.

A removed customer i can be inserted in any feasible position in an existing route, or a new route

containing only i can be created.

Regret insertion seeks to avoid delaying the insertion of customers that could deteriorate the

solution if they are not inserted with a higher priority. A Regret-k insertion in our implementation

will determine the k best insertion positions of each removed node. Letting cik refer to the cost of

the partial solution resulting from inserting i in its kth best position, Regret-k insertion will insert

the removed node i yielding the largest value of
k∑
j=2

(cij − ci1). The LNS phase of our method uses

Regret-2 insertion and Regret-3 insertion.
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Randomized greedy insertion is similar to Greedy insertion, but the insertion costs associated

with the best insertion position of each removed customer are stored in S, and the customer with

the b|S| · ελRGcth smallest value is inserted into its best position. As with several of the removal

operators, ε is randomly selected from [0, 1) and the parameter λRG is used to randomize the

heuristic. The procedure is repeated until all removed customers have been inserted.

Randomized regret-2 insertion is similar to Regret-2 insertion, but instead of always inserting the

removed customer i with the largest (ci2− ci1) value, the selection is randomized as in Randomized

Greedy insertion, using the parameter λRR to control the degree of randomization.

Energy-based insertion calculates the cost of inserting a removed customer i along a route, based

on the expected energy consumption of the route prior to and after inserting i in it. The operator

thus determines the best possible position where each removed node can be inserted in the partial

solution based on such energy-based insertion costs, and inserts the customer whose best insertion

position results in the smallest increase of the associated route’s expected energy consumption.

5.4 Local search

If the solution XTemp resulting from the destroy and repair phase has a nominal cost (i.e., with

energy costs computed with the expected energy consumption of vehicles) at most equal to δ times

the nominal cost of the best known nominal solution XBestNominal, where δ > 1, an LS phase

is performed following a first-improvement strategy with respect to nominal costs. We refer to

solutions in which energy feasibility and energy costs are evaluated with respect to the vehicles’

expected energy consumption as nominal solutions. The LS uses a composite neighbourhood of

2-Opt (intra-route moves), 2-Opt* (inter-route moves), Relocate (intra- and inter-route moves), and

Exchange (intra- and inter-route moves). Energy feasibility is only ensured with respect to the

vehicles’ expected energy consumption during the LS.

2-Opt removes two arcs from a route and inserts two other arcs to reconnect the remaining

paths, thereby inverting the order in which the nodes between the two removed arcs are visited.

We only consider 2-Opt moves involving at most three nodes between the two removed arcs. 2-Opt*

selects two routes and removes an arc from each of them. It then merges the first sequence of each

route with the second sequence of the other (Potvin and Rousseau 1995). Exchange swaps the

positions of two nodes, and Relocate shifts one node from its current position to another position.

The neighbourhoods are searched in a way that is similar to that of the LS procedure of

Hiermann et al. (2016). The four neighbourhoods are stored in a list that is randomly shuffled

prior to each LS phase to determine in which order they will be searched. The first neighbourhood

in the list is then searched until the solution cannot be further improved. Once this occurs, the

following neighbourhood is explored, and so on. The search restarts with the first neighbourhood in

the list once the end of the list is reached. When none of the neighbourhoods can further improve

20



the current solution, the LS phase terminates. The ordering of the potential moves when searching

a neighbourhood is also randomly shuffled each time a move is implemented.

5.5 Acceptance criterion

A simulated annealing mechanism is used to determine whether the solution generated at an it-

eration should be accepted or not. The term C(X) refers to the nominal cost of a solution X,

and XCur and XNew refer to the current and new solution at a given iteration, respectively. If

C(XNew) < C(XCur), then XNew is always accepted. If C(XNew) > C(XCur), then the solution

XNew is accepted with probability exp[−(C(XNew) − C(XCur))/T ], where T is the current tem-

perature. We initialize the temperature to a value of Tinit and multiply it at each iteration by a

cooling rate r ∈ (0, 1). With XInitial referring to the initial solution of the algorithm, TInit is set

according to parameter ω, itself determined so that a solution X of value C(X) = ω ·C(XInitial) is

accepted with probability 0.5. The cooling rate r is set so that the temperature is below 0.001 for

the last 20% of the iterations. In Algorithm 1, CR(X) refers to the robust cost (i.e., with energy

costs computed with the worst-case energy consumption of vehicles) of solution X.

Finally, to further diversify the search, when the solution XNew is not a new solution for D

consecutive iterations of the LNS phase, the nodes that are removed during the following iteration

are subsequently inserted back into the solution with a Random insertion operator, and the resulting

solution is always accepted. The Random insertion operator first shuffles the list containing the

removed nodes to determine the order in which they will be inserted back into the solution. For

each node in the list, a random insertion position is computed iteratively until a feasible insertion

position has been found. The less costly option between inserting the node in that position or

creating a new route is then implemented.

5.6 Checking robustness

In order to generate a sufficient number of energy-robust routes for the SP phase, we always check

whether any new robust routes are in the solution XTemp obtained immediately after applying a

removal operator and an insertion operator on XCur. However, in order to avoid making the set

partitioning problem too large and slowing down the LS, we do not always check for new robust

routes during the LS when it is performed. When the LS is performed starting from solution

XTemp, if the nominal cost of XTemp is less than a given threshold, we check the robustness of any

new routes encountered during the LS phase (i.e., whenever we move from the current solution to

a neighbour solution during the LS, any new routes in the chosen neighbour solution are checked

for robustness and added to the pool of robust routes accordingly). The threshold is set as τ

times the nominal cost of the best known nominal solution XBestNominal, with τ being a parameter

of the algorithm. If the LS is performed starting from solution XTemp but the nominal cost of
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XTemp is more than this threshold, then new routes encountered during the LS are not checked

for robustness. However, we check the robustness of any new routes in the final solution returned

by the LS. Moreover, whenever any solution X is checked for new robust routes during the LNS

phase, we also verify whether all its routes happen to be robust. If this is the case, we update the

best known robust solution XBestRobust found during the first phase of the heuristic according to

whether CR(X) < CR(XBestRobust) or not. Note that XBestRobust could be empty at the end of the

first phase. If it is not, after the SP phase we choose the best alternative between XBestRobust and

the solution to the SP problem (see next section) as the final solution.

Efficiently computing the worst-case energy consumption of a route in the current solution is

critical to the two-phase heuristic. Checking whether the worst-case energy consumption of vehicle

k is feasible (i.e., if wk ≤ Q) is equivalent to checking whether the optimal value of (42)–(43) is

at most Q. With the budgeted uncertainty sets U2
k and U3

k , this can be done efficiently by sorting

the values of
(
âij + b̂ij · fijk

)
for the arcs in the route of vehicle k and setting the ζijk variables in

problem (42)–(43) accordingly. For example, with route-dependent uncertainty sets U3
k , because

âij , b̂ij ≥ 0 ∀(i, j) ∈ A, the optimal solution of problem (42)–(43) is

� ζijk = 1 for the bθ0 + θ
∑

(i,j)∈A
xijkc arcs with the largest

(
âij + b̂ij · fijk

)
values in the route of

vehicle k,

� ζijk = θ0 + θ
∑

(i,j)∈A
xijk − bθ0 + θ

∑
(i,j)∈A

xijkc for the arc with the bθ0 + θ
∑

(i,j)∈A
xijkc + 1th

largest
(
âij + b̂ij · fijk

)
value in the route of vehicle k,

� ζijk = 0 otherwise.

With the ellipsoidal uncertainty sets U5
k , solving (42)–(43) can also be done efficiently since

the Karush-Kuhn-Tucker optimality conditions yield the following closed formula for its optimal

solution (Ilyina 2017) :

ζijk =

r ·
∑

(l,m)∈A
σ(i,j),(l,m) ·

(
âlm · xlmk + b̂lm · flmk

)
√√√√ ∑

(p,q)∈A

(
âpq · xpqk + b̂pq · fpqk

)
·

( ∑
(l,m)∈A

σ(p,q),(l,m) ·
(
âlm · xlmk + b̂lm · flmk

)) ∀(i, j) ∈ A,

where σ(i,j),(l,m) is the covariance between arcs (i, j) and (l,m), or the variance in the case that

(i, j) = (l,m). The optimal value of (42)–(43) is then

∑
(i,j)∈A

(aij · xijk + bij · fijk) + r ·

√√√√√ ∑
(i,j)∈A

(
âij · xijk + b̂ij · fijk

)
·

 ∑
(l,m)∈A

σ(i,j),(l,m) ·
(
âlm · xlmk + b̂lm · flmk

).
Note that the correlation between components of Zk that are associated with arcs in the route of

vehicle k and components of Zk that are associated with arcs that are not in the route of vehicle k

22



does not influence the above optimal value of (42)–(43).

With the uncertainty sets U4
k formed by the intersection of the box uncertainty set with the ball

of radius γ centered at the origin, problem (42)–(43) becomes a quadratically constrained program.

We therefore use a commercial solver within the LNS phase itself to check the robustness of new

routes when solving the problem with sets U4
k . Since this renders the evaluation of the worst-case

energy consumption of a route more difficult, the benefit of not forcing robustness throughout the

LNS phase becomes self-evident.

Finally, we mention that we store the information regarding the robustness of new routes (i.e.,

their worst-case energy consumption) for future use so that the above computations only need to be

performed the first time a route is encountered. The robustness of previously encountered routes

can thus be checked quickly when updating XBestRobust.

5.7 Set partitioning phase

Once the LNS phase has run for κ iterations, an SP problem is solved over the pool of routes ΩR

to find a robust solution XSP . Recall that all routes in ΩR are robust, i.e., their worst-case energy

consumption is less than the battery capacity. Before solving the SP problem, a robust local search

(RLS) is performed on the best known nominal solution XBestNominal to get solution XLNS/RLS .

The RLS is the same as the LS described in Section 5.4, except that only those moves leading to

robust routes are performed, and the neighbourhoods are always searched in the same order. The

RLS uses the same neighbourhoods as the LS (i.e., 2-Opt, 2-Opt*, Relocate, and Exchange), but

evaluates energy feasibility and costs with the worst-case energy consumption of routes rather than

with the expected one. All new routes encountered during the RLS are then added to ΩR, and

XBestRobust is updated according to XLNS/RLS .

Let binary variable yr take value 1 if and only if energy-robust route r ∈ ΩR is chosen. Let cr

be the total robust cost of route r (i.e., with energy costs computed with the route’s worst-case

energy consumption), and pir be a binary parameter equal to 1 if and only if customer i ∈ N0 is in

route r. The SP problem is to

minimize
∑
r∈Ωr

cr · yr (46)

subject to∑
r∈ΩR

pir · yr = 1 i ∈ N0 (47)

∑
r∈ΩR

yr ≤ |K| (48)
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yr ∈ {0, 1} r ∈ ΩR. (49)

Since the maximum fleet size is ensured via constraint (48) in the SP formulation, we allow solu-

tions to contain more routes than the fleet size during the LNS phase. However, we do not consider

such solutions as potential incumbents to replace XBestRobust, i.e., we assume that CR(X) = ∞ if

the number of routes in solution X is larger than |K|. Finally, the RLS is performed once again on

the best found solution XSP to the SP problem. The less costly alternative between the resulting

solution XSP/RLS and the best found robust solution XBestRobust over the course of the LNS phase

is then chosen as the final solution.

Preliminary experiments have indicated that solving the SP problem in two phases can accelerate

its resolution. Therefore, we first minimize the number of vehicles by replacing the objective (46)

with
∑
r∈Ωr

yr. Letting m refer to the best found number of vehicles, we then solve (46)–(49) but

replace the maximum fleet size |K| with min{m, |K|}.

6. Computational experiments

We have performed extensive computational experiments in order to assess the quality of our

heuristic, to compare nominal solutions with robust solutions, to illustrate the trade-off between cost

and risk among different robust solutions, and to investigate the influence of different parameters

in the energy consumption model and in the uncertainty sets on robust solutions. To this end, we

have generated test instances and solved them with the algorithms presented in the previous two

sections. We have also tested our heuristic on existing benchmark instances of related problems.

All algorithms were implemented in C++ and all experiments were conducted on a cluster of 27

machines, each having two Intel(R) Xeon(R) X5675 3.07 GHz processors with 96 GB of RAM

running on Linux. Each machine has 12 cores, and each instance was run using a single thread.

All test instances using the reformulation and the cutting plane method described in Sections 4.1

and 4.2 were solved using CPLEX 12.8 with a time limit of three hours. The SP problem within

the two-phase heuristic was also solved using CPLEX 12.8. We set a time limit of TSP1 seconds for

the vehicle minimization phase of the SP problem, and of TSP2 for the cost minimization phase.

The remainder of this section is organized as follows. We first provide a description of the

EVRP-ECU test instances and report the values used in the experiments for the parameters of

our two-phase heuristic in Section 6.1. In Sections 6.2 and 6.3 we evaluate the performance of

the heuristic on small and large EVRP-ECU instances, respectively. The quality of the two-phase

method is further assessed in Section 6.4 by testing it on the related capacitated vehicle routing

problem (CVRP) and robust capacitated vehicle routing problem (RCVRP). In Section 6.5, we

illustrate how the robust optimization methodology can be used to achieve the right balance between
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cost and risk. We then investigate the impact of correlation between arcs in a given route with

respect to energy consumption uncertainties in Section 6.6. Finally, in Section 6.7 we analyze the

impact of specific uncertain parameters in the energy consumption model described in Section 3.2

on robust solutions.

6.1 Test instances and parameter tuning

We have generated test instances by using the customer configurations from the EVRP with non-

linear charging function instances presented in Montoya et al. (2017). These instances were designed

to represent a geographic space of 120×120 kilometres, which is a reasonable area to cover without

en route recharging, considering the average range of modern EFVs is approximately 125 kilometres

(Tretvik et al. 2017). There are five instances for each of the following number n of customers: 10,

20, 40, 80, 160, and 320. The node locations are determined according to a continuous uniform

distribution, a random clustered distribution, or a mixture of both. The maximum fleet size is set

to 1 + n/5. Customer demands are randomly generated between 50 and 450 kg.

The fleet vehicles are assumed to be medium-duty electric trucks equipped with 100 kWh

batteries. We have used some vehicle and expected values for the energy consumption model

parameters similar to those used by Goeke and Schneider (2015) and Demir et al. (2012). However,

these studies do not consider auxiliary power nor dispatching costs. Asamer et al. (2016) found

that an auxiliary power of approximately 450W is most frequently consumed by a passenger electric

vehicle that is roughly seven times lighter than the electric trucks we consider in terms of gross

vehicle weight. To err on the side of caution, we used half of this ratio, i.e., we assume an expected

auxiliary power of P = 3.5 · 450 = 1575 W when computing the expected energy consumption

parameter values aij and bij . The energy and maintenance costs are based on those used by Davis

and Figliozzi (2013). To determine the fixed dispatching cost cF , we assume the same hourly salary

of the drivers as in Goeke and Schneider (2015) and a nine-hour shift; cF is thus set to $118. The

values of the cost, vehicle, and energy consumption model-related parameters are reported in Table

1.

Since we do not have a detailed road graph associated with the arcs in the VRP graphs of

our instances, we estimate the arcs’ expected energy consumption parameter values aij and bij by

assuming that all arcs are traveled at an expected constant speed of 45 km/h, and that the road

grade θij is zero along all arcs. We initially set the maximum deviations âij and b̂ij to 20% of

the expected values aij and bij . In Section 6.7, however, we investigate the impact of using the

worst-case values from Asamer et al. (2016) for certain parameters individually.

Regarding the uncertainty sets, we have conducted experiments with several of those presented

in Section 3.5, while assuming they are the same for all vehicles. The route-dependent budgeted

sets U3
k and the uncertainty sets U4

k formed by the intersection of the box uncertainty set with the
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Table 1: Vehicle, cost and expected energy consumption model parameter values

Parameter Value used

Battery capacity Q 100 kWh
Curb mass w 6,350 kg
Load capacity L 3,650 kg
Frontal area A 3.912 m2

Expected air drag coefficient Cd 0.7
Expected rolling friction coefficient Cr 0.01
Expected auxiliary power demand P 1,575 W
Gravitational constant g 9.81 m/s2

Expected air density ρ 1.2041 kg/m3

Expected drivetrain efficiency φ 1.3175
Maintenance costs cM $0.00016/m
Energy cost cE $0.11/kWh
Fixed cost cF $118

ball of radius γ centered at the origin are used to represent the case of independent components in

the random vectors Zk, with each Zijk symmetrically distributed within the interval [−1, 1]. The

ellipsoidal uncertainty sets U5
k are used to represent normally distributed random vectors Zk, each

of mean zero and with covariance matrix
∑

. Since the support of Zk is assumed to be [−1, 1], we

set standard deviations to 0.333 for each Zijk, and assume a correlation of 0.9 between the arcs.

The values used for θ0, θ, γ and r in U3
k , U4

k and U5
k are initially set so that there is a probability

of at most β = 0.05 that the real energy consumption of vehicle k be larger than wk. These values

are given in Table 2. We refer the reader to Ben-Tal et al. (2009), Poss (2013) and Ilyina (2017)

for more details concerning the calibration methodology, which is too extensive to discuss here.

Table 2: Uncertainty set parameter values

Uncertainty set parameter Value used

θ0 4.22
θ 0.22
γ 2.45
r 1.65

Finally, we conducted some preliminary experiments on a small number of instances to fine-

tune the parameters of the LNS-based algorithm. More specifically, we used one instance

for each possible number of customers n with uncertainty sets U3
k , and we tested a

number of predetermined combinations of parameter values using our best judgment.

We then chose the combination that performed best on the subset of six instances.

The values corresponding to this combination are reported in Table 3 and were used

in all experiments of the following sections.
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Table 3: Two-phase heuristic parameter values

Parameter Value used

Bounds (nc, nc) on number of customers to remove (0.1 · n, 0.4 · n)

Parameters used for randomization (λWR, λWE , λWD, λShaw, λRG, λRR) (3, 6, 3, 6, 1.5, 1.5)

Shaw parameters (µ1, µ2, µ3, µ4) (0.4, 0.3, 0.15, 0.1)

Threshold δ to perform LS 1.04 if n = 320
1.09 if n = 160
1.18 if n = 80
∞ otherwise

Threshold τ to check for new robust routes during LS 0.95 if n = 320
1.05 if n = 160
∞ otherwise

Factor ω used to set initial temperature 1.02

Number of LNS iterations κ before SP phase 12,500

Time limit TSP1 for vehicle minimization phase of the SP problem 60 seconds

Time limit TSP2 for cost minimization phase of the SP problem 1,200 seconds if n = 320
900 seconds if n = 160
600 seconds if n = 80
300 seconds otherwise

Maximum number D of LNS iterations 10 if n = 320
without encountering a new solution 20 if n = 160
before using the Random insertion operator 90 if n = 80

200 if n = 40
1,000 if n = 20
4,000 if n = 10
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6.2 Performance of the two-phase method on small EVRP-ECU instances

In order to get an idea of the performance of our solution method, we have used the reformulation

and cutting plane methods described in Sections 4.1 and 4.2 on small instances of the EVRP-

ECU with up to 20 customers. The results are reported in Tables 4, 5 and 6 for β = 0.05 and the

uncertainty sets U3
k , U4

k and U5
k , respectively. Results are given for both the nominal and the robust

versions of the problem for each instance. Recall that in the nominal version, it is assumed that

the energy consumption parameters never deviate from their expected values. We still conduct the

SP phase (and the subsequent LS) in this case since it can only improve the final solution XFinal

returned by the procedure. However, the parameter τ is set to zero for all runs on the nominal

version of the problem.

Since the route-dependent uncertainty sets are polyhedral, we apply both the reformulation

approach and the cutting plane method (with cuts (45)) for the robust version of the problem

when it is solved with CPLEX and those sets. Only the cutting plane method (with cuts (44)) is

applied when solving the robust version with CPLEX and the other uncertainty sets. Whenever

the robust version of the problem is solved with CPLEX, we report the best found solution value,

the solution time, and the method that achieved it (i.e., “R” for the reformulation or “C” for the

cutting plane method; ties are broken based on solution times). When the nominal version is solved

with CPLEX, we only report the best found solution value and the solution time. In this case, we

simply use CPLEX to solve the mixed integer linear program (MILP) resulting from having empty

uncertainty sets in the model of Section 3.4. Symmetry breaking inequalities are also added to the

formulation for both the robust and nominal cases. Specifically, these inequalities force vehicles

with a smaller index k to be used before those with a larger one, and to leave the depot with a

larger load. For the two-phase heuristic method, in both the nominal and robust cases, we report

the cost of the best found solution over 10 runs, the number of vehicles m in the best found solution,

as well as the average cost and average solution time in seconds over the 10 runs.

The results show that the two-phase method clearly outperforms the reformulation and the

cutting plane method on each instance when the robust version of the problem is solved. When

CPLEX finds an optimal solution within the three-hour time limit, our heuristic consistently finds

it in much less time. When CPLEX cannot guarantee the optimality of its best found solution, our

heuristic always quickly finds a solution at least as good as the one reported by CPLEX, and usually

better. The same holds for the results on the nominal version of the problem when comparing the

heuristic to using CPLEX on the MILP representing the nominal case.

6.3 Performance of the two-phase method on large EVRP-ECU instances

For those instances with more than 20 customers, none of the exact methods is able to find a

feasible solution within the time limit for both the robust and the nominal cases. Therefore, we
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Table 4: Results for the small instances with uncertainty sets U3
k and β = 0.05

Nominal Robust
CPLEX LNS+SP CPLEX LNS+SP

Instance Best t (s) Best m Avg. t (s) Best Method t (s) Best m Avg. t (s)

1-10C 294.62 2445.86 294.62 2 294.62 2.02 321.23 R 2386.77 321.23 2 321.23 2.58
2-10C 316.45 2188.09 316.45 2 316.45 1.74 319.69 C 2996.37 319.69 2 319.69 2.27
3-10C 292.62 1584.54 292.62 2 292.62 3.99 321.95 R 1737.46 321.95 2 321.95 5.32
4-10C 324.55 248.64 324.55 2 324.55 2.75 328.08 C 374.06 328.08 2 328.08 3.65
5-10C 326.88 398.02 326.88 2 326.88 2.41 454.70 R 1634.42 454.70 3 454.70 3.23

1-20C 471.45 10800 470.64 3 470.64 8.14 – C+R 10800 810.56 5 810.56 9.34
2-20C 326.09 6652.50 326.09 2 326.09 8.49 464.55 C 10800 459.95 3 460.74 9.57
3-20C 334.82 10800 334.79 2 334.79 9.68 610.04 R 10800 486.79 3 486.81 11.05
4-20C 324.75 548.67 324.75 2 324.75 10.38 450.64 R 10800 450.64 3 450.64 11.81
5-20C 463.41 10800 462.92 3 462.92 10.56 468.37 C 10800 468.37 3 468.37 12.65

Table 5: Results for the small instances with uncertainty sets U4
k and β = 0.05

Nominal Robust
CPLEX LNS+SP CPLEX LNS+SP

Instance Best t (s) Best m Avg. t (s) Best Method t (s) Best m Avg. t (s)

1-10C 294.62 2445.86 294.62 2 294.62 2.02 321.24 C 3354.75 321.24 2 321.24 4.28
2-10C 316.45 2188.09 316.45 2 316.45 1.74 319.75 C 2035.69 319.75 2 319.75 3.32
3-10C 292.62 1584.54 292.62 2 292.62 3.99 321.96 C 5108.32 321.96 2 321.96 15.47
4-10C 324.55 248.64 324.55 2 324.55 2.75 328.10 C 204.48 328.10 2 328.10 6.96
5-10C 326.88 398.02 326.88 2 326.88 2.41 454.72 C 2920.70 454.72 3 454.72 4.93

1-20C 471.45 10800 470.64 3 470.64 8.14 – C 10800 810.58 5 810.58 16.65
2-20C 326.09 6652.50 326.09 2 326.09 8.49 464.64 C 10800 459.93 3 462.72 16.61
3-20C 334.82 10800 334.79 2 334.79 9.68 609.45 C 10800 486.88 3 486.92 18.49
4-20C 324.75 548.67 324.75 2 324.75 10.38 451.14 C 10800 450.65 3 450.65 17.77
5-20C 463.41 10800 462.92 3 462.92 10.56 472.22 C 10800 468.45 3 468.45 22.02

Table 6: Results for the small instances with uncertainty sets U5
k and β = 0.05

Nominal Robust
CPLEX LNS+SP CPLEX LNS+SP

Instance Best t (s) Best m Avg. t (s) Best Method t (s) Best m Avg. t (s)

1-10C 294.62 2445.86 294.62 2 294.62 2.02 295.93 C 640.76 295.93 2 295.93 2.53
2-10C 316.45 2188.09 316.45 2 316.45 1.74 318.19 C 1379.18 318.19 2 318.19 2.30
3-10C 292.62 1584.54 292.62 2 292.62 3.99 308.45 C 1210.09 308.45 2 308.45 5.36
4-10C 324.55 248.64 324.55 2 324.55 2.75 326.47 C 605.05 326.47 2 326.47 3.62
5-10C 326.88 398.02 326.88 2 326.88 2.41 333.65 C 207.45 333.65 2 333.65 3.16

1-20C 471.45 10800 470.64 3 470.64 8.14 643.58 C 10800 643.14 4 643.14 9.66
2-20C 326.09 6652.50 326.09 2 326.09 8.49 455.59 C 10800 328.13 2 328.13 9.62
3-20C 334.82 10800 334.79 2 334.79 9.68 481.60 C 10800 480.96 3 480.96 10.92
4-20C 324.75 548.67 324.75 2 324.75 10.38 449.90 C 10800 330.65 2 330.65 11.60
5-20C 463.41 10800 462.92 3 462.92 10.56 466.05 C 10800 465.28 3 465.28 12.51
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only report the performance of the metaheuristic for these instances. The results are presented in

Table 7 for the nominal version of the problem and for the robust version with the three types of

uncertainty sets used. We once again report the cost of the best found solution over 10 runs, the

number of vehicles in the best found solution, as well as the average cost and time over the 10 runs

for each instance and variation. When no value is reported, this means that the algorithm was

unable to find a feasible robust solution (the SP problem is infeasible and no robust solution was

found during the LNS phase). It is conceivable that such instances are infeasible, i.e., there is a

customer i for which there exists no route k visiting i so that wk ≤ Q, or routes require to be very

short in order to be energy-robust, thereby requiring too many vehicles.

Despite the fact that we do not have benchmark solutions for these larger EVRP-ECU instances

to evaluate the performance of the metaheuristic, the algorithm seems relatively stable when com-

paring the average cost over ten runs with the best run for most instances. The solution times

could be considered high for some instances with 80 customers or more, but this is partly due to

the fact that the set partitioning problem is sometimes not solved to optimality and therefore uses

the entire time allotted to it. We mention, however, that when this occurs the optimality gap of

the best found solution for the SP problem is usually relatively small (except for the 320-customer

instances), and the solution is also subsequently improved through the final robust local search

phase. The results with the uncertainty sets U4
k formed by the intersection of the box uncertainty

set with the ball of radius γ centered at the origin show the importance of using sets allowing to

efficiently check the robustness of routes. Recall from Section 5.6 that with uncertainty sets U4
k , we

solve a quadratically constrained program (with CPLEX) to check whether a new route is robust.

This results in much larger solution times for the 320-customer instances.

It is also interesting to observe the difference between the best found solutions in nominal and

robust versions of the problem. Indeed, for both the small instances results in Tables 4, 5 and 6,

and the large instances results in Table 7, there are often significant differences between the values

of the best found nominal and the best found robust solutions. Taking into account the energy

consumption uncertainty sometimes results in using the same number of vehicles but routing them

differently in order to be robust, or in using more vehicles than in the nominal case. The uncertainty

sets U3
k and U4

k make the same assumptions regarding the random vectors Zk and hence return

similar solutions. The sets U5
k , on the other hand, assume that we have much more information

regarding the distribution of Zk, and the robust solutions become less conservative than with the

other two sets. There are even instances that appear to be infeasible with the other two uncertainty

sets but not with sets U5
k .

We further demonstrate the difference between nominal and robust solutions through Table 8,

in which we report two measures pertaining to the best found nominal solutions. First, for each

instance we report the number of routes in the best found nominal solution (out of the total in

the solution) that violate constraints (17) under each uncertainty set. This indicates how often
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Table 7: Results for the large instances with sets U3
k , U4

k and U5
k , and with β = 0.05

Nominal Uncertainty sets U3
k Uncertainty sets U4

k Uncertainty sets U5
k

Instance Best m Avg. t (s) Best m Avg. t (s) Best m Avg. t (s) Best m Avg. t (s)

1-40C 632.40 4 632.40 34.65 646.45 4 646.45 39.86 646.64 4 646.64 55.69 636.25 4 636.25 39.50
2-40C 999.64 6 999.64 34.56 – – – – – – – – – – – –
3-40C 632.39 4 632.39 36.13 789.92 5 789.92 41.39 789.95 5 789.95 63.40 636.42 4 636.42 41.10
4-40C 473.03 3 473.03 40.75 601.91 4 601.91 45.91 601.92 4 601.92 71.35 481.63 3 481.63 48.24
5-40C 639.31 4 639.31 46.73 801.60 5 801.61 55.57 801.81 5 801.81 97.38 787.37 5 787.66 69.04

1-80C 931.18 6 931.18 219.11 941.35 6 941.35 285.57 941.28 6 941.28 399.75 938.90 6 938.90 301.20
2-80C 950.52 6 950.68 203.23 1109.76 7 1109.76 248.97 1109.80 7 1109.80 356.81 970.96 6 1052.91 261.02
3-80C 903.02 6 903.02 251.74 922.98 6 925.07 754.40 922.43 6 923.70 970.16 911.70 6 911.76 454.58
4-80C 896.95 6 896.95 233.43 904.13 6 904.13 351.53 904.01 6 904.01 587.69 901.32 6 901.32 293.16
5-80C 943.82 6 943.82 224.74 1111.80 7 1113.62 232.13 1111.71 7 1113.25 377.38 971.58 6 1008.63 403.03

1-160C 1862.32 12 1863.63 1814.32 – – – – – – – – 2068.06 13 2165.07 1933.53
2-160C 1777.43 12 1778.91 2224.54 1794.86 12 1795.35 2360.19 1794.59 12 1795.07 3349.30 1786.01 12 1788.18 2264.71
3-160C 1670.80 11 1672.70 1571.13 1683.89 11 1686.06 1609.33 1683.70 11 1686.30 2504.15 1680.14 11 1683.09 1776.55
4-160C 1684.96 11 1687.88 1470.01 1872.68 12 1929.74 1431.21 1869.79 12 1890.05 2490.75 1711.48 11 1714.93 1293.94
5-160C 1729.75 11 1731.91 1267.17 – – – – – – – – 1938.09 12 2064.32 1099.00

1-320C 3780.68 24 3788.77 3034.93 – – – – – – – – – – – –
2-320C 3217.63 22 3221.16 5435.32 3238.64 22 3244.47 6745.20 3241.45 22 3245.28 15972.70 3229.04 22 3235.80 6093.11
3-320C 3379.40 22 3393.95 2078.88 – – – – – – – – 3769.91 24 3913.29 2485.39
4-320C 3341.18 22 3384.28 6554.97 3625.48 24 3684.60 7231.61 3626.51 24 3679.36 20420.30 3458.93 23 3489.00 7813.37
5-320C 3294.02 22 3297.16 6837.66 3366.80 22 3481.77 7478.53 3363.10 22 3460.38 18871.70 3334.11 22 3354.32 7427.62

the nominal solution fails with each of the uncertainty sets. Second, for each instance we report

the cost increase or decrease (in %) of the best found robust solution under each uncertainty set

with respect to the best found nominal solution, when the energy costs in the nominal solution are

computed with a worst-case energy consumption under the uncertainty set in question. When no

value is reported for this second measure, no feasible robust solution was found for that instance

and uncertainty set. As the entries show, the majority of best found nominal solutions contain one

or several routes that would be infeasible in the robust version of the problem. The degree of the

cost increase in the best found robust solution depends on whether more vehicles are required to

ensure energy feasibility compared to the number of vehicles in the best found nominal solution.

When this is the case, the robust solution is of course significantly more costly than the nominal

one. On the other hand, when no additonal vehicles are required to ensure energy robustness (i.e.,

this can be done by rearranging the same number of routes), the cost difference between the best

found robust and nominal solutions can be quite small.

6.4 Performance of the two-phase method on CVRP and RCVRP instances

In order to further validate the performance of the two-phase solution method, we have conducted

a few experiments on available benchmark instances for the related CVRP and the RCVRP. The

EVRP-ECU can indeed be reduced to a CVRP when the battery capacity is infinite and there

are no fixed dispatching costs nor energy costs. We have therefore tested our heuristic on the

well-known 14 instances (C1, ..., C14) of Christofides et al. (1979), the 20 instances (G1, ..., G20)

of Golden et al. (1998), the instances of the sets A, B, and P of Augerat (1995), as well as the

instances of the sets E, F, and M proposed by Christofides and Eilon (1969), Fisher (1994) and
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Table 8: Feasibility of best found nominal solutions and the price of robustness

Uncertainty sets U3
k Uncertainty sets U4

k Uncertainty sets U5
k

Instance Number of Cost diff. of Number of Cost diff. of Number of Cost diff. of
inf. routes rob. solution (%) inf. routes rob. solution (%) inf. routes rob. solution (%)

1-10C 1/2 8.15 1/2 8.15 0/2 0.00
2-10C 0/2 0.00 0/2 0.00 0/2 0.00
3-10C 1/2 9.16 1/2 9.16 1/2 4.96
4-10C 0/2 0.00 0/2 0.00 0/2 0.00
5-10C 1/2 37.55 1/2 37.56 1/2 1.45

1-20C 2/3 70.52 2/3 70.52 2/3 35.90
2-20C 2/2 39.61 2/2 39.61 0/2 0.00
3-20C 2/2 43.82 2/2 43.85 2/2 42.72
4-20C 1/2 37.34 1/2 37.36 1/2 1.20
5-20C 1/3 0.27 1/3 0.28 0/3 0.00

1-40C 2/4 1.31 2/4 1.32 2/4 0.03
2-40C 5/6 – 4/6 – 4/6 –
3-40C 3/4 23.65 3/4 23.66 1/4 0.06
4-40C 1/3 25.97 1/3 25.97 1/3 1.22
5-40C 2/4 24.16 2/4 24.20 2/4 22.43

1-80C 1/6 0.29 1/6 0.29 1/6 0.28
2-80C 3/6 15.79 3/6 15.80 2/6 1.55
3-80C 2/6 1.41 2/6 1.36 2/6 0.46
4-80C 0/6 0.00 0/6 0.00 0/6 0.00
5-80C 2/6 16.68 2/6 16.70 1/6 2.35

1-160C 5/12 – 5/12 – 4/12 10.43
2-160C 1/12 0.18 1/12 0.18 0/12 0.01
3-160C 1/11 0.03 1/11 0.03 1/11 0.04
4-160C 4/11 10.23 4/11 10.08 4/11 1.03
5-160C 5/11 – 5/11 – 4/11 11.40

1-320C 12/24 – 12/24 – 12/24 –
2-320C 1/22 −0.07 1/22 0.03 0/22 −0.10
3-320C 8/22 – 8/22 – 8/22 10.95
4-320C 4/22 4.17 4/22 4.26 3/22 2.98
5-320C 4/22 1.43 4/22 1.34 2/22 0.72
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Christofides et al. (1979), respectively. The first group contains a number of customers n ranging

from 50 to 199. The second represents large-scale instances and contains between 200 and 483

customers. The number of customers in the sets A, B, P, E, F, and M varies from 12 to 199, and

the number of required routes is fixed, which is handled through the SP phase and the subsequent

final local search (in this case we disregard the best found number of vehicles m in the SP vehicle

minimization phase, and in Algorithm 1 we assume that CR(X) = ∞ if the number of routes in

solution X is not equal to the required number of routes). Some instances also have maximum

route durations and customer service times. We therefore adapted our heuristic to handle these

extra features (feasibility with respect to route durations is enforced throughout the procedure).

The RCVRP additionally considers that the customer demands qi are uncertain parameters. In

the RCVRP, it is therefore assumed that each customer i has a certain nominal demand q0
i from

which we expect the realized customer demand qi to deviate according to some uncertainty set. We

have tested our heuristic on the RCVRP variants of the above instances, which were introduced

by Gounaris et al. (2013) and Gounaris et al. (2016). We solve these instances with the following

two uncertainty sets for the customer demands (which are those used by Gounaris et al. 2013 and

Gounaris et al. 2016 in their experiments):

U1
Q = {q ∈ Rn+ | qi ≤ qi ≤ qi ∀i ∈ N0,

∑
i∈Bj

qi ≤ bj for j = 1, ..., J}, (50)

U2
Q = {q ∈ Rn+ | q = q0 + Γξ for some ξ ∈ Ξ}, (51)

where Ξ = {ξ ∈ RF | ξ ∈ [−e,+e], eT ξ ∈ [−βF,+βF ]}, q0 ∈ Rn+,Γ ∈ Rn×F , F ∈ N, β ∈ [0, 1], and

e ∈ RF is a vector with only ones. The uncertainty set U1
Q states that each customer demand qi

must lie within a given interval [q
i
, qi], and that the sum of the demands of the customers in each

subset Bj ⊆ N0 must be at most bj . The uncertainty set U2
Q states that the demand vector q is the

sum of a nominal demand vector q0 and a disturbance Γξ that depends on F independent factors,

thereby allowing correlations between customer demands to be taken into account. We modified

our two-phase heuristic so that routes are added to the pool of robust routes ΩR when their worst-

case total demand is at most the vehicle’s load capacity L. We use propositions from Gounaris

et al. (2013) to efficiently compute a route’s worst-case total demand with uncertainty sets U1
Q and

U2
Q. We also mention that the number of required routes is fixed in all RCVRP instances (even

those based on the Christofides et al. 1979 and the Golden et al. 1998 CVRP instances), and that

the vehicle capacity from the associated CVRP instance is always increased by 20%. We refer the

reader to Gounaris et al. (2016) for more information on the generation of the RCVRP instances.

For all parameters of the two-phase heuristic that depend on the number of customers n in Table

3, if n ≥ 320, we use the same values as for n = 320; if 160 ≤ n < 320, we use the same values as

for n = 160; etc. We set parameter τ to zero in the two-phase heuristic when solving the CVRP, as

for the experiments on the nominal version of the EVRP-ECU. The detailed results are reported
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Table 9: Summarized results for the CVRP and RCVRP benchmark instances

Instance set Num. of instances CVRP RCVRP-U1
Q RCVRP-U2

Q

Instances of the set A (Augerat 1995) 26 Num. of new best solutions: 0 Num. of new best solutions: 1 Num. of new best solutions: 1
Num. of matched NPO-BKSs: 0 Num. of matched NPO-BKSs: 13 Num. of matched NPO-BKSs: 9
Num. of matched PO-BKSs: 26 Num. of matched PO-BKSs: 12 Num. of matched PO-BKSs: 16
Avg. gap (%) when BFS>BKS: – Avg. gap (%) when BFS>BKS: 0.41 Avg. gap (%) when BFS>BKS: –

Instances of the set B (Augerat 1995) 23 Num. of new best solutions: 0 Num. of new best solutions: 1 Num. of new best solutions: 0
Num. of matched NPO-BKSs: 0 Num. of matched NPO-BKSs: 8 Num. of matched NPO-BKSs: 8
Num. of matched PO-BKSs: 23 Num. of matched PO-BKSs: 12 Num. of matched PO-BKSs: 15
Avg. gap (%) when BFS>BKS: – Avg. gap (%) when BFS>BKS: 0.53 Avg. gap (%) when BFS>BKS: –

Instances of the set P (Augerat 1995) 24 Num. of new best solutions: 0 Num. of new best solutions: 0 Num. of new best solutions: 0
Num. of matched NPO-BKSs: 0 Num. of matched NPO-BKSs: 14 Num. of matched NPO-BKSs: 13
Num. of matched PO-BKSs: 24 Num. of matched PO-BKSs: 10 Num. of matched PO-BKSs: 11
Avg. gap (%) when BFS>BKS: – Avg. gap (%) when BFS>BKS: – Avg. gap (%) when BFS>BKS: –

Instances of the sets E, M and F 17 Num. of new best solutions: 0 Num. of new best solutions: 1 Num. of new best solutions: 1
(Christofides and Eilon 1969, Fisher 1994, Num. of matched NPO-BKSs: 0 Num. of matched NPO-BKSs: 6 Num. of matched NPO-BKSs: 8
Christofides et al. 1979) Num. of matched PO-BKSs: 17 Num. of matched PO-BKSs: 8 Num. of matched PO-BKSs: 7

Avg. gap (%) when BFS>BKS: – Avg. gap (%) when BFS>BKS: 0.66 Avg. gap (%) when BFS>BKS: 0.81

Instances of Christofides et al. (1979) 14 Num. of new best solutions: 0 Num. of new best solutions: 7 Num. of new best solutions: 6
Num. of matched NPO-BKSs: 4 Num. of matched NPO-BKSs: 6 Num. of matched NPO-BKSs: 7
Num. of matched PO-BKSs: 5 Num. of matched PO-BKSs: 0 Num. of matched PO-BKSs: 0
Avg. gap (%) when BFS>BKS: 0.39 Avg. gap (%) when BFS>BKS: 0.08 Avg. gap (%) when BFS>BKS: 0.57

Instances of Golden et al. (1998) 20 Num. of new best solutions: 0 Num. of new best solutions: 11 Num. of new best solutions: 13
Num. of matched NPO-BKSs: 2 Num. of matched NPO-BKSs: 0 Num. of matched NPO-BKSs: 1
Num. of matched PO-BKSs: 0 Num. of matched PO-BKSs: 0 Num. of matched PO-BKSs: 0
Avg. gap (%) when BFS>BKS: 1.49 Num. of instances with no FS: 7 Num. of instances with no FS: 6

Avg. gap (%) when BFS>BKS: 0.36 Avg. gap (%) when BFS>BKS: –

in Tables 14–18 of Appendix A for the CVRP and RCVRP instances. We limit our presentation

to instances for which benchmark solutions are available for both the CVRP and RCVRP (there

are a few CVRP instances of sets A, E and M for which no corresponding RCVRP instances were

generated by Gounaris et al. 2013). In Tables 14–18, we report the best found solution (BFS) value

by our heuristic over 10 runs, the average cost and average solution time, the best known solution

(BKS) value from the literature, as well as the gap (%) of the BFS by our heuristic with respect

to the BKS. Solutions that are known to be optimal are marked by an asterisk in Tables 14–18.

We provide a summary of the detailed results of Appendix A in Table 9, where we distinguish

between BKSs that are provenly optimal and those that are not. For each set of instances, we

report the number of instances for which we identified new best solutions, the number of instances

for which the BFS by our heuristic matches the non-proven optimal BKS (NPO-BKS), the number

of instances for which our BFS matches the proven optimal solution (PO-BKS), and the average

gap for the instances for which our BFS is worse than the BKS (whether the BKS is proven optimal

or not).

Our heuristic finds the BKS for all the tested CVRP instances from sets A, B, P, E, M, and

F. It also performs fairly well on the CVRP instances of Christofides et al. (1979); the BKS is

found for several of these instances, and the gap is quite small when it is not. The performance of

the heuristic deteriorates, however, on the larger instances of Golden et al. (1998), with a worst-

case gap of 3.72% on these instances (obtained for an instance with 480 customers). Finally,

the method matches or improves the BKS reported by Gounaris et al. (2016) for most RCVRP

instances. The 42 new best solutions found by the heuristic are reported in boldface in Tables
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14–18. There are, however, a few large-scaled RCVRP instances based on the Golden et al. (1998)

CVRP instances for which the current configuration of the two-phase heuristic was unable to find

a feasible robust solution over the 10 runs (i.e., no solution with only robust routes is encountered

during the LNS phase, and CPLEX fails to find a feasible solution to the SP problem). These

are reported in Table 9 as “Num. of instances with no FS”. It is conceivable that this could be

addressed (and that the method’s performance as a whole on the CVRP and RCVRP instances

could be further improved) by recalibrating the parameters of the algorithm. It is also possible

that an adaptive layer, although not particularly useful on the EVRP-ECU instances, could also

increase the heuristic’s competitiveness for these problem variants. For sake of brevity we do not

investigate this any further. Nonetheless, we find new best solutions for 24 of the large-scaled

RCVRP instances.

6.5 The trade-off between cost and risk

A nice feature of the robust optimization methodology is that it can be used to present different

alternatives to the decision maker who can then determine when and whether cost savings justify

incurring extra risks. We illustrate this by solving the EVRP-ECU instances with the ellipsoidal

uncertainty sets U5
k representing normally distributed random vectors Zk, but we now calibrate

them so that β = 0.01 instead of 0.05 as in the experiments of the previous sections. The parameter

r is thus increased to 2.33. Moreover, we solve the instances using the box uncertainty sets U1
k as

well, which is equivalent to setting β = 0 and solving a nominal version of the problem in which

the expected values of the energy consumption parameters are all set to their worst-case values.

The results are reported in Table 10, with the best of 10 runs presented for the new experiments.

The previous best found solutions with sets U5
k and β = 0.05 are also reported.

As the results show, in some cases, the difference in cost between the three protection levels is

rather insignificant, and one would therefore benefit from simply using the safest solution, i.e., the

routing plan obtained with the box uncertainty set. However, in other cases, there is a case to be

made for incurring a small risk. Indeed, for some instances, the best found solution with β = 0.01

allows interesting cost savings compared to the no-risk case of β = 0, sometimes even using fewer

vehicles. The same holds when going from β = 0.01 to β = 0.05. In addition, some instances that

appear to be infeasible for a smaller β become feasible by increasing the level of risk. Nevertheless,

it is ultimately up to the decision maker to choose the right balance between cost and risk in the

presence of uncertain parameters.

6.6 The impact of correlation in routes

In this section we take a quick look at the sensitivity of solutions to the correlation between the arcs

in a given route, with respect to the deviation of their realized energy consumption parameter values
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Table 10: Best found solutions with different uncertainty sets and different protection levels

Sets U5
k/β = 0.05 Sets U5

k/β = 0.01 Sets U1
k/β = 0

Instance Value m Value m Value m

1-10C 295.93 2 296.47 2 321.25 2
2-10C 318.19 2 318.91 2 319.75 2
3-10C 308.45 2 315.78 2 321.97 2
4-10C 326.47 2 327.26 2 328.17 2
5-10C 333.65 2 453.75 3 454.74 3

1-20C 643.14 4 644.65 4 810.66 5
2-20C 328.13 2 456.29 3 464.25 3
3-20C 480.96 3 482.53 3 487.11 3
4-20C 330.65 2 449.96 3 450.95 3
5-20C 465.28 3 466.25 3 468.57 3

1-40C 636.25 4 637.76 4 776.44 5
2-40C – – – – – –
3-40C 636.42 4 646.41 4 790.29 5
4-40C 481.63 3 600.90 4 602.26 4
5-40C 787.37 5 794.31 5 805.45 5

1-80C 938.90 6 941.25 6 944.26 6
2-80C 970.96 6 1102.50 7 1112.45 7
3-80C 911.70 6 919.47 6 930.79 6
4-80C 901.32 6 903.12 6 905.27 6
5-80C 971.58 6 1101.59 7 1115.56 7

1-160C 2068.06 13 – – – –
2-160C 1786.01 12 1792.05 12 1797.04 12
3-160C 1680.14 11 1683.14 11 1687.87 11
4-160C 1711.48 11 1852.28 12 1880.51 12
5-160C 1938.09 12 2374.66 15 – –

1-320C – – – – – –
2-320C 3229.04 22 3239.65 22 3244.09 22
3-320C 3769.91 24 4410.57 28 – –
4-320C 3458.93 23 3492.74 23 3626.51 24
5-320C 3334.11 22 3347.02 22 3378.22 22
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Table 11: Best found solutions with sets U5
k , β = 0.01, and different correlation levels

No correlation Correlation of 0.3 Correlation of 0.6 Correlation of 0.9
Instance Value m Value m Value m Value m

1-10C 295.73 2 296.02 2 296.26 2 296.47 2
2-10C 317.61 2 318.16 2 318.56 2 318.91 2
3-10C 308.09 2 308.50 2 308.82 2 315.78 2
4-10C 326.17 2 326.61 2 326.96 2 327.26 2
5-10C 331.20 2 333.64 2 453.40 3 453.75 3

1-20C 486.00 3 643.53 4 644.12 4 644.65 4
2-20C 327.17 2 327.97 2 451.22 3 456.29 3
3-20C 475.05 3 480.93 3 481.72 3 482.53 3
4-20C 325.92 2 328.76 2 449.56 3 449.96 3
5-20C 464.51 3 465.25 3 465.80 3 466.25 3

1-40C 634.46 4 635.94 4 636.95 4 637.76 4
2-40C – – – – – – – –
3-40C 635.31 4 636.41 4 637.24 4 646.41 4
4-40C 480.36 3 481.60 3 600.39 4 600.90 4
5-40C 652.91 4 785.75 5 788.86 5 794.31 5

1-80C 936.09 6 938.36 6 939.84 6 941.25 6
2-80C 956.74 6 968.79 6 1094.47 7 1102.50 7
3-80C 908.85 6 911.39 6 913.53 6 919.47 6
4-80C 899.37 6 901.03 6 902.18 6 903.12 6
5-80C 951.67 6 971.30 6 1095.40 7 1101.59 7

1-160C 1927.93 12 2069.12 13 – – – –
2-160C 1782.77 12 1785.76 12 1790.07 12 1792.05 12
3-160C 1674.56 11 1679.22 11 1681.18 11 1683.14 11
4-160C 1691.98 11 1707.40 11 1722.58 11 1852.28 12
5-160C 1880.24 12 2040.34 13 2210.65 14 2374.66 15

1-320C – – – – – – – –
2-320C 3225.95 22 3232.31 22 3233.93 22 3239.65 22
3-320C 3563.99 23 3877.77 25 4223.12 27 4410.57 28
4-320C 3423.48 23 3459.52 23 3476.16 23 3492.74 23
5-320C 3303.41 22 3323.69 22 3336.18 22 3347.02 22

from their expected ones, i.e., correlation between the components of Zk. As briefly mentioned in

Section 3.5, it is reasonable to expect driver behaviour and external conditions like the weather and

road conditions to be fairly similar along the same route. We therefore investigate the impact of

such dependencies on robust solutions by solving the EVRP-ECU instances with uncertainty sets

U5
k and a protection level of β = 0.01, but by using three new correlation levels in the covariance

matrix
∑

: 0.0, 0.3 and 0.6. We report the best of 10 runs for each case in Table 11. The values

in the column associated with the previously used correlation of 0.9 between the arcs are taken

from Table 10. The entries suggest that the cost and number of vehicles in the best found solutions

tend to increase with the degree of correlation between the components of random vectors Zk.

There is even an instance with 160 customers that appears to become infeasible when going from

correlations of 0.3 to 0.6.
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6.7 The impact of specific parameters in the energy consumption model

Our last computational study concerns the impact of specific parameters in the energy consump-

tion model described in Section 3.2 on robust solutions. To this end, we modify the instances

by computing the maximum deviations âij and b̂ij from the expected values of the arcs’ energy

parameters with worst-case values inspired from those from Asamer et al. (2016) for the rolling

friction coefficient Cr, the drivetrain efficiency φ, the auxiliary power P , and the product Cd · ρ of

the air drag coefficient and air density. Since the expected auxiliary power and air drag coefficient

are expected to be larger for a truck than for a small passenger vehicle as the one considered by

Asamer et al. (2016), we simply use the same ratio as these authors between the worst-case and

expected values to determine the worst-case associated with the expected values that we used for

these parameters. Finally, we assume that speed can be up to 20% larger or smaller than the

expected value of 45 km/h. Taking negative deviations from the expected value into account is

only relevant for speed, since a lower speed can increase the energy consumed by auxiliaries. All

worst-case and expected values are reported in Table 12.

Table 12: Nominal and worst-case energy consumption model parameter values used to assess the
impact of specific parameters

Energy consumption model parameter Expected value Worst-case value

Air drag coefficient Cd 0.7 0.735
Rolling friction coefficient Cr 0.01 0.014
Auxiliary power demand P 1,575 W 4,431 W
Air density ρ 1.2041 kg/m3 1.296 kg/m3

Drivetrain efficiency φ 1.3175 1.4706
Speed 45 km/h 36 km/h or 54 km/h

We either change the instances by determining âij and b̂ij with the worst-case value of only

one parameter in the energy consumption model (two in the case of the product Cd · ρ) and with

the expected values of the rest, or with the worst-case values of all parameters simultaneously. All

experiments were run using the ellipsoidal uncertainty sets U5
k with the initial correlation level of

0.9 between the components of Zk and with a protection level of β = 0.01. The best found solutions

over 10 runs are reported in Table 13 for each case, as well as for the previously solved nominal

scenario with no uncertainty. For example, column “Rolling friction”reports best found solutions

when âij and b̂ij are computed with the worst-case value of Cr, and with expected values for Cd,

P , ρ, φ and speed. Note that when traveling at constant speeds (as is the case in our EVRP-ECU

instances), the worst-case energy consumption of an arc will always be attained with the smallest

or largest possible speed. For an arc (i, j) of length dij traveled entirely at a constant speed of vij ,

let Bij(vij) refer to the portion of the energy consumption when traveling (i, j) that is dependent

on vij . Equations (1) and (2) allow expressing Bij(vij) as
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Bij(vij) =
1

3.6 · 106

(
0.5φACdρv

2
ijdij + P · tij

)
=

1

3.6 · 106

(
0.5φACdρv

2
ijdij + P · dij

vij

)
,

which is a convex function of vij for vij > 0 when all other parameters are fixed. Therefore, for

the cases of 1) taking the worst-case value of speed and the expected values of the other uncertain

parameters, and 2) taking the worst-case values of all parameters simultaneously, we either use

the minimal or maximal speed for each arc to determine âij and b̂ij (i.e., the one that maximizes

Bij(vij) for that arc).

Taking all worst-case values simultaneously to compute âij and b̂ij appears to render most

instances infeasible (see column “All”). When this is not the case, the best found solution cost is

significantly deteriorated compared to that of the nominal case. However, taking worst-case values

of the parameters one at a time to compute âij and b̂ij shows that the uncertainty of the rolling

friction coefficient seems to have the largest impact on solutions, which is line with the findings

of Asamer et al. (2016) in their sensitivity analysis of the energy consumption model parameters.

The uncertainty surrounding the auxiliary power, the drivetrain efficiency and the travel speed

also seems to have a considerable impact for a few instances, while the uncertainty of the air drag

coefficient and of the air density seems to be less influential.

7. Conclusions

The goal of this study was to introduce and solve the EVRP-ECU, a practical transportation

problem that can deal with the presence of uncertainties surrounding the energy consumption of

EFVs without being overly conservative. We have modeled the problem within a robust opti-

mization framework, and we have developed a two-phase metaheuristic to solve it. We have also

implemented two exact robust optimization methods that can be used to solve small instances of

the problem to optimality. We have adapted existing instances to generate new instances for the

EVRP-ECU and we have run several numerical experiments on them with different types of uncer-

tainty sets. We have shown that the solution method performs extremely well on small instances of

the EVRP-ECU by comparing it to solutions obtained with the exact methods. Moreover, we have

tested our heuristic on existing instances of the related RCVRP, and found 42 new best solutions in

the process. Our computational study has also illustrated how the EVRP-ECU can help reach the

right balance between cost and risk, and has shown the influence of different uncertain parameters

and of their correlation with each other on robust solutions. We have also demonstrated the im-

portance of taking energy consumption uncertainties into account by comparing nominal to robust

solutions.

We believe that promising research avenues lie in the integration of additional features in the
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Table 13: Best found solutions with uncertainty sets U5
k , β = 0.01, and different energy

consumption model parameters’ worst-case values used to compute âij and b̂ij

Nominal Rolling friction Efficiency Air drag + density Aux. power Speed All
Instance Value m Value m Value m Value m Value m Value m Value m

1-10C 294.62 2 321.22 2 295.60 2 294.92 2 296.14 2 295.47 2 – –
2-10C 316.45 2 319.67 2 317.74 2 316.85 2 318.52 2 317.61 2 – –
3-10C 292.62 2 321.92 2 308.05 2 292.90 2 308.71 2 307.91 2 – –
4-10C 324.55 2 328.10 2 325.98 2 325.00 2 326.86 2 325.85 2 – –
5-10C 326.88 2 454.66 3 331.26 2 327.34 2 453.30 3 331.09 2 – –

1-20C 470.64 3 810.50 5 485.70 3 471.94 3 643.86 4 485.46 3 – –
2-20C 326.09 2 464.75 3 327.61 2 326.53 2 328.37 2 327.37 2 618.72 4
3-20C 334.79 2 487.02 3 478.85 3 335.27 2 481.45 3 474.97 3 – –
4-20C 324.75 2 450.92 3 326.22 2 325.19 2 330.98 2 326.03 2 740.71 5
5-20C 462.92 3 468.46 3 464.68 3 463.47 3 465.74 3 464.50 3 – –

1-40C 632.40 4 776.43 5 635.33 4 633.38 4 636.66 4 634.88 4 1067.69 7
2-40C 999.64 6 – – – – – – – – – – – –
3-40C 632.39 4 797.54 5 635.50 4 633.18 4 636.83 4 635.04 4 – –
4-40C 473.03 3 602.32 4 480.53 3 473.62 3 600.08 4 480.14 3 754.02 5
5-40C 639.31 4 805.68 5 657.43 4 648.99 4 788.59 5 654.53 4 – –

1-80C 931.18 6 944.38 6 937.60 6 932.37 6 939.41 6 936.92 6 1368.92 9
2-80C 950.52 6 1112.50 7 962.75 6 954.08 6 1092.83 7 958.56 6 – –
3-80C 903.02 6 930.12 6 909.92 6 903.97 6 913.13 6 909.33 6 – –
4-80C 896.95 6 905.40 6 900.23 6 897.87 6 901.72 6 899.63 6 1063.97 7
5-80C 943.82 6 1115.53 7 957.66 6 945.47 6 1093.24 7 952.12 6 – –

1-160C 1862.32 12 – – 2044.35 13 1882.35 12 2212.61 14 1925.58 12 – –
2-160C 1777.43 12 1797.75 12 1783.85 12 1779.29 12 1786.55 12 1783.43 12 – –
3-160C 1670.80 11 1688.33 11 1677.96 11 1673.31 11 1680.70 11 1676.43 11 – –
4-160C 1684.96 11 2008.80 13 1695.96 11 1688.70 11 1715.66 11 1695.12 11 – –
5-160C 1729.75 11 – – 1891.51 12 1738.36 11 2082.22 13 1884.05 12 – –

1-320C 3780.68 24 – – – – 4013.81 25 – – – – – –
2-320C 3217.63 22 3246.29 22 3225.12 22 3219.12 22 3232.37 22 3226.28 22 – –
3-320C 3379.40 22 – – 3600.21 23 3413.40 22 4054.46 26 3567.40 23 – –
4-320C 3341.18 22 3633.12 24 3436.38 23 3357.65 22 3481.36 23 3425.16 23 – –
5-320C 3294.02 22 3520.89 23 3317.11 22 3297.40 22 3335.57 22 3308.58 22 – –
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problem. These may include, for example, the use of other types of uncertainty sets. One natural

extension could be to incorporate en route recharging into the problem to render it applicable to

EVRPs in mid- and long-haul contexts. Finally, the development of new solution methods for the

EVRP-ECU would be welcome in order to have more available benchmark solutions for the larger

instances.
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Appendix A. Detailed results for the CVRP and RCVRP bench-

mark instances

Table 14: Results for the set A of CVRP instances from Augerat (1995) and the associated
RCVRP instances from Gounaris et al. (2013)

CVRP RCVRP-U1
Q RCVRP-U2

Q

Instance BFS Avg. Time (s) BKS G (%) BFS Avg. Time (s) BKS G (%) BFS Avg. Time (s) BKS G (%)

A-n32-k05 784 784.00 18.13 784∗ 0.00 748 748.00 24.39 748∗ 0.00 748 748.00 29.25 748∗ 0.00
A-n33-k05 661 661.00 16.42 661∗ 0.00 642 642.00 19.57 642∗ 0.00 631 631.00 20.46 631∗ 0.00
A-n33-k06 742 742.00 15.30 742∗ 0.00 717 717.00 17.84 717∗ 0.00 710 710.00 18.71 710∗ 0.00
A-n34-k05 778 778.00 17.81 778∗ 0.00 715 716.50 18.87 715∗ 0.00 702 702.00 20.43 702∗ 0.00
A-n36-k05 799 799.00 26.97 799∗ 0.00 755 755.00 29.99 755∗ 0.00 766 767.80 38.75 766∗ 0.00
A-n37-k05 669 669.00 24.15 669∗ 0.00 650 650.00 31.69 650∗ 0.00 648 648.00 42.71 648∗ 0.00
A-n37-k06 949 949.00 23.50 949∗ 0.00 892 892.00 25.86 892∗ 0.00 892 892.00 28.72 892∗ 0.00
A-n38-k05 730 730.00 23.20 730∗ 0.00 704 705.60 29.54 704∗ 0.00 693 693.00 31.37 693∗ 0.00
A-n39-k05 822 822.00 27.43 822∗ 0.00 777 789.50 35.87 777∗ 0.00 772 778.50 36.31 772∗ 0.00
A-n39-k06 831 831.20 27.32 831∗ 0.00 787 787.00 34.01 787∗ 0.00 786 786.00 39.42 786∗ 0.00
A-n44-k06 937 937.00 36.45 937∗ 0.00 909 910.60 45.08 909 0.00 892 892.00 51.34 892∗ 0.00
A-n45-k06 944 945.70 36.13 944∗ 0.00 896 897.00 42.29 896∗ 0.00 891 892.20 47.15 891∗ 0.00
A-n46-k07 914 914.00 40.56 914∗ 0.00 888 888.60 50.64 888∗ 0.00 883 883.00 57.11 883∗ 0.00
A-n48-k07 1073 1073.00 49.59 1073∗ 0.00 1033 1033.00 93.00 1033 0.00 1033 1033.00 115.74 1033 0.00
A-n53-k07 1010 1010.00 57.52 1010∗ 0.00 974 974.00 100.70 974 0.00 967 967.00 147.82 967∗ 0.00
A-n54-k07 1167 1167.00 60.73 1167∗ 0.00 1106 1106.50 98.77 1106 0.00 1097 1099.80 138.11 1097 0.00
A-n55-k09 1073 1073.00 60.12 1073∗ 0.00 1030 1030.30 74.22 1030 0.00 1007 1007.00 74.63 1007∗ 0.00
A-n60-k09 1354 1354.00 107.61 1354∗ 0.00 1280 1280.00 105.61 1280 0.00 1264 1264.20 115.34 1264 0.00
A-n61-k09 1034 1034.00 76.40 1034∗ 0.00 983 983.00 113.32 983 0.00 974 974.00 105.62 974 0.00
A-n62-k08 1288 1288.20 222.46 1288∗ 0.00 1219 1221.00 236.04 1214 0.41 1201 1202.40 275.79 1201 0.00
A-n63-k09 1616 1616.00 103.07 1616∗ 0.00 1505 1505.00 163.48 1505 0.00 1498 1501.40 237.72 1498 0.00
A-n63-k10 1314 1315.50 112.22 1314∗ 0.00 1236 1237.60 94.07 1240 0.00 1222 1222.20 95.33 1222 0.00
A-n64-k09 1401 1401.50 135.76 1401∗ 0.00 1325 1326.00 137.09 1325 0.00 1314 1314.00 153.51 1314 0.00
A-n65-k09 1174 1175.50 77.02 1174∗ 0.00 1106 1106.00 111.98 1106 0.00 1094 1094.00 108.32 1094∗ 0.00
A-n69-k09 1159 1159.00 120.38 1159∗ 0.00 1109 1109.50 143.05 1109 0.00 1096 1096.00 139.88 1096 0.00
A-n80-k10 1763 1764.10 299.82 1763∗ 0.00 1662 1669.10 194.22 1662 0.00 1644 1650.90 222.99 1645 0.00

41



Table 15: Results for the set B of CVRP instances from Augerat (1995) and the associated
RCVRP instances from Gounaris et al. (2013)

CVRP RCVRP-U1
Q RCVRP-U2

Q

Instance BFS Avg. Time (s) BKS G (%) BFS Avg. Time (s) BKS G (%) BFS Avg. Time (s) BKS G (%)

B-n31-k05 672 672.00 15.63 672∗ 0.00 651 651.00 20.25 651∗ 0.00 651 651.00 22.71 651∗ 0.00
B-n34-k05 788 788.00 19.34 788∗ 0.00 768 768.00 20.41 768 0.00 748∗ 752.90 21.68 748 0.00
B-n35-k05 955 955.00 18.86 955∗ 0.00 883 883.00 20.81 883∗ 0.00 883 883.10 22.51 883∗ 0.00
B-n38-k06 805 805.00 33.08 805∗ 0.00 729 729.00 26.62 729∗ 0.00 729 729.00 28.86 729∗ 0.00
B-n39-k05 549 549.00 29.04 549∗ 0.00 532 535.60 51.36 532∗ 0.00 529 532.00 57.80 529∗ 0.00
B-n41-k06 829 829.00 32.76 829∗ 0.00 796 796.20 59.78 796∗ 0.00 791 791.00 72.95 791∗ 0.00
B-n43-k06 742 742.00 55.94 742∗ 0.00 681 681.00 51.22 681∗ 0.00 680 680.00 63.62 680∗ 0.00
B-n44-k07 909 909.00 48.35 909∗ 0.00 835 835.00 49.19 835∗ 0.00 835 835.00 61.49 835∗ 0.00
B-n45-k05 751 751.00 37.07 751∗ 0.00 701 701.00 66.95 701 0.00 680 682.90 67.75 680∗ 0.00
B-n45-k06 678 678.00 38.78 678∗ 0.00 660 660.00 294.60 660∗ 0.00 657 657.40 344.46 657∗ 0.00
B-n50-k07 741 741.00 48.82 741∗ 0.00 679 679.00 54.88 679∗ 0.00 699 699.00 64.72 699∗ 0.00
B-n50-k08 1312 1312.50 138.91 1312∗ 0.00 1224 1224.80 142.06 1224 0.00 1217 1217.50 312.81 1217 0.00
B-n51-k07 1032 1032.00 63.58 1032∗ 0.00 962 964.00 47.99 961 0.10 928 928.00 48.62 928∗ 0.00
B-n52-k07 747 747.00 176.35 747∗ 0.00 675 675.00 60.89 675∗ 0.00 670 670.00 65.35 670∗ 0.00
B-n56-k07 707 708.50 372.55 707∗ 0.00 623 623.00 88.31 623∗ 0.00 623 623.00 105.00 623∗ 0.00
B-n57-k07 1153 1156.50 64.56 1153∗ 0.00 1055 1055.00 77.57 1055 0.00 1052 1053.10 80.85 1052 0.00
B-n57-k09 1598 1598.00 82.23 1598∗ 0.00 1555 1557.20 179.84 1540∗ 0.96 1539 1540.00 101.63 1539∗ 0.00
B-n63-k10 1496 1496.00 91.53 1496∗ 0.00 1407 1407.00 95.74 1407 0.00 1405 1405.00 119.60 1405 0.00
B-n64-k09 861 861.00 83.43 861∗ 0.00 803 803.00 94.89 803∗ 0.00 803 803.00 115.02 803∗ 0.00
B-n66-k09 1316 1316.80 376.44 1316∗ 0.00 1251 1256.50 430.13 1251 0.00 1210∗ 1210.00 201.57 1210 0.00
B-n67-k10 1032 1032.00 119.55 1032∗ 0.00 1007 1007.40 137.82 1007 0.00 1001 1001.90 169.39 1001 0.00
B-n68-k09 1272 1273.20 407.20 1272∗ 0.00 1205 1214.80 428.27 1213 0.00 1191 1195.20 398.65 1191 0.00
B-n78-k10 1221 1226.60 465.87 1221∗ 0.00 1131 1131.60 199.20 1131 0.00 1130 1130.60 241.24 1130 0.00

Table 16: Results for the set P of CVRP instances from Augerat (1995) and the associated
RCVRP instances from Gounaris et al. (2013)

CVRP RCVRP-U1
Q RCVRP-U2

Q

Instance BFS Avg. Time (s) BKS G (%) BFS Avg. Time (s) BKS G (%) BFS Avg. Time (s) BKS G (%)

P-n16-k08 450 450.00 2.11 450∗ 0.00 439 439.00 3.05 439∗ 0.00 439 439.00 2.92 439∗ 0.00
P-n19-k02 212 212.00 3.68 212∗ 0.00 195 195.00 5.94 195∗ 0.00 195 195.00 7.00 195∗ 0.00
P-n20-k02 216 216.00 5.04 216∗ 0.00 208 208.00 7.20 208∗ 0.00 208 208.00 8.27 208∗ 0.00
P-n21-k02 211 211.00 6.38 211∗ 0.00 208 208.00 9.12 208∗ 0.00 208 208.00 10.78 208∗ 0.00
P-n22-k02 216 216.00 6.54 216∗ 0.00 213 213.00 9.66 213∗ 0.00 213 213.00 11.59 213∗ 0.00
P-n22-k08 603 603.00 5.38 603∗ 0.00 537 537.00 5.72 537∗ 0.00 557 557.00 5.48 557∗ 0.00
P-n23-k08 529 529.00 4.96 529∗ 0.00 504 504.00 7.84 504 0.00 503 503.00 7.37 503 0.00
P-n40-k05 458 458.00 23.46 458∗ 0.00 447 447.00 28.87 447∗ 0.00 447 447.00 33.41 447∗ 0.00
P-n45-k05 510 510.00 34.36 510∗ 0.00 501 501.30 35.76 501∗ 0.00 494 494.40 42.63 494∗ 0.00
P-n50-k07 554 554.00 42.62 554∗ 0.00 539 539.80 59.89 539 0.00 537 537.10 67.53 537 0.00
P-n50-k08 631 633.40 42.48 631∗ 0.00 592 592.00 45.14 592 0.00 588 588.00 45.70 588 0.00
P-n50-k10 696 696.00 38.75 696∗ 0.00 656 656.00 48.14 656 0.00 656 656.00 47.51 656 0.00
P-n51-k10 741 741.00 44.22 741∗ 0.00 707 707.00 52.59 707 0.00 698 698.00 53.04 698 0.00
P-n55-k07 568 568.00 61.94 568∗ 0.00 549 549.00 79.96 549 0.00 544 544.40 83.43 544∗ 0.00
P-n55-k08 588 588.00 59.38 588∗ 0.00 572 572.00 73.71 572 0.00 568 568.10 81.79 568 0.00
P-n55-k10 694 694.00 58.61 694∗ 0.00 670 670.00 62.56 670 0.00 657 657.00 61.14 657 0.00
P-n55-k15 989 989.00 45.24 989∗ 0.00 889 889.00 54.61 889 0.00 877 877.00 51.38 877 0.00
P-n60-k10 744 744.00 62.99 744∗ 0.00 712 712.00 71.52 712 0.00 705 705.00 73.46 705 0.00
P-n60-k15 968 968.00 58.72 968∗ 0.00 931 931.00 74.77 931 0.00 916 916.00 72.09 916 0.00
P-n65-k10 792 792.00 83.20 792∗ 0.00 765 765.20 85.78 765 0.00 761 761.50 90.67 761 0.00
P-n70-k10 827 827.00 104.02 827∗ 0.00 785 785.10 134.14 797 0.00 783 783.70 132.73 783 0.00
P-n76-k04 593 593.70 147.57 593∗ 0.00 590 590.00 248.04 590∗ 0.00 590 590.00 290.54 590∗ 0.00
P-n76-k05 627 627.30 136.09 627∗ 0.00 616 616.00 223.48 616 0.00 615 615.00 263.13 615 0.00
P-n101-k04 681 681.00 284.68 681∗ 0.00 673 673.00 240.19 673∗ 0.00 673 673.00 274.40 673∗ 0.00
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Table 17: Results for the sets E, M, and F of CVRP instances and the associated RCVRP
instances from Gounaris et al. (2013)

CVRP RCVRP-U1
Q RCVRP-U2

Q

Instance BFS Avg. Time (s) BKS G (%) BFS Avg. Time (s) BKS G (%) BFS Avg. Time (s) BKS G (%)

E-n22-k04 375 375.00 5.66 375∗ 0.00 373 373.00 8.45 373∗ 0.00 373 373.00 8.46 373∗ 0.00
E-n23-k03 569 569.00 11.42 569∗ 0.00 563 563.00 16.72 563∗ 0.00 544 544.00 16.75 544∗ 0.00
E-n30-k03 534 534.00 16.43 534∗ 0.00 475 475.00 18.79 475∗ 0.00 492 492.00 19.06 492∗ 0.00
E-n33-k04 835 835.00 22.22 835∗ 0.00 814 814.00 44.44 814∗ 0.00 814 814.00 38.15 814∗ 0.00
E-n51-k05 521 521.00 46.95 521∗ 0.00 516 516.00 70.48 516∗ 0.00 516 516.00 83.10 516∗ 0.00
E-n76-k07 682 682.00 168.33 682∗ 0.00 661 661.00 226.48 661 0.00 661 661.00 236.24 661 0.00
E-n76-k08 735 735.50 143.76 735∗ 0.00 709 709.70 173.48 709 0.00 700 700.00 185.40 700 0.00
E-n76-k10 830 830.20 137.28 830∗ 0.00 796 796.10 165.91 796 0.00 782 782.00 170.14 782 0.00
E-n76-k14 1021 1021.00 128.38 1021∗ 0.00 952 952.00 132.49 952 0.00 952 952.00 136.84 952 0.00
E-n101-k08 815 816.20 296.91 815∗ 0.00 789 789.30 229.77 789 0.00 783 784.50 213.22 783 0.00
E-n101-k14 1067 1068.70 385.58 1067∗ 0.00 1011 1011.10 246.24 1011 0.00 1009 1009.00 234.23 1009 0.00
F-n45-k04 724 724.40 58.20 724∗ 0.00 718 718.50 73.17 718∗ 0.00 714 714.80 77.75 714∗ 0.00
F-n72-k04 237 237.00 180.88 237∗ 0.00 232 232.00 205.54 232∗ 0.00 232 232.00 210.91 232∗ 0.00
F-n135-k07 1162 1162.00 464.69 1162∗ 0.00 1136 1144.50 696.67 1129 0.62 1086 1087.20 440.14 1086 0.00
M-n101-k10 820 820.00 113.01 820∗ 0.00 809 809.10 186.06 809∗ 0.00 804 804.80 186.25 804∗ 0.00
M-n121-k07 1034 1043.90 147.03 1034∗ 0.00 1001 1027.00 862.91 994 0.70 990 994.00 550.74 982 0.81
M-n151-k12 1015 1024.00 983.11 1015∗ 0.00 989 994.10 1077.24 993 0.00 971 982.90 907.54 986 0.00

Table 18: Results for the Christofides et al. (1979) and Golden et al. (1998) CVRP instances and
the associated RCVRP instances from Gounaris et al. (2016)

CVRP RCVRP-U1
Q RCVRP-U2

Q

Instance n BFS Avg. Time (s) BKS G (%) BFS Avg. Time (s) BKS G (%) BFS Avg. Time (s) BKS G (%)

C1 50 524.61 524.61 43.65 524.61∗ 0.00 519.43 519.43 71.87 519.43 0.00 519.43 519.43 94.84 519.43 0.00
C2 75 835.26 835.26 152.82 835.26∗ 0.00 799.05 799.42 205.03 807.15 0.00 785.86 785.86 192.69 785.86 0.00
C3 100 826.14 826.77 322.33 826.14∗ 0.00 801.29 802.35 274.89 803.33 0.00 794.52 796.23 232.52 794.52 0.00
C4 150 1030.83 1032.22 1368.24 1028.42∗ 0.23 997.33 1008.01 1291.08 1012.80 0.00 982.36 987.38 880.97 1006.33 0.00
C5 199 1295.99 1311.80 1575.52 1291.29∗ 0.36 1251.29 1262.35 1305.09 1254.38 0.00 1236.42 1243.71 1245.61 1243.27 0.00
C6 50 555.43 555.43 48.04 555.43 0.00 555.43 555.43 70.79 555.43 0.00 555.43 555.43 66.87 555.43 0.00
C7 75 909.68 909.68 126.95 909.68 0.00 902.01 902.01 167.77 902.01 0.00 900.12 901.02 182.46 901.40 0.00
C8 100 865.94 865.94 447.79 865.94 0.00 865.50 865.50 914.11 865.50 0.00 865.50 865.50 912.79 865.50 0.00
C9 150 1163.85 1165.81 1549.10 1162.55 0.11 1161.85 1164.51 1671.63 1167.06 0.00 1163.48 1165.74 1651.34 1163.81 0.00
C10 199 1408.23 1412.73 2728.72 1395.85 0.88 1389.07 1397.92 3138.75 1412.10 0.00 1387.00 1397.01 2853.88 1410.65 0.00
C11 120 1042.12 1047.95 188.04 1042.11∗ 0.00 1005.92 1007.23 852.08 1005.10 0.08 1000.35 1002.73 782.37 994.63 0.57
C12 100 819.56 819.56 124.34 819.56∗ 0.00 808.90 809.45 218.83 808.90 0.00 804.08 804.19 218.13 804.08 0.00
C13 120 1546.76 1555.54 1315.67 1541.14 0.36 1545.96 1559.92 1383.64 1547.06 0.00 1542.86 1556.15 1250.93 1544.90 0.00
C14 100 866.37 866.37 381.22 866.37 0.00 847.43 847.46 455.82 847.43 0.00 835.11 835.11 338.51 835.11 0.00
G1 240 5644.44 5669.78 2860.50 5623.47 0.37 5618.59 5634.48 3291.12 5694.68 0.00 5636.22 5637.04 3220.34 5698.06 0.00
G2 320 8447.92 8452.06 3315.92 8404.61 0.51 8447.92 8450.64 3638.16 8557.12 0.00 8447.92 8452.56 3779.75 8544.31 0.00
G3 400 11036.22 11051.80 5578.05 11036.22 0.00 11036.22 11047.30 5279.53 11362.36 0.00 11036.22 11072.00 5581.29 11423.06 0.00
G4 480 13624.53 13648.90 6698.06 13592.88 0.23 13624.52 13625.60 7729.72 14134.17 0.00 13624.53 13630.60 7774.88 13975.76 0.00
G5 200 6460.98 6460.98 965.03 6460.98 0.00 6460.98 6460.98 1083.11 6466.68 0.00 6460.98 6462.12 1311.87 6460.98 0.00
G6 280 8412.90 8412.95 2767.71 8404.26 0.10 8412.90 8412.99 3306.22 8414.28 0.00 8412.67 8412.88 3646.73 8415.21 0.00
G7 360 10195.59 10195.59 3901.31 10102.68 0.91 10195.59 10195.59 4202.26 10266.87 0.00 10195.59 10197.2 4054.57 10203.57 0.00
G8 440 11828.78 11835.70 8370.14 11635.34 1.64 11744.95 11840.40 7155.05 12078.23 0.00 11727.83 11817.9 7410.79 12074.27 0.00
G9 255 588.58 590.50 1831.82 579.71 1.51 572.63 575.79 1098.56 570.63 0.35 557.86 567.99 1334.58 562.65 0.00
G10 323 752.03 755.92 1875.66 736.26 2.10 – – – 736.41 – – – – 724.61 –
G11 399 930.20 940.33 2183.79 912.84 1.87 – – – 925.88 – – – – 912.17 –
G12 483 1138.07 1144.33 2707.28 1102.69 3.11 – – – 1181.15 – – – – 1114.85 –
G13 252 862.26 871.62 1727.59 857.19 0.59 830.95 837.80 907.50 844.05 0.00 825.21 830.72 1038.67 838.49 0.00
G14 320 1101.57 1113.68 1638.26 1080.55∗ 1.91 1079.85 1089.67 1084.33 1080.59 0.00 1060.31 1074.00 638.75 1070.32 0.00
G15 396 1370.82 1380.98 1929.40 1337.92 2.40 1345.99 1362.28 1594.79 1341.21 0.36 1312.29 1334.07 1216.22 1331.96 0.00
G16 480 1674.86 1684.75 2253.96 1612.50 3.72 – – – 1641.95 – 1600.30 1611.8 2340.29 1629.12 0.00
G17 240 708.68 711.38 2076.74 707.76∗ 0.13 705.89 708.79 1747.90 713.68 0.00 690.60 692.90 1226.74 701.42 0.00
G18 300 1013.33 1017.71 3032.46 995.13∗ 1.80 – – – 1012.90 – – – – 991.54 –
G19 360 1385.04 1395.61 2056.09 1365.60∗ 1.40 – – – 1389.32 – – – – 1369.57 –
G20 420 1860.91 1902.05 2026.15 1818.32 2.29 – – – 1860.84 – – – – 1827.02 –
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