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Abstract

Gaussian processes (GPs) are non-parametric priors over functions, and fitting
a GP to the data implies computing the posterior distribution of the functions
consistent with the observed data. Similarly, deep Gaussian processes (DGPs) [1]
should allow us to compute the posterior distribution of compositions of multiple
functions giving rise to the observations. However, exact Bayesian inference is
usually intractable for DGPs, motivating the use of various approximations. We
show that the simplifying assumptions for the mean field variational approximation
imply that all but one layer of a DGP collapse to a deterministic transformation.
We argue that such an inference scheme is suboptimal, not taking advantage of
the potential of the model to discover the compositional structure in the data, and
propose possible modifications addressing this issue.

1 Introduction
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Figure 1: Example of a compositional model: transformation of a solid rectangle onto the dashed one is
decomposed as T2 ◦R2 ◦T1 ◦R1 with Ri and Ti being rotations and translations. Different sampled realisations
of these transformations are overlaid, showing the compositional uncertainty. Regular DNNs and DGPs do not
capture such uncertainty, collapsing to a single realisation of a composition to model the data.

Deep learning studies functions represented as compositions of other functions, f = fL ◦ . . . ◦ f1.
Compositions of functions is a natural way to model data generated by a hierarchical process. Each
fi represents a certain part of the hierarchy, and the prior assumptions on fi reflect the corresponding
prior assumptions about the data generating process. Moreover, if the data generating process is not
hierarchical, compositional models offer a convenient way to impose priors on simpler fi rather than
on the overall complex function, which in practice might result in a model that is easier to fit. Given
these prior assumptions, we can compute the posterior distributions of fi and by doing so uncover
the structure of the data and explicitly estimate the uncertainties due to each function (or layer) in the
composition.
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The uncertainties in each fi give rise to what we call compositional uncertainty: even noiseless
observed data could be generated by compositions of a multitude of different functions which are
consistent with the prior (for example, see Fig. 1). An example of a problem where computing such
uncertainty is important is alignment of temporal signals [5, 6], where it is informative to not only
compute a point estimate of the temporal warps aligning the signals to each other, but also see the
range and likelihood of different possible warps. Another example is transfer learning where we
assume that two hierarchical models m1 = g1 ◦ f and m2 = g2 ◦ f share a common part of the
hierarchy (f in this example). Having fitted m1, we can fit m2 to a different data set (or domain) by
reusing f from m1 and fitting only g2. In this case it is important to capture a wide distribution of
possible realisations of f , such that it adequately models a common part of m1 and m2 (as opposed
to finding a single realisation of f , only useful for explaining the data set we used for fitting m1).

The research in deep neural networks (DNNs), however, has mostly focused on networks built using
a very large number of simple functions where the goal is to fit the entire composition to the data [2],
while the computations by individual functions in the composition or parts of the network are often
irrelevant and not interpretable. In other words, DNNs generally do not model a hierarchical process
but only the (predictive) distribution of the data. The model is thus much closer to a single-layer GP
and the issue of compositional uncertainties are ignored altogether.

DGPs [1], which are compositions of GPs, allow us to impose explicit prior assumptions on fi by
choosing the kernels, and perform Bayesian inference to compute the posterior over each layer that
is consistent with the observed data. Such posteriors would capture the compositional uncertainty
showing the range of transformations fitting the data. We note that DGPs are inherently unidentifiable,
since different compositions can fit the data equally well, and we argue that it should be captured by
an adequate Bayesian posterior. However, exact Bayesian inference in DGPs is intractable [1] and
we have to resort to approximations. We show that typically used approximate inference schemes
make strong simplifying assumptions resulting in all but one of the layers of a DGP collapsing to
deterministic transformations. In certain cases (e.g. when we have weak priors on the layers or
uncertainty is irrelevant for the application) such behaviour is not an issue, however, in general that
prevents us from using the power of probabilistic models to capture the uncertainty in the hierarchy.
By highlighting these limitations of the current inference schemes and suggesting their modifications,
we aim to show that the assumptions on the approximate inference scheme are central to the estimation
of compositional uncertainty.

2 Issues with compositional uncertainty in DGPs

DGPs are compositions of functions f = fL ◦ . . . ◦ f1, where fi(·) ∼ GP(µi, ki(·, ·)). Having
observed the data set (X,Y ) = {(xi, yi)}Ni=1, the marginal likelihood

p(Y |X) =

∫
· · ·
∫
p(Y | FL) p(FL | FL−1) . . . p(F1 |X) dFL . . . dF1,

where p(Fi | Fi−1) ∼ fi(Fi−1)

(1)

is intractable since it requires integration of the non-linear covariance matrices in the terms p(Fi|Fi−1).
As proposed by [1, 8], a lower bound on this intractable integral can be estimated using variational
approximations based on augmenting the GPs fi with inducing points Ui, which are treated as
variational parameters. Conditioned on the inducing points, the output distribution of each layer can
be computed as a GP posterior distribution, treating Ui as (pseudo-) observations. Introducing a
variational distribution q(U1, . . . , UL), the marginal likelihood lower bound is computed as (see [8]
for further details):

p(Y |X) ≥ Eq(FL)[log p(Y | FL)]− KL[q(U1, . . . , UL) || p(U1) · . . . · p(UL)]. (2)

2.1 Collapse of intermediate layers to deterministic transformations

The variational distribution over the inducing points is typically chosen to be factorised as
q(U1, . . . , UL) = q(U1) · . . . · q(UL), however, that leads to the layers of a DGP collapsing to
deterministic transformations [4]. As demonstrated in Figs. 2 (first row) and 3, different random
samples from a DGP fitting the same data look essentially the same, meaning there is almost no
uncertainty captured about the transformations in intermediate layer. At the same time, fitted DGPs
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corresponding to different random initialisations (denoted by different colours in the figures) converge
to different solutions, indicating that there are multiple compositions of these three functions fitting
the data, which should be captured as part of the compositional uncertainty.

We argue that this uncertainty collapse is due to the factorisation of the variational distribution over
the inducing points. The inducing points essentially define the transformation in each layer (more
precisely, the output distribution of each layer P (Fi |Fi−1, Ui) is parametrised by the inducing points).
Hence the variational distribution q(Ui) induces a distribution over the mappings implemented by
that layer, but these transformations in different layers are independent. However, in order to fit the
observed data, the layers must be dependent (e.g. if f1 implements a blue transformation in Fig. 2,
f2 must implement a blue transformation as well, otherwise the entire composition does not fit the
data), and that the only way to achieve that with a factorised variational distribution is to make each
factor essentially a point mass on some transformation. This is akin to subsequent layers having
noisy inputs as in [3], which leads to increased output uncertainty. Another illustration of this idea is
provided in Fig. 1, where we fitted a model with correlated rotations and translations, allowing us to
see the variety of possible motions of the square. However, a model with independent transformations
in each layer would converge to a single possible sequence of rotations and translations.

3 Modeling dependencies between layers

We discuss and compare two ways of introducing dependencies between the inducing points in order
to capture the compositional uncertainty.

Jointly Gaussian inducing points A straightforward way to introduce dependencies between the
inducing points is to define q(U1, . . . , UL) ∼ N (µ,Σ) with a joint covariance matrix across layers.
In this case, the expectation in Eq. (2) can be approximated numerically by drawing a sample from
q(U1, . . . , UL), then, conditioned on the sampled Ui, drawing the DGP output sample by sequentially
sampling from GP posterior distributions in each layer (in the same way as in [8]), and finally
using these sampled DGP outputs to compute a Monte-Carlo estimate of the expectation. The
reparametrisation trick [7] for the Gaussian distribution permits computation of the gradients of the
variational parameters.

Variational distributions of outputs of intermediate layers Modelling the correlations between
the inducing points directly does not scale with the number of inducing points and with the depth of a
DGP. To address these issues we propose the following variational distribution and inference scheme.

We introduce the inducing locations Z in the input space, and the outputs of intermediate layers
{FZ

i } at these inducing inputs: FZ
i ∼ (fi ◦ . . . ◦ f1)(Z) with FZ

0 = Z. Denoting the outputs of the
intermediate layers at observed inputs as {Fi}, i.e. Fi ∼ (fi ◦ . . . ◦ f1)(X), F0 = X and FL = Y ,
the DGP joint distribution is as follows:

p(Y, FL, . . . , F1, F
Z
L , . . . , F

Z
1 |X,Z) = p(Y | FL)

L∏
i=1

p(Fi | Fi−1, F
Z
i , F

Z
i−1)p(FZ

i | FZ
i−1) (3)

where the terms p(Fi | Fi−1, F
Z
i , F

Z
i−1) are the GP posteriors given the outputs of the intermediate

layers at the inducing inputs, and p(FZ
i | FZ

i−1) are the GP priors in each layer.

We introduce the following variational distribution:

q({Fi}, {FZ
i }) =

L∏
i=1

p(Fi | Fi−1, F
Z
i , F

Z
i−1)q(FZ

i ), (4)

with q(FZ
i ) ∼ N (mi,Si) as free-form Gaussians. Using such variational distribution we obtain the

likelihood lower bound:

log p(Y ) ≥ Eq

[
log

p(Y, {Fi}, {FZ
i } |X,Z)

q({Fi}, {FZ
i })

]
= Eq(FL)[log p(Y | FL)] (5)

−
L∑

i=1

Eq(FZ
i−1)q(F

Z
i )

[
log

q(FZ
i )

p(FZ
i | FZ

i−1)

]
. (6)
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We estimate the expectation (5) by sampling from q(FL) using the following procedure:

1. Draw S samples (FZ
i )1, . . . , (FZ

i )S
iid∼ q(FZ

i ) for i = 1, . . . , L.
2. For each of the S sampled values of the intermediate layers at the inducing inputs (i.e.

(FZ
1 )s, . . . , (FZ

L )s for s = 1, . . . , S), draw (FL)s ∼ q(FL) by sequentially drawing from
p(Fi | Fi−1, F

Z
i , F

Z
i−1) using the procedure described in [8].

3. Use the samples from q(FL) for the Monte-Carlo estimate of (5):

Eq(FL)[log p(Y | FL)] ≈ 1

S

S∑
s=1

log p(Y | (FL)s).

The inner expectations in (6) can be written as KL divergences:

Eq(FZ
i )q(FZ

i−1)

[
log

q(FZ
i )

p(FZ
i | FZ

i−1)

]
= Eq(FZ

i−1)
KL[q(FZ

i ) || p(FZ
i | FZ

i−1)]. (7)

For a given value ofFZ
i−1, KL[q(FZ

i ) || p(FZ
i |FZ

i−1)] can be computed analytically as a KL divergence
between two Gaussians. That suggests the following procedure for estimating the summands in (6):

1. Draw S samples (FZ
i )1, . . . , (FZ

i )S
iid∼ q(FZ

i ) for i = 1, . . . , L (those can be the draws
used for estimating (5) above).

2. For each of the S sampled values of FZ
i−1, analytically compute

KL[q(FZ
i ) || p(FZ

i | (FZ
i−1)s)].

3. Compute the Monte-Carlo estimate of (6):

Eq(FZ
i )q(FZ

i−1)

[
log

q(FZ
i )

p(FZ
i | FZ

i−1)

]
≈ 1

S

S∑
s=1

KL[q(FZ
i ) || p(FZ

i | (FZ
i−1)s)].

4 Experiments

Jointly Gaussian inducing points In Figs. 2 (second row) and 4 we show examples of fits of
DGPs with jointly Gaussian inducing points. In comparison to Figs. 2 (first row) and 3, such an
approach indeed retains more of the (compositional) posterior uncertainty about the transformations
in the intermediate layers avoiding collapsing to point estimates. However, different initialisations
still result in different posteriors, highlighting the limited capacity of the Gaussian distributions to
capture the complex (e.g. multimodal) posteriors, as previously discussed in [4].

Variational distributions of outputs of intermediate layers Example fits of DGPs using the
variational distribution (4) are shown in Figs. 2 (third row) and 5. The posteriors are qualitatively
similar to those obtained using a jointly Gaussian variational distribution, with an advantage of the
number of the parameters in the proposed distribution scaling linearly rather than quadratically with
the number of layers. Such a variational distribution also cannot capture multimodal posteriors,
requiring future work on more flexible variational distributions.
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Figure 2: Example fits of a two-layer DGP with inducing points distributed according to a factorised, jointly
Gaussian, or proposed variational distribution (Eq. (4)). Data set is shown in the rightmost panels (black dots).
Different panels show the computations performed by each of the two layers and their compositions. The kernel
in the first layer is squared-exponential, while in the second one constrained to be periodic. Different colours
correspond to three models fitted to the same data with different initialisations. For each initialisation, ten
samples (of the same colour) from the fitted model are shown on top of each other. For factorised inducing
points, the transformations in the second layer collapse to deterministic ones in the output range of the first layer,
while some uncertainty about such transformations is preserved for models with depedent inducing points across
layers.
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Additional figures
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Figure 3: Example fits of a three-layer DGP with factorised inducing points to a data set shown in the rightmost
panel (black dots). Different panels show the computations performed by each of the three layers and their
compositions. Different colours correspond to three models fitted to the same data with different random
initialisations. For each initialisation, ten samples (of the same colour) from the fitted model are shown on top of
each other.
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Figure 4: Example fits of a three-layer DGP with jointly Gaussian inducing points (Sec. 3). The figure
arrangement is the same as in Fig. 3.
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Figure 5: Example fits of a three-layer DGP with variational distribution of outputs of intermediate layers
(Sec. 3). The figure arrangement is the same as in Fig. 3
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