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Abstract

To minimise systematic errors in Monte Carlo simulations of charged particles, long range electrostatic in-
teractions have to be calculated accurately and efficiently. Standard approaches, such as Ewald summation
or the naive application of the classical Fast Multipole Method, result in a cost per Metropolis-Hastings step
which grows in proportion to some positive power of the number of particles N in the system. This pro-
hibitively large cost prevents accurate simulations of systems with a sizeable number of particles. Currently,
large systems are often simulated by truncating the Coulomb potential which introduces uncontrollable
systematic errors. In this paper we present a new multilevel method which reduces the computational com-
plexity to O(log(N)) per Metropolis-Hastings step, while maintaining errors which are comparable to direct
Ewald summation. We show that compared to related previous work, our approach reduces the overall cost
by better balancing time spent in the proposal- and acceptance- stages of each Metropolis-Hastings step. By
simulating large systems with up to N = 105 particles we demonstrate that our implementation is competi-
tive with state-of-the-art MC packages and allows the simulation of very large systems of charged particles
with accurate electrostatics.

Keywords: Monte Carlo, electrostatics, particle simulations, computational complexity, Fast Multipole
Method

1. Introduction

The accurate representation of all pairwise interactions in classical atomistic simulations is important to
minimise systematic errors. In this paper we focus on Monte Carlo (MC) simulations of charged particles.
Short-range interactions such as the Lennard-Jones potential can be safely truncated at a finite cutoff dis-
tance: when calculating energy differences in a proposed MC move only interactions with a fixed number of
other particles in close proximity of the moving particle need to be taken into account. For fixed density the
cost of one local Metropolis-Hastings (MH) step is constant, independent of the total number N of particles
in the system. However, due to the long-range nature of the Coulomb potential, which decays in proportion
to the inverse distance between two charges, including electrostatics is far from trivial since interactions with
all other particles in the system have to be considered. Worse, interactions with periodic copies or mirror
charges have to be taken into account if non-trivial boundary conditions are used.

As the review in [1] shows, a plethora of methods have been developed to address this issue, but care
has to be taken to obtain reliable results. In this context the authors of [2] for example find that truncating
the Coulomb potential in the MC simulation of water in a highly anisotropic geometry leads to significant
systematic errors. Other methods which have been proposed to avoid this problem include solving the
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Poisson equation with a grid-based multigrid method [3], Ewald summation [4] or the naive application of
the Fast Multipole Method (FMM) [5, 6, 7]. Unfortunately all those approaches result in a prohibitively
large computational cost as the number of particles N in the system grows, typically the cost per MH step
increases as O(N) or O(

√
N). This renders the simulation of very large systems impossible and limits the

predictive power of computer experiments.
This is particularly keenly felt in MC simulations, where in contrast to molecular dynamics, systems

evolve through discontinuous moves of individual atoms or small numbers of particles. The current inability
to treat electrostatics accurately and efficiently prohibits the application of MC to problems with larger
particle counts. On the other hand, in many circumstances it is desirable to simulate a system with MC
instead of molecular dynamics. In particular, the grand canonical or semi-grand ensembles where the number
of particles can fluctuate are only accessible with MC [8, 9]. Exchanging particle position in so-called ‘swap
moves’ can be far more efficient at equilibrating systems e.g. when simulating the distribution of impurities
near grain boundaries. The lack of efficient electrostatic algorithms also limits the use of methods such
as phase- and lattice switch MC [10, 11] which allow the accurate determination of free energy differences
between phases. Enabling the routine application of MC to larger systems of charged particles will allow
researchers to study the physics of a particular system with the computationally most appropriate evolution
algorithm.

In this paper we show how the limitations of the MC method for charged particle systems can be overcome
by constructing an algorithm which reduces the cost per MH step to O(log(N)) without sacrificing accuracy,
thereby making much larger simulations with realistic electrostatics feasible. Our multilevel approach is
inspired by the Fast Multipole method and similar to the method recently proposed in [12]. However,
compared to [12] it leads to an overall reduction of computational cost by balancing the time spent in
proposing and accepting MC moves in realistic MC simulations.

The key observation motivating our new method is the following: standard FMM constructs local ex-
pansions for evaluating the long range interactions on the finest level of the hierarchical tree. While the
evaluation of those expansions (and direct interactions with all close by neighbours) in the proposal stage of
a MH step is O(1), re-calculating the local expansions incurs a cost of O(N) since all local expansions are
re-calculated in the upward and downward pass of the algorithm, resulting in an overall O(N) cost per MH
step. By storing the local expansions on each level of the multilevel hierarchy instead of accumulating them
on the finest level, the relative cost of the proposal- and accept- stage can be balanced since each of those
two steps requires a fixed number of operations on each level of the multilevel hierarchy. As the number of
levels L is proportional to log(N), this results in a total computational complexity per MH step which grows
logarithmically in the number of particles.

In summary, the new contributions of our work are as follows:

1. We describe a new hierarchical algorithm for Monte Carlo simulations with accurate electrostatics,
which has an O(log(N)) computational complexity per Metropolis-Hastings step.

2. By comparing to the similar method in [12] we show that our algorithm leads to an overall reduction
in cost for realistic Monte Carlo simulations.

3. We describe the efficient implementation of our algorithm in the performance-portable PPMD frame-
work [13] recently developed in our group. Since it has a user-friendly high-level Python interface,
PPMD allows the easy implementation of Monte Carlo algorithms with accurate electrostatics.

4. We demonstrate that the runtime of our implementation is competitive with the state-of-the-art MC
code DL MONTE [14, 15], which struggles to simulate systems of the size that are easily accessible
with our implementation.

For systems with N = 105 particles our implementation is an order of magnitude faster than the
DL MONTE code. At this system size, we observe that the alternative approach in [12] results in a 30%
longer simulation time than our method. By fitting a semi-empirical model to predict the cost of a simulation
as a function of the problem size, we show that asymptotically (i.e. for N →∞) we expect our algorithm to
be twice as fast as the one in [12].
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Structure. This paper is organised as follows: After discussing related work in Section 2, we review the
native FMM algorithm and describe our new method in Section 3, where we also compare it to the approach
in [12]. Following a description of the Python interface for our implementation of the algorithms introduced
in this paper in Section 4, numerical results are presented in Section 5. We conclude and outline directions
for further work in Section 6.

2. Related work

Methods for including untruncated electrostatic interactions in MC simulations with a computational
complexity of O(log(N)) per MH step have been developed previously in [12, 16]. Compared to our approach,
the method in [12] does not construct local expansions, thereby avoiding their recalculation whenever a
particle is moved. While this might look like a reasonable simplification, it actually makes evaluating the
change in potential for each proposed (but potentially rejected) MC transition more expensive. Since there
is typically more than one proposed move per accepted transition, this renders the method in [12] more
expensive overall, as our numerical experiments confirm.

A modification of the Barnes-Hut octree algorithm is discussed in [16]. Similar to FMM, the classical
Barnes-Hut method constructs a hierarchical mesh structure, and represents the distribution of particles in
cells on each level by their multidimensional Taylor expansion coefficients. While the calculation of the total
electrostatic energy with the octree algorithm is O(N log(N)), the authors of [16] present a modification of
the method which has a cost of O(log(N)) per local MC step.

The O(log(N)) algorithms presented here and in [12, 16] improve on what can be achieved with Ewald
summation [4, 17], for which the change in electrostatic energy per MC proposal can be calculated at a
computational complexity of O(

√
N). This is because the overall O(N3/2) cost of the Ewald-based energy

calculation is made up by an iteration over all N particles and a sum over O(
√
N) reciprocal vectors (long-

range contribution) and neighbouring particles (short-range contribution). If only O(1) particles move in
each proposed move, only a small number of the O(

√
N) sums have to be evaluated. A similar approach is

currently explored in the DL MONTE code [14, 15], though the implementation at present is limited by the
fact that the short-range cutoff of the Ewald summation has to be identical to the cutoff of all other local
interactions. In this paper we present numerical results which show that our new method can be used to
simulate systems with up to 105 charges and accurate electrostatic interactions at a cost of around 1ms per
MH step.

For completeness, it should be pointed out that other methods with a computational complexity of O(N)
per MH step have also been developed. For example, in [3] a multigrid method is used to solve the Poisson
equation to obtain the electrostatic potential generated by the particles. Since the global electrostatic field
has to be re-computed for each (local) particle move and the cost of multigrid grows in proportion to the
number of grid points [18], which in turn has to increase with the problem size to ensure an accurate
representation of the charge distribution on the computational mesh, the cost is inherently O(N). An
additional disadvantage of the method is that the mapping of the highly peaked charge distribution to a grid
introduces interpolation errors.

While all methods discussed so far focus on the development of fast methods for computing the electro-
static interactions between particles based on Gauss’ law and the fact that the electric field is the gradient of
a scalar potential, a radically different approach is pursued in [19]. The authors of this paper argue that (sta-
tistically) integrating over a ficticious traverse electric field in addition to the different particle configurations
produces the same results as a traditional Monte Carlo simulation with standard Coulombic interactions.
While this enlarges the configuration space, it crucially only requires local updates for each particle move.
Since the traverse electric field relaxes rapidly, this only introduces a small overhead, independent of the
problem size. Overall the cost of updating all particle positions and the traverse field grows in proportion
to N , which results in a O(1) cost per individual particle move. A non-trivial interpolation scheme is used
in [19] to reduce lattice artifacts that are introduced by enforcing Gauss’ law on a Cartesian grid.
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Figure 1: Schematic illustration of the classical Fast Multipole Method in two dimensions first described in [5, 6]. The number
of levels is L = 4 in this example. The upward pass for constructing the multipole expansions (ϕ) is shown in the top row,
while the local expansions (Ψ) are built in the downward pass at the bottom of the figure. The asterisk (*) on the right hand
side denotes special operations on the coarsest level for incorporating (potentially nontrivial) boundary conditions.

3. Method

We now discuss the new approach introduced in this work. After briefly reviewing key concepts of the
classical FMM algorithm we describe our method in detail in Section 3.2 and compare it to the related
technique in [12] in Section 3.3.

3.1. Fast Multipole method

In three dimensions the FMM algorithm [5, 6, 7] uses a hierarchical grid with L levels for the computa-
tional domain Ω (which is assumed to be a cube of width a) such that the number of cells on each level ` is
M` = 8`−1 for ` = 1, . . . , L. The number of cells on the finest level is M = ML, and (to balance the work
between the long range and direct field calculation) typically L is chosen such that there are O(1) particles
in each fine level cell. Each cell on level ` = 1, . . . , L − 1 is subdivided into 8 child-cells on the next-finer
level; conversely each cell on level ` = 2, . . . , L has a unique parent cell. The Fast Multipole Algorithm now
computes the electrostatic potential by splitting it into two contributions. First, the long range part is cal-
culated by working out the multipole expansion of all charges in a fine level cell and transforming them into
multipole expansions on the coarser levels in the upward pass of the algorithm. In the downward pass the
multipole expansions on each level are transformed into local expansions around the centre of a cell. Those
are then recursively combined into local expansions in the child cells. By only considering the contribution
from multipole expansions in a fixed number of well-separated cells on each level, the potential of distant
charges is resolved at the appropriate level of accuracy, while including the contribution from closer charges
on finer levels. The method for calculating the long range contribution is shown schematically in Figure
1; we refer the reader to [5, 6, 7] for further details. For the following discussion of our FMM variant for
MC simulations the notion of an interaction list (IL) of a particular cell is crucial. For a cell α on level `
this interaction list IL(α) is the set of cells which are the children of the parent cell of α and its nearest
neighbours, but which are well separated from α, i.e. not direct neighbours of α on level `. Explicitly, the
interaction list is defined as

IL(α) = children (Nb (parent(α))) \ (α ∪Nb(α)) ,

where Nb(α) is the set of the 26 nearest neighbours of the cell α; the functions children(α), parent(α) return
the set of child cells or the parent cell of a particular cell α. An example of an interaction list can be found
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in the bottom left corner of Figure 1: all cells labelled with the letter ϕ are in the interaction list of the gray
cell labelled with a Ψ.

Finally, interactions with charges in neighbouring fine level cells are included by directly evaluating the
1/r potential generated by those charges.

3.2. FMM for Monte Carlo simulations

Now consider the following modification of FMM. Let Ψ∆
`,α be the p-term local expansion around the

center of cell α on level ` such that Ψ∆
`,α contains contributions from all charges in the interaction list IL(α) of

α. Note that this is different from standard FMM, where the local expansions Ψ`,α contain the contribution
of all charges not contained in the cell α or its 26 nearest neighbours. However, Ψ`,α can be obtained by
summing the Ψ∆

`,α on the current and coarser levels, namely

Ψ`,α =
∑̀
`′=1

Ψ∆
`′,α`′

with α` = α and α`′ = parent(α`′+1) for all `′ = 1, . . . , `− 1. (1)

For a cell α on level ` the local expansion Ψ∆
`,α can be expressed in terms of the coefficients (L∆

`,α)mn as

Ψ∆
`,α(δr) =

p∑
n=0

+n∑
m=−n

(
L∆
`,α

)m
n

(δr)nY mn (δθ, δφ) with (δr, δθ, δφ) = spherical(δr). (2)

Here δr is the position of the particle measured relative to the centre Rα of the cell α. The function
spherical(r) returns the spherical coordinates (r, θ, φ) of a vector r. We further call the set ancestors(α) =
{α`−1, α`−2, . . . , α2, α1} defined recursively in Equation (1) the ancestors of cell α. Our strategy for evalu-
ating the long range contributions in Monte Carlo simulations is as follows (see Figure 2):

Initialisation. At the beginning of the simulation, calculate the local expansion coefficients (L∆
`,α)mn for all

cells α and on all levels ` by using a slightly modified variant of the upward/downward pass in the Fast
Multipole Algorithm.

Proposal. Consider a proposed MC move r → r′ of charge q such that the original position r is contained
in the fine-level cell α and the new position r′ in the fine-level cell α′ (which could be identical to
α). To evaluate the change in the long range potential, evaluate and accumulate the Ψ∆

`,α`
(r −Rα`)

and Ψ∆
`,α′

`
(r′ − Rα′

`
) on all levels ` = 1, . . . , L of the hierarchy by using the sum in Equation (1),

where Rα is the centre of cell α. This gives the change in long-range electrostatic energy ∆Ulr =
q(ΨL,α′(r′ − Rα′) − ΨL,α(r − Rα)). Secondly, add the change in short-range energy ∆Udirect from
a direct calculation of the interactions with particles in the same and adjacent cells. Finally, remove
the spurious self-interaction contribution q2/|r′ − r| which is due to the potential field induced by the
charge at the original position. This self-interaction correction is described in detail in [20, Section 3].

Accept. Assume we accept a move r → r′ of charge q such that r lies in cell α and r′ in cell α′. For all
cells β in the interaction list of α and all its ancestors the contribution of a monopole with charge q
is subtracted from Ψ∆

`,β`
on all levels ` = 1, . . . , L. This requires updating the expansion coefficients

L∆
`,α`

. Conversely, a monopole of charge q is added to the local expansions Ψ∆
`,β′

`
of for all cells β′` in

the interaction list of α′ and its ancestors.

The propose and accept steps are written down explicitly in Algorithms L.1 and L.2; the direct calculation of
the interaction with particles in the same fine-level cell or directly adjacent cells to obtain ∆Udirect is given
in Algorithm 4. In Algorithm 4 we remove the spurious self-interaction that occurs between the charge at
the proposed position with itself at the original position.

Since the local expansions with O(p2) terms need to be evaluated in two cells per level, the cost of
one proposal is O(p2L) = O(p2 log(N)). Similarly, when updating the O(p2) expansion coefficients L∆

`,α`

while accepting a move, the number of cells in the interaction list on each level is constant (6d − 3d = 189

5



old position
new positionr'

r

level ℓ=L

level ℓ=L-1
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Figure 2: Schematic illustration of the new method for a proposing a MC move r → r′, as described in Section 3.2. On each
level ` the cell α` containing r and the corresponding cell α` containing r′ are marked in red. Cells β` in the interaction list
of α` and cells β′` in the interaction list of α` are shown in blue. Interactions with particles in green cells have to be evaluated
directly when a move is proposed.

Algorithm L.1 Propose a move r → r′ using local expansions. Input: initial position r of particle with
charge q; target position r′. Output: change in total electrostatic energy ∆U

1: Find fine-level cells αL, α
′
L such that r ∈ αL and r′ ∈ α′L

2: ∆U ← [ 0
3: for ` = L,L− 1, . . . , 1 do

4: Update ∆U ← [ ∆U + q
(

Ψ∆
`,α′

`
(r′ −Rα′

`
)−Ψ∆

`,α`
(r −Rα`)

)
using local expansion in Equation (2)

5: if ` > 1 then
6: Set α`−1 ←[ parent(α`); α′`−1 ← [ parent(α′`)
7: end if
8: end for
9: Calculate change ∆Udirect in electrostatic energy from direct interactions with Algorithm 4

10: ∆U ← [ ∆U + ∆Udirect

Algorithm L.2 Accept a move r → r′ using local expansions. Input: old position r, new position r′

1: Find fine-level cells αL, α
′
L such that r ∈ αL and r′ ∈ α′L

2: for ` = L,L− 1, . . . , 1 do
3: for β` ∈ IL(α`) and β′` ∈ IL(α′`) do
4: Set (δr, δθ, δφ)←[ spherical(r −Rβ`) and (δr′, δθ′, δφ′)← [ spherical(r′ −Rβ′

`
)

5: for n = 0, . . . , p do
6: for m = −n, . . . ,+n do
7: Update (L∆

`,β`
)mn ← [ (L∆

`,β`
)mn − q(δr)−(n+1)Y −mn (δθ, δφ)

8: Update (L∆
`,β′

`
)mn ← [ (L∆

`,β′
`
)mn + q(δr′)−(n+1)Y −mn (δθ′, δφ′)

9: end for
10: end for
11: end for
12: if ` > 1 then
13: Set α`−1 ←[ parent(α`); α′`−1 ← [ parent(α′`)
14: end if
15: end for

6



Algorithm L.3 Initialise local expansion coefficients (L∆
`,α)mn for electrostatic calculation with Algorithms

L.1 and L.2

1: for levels ` = 1, . . . , L do
2: for all cells α` on level ` do
3: for n = 0, . . . , p and m = −n · · ·+ n do
4: Set (L∆

`,α`
)mn = 0

5: end for
6: end for
7: for all cells α` on level ` do
8: for all particles with charge qi and position ri ∈ α` do
9: for all cells β` ∈ IL(α`) do

10: Set (δri, δθi, δφi)←[ spherical(ri −Rβ`)
11: for n = 0, . . . , p do
12: for m = −n, . . . ,+n do
13: Update (L∆

`,β`
)mn ← [ (L∆

`,β`
)mn + qi(δri)

−(n+1)Y −mn (δθi, δφi)
14: end for
15: end for
16: end for
17: end for
18: end for
19: end for

Algorithm 4 Calculate change in electrostatic energy from direct interactions for a proposed move r → r′.
Input: initial position r ∈ αL of particle with charge q; target position r′ ∈ α′L. Output: change in direct
electrostatic interaction energy ∆Udirect

1: ∆Udirect ← [ 0
2: for all particles with charge qi and position ri ∈ αL ∪Nb(αL), ri 6= r do
3: Update ∆Udirect ←[ ∆Udirect − qqi

|r−ri|
4: end for
5: for all particles with charge q′i and position r′i ∈ α′L ∪Nb(α′L), r′i 6= r′ do

6: Update ∆Udirect ←[ ∆Udirect +
qq′i
|r′−r′i|

7: end for
8: Remove self-interaction ∆Udirect ← [ ∆Udirect − q2

|r′−r|

7



in d = 3 dimensions, to be specific). Therefore the computational complexity of the accept stage is also
O(p2L) = O(p2 log(N)). The larger constant (compared to the one in the propose stage) arises due to the
fact that 2 × 189 = 378 instead of 2 cells have to be considered on each level in this stage and is partially
compensated by two effects:

1. Typically only a fraction of all proposed moves are accepted.

2. Each MC proposal also requires the calculation of the short-range electrostatic interactions, which is
not necessary in the accept stage.

The short-range contribution of the electrostatic potential is evaluated by calculating the contribution of all
charges in Nb(α) and Nb(α′) directly in Algorithm 4. As in the standard FMM algorithm the number of
charges per fine level cell is constant and independent of the number of levels; each cell typically contains at
the order of 1-10 charges. This guarantees that the total cost of the electrostatic calculation in the proposal
step is still O(log(N)) after the direct, short-range interactions are included using Algorithm 4.

We conclude that the computational complexity of the electrostatics in one MH step, which consists of a
proposed move, potentially followed by one accepted transition, is O(p2 log(N)).

The initialisation of the local expansions Ψ∆
`,α at the beginning of the simulation could be carried out

in O(p4N) time with a minimally modified variant of the standard FMM algorithm, which is written down
explicitly as Algorithm 2 in [20]. Apart from renaming L`,α 7→ L∆

`,α in the local expansions, the only difference

is that line 17 of this algorithm has to be replaced by Ψ`,α ← [ 0 and the loop over cells to construct Ψ`,α in
lines 13-15 is no longer necessary. However, since the setup cost is amortised anyway by the large number
of MH steps, we chose a slightly more expensive but simpler approach, which is written down in Algorithm
L.3 and avoids the calculation of multipole expansions in the upwards pass of the FMM algorithm. For this,
the coefficients L∆

`,α are initialised to zero for all cells α and levels `. Next, on each level we loop over all

cells α and increment Ψ∆
`,β for all β ∈ IL(α) by adding the contribution of all monopoles in α to the local

expansion in β. Since N monopoles have to be considered on each level, the computational complexity of
the setup phase is O(p2LN) = O(p2N log(N)).

3.3. Alternative algorithm based on multipole expansions
For reference, we now describe the alternative algorithm introduced in [12], which is based entirely on

multipole expansions and which we also implemented for reference. In analogy to Equation (2), we define
the multipole expansion of all particles contained in box α on level ` around the centre of the box

Φ`,α(δr) =

p∑
n=0

+n∑
m=−n

(M`,α)
m
n (δr)−(n+1)Y mn (δθ, δφ) with (δr, δθ, δφ) = spherical(δr). (3)

Assuming that the particles in the box α have coordinates δri and charges qi with i ∈ Iα ⊂ {1, . . . , N}, the
explicit expression for the multipole expansion coefficients in Equation (3) is

(M`,α)mn =
∑
i∈Iα

qi(δri)
nY −mn (δθi, δφi) with (δri, δθi, δφi) = spherical(δri). (4)

Algorithms M.1 and M.2 describe how a potential move is proposed and accepted, using only multipole
expansions; the two algorithms should be compared to Algorithms L.1 and L.2 above. Both methods have
a computational complexity of O(p2 log(N)), but observe that the expensive loops over the interaction list
are now carried out in the proposal step in Algorithm M.1. Again, it would be possible to initialise the
multipole expansion coefficients M`,α at the beginning of the simulation in O(p4N) time with one upward
pass of the native FMM method. However, for simplicity we chose to calculate them directly by looping over
the cells on all levels and accumulating the multipole coefficients from all particles in a particular cell using
Equation (4); this is written down explicitly in Algorithm M.3 which has O(p2N log(N)) complexity. The
resulting coefficients (M`,α)mn are not identical to those that would be have been obtained in the upward
pass of the FMM algorithm, where they are calculated by recursively combining expansions on subsequent
levels. However, the difference between the two ways of computing the multipole coefficients can be bounded
as in the standard FMM error analysis.
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Algorithm M.1 Propose a move r → r′ using multipole expansions. Input: initial position r of particle
with charge q; target position r′. Output: change in total electrostatic energy ∆U

1: Find fine-level cells αL, α
′
L such that r ∈ αL and r′ ∈ α′L

2: ∆U ← [ 0
3: for ` = L,L− 1, . . . , 1 do
4: for β` ∈ IL(α`) and β′` ∈ IL(α′`) do

5: Update ∆U ← [ ∆U + q
(

Φ`,β′
`
(r′ −Rβ′

`
)− Φ`,β`(r −Rβ`)

)
using multipole expansion in Equation

(3)
6: end for
7: if ` > 1 then
8: Set α`−1 ← [ parent(α`); α′`−1 ← [ parent(α′`)
9: end if

10: end for
11: Calculate change ∆Udirect in electrostatic energy from direct interactions with Algorithm 4
12: ∆U ←[ ∆U + ∆Udirect

Algorithm M.2 Accept a move r → r′ using multipole expansions. Input: old position r, new position r′

1: Find fine-level cells αL, α
′
L such that r ∈ αL and r′ ∈ α′L

2: for ` = L,L− 1, . . . , 1 do
3: Set (δr, δθ, δφ)← [ spherical(r −Rα`) and (δr′, δθ′, δφ′)←[ spherical(r′ −Rα′

`
)

4: for n = 0, . . . , p do
5: for m = −n, . . . ,+n do
6: Update (M`,α`)

m
n ←[ (M`,α`)

m
n − q(δr)nY −mn (δθ, δφ)

7: Update (M`,α′
`
)mn ←[ (M`,α′

`
)mn + q(δr′)nY −mn (δθ′, δφ′)

8: end for
9: end for

10: if ` > 1 then
11: Set α`−1 ←[ parent(α`); α′`−1 ← [ parent(α′`)
12: end if
13: end for

Algorithm M.3 Initialise multipole expansion coefficients Mm
n for electrostatic calculation with Algorithms

M.1 and M.2

1: for levels ` = 1, . . . , L do
2: for all cells α` on level ` do
3: for n = 0, . . . , p and m = −n · · ·+ n do
4: Set (M`,α`)

m
n = 0

5: end for
6: end for
7: for all cells α` do
8: for all particles with charge qi and position ri ∈ α` do
9: Set (δri, δθi, δφi)← [ spherical(ri −Rα`)

10: for n = 0, . . . , p do
11: for m = −n, . . . ,+n do
12: Update (M`,α`)

m
n ← [ (M`,α`)

m
n + qi(δri)

nY −mn (δθi, δφi)
13: end for
14: end for
15: end for
16: end for
17: end for
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3.4. Boundary conditions

So far we have implicitly assumed that free-space boundary conditions are used for the calculation of the
electrostatic energy. In this case the interaction lists on the coarsest two levels of Algorithms L.2, L.3, M.1
and L.3 are empty. This implies that Ψ∆

1,1 = Ψ∆
2,α = Φ1,1 = Φ2,α = 0 and levels ` = 1, 2 can be skipped

when looping over the hierarchical tree. It is possible to adapt all algorithms in this section for simulations
with periodic boundary conditions by making the following modifications:

• In Algorithms L.2 and L.3, extend the domain Ω by 33 − 1 = 26 identical copies of the simulation cell
to obtain an extended computational domain Ω. In the loop over α` and α′`, include the copies of those
cells in the extended domain Ω.

• By following the approach described in detail in [20, Section 3.1], extend Algorithm L.3 to initialise
the data structures K and E required to compute the electrostatic contribution of all charges outside
Ω.

1: Set Km
n ← [ 0, Emn ←[ 0 ∀ m,n

2: for all particles with charge qi and position ri ∈ α` do
3: Set (δri, δθi, δφi)← [ spherical(ri −R1)
4: for n = 0, . . . , p do
5: for m = −n, . . . ,+n do
6: Set Km

n ← [ Km
n + qi(δri)

nY −mn (δθi, δφi)
7: Set Emn ←[ Emn + qi(δri)

nY mn (δθi, δφi)
8: end for
9: end for

10: end for
11: Store K and E.

• Extend Algorithm L.2 to update K and E when a move is accepted.

1: Set (δr, δθ, δφ)← [ spherical(r −R1) and (δr′, δθ′, δφ′)← [ spherical(r′ −R1)
2: for n = 0, . . . , p do
3: for m = −n, . . . ,+n do
4: Set Km

n ← [ Km
n + q ((δr′)nY −mn (δθ′, δφ′)− (δr)nY −mn (δθ, δφ))

5: Set Emn ←[ Emn + q ((δr′)nY mn (δθ′, δφ′)− (δr)nY mn (δθ, δφ))
6: end for
7: end for

• Extend Algorithm L.1 to include the contributions to the energy differences from the proposed move in
periodic images outside Ω by computing the proposed differences to K and E to determine the change
in energy (the linear operator R is introduced in [20, Section 2.2.1]).

1: Set H ← [ R(K)
2: Set U∞ ← [

∑p
n=0

∑n
m=−nE

m
n H

m
n

3: Set (δr, δθ, δφ)← [ spherical(r −R1) and (δr′, δθ′, δφ′)← [ spherical(r′ −R1)
4: for n = 0, . . . , p do
5: for m = −n, . . . ,+n do
6: Set δKm

n ← [ Km
n + q ((δr′)nY −mn (δθ′, δφ′)− (δr)nY −mn (δθ, δφ))

7: Set δEmn ←[ Emn + q ((δr′)nY mn (δθ′, δφ′)− (δr)nY mn (δθ, δφ))
8: end for
9: end for

10: Set δH ← [ R(δK)
11: Set ∆U∞ ← [

∑p
n=0

∑n
m=−n δE

m
n δH

m
n − U∞

12: Set ∆U ← [ ∆U + ∆U∞

• In Algorithm 4, extend Nb(αL) and Nb(α′L) to include all cells in the extended domain Ω. Further, the
self-interaction term has to be modified to take into account spurious interactions with the additional
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copies of the original particle. As discussed in detail in [20, Section 3.1] this can done by replacing the
update in line 8 of Algorithm 4 by

∆Udirect ← [ ∆Udirect −
∑

ν∈[−1,0,+1]3

q2

|r′ − (r + aν)| +
q2

a

(
6 +

8√
3

+
12√

2

)
.

Similar modifications have to be made to Algorithms M.1 and M.3. In practice, iteration over the 26
additional copies of the simulation cells can be implemented by modifying data structures such as neighbour
lists, see [20] for a more detailed discussion.

4. Implementation

The algorithms described in this paper have been implemented as an extension to the performance
portable framework for molecular dynamics (PPMD) described in [13], which is freely available at

https://github.com/ppmd/ppmd

PPMD provides a high-level Python interface for particle-based simulations which require the efficient exe-
cution of user-defined operations over all particles or pairs of particles in a system. An obvious example of
the latter is the calculation of inter-particle forces in molecular dynamics simulations, but the interface is
sufficiently abstract to support more general operations such as the structure analysis algorithms discussed
in Section 4 of [13]. PPMD automatically generates efficient code for executing short user-defined C-kernels
for all particles or particle-pairs on different parallel architectures; both distributed- and shared- memory
parallelism are supported and the code can run on non-standard architectures such as GPUs. Particle-
specific data (such as e.g. charge, mass and velocity) is stored as instances of the Python ParticleDat

class. Particle positions, which contain information that is relevant for parallel domain decompositions, are
stored as instances of the specialised PositionDat class. In addition to electrostatic potential- and force-
calculation with classical Ewald summation [4, 21], PPMD also contains an implementation of the standard
FMM algorithm in three dimensions given in [7]. The PPMD framework therefore provides all necessary
data structures for storing information (such as local- and multipole- expansion coefficients) on a nested
hierarchy of grids which is required to implement the algorithms discussed in this paper. Algorithms L.1 -
L.3, M.1 - M.3 and 4 are implemented in the separate coulomb_mc Python package which is based on PPMD
and can be downloaded from

https://github.com/ppmd/coulomb_mc

Algorithms L.1, L.2, M.1 and M.2 have been implemented as auto-generated C-code. This allows the
pre-computation of constant expressions such as combinatorial factors that arise in the evaluation of the
spherical harmonics and unrolling of nested loops such as the ones in lines 5-10 of Algorithm L.2 and lines
4-9 in Algorithm M.2. Finally, the generated code is compiled for a specific chip architecture at runtime to
ensure optimal performance. Currently our implementation supports cuboid geometries with free space- and
periodic boundary conditions.

4.1. FMM-MC user interface

Recall that the local expansion coefficients L∆
`,α which are required to compute (changes of) the electro-

static energy of the system of N particles with charges {q1, q2, . . . , qN} and positions {r1, r2, . . . , rN} are
initialised with Algorithm L.3. In the coulomb mc package the charges of all particles are represented as
a PositionDat instance q, whereas the positions are stored as a ParticleDat object r. At the beginning
of the simulation the user populates q and r and uses those to create a MCFMM LM object, which is passed
additional information on the domain (such as boundary conditions), the number of levels L in the grid hi-
erarchy and the number of expansion terms. The constructor of the MCFMM LM class then executes Algorithm
L.3 to initialise the values of the coefficients L∆

`,α . Following this, Algorithm L.1 can be used to compute
the change in electrostatic energy which occurs if particle j transitions from its original position r = rj
to a new position r′ = r′j . In the code this is realised by calling the propose() method of the MCFMM LM
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Listing 1: Illustration of how a FMM MC instance is created and then subsequently used to propose and accept moves.

# Create MCFMM_LM instance with positions in PositionDat r and charges in ParticleDat q.

# Here we use 3 tree levels and 12 expansion terms

MC = MCFMM_LM(r, q, domain , ’pbc’, r=3, l=12)

# Perform the initial electrostatic solve

MC.initialise ()

# Consider move of particle j=7 to new position rj_new = (0.1 , 1.0, 5.2)

j = 7

rj_new = np.array ((0.1 , 1.0, 5.2))

# Propose a move of charge j to position rj_new

dU = MC.propose ((j,rj_new))

# Accept a move of charge j to position rj_new

MC.accept ((j, rj_new),dU)

object and passing it the particle index j and the new position r′ = r′j . Finally, Algorithm L.2 updates the

local expansions L∆
`,α if the proposed move r 7→ r′ is accepted. Calling the class method accept(), which is

passed the particle index j and the new position r′j of particle also executes Algorithm L.2 for the transition
rj 7→ r′j . It replaces the position of particle j in the PositionDat r by r′j and updates the expansion

coefficients L∆
`,α

Listing 1 illustrates the creation of an MCFMM LM object, followed by the computation of the change in
energy dU = ∆U which would result from moving particle j = 7 to the new position rj new = (0.1, 1.0, 5.2)
by calling the propose() method. In the last line the move to the new position is accepted by calling
the accept() method. Note that although the example in Listing 1 assumes that the proposed position is
identical to the accepted position, this is not the case in general. Because of this and since the code keeps
track of the total energy of the system at each step, by default the accept() method executes Algorithm
L.1 to compute the change in system energy ∆U . This can be avoided by passing this change ∆U (which
- as shown in Listing 1 - might have been computed in a previous call to propose() with the new position
that is to be accepted) as an additional parameter to the accept() method. The corresponding multipole-
based Algorithms M.1 - M.3 can be used by creating an MCFMM MM object which keeps track of the multipole
expansion coefficients M∆

`,α. The constructor of this class implements Algorithm M.3. The class methods
propose() and accept() implement Algorithms M.1 and M.2 and can be used in exactly the same way as
the corresponding methods of the MCFMM MM class described above.

Note that the aim of coulomb_mc is to provide functionality for the calculation of (changes in) the
electrostatic energy through the high-level MCFMM LM and MCFMM MM classes, which typically dominates the
runtime. It is up to the user to implement the overarching Monte Carlo algorithm which generates proposed
new positions r′ and uses the calculated energy differences to accept or reject particular moves, e.g. in a
Metropolis Hastings step.

5. Results

In the following we quantify the performance of the algorithms introduced in Sections 3.2 and 3.3 and
implemented as described in Section 4. We demonstrate numerically that, as expected, the time spent in
each Monte Carlo step increases logarithmically with the number of particles in the system. To assess its
overall performance, we also compare the runtime of our code to version 2.06 of the DL MONTE package
[14, 15] which uses the classical Ewald method to compute electrostatic interactions.

All numerical experiments were carried out on the University of Bath “Balena” HPC cluster. Compute
nodes of this machine consist of two Intel E5-2650v2 CPUs, and all timing results are reported for sequential
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runs on a single core. A snapshot of the source code which can be used to reproduce the results, along with
all plotting scripts and raw data is provided at [22]. The code was compiled using version 19.5.281 of the
Intel compiler; DL MONTE was compiled with version 17.1.132 of the same compiler.

5.1. Configuration and Parameter Selection

The accuracy of the algorithms described in Sections 3.2 and 3.3 crucially depends on the number
of local/multipole expansion terms, which can be quantified by p, the upper limit in the outer sum in
Equations (2) and (3). To provide a fair comparison between the methods introduced in this paper and the
Ewald implementation in DL MONTE, p is adjusted such that acceptance probabilities have errors which
are comparable to those in DL MONTE. For a proposed move r → r′ which results in a change of energy of
∆U , the relative error in the acceptance probability δP is defined as

δP =
|P − P ∗|
|P ∗| . (5)

Here P = exp (−∆U/(kBT )) is the acceptance probability (computed by DL MONTE or an expansion based
method) for a given choice of parameters. Assuming that the exact change in energy is ∆U∗, the exact
acceptance probability is denoted as P ∗ = exp (−∆U∗/(kBT )). For a particular move P ∗ is approximated to
high accuracy by computing ∆U∗ with the local expansion based method and 26 expansion terms (p = 25).

The configuration for our numerical experiments is based on TEST01 [23] in the DL POLY suite. This
setup simulates a simple cubic NaCl crystal of alternating Sodium (Na) and Chloride (Cl) ions with a lattice
constant of a =3.3Å. Fully periodic boundary conditions are used for all numerical experiments, which are
performed at a temperature of T = 273K.

To estimate the relative errors δP in the acceptance probability, we start with an initial configuration of
charges which is constructed by creating a cubic lattice of 22×22×22 = 10648 ions as described in TEST01
and perturbing the initial position of each ion by adding a uniform random shift with a maximum size of
0.01a in each spatial direction. Based on this, 1000 moves are proposed (note that no moves are accepted)
and for each move the acceptance probabilities P for DL MONTE and the expansion based approaches are
computed along with the “exact” acceptance probability P ∗, which is estimated as described above. This
process is repeated for 16 different initial configurations to generate a total of 16000 samples for the quantity
δP defined in Equation (5).

Figure 3 shows the mean relative error δP (averaged over all 16000 samples) as a function of the number of
expansion terms, which varies between 4 and 14 for the expansion based methods. This should be compared
to the same quantity computed with DL MONTE at a fixed solver tolerance of 10−6, indicated by the
horizontal dashed line. As those results show, choosing 12 expansion terms (p = 11) results in a comparable
mean relative error δP which is smaller than 10−3. Note that for a fixed value of p the local expansion
based method (Algorithm L.1) has a slightly higher accuracy than the method which only uses multipole
expansions (Algorithm M.1).
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Figure 3: Relative error δP in acceptance probability for DL MONTE and the expansion based methods for a varying number
of expansion terms.

To compare the errors of all used methods in more detail, we also inspect the distribution of δP over
all 16000 samples. Figure 4 shows a histogram of the relative error in the acceptance probability, i.e. the
number of samples which have a δP that falls into a certain interval [δP1, δP2]. Results are shown both for
DL MONTE (again using a solver tolerance of 10−6) and our expansion based methods with 12 expansion
terms. The cumulative density of the probability distribution in Figure 4 is plotted in Figure 5. In other
words, for a given tolerance ε on δP , Figure 5 shows the percentage of samples that have a relative error
which does not exceed ε. As both figures demonstrate, the spread in errors in slightly larger for the expansion
based methods: although for those methods a larger fraction of samples have errors well below the tolerance
of 10−3, there is a small number of outliers. This, however, is consistent between the two expansion based
methods.

Finally, observe that a large relative error δP in the acceptance probability P will only translate into a
large absolute error on P if ∆U∗ is also large. It is therefore instructive to also produce a scatter plot of
∆U∗ against δP for all samples and this is shown in Figure 6.
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Figure 4: Histograms of relative error δP in acceptance probability. Results are shown for the local expansion based algorithm
(top), the multipole expansion based algorithm (middle) and DL MONTE (bottom); 12 expansion terms (p = 11) are used for
first two methods.
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Figure 5: Cumulative density of the relative error δP in computed probabilities. Results are shown for the local expansion based
algorithm (top), the multipole expansion based algorithm (middle) and DL MONTE (bottom); 12 expansion terms (p = 11)
are used for first two methods.

Figure 6: Scatter plot of ∆U∗/(kBT ) against the relative error δP in acceptance probability. Results are shown for the local
expansion based algorithm (left), the multipole expansion based algorithm (middle) and DL MONTE (right); 12 expansion
terms (p = 11 ) are used for first two methods.

5.2. Computational complexity

Next, we investigate the growth in computational cost as a function of the number of charges N . For-
mally the number of levels L of the hierarchical tree is O(log(N)). The relative proportion of time spent
evaluating the local and multipole expansions in the propose stage (Algorithms L.1 and M.1), update of
expansion coefficients (Algorithms L.2 and M.2) and direct, nearest neighbour calculations (Algorithm 4)
can be controlled by setting L = blog8(αN)c and varying the constant α (here b·c denotes the floor function
defined by bxc = max{n ∈ N : n ≤ x}). The optimal value of the parameter α depends on the computer
hardware, the average acceptance rate ν and the number of expansion terms. We define the acceptance rate
as

ν =
Number of accepted moves

Number of proposed moves
. (6)
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Figure 7: Time spent in the propose and accept operations as a function of the number of charges N in the system. Results
in the left figure were obtained with the multipole expansion based method in [12] and show the time spent in Algorithm M.1

(T
(mp)
prop , blue squares) and Algorithm M.2 (T

(mp)
acc , red circles). The right figure shows the corresponding numbers for our new

method based on local expansion; namely the time spent in Algorithm L.1 (T
(loc)
prop , blue squares) and Algorithm L.2 (T

(loc)
acc ,

red circles). The step-changes in measured times (marked by dashed vertical lines) correspond to increases in the number of
levels L, which are shown at the bottom of each figure. The fit to the data (solid black lines) is discussed in Section 5.4.

Assuming that on average ν−1 = e ≈ 2.718 proposals have to be generated for each accepted move, we
find that for our setup and with 12 expansion terms (p = 11), the best results are obtained for α = 0.327
when using the local expansion based method (Algorithms L.1, L.2) and α = 0.138 if the multipole method
(Algorithms M.1, M.2) is used. This also implies that for a given value of N , the optimal number of levels
for both methods differs by less than 0.5.

To quantify the computational complexity of the propose stage (Algorithms L.1 and M.1) and the accept
stage (Algorithms L.2 and M.2) separately, random proposals and accepted moves are generated for problems
of increasing size, drawing particle positions and charges from a uniform random distribution with a maximal
absolute displacement of 0.25Å in each spatial direction. We investigated the computational cost of proposing
and accepting moves for systems containing between a thousand (N = 103) and a million (N = 106) particles.
For each N the initial arrangement of particles is constructed as described in Section 5.1. Figure 7 shows
the average time (measured over 1000 samples) per propose or accept operation as a function of the number
N of charges in the system; the fitted solid lines are discussed in Section 5.4 below. The measured times
increase abruptly as the number of levels L changes as incrementing the number of levels increases the
number of expansions that must be evaluated and updated. Although asymptotically we expect all times
to grow as L ∝ log(N), there are significant differences in the rate of growth and absolute computational
cost for the different implementations. While for the multipole based method from [12] proposing a single
move is significantly more expensive than accepting it, the opposite is true for our new method based on
local expansions. The main reason for this is that that the expensive loop over cells in the interaction list
has to be executed in the propose stage on the of the multipole based method (Algorithm M.1), whereas
the interaction list is traversed in the accept stage of our new method (Algorithm L.2). Overall we therefore
expect our new method to be more efficient as the acceptance rate ν decreases, and the number of proposals
is significantly larger than the number of accepted moves. In Metropolis Hastings simulations this is the
case since the acceptance rate is usually significantly less than 1, a typical value is 1/e ≈ 0.3679.

Although one would naively expect the runtime of the multipole-based accept (Algorithm M.2) and
the local-based propose (Algorithm L.1) to be roughly identical, the measured cost of the latter is slightly
smaller. Similarly, Figure 7 shows that the multipole-based propose (Algorithm M.1) is slightly faster than
the local-based accept (Algorithm L.2). This can be explained by details of the implementation. Firstly, the
bookkeeping operations for the propose- and accept stages introduce different overheads. For example, when
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proposing a move the cells α`, α
′
` have to be computed and when a move is accepted data structures, such

as the indirection map that assigns particles to cells, must be updated. Furthermore, in practice reading
and writing floating point numbers carries a different cost. For example, in the loop over the interaction list
in Algorithm L.2 expansion coefficients are updated, which requires a read and a write operation, however
in Algorithm M.1 in the loop over the interaction list expansion coefficients are only read, which avoids any
potential write contention. Finally bear in mind that the simulation uses periodic boundary conditions. In
our implementation this introduces a small overhead when proposing a move and a slightly larger additional
cost when a move is accepted.

To understand the growth of the runtime for increasing problem size N in more detail observe the
following: when an additional level is added to the octal tree as N increases, initially there are N/Ncell =
O(1) charges per cell on the finest level. However, as the total number of charges increases while the
number of levels L is kept fixed, the average number of charges per cell will grow. Hence the cost of
Algorithms L.1 and M.1 grows in proportion to N/Ncell for fixed L since both require the computation of
direct interactions with Algorithm 4. In addition our implementation of Algorithms L.2 and L.2 contains a
small number of bookkeeping operations which are formally O(N). As discussed in Section 5.4, the absolute
contribution of those operations to the total runtime is very small (and will be amoritised by the cost of
direct interactions induced by other short-range potentials such a repulsive Lennard-Jones field in real-life
simulations). Ignoring this small O(N) contribution the asymptotic complexity of Algorithms L.1, L.2, M.1
and M.2 is O(L) = O(log(N)).

5.3. Comparison of full Monte Carlo simulation with DL MONTE

Having quantified the time spent in the propose- and accept-stage of our expansion based algorithm
separately, we now discuss the growth of the total runtime of an entire Monte Carlo simulation as a function
of the problem size. For this we compare the performance of our expansion-based implementations in PPMD
against DL MONTE. Again we consider an NaCl crystal with the same initial arrangement of charges as
described in Section 5.1. To prevent oppositely charged ions from collapsing onto one another over the course
of the simulation, a repulsive short-range Lennard-Jones potential with a fixed cutoff of 12Å is added. For the
largest problem sizes (with N ≈ 105 in a cubic box with a side length of 153.2Å) this short-range potential
adds an additional average cost of 0.18ms per Monte Carlo step for our expansion based methods. This
accounts for approximately 14% of the total average cost per step for the local expansion implementation.

For each proposed move we create a random offset vector δr = r′ − r, such that each component δrj
is uniformly distributed in the interval [−0.25Å,+0.25Å]. This resulted in an average acceptance rate of
ν ≈ 0.438 for the expansion based methods. Note that the performance of the Ewald implementation in
DL MONTE is not sensitive to the acceptance rate and that in DL MONTE the additional cost of accepting
a proposed move is negligible.

Figure 8 shows the time per MC step for our implementations of the expansion based methods and for
DL MONTE as a function of the number of charges N . The size of the system varies between N = 103

and N = 105 charges and the reported times are averaged over 1000 Metropolis-Hastings steps (i.e. 1000
proposed moves). We do not include the setup times, since those account for an insignificant fraction of the
runtime for “real” simulations with a large number of Metropolis-Hastings steps.
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Figure 8: Time per Metropolis Hastings step for our implementations of the expansion based methods and DL MONTE. In the
latter case the cutoff was kept fixed at rc = 12Å for all problem sizes, except for the rightmost data point where results with an
optimised cutoff of rc = 28Å are also shown as a solid diamond. The plot on the right shows the same data but with a linear
scale on the vertical axis.

For N < 104 particles DL MONTE provides more performance than our implementations, but it is
almost an order magnitude slower for the largest considered problem size (N = 105). Empirically the cost of
the expansion based methods grows only relatively slowly with the problem size. For DL MONTE, on the
other hand, the runtime is approximately proportional to the number of particles. This O(N) growth can
be explained as follows: for the direct Ewald summation method with a short-range cutoff rc, short-range
interactions with O(ρr3

c ) particles have to be computed for each proposed move in a system with density
ρ. To balance errors in the short- and long-range computation, the physical cutoff in Fourier space and rc
are inversely related. As a consequence, the number of Fourier modes that have to be considered grows
like O(V r−3

c ). Hence, for fixed density where V = ρN the combined cost of the short- and long- range
contributions is

CostEwald(rc, N) = O(r3
c +Nr−3

c ). (7)

This cost can be minimised by varying the cutoff such that rc = r
(0)
c N1/6 for some constant r

(0)
c , as discussed

for example in [24] (see also [17, Chapter 12]), resulting in a total cost of CostEwald(r
(0)
c N1/6, N) = O(N1/2)

per proposal for the Ewald method. In the current version of DL MONTE the short-range cutoff for the
Ewald summation has to be identical to the cutoff for Lennard-Jones interactions, which we fixed at rc = 12Å
to obtain the majority of the results in Figure 8. In addition we also quantify how the results would change
if the optimal short range cutoff is chosen. At the moment this requires manual fine-tuning and for practical
reasons it was not possible to do this for all problem sizes. Equation (7) shows that for a fixed cutoff
of rc = 12Å the cost of the Ewald summation is dominated by the long range contribution and grows in
proportion to N . While this is a current limitation of DL MONTE and not a fundamental issue, it is
worth stressing that even if this problem is overcome, Ewald summation has a computational complexity
of O(N1/2) compared to the O(log(N)) complexity of our hierarchical methods. To demonstrate the effect
of a more optimal short-range cutoff we varied the cutoff radius rc between 12Å and 32Å and found that a
cutoff of rc = 28Å gives near optimal results. As shown by the rightmost datapoints in Figure 8, where the
results obtained with rc = 28Å are indicated by a solid diamond, this reduces the time per MH step from
8.0ms to 5.8ms for N ≈ 105 charges. This value might be reduced further in future releases of DL MONTE,
if the different cutoffs can be varied independently to avoid the evaluation of short range potentials with
an unnaturally large cutoff. With an optimally tuned cutoff the Ewald crossover between the Ewald- based
method and our hierarchical algorithms would occur for larger problem sizes.
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expansion stage τ γ κ σ

multipole
propose 89.15 228.40 0.50 1.49 · 10−4

accept 436.71 8.12 0.27 7.11 · 10−6

local
propose 304.01 9.92 0.61 4.12 · 10−5

accept 225.80 239.99 0.19 4.37 · 10−5

Table 1: Numerical values of fit parameters for empirical performance model in Equation (8).

Finally, note that in its current implementation the setup cost of DL MONTE grows like O(N2) instead
of O(N3/2) which could be achieved for an optimal rc ∝ N1/6. Although not considered here, this O(N2)
setup time can become computationally significant for systems containing a large number of charges.

5.4. Empirical results for growth of runtime
As will be shown below, the average speedup of our method relative to the one in [12] is 1.25 over all

considered problem sizes. The smallest measured speedup is 1.18, while the maximal speedup is 1.34, with
a median value of 1.23. To model the speedup for large N and establish an upper limit on the performance
gains as N →∞ we fit the measured times in Figure 7 to

T (N) = τ + γL+ κ
N

Ncell
+ σN (8)

with a least squares approach. In this expression L is the number of levels of the octree hierarchy for a given
value of N and Ncell = 8L−1 is the number of cells on the finest level for this octree depth. The numerical
values of the four fit parameters τ , γ, κ and σ for the propose- and accept stages of the multipole- and local
expansion based methods are given in Table 1. As the solid curves in Figure 7 show, Equation (8) models
the data extremely well. As expected the coefficient of the O(N) term is very small. The empirical model
in Eq. (8) allows to predict the expected speedup for a given problem size N and acceptance rate ν as

S(N) =
T

(mp)
prop (N) + νT

(mp)
acc (N)

T
(loc)
prop (N) + νT

(loc)
acc (N)

(9)

where superscripts “(loc)” and “(mp)” denote the local and multipole expansion based methods and sub-
scripts “prop” and “acc” label propose and accept operations respectively. Ignoring the O(N) term in
Equation (8) (this can be justified by the small value of σ in Table 1), the asymptotic speedup is

S∞ = lim
N→∞

S(N) =
γ

(mp)
prop + νγ

(mp)
acc

γ
(loc)
prop + νγ

(loc)
acc

(10)

Further observe that asymptotically the relative cost of Algorithms L.1 and M.1 is γ
(mp)
prop /γ

(loc)
prop = 23.03

while the relative time spent in Algorithms M.2 and L.2 is γ
(loc)
acc /γ

(mp)
acc = 29.56. These ratios deviate from the

theoretically expected value of 189 (which, as the reader will recall, is the number of cells in the interaction
list) due to details of the implementation. In particular looping over a larger set of cells in the interaction
lists allows the compiler to carry out additional optimisation and vectorise the code.

In Figure 9 we plot the theoretical and measured speedup for an acceptance rate ν = 0.438. Here the
theoretical speedups (blue) predicted with Equation (8) are computed from the time per propose and accept
operation computed in Section 5.2 and fitted with the model in Equation (8). The measured speedups
(red) are obtained from the data visualised in Figure 8. The theoretical upper limit S∞ for the speedup
defined in Equation (10) is also shown; for the fitted values of γ given in Table 1 and with ν = 0.438, we
find S∞ = 2.02. As Figure 9 demonstrates, the fit reproduces the measured speedup, which lies in the
range [1.18, 1.34], reasonably well. The expected asymptotic speedup for large N is around 2, demonstrating
that our method has the potential to approximately halve the runtime compared to the algorithm in [12].
However, this speedup is only reached for values of N which are significantly larger than the ones considered
in this work; for N = 106 we expect a speedup of roughtly 1.5×.
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Figure 9: Theoretical speedup S(N) (solid blue line) as defined in Equations (8) and (9) for ν = 0.438; the asymptotic speedup
S∞ (dash blue line), is given in Equation (10). The measured speedup, in solid red, is computed from the local and multipole
timings plotted in Figure 8.

6. Conclusion

In this paper we presented a new hierarchical method for accurately including electrostatic interactions
in Monte Carlo simulations. Our algorithm has a computational complexity of O(log(N)) per Metropolis
Hastings step. Compared to the related technique in [12], our method reduces the average cost of a MH step
as the balance of work between the propose and accept operations is more favourable for typical acceptance
rates. Numerically we find that runtimes are reduced by around 30% for systems with N = 105 charges,
with the potential of a speedup of around 2× for larger values of N . We demonstrated numerically that
our implementation will effectively scale to systems containing 106 charges whilst maintaining the expected
computational complexity of O(log(N)) per MH step. As the direct Ewald summation technique has a
higher complexity of at least O(

√
N), our implementation becomes more efficient for simulations with more

than 104 particles: for N = 105 it is about an order of magnitude faster than the current DL MONTE
implementation.

There are several avenues for future work. One obvious shortcoming of the present implementation is the
lack of parallelisation. While Monte Carlo simulations are “embarrassingly parallel”, and several Markov
Chains can be generated in parallel without communications, this increases memory requirements. In our
method this issue could be reduced to a certain degree by parallelising over the levels in the grid hierarchy.
This is possible since the cost on each level is constant, and computations can be carried out independently,
before summing the total energy in the propose stage.

Furthermore, here we have only considered single-particle moves and future work should also investigate
other Monte Carlo transitions. For example, in a canonical ensemble the pressure is fixed but the volume
of the simulation cell varies. In this case a proposed move could consist of a change of the system volume.
In the worst case scenario, the energy change of such a proposed volume move is computed with a full solve
of the electrostatic energy of the proposed state. When using an Ewald based approach this system solve
incurs an O(N

3
2 ) cost per MH step, however, with multipole- or local expansion based approaches this can

potentially be reduced to an O(N) cost.
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