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ABSTRACT 

Ion permeation, selectivity, and the behaviour of the K+ channel selectivity filter has 

been studied intensively in the previous two decades. The agreement among 

multiple approaches used to study ion flux in K+-channels suggests a consensus 

mechanism of ion permeation across the selectivity that has been put to test in 

recent years with the proposal of an alternative way by which ions can cross the 

selectivity filter of K+-channels via direct Coulomb repulsion between contacting 

cations. Some past experimental work by Zhou and MacKinnon showed that 

mutation of site S4 reduces the total occupancy of the selectivity filter to less than 

two ions on average by lowering the occupancy of the S2-S4 configuration without 

changing the S1-S3 configuration much, and this reduction of occupancy means that 

ion configurations others from the ones involved in the canonical mechanism are 

likely to be involved. At that time, calculations using complicated kinetic networks to 

relate occupancy to conduction did not provide deeper insight into the conduction 

mechanism. Here, to help solve this enigma, umbrella sampling simulations have 

been performed to evaluate the potential of mean force of two KcsA mutant 

channels, where the S4 site is substituted. Our new results provide insights into the 

significance of threonine in this position, revealing the effect of substitution on the 

alternate mechanisms of conduction proposed, involving either water or vacant sites. 
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INTRODUCTION 

The first high-resolution crystal structure of a prokaryotic K+ channel, KcsA from 

Streptomyces lividans, revealed the atomic configuration of the K+ channel pore 

domain.1 This assembly, which is generally conserved in eukaryotic K+ channels, is 

formed from the symmetrical arrangement of four subunits, each containing two 

transmembrane -helices connected by a re-entrant pore loop. The pore loop 

contains a pore helix and the highly conserved selectivity filter structure. The 

selectivity filter is a critical determinant of ion permeation, selectivity (discrimination 

between ionic species) and inactivation (blockage of ionic current following channel 

opening) processes in K+ channels. 

The canonical sequence of the selectivity filter, TVGYG, from each subunit, forms 

four contiguous binding sites (S1-S4) at the extracellular side of the channel (Figure 

1A-B).1-2 Sites S1, S2 and S3 are enclosed by the backbone carbonyl groups of the 

selectivity filter sequence, which can accommodate single dehydrated K+ ions. The 

S4 site is unique in that it is forged from carbonyl (upper) and hydroxyl (lower) 

groups from the initial threonine residue, yet exhibits analogous occupancy. In 

addition, sites have been determined above and below the selectivity filter, at the 

extracellular mouth (S0 and Sext) and in the central cavity (SCAV), respectively.3 

  

 

Figure 1. (A) Definition of selectivity binding sites. Structure of the selectivity filter in the (B) 

wild-type, (C) T75A and (D) T75C KcsA channels. Carbon, oxygen and nitrogen atoms are 

shown in grey, red and blue, respectively. 

Various electrophysiological studies of KcsA mutants have been performed to 

discern the importance of individual selectivity filter sites with regards to the rate of 

conduction, inactivation and recovery from inactivation.4-7 Ion occupancy of the S1-

S3 sites can be tuned by synthetic substitution of individual amide bonds to ester 

linkages, translating to functional effects in the inactivation process.5-6 Using this 
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protocol, the inactivation rate and rate of recovery from inactivation were diminished 

as a consequence of mutations of the S2 and S3 sites respectively, whereas 

negligible effects for both phenomenon were observed for S1. Side-chain 

substitutions have also been examined to perturb the S4 site. The T75G KcsA 

channel exhibited a minor reduction in the inactivation rate, but a major decline in the 

rate of recovery from inactivation.6 On the contrary, the T75A KcsA channel 

completely abolished channel inactivation, as a result of an inversion of the allosteric 

coupling between the upper and lower gates.7 

Thus far, the conduction properties have been characterised for two KcsA mutant 

channels, where the threonine side-chain forming the S4 site has been substituted. 

The conductance of the T75C/A108S double mutant (at 200 mV) was reported to 

decrease by a factor of ~2-4, relative to the wild-type (at 180 mV), in a concentration-

dependent manner.4 Moreover, the recorded conductance of the non-inactivating 

T75A mutant channel was reduced by a factor of ~17, relative to the wild-type, at a 

potential of +100 mV.7 Although macroscopic currents have also been determined 

for the T75G mutant channel, detailed information regarding this mutant is not 

included in the relevant publication.6 Consequently, we sought to understand the 

rationale behind the drastic reduction in conduction rates on mutation of the S4 site. 

To this end, high-resolution crystal structures of T75C (PDB ID 1S5H; closed state) 4 

and T75A (PDB ID 6BY3; open state)7 were utilized to perform umbrella sampling 

calculations, in order to simulate conduction through the altered selectivity filter and 

evaluate the energy of this process. The structure of the selectivity filter in the mutant 

channels under investigation is displayed in Figure 1C and D. 

The microscopic mechanism of conduction has been under intense scrutiny since 

the publication of the initial KcsA structure.8 Initial reports from crystallographic 

information and computational experiments supported a process involving both K+ 

ions and water molecules.8-11 In this mechanism, referred to as KWK or ‘soft’ knock-

on mechanism, K+ ions and water molecules occupy alternative sites in the 

selectivity filter, with ions occupying either S2/S4 or S1/S3 configurations. Following 

this, ion transport occurs by coordinated movements between these sites, prompted 

by an incoming intracellular ion. This is supported by various independent 

computational studies which have calculated the maximum energetic barrier of 

process in the 2-3 kcal/mol range,9-10, 12 and the associated transport of water 
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molecules in K+ channels reported experimentally.13-14 An alternative mechanism of 

conduction involving vacant sites has also been proposed by Furini and Domene, 

exhibiting similar energetics.12 In this mechanism, known as the KK or ‘hard’ knock-

on mechanism, the selectivity filter can accommodate two or three K+ ions 

simultaneously, in adjacent sites or separated by empty sites. In this way, direct 

electrostatic repulsion drives permeation. Evidence supporting this rationale has 

gained traction in recent years, as a result of extensive unbiased MD simulations in 

voltage conditions, and re-examination of the initial electron density profiles within 

the same study.15 In the wild-type channel, the electron density profiles suggest the 

same occupancy probability for binding sites S1 to S4, which is compatible both with 

the KWK and KK conduction mechanisms. However, in the T75A and T75C mutant 

channels, the only configuration left for the KWK mechanism is S1S3, while for the 

KK mechanism several occupancy states of the filter are still possible (S2S3, S1S3, 

S1S2). Here, the energy maps for both conduction schemes were calculated, and 

the results are compared with experimental data on ion conductances and density 

profiles with the aim to help resolve an old quiz. As stated in the original publication 

by Ming Zhou and Roderick MacKinnon, the mutation actually reduces the total 

occupancy of the filter to less than two ions on average by lowering the occupancy of 

the S2-S4 configuration, without changing the S1-S3 configuration much, and this 

reduction of occupancy means that ion configurations others from the ones involved 

in the canonical mechanism are necessary.16 Although these authors carried out 

calculations using more complicated kinetic networks to relate occupancy to 

conduction, they reported that these calculations did not provide deeper insight into 

the conduction mechanism.16 

MATERIALS AND METHODS 

Model Setup 

High-resolution crystal structures of T75C (PDB ID 1S5H; closed state)4 and T75A 

(PDB ID 6BY3; open state)7 were used as the atomic coordinates of the mutant 

channels. Residues 26-114 and 26-121 were included in the models of T75C and 

T75A, respectively. N- and C-termini were acetylated and methylated respectively. 

The amino acid E71 of KcsA was modelled in the protonated state to form a diacid 

hydrogen bond with D80.17 Default ionisation states were used for the remaining 

amino acids. Four water molecules were placed at the back of the selectivity filter, in 
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agreement with crystallographic data and previous molecular dynamics (MD) 

simulations. SOLVATE 1.0 was used to solvate internal cavities of the protein. The 

structures were aligned perpendicular to the bilayer and inserted into a neutral 

membrane containing 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) 

molecules. The VMD solvate plugin was then used to create a cubic water box 

around the membrane-protein system.18 The overlapping water and lipid molecules 

around the ion channel structure were removed with a cut-off distance of 1.2 Å. 

Potassium and chloride ions were added using Autoionize Plugin of VMD to 

neutralise the systems and obtain a concentration of 150 mM.18 The final system 

size was approximately 90,000 atoms. 

Molecular Dynamics Simulations 

MD simulations were performed with NAMD 2.12.19  CHARMM36 parameters were 

used for the protein and lipids,20 the TIP3P model was used for water,21 and the 

CHARMM NBFIX parameters for ions as in a similar previous study of the wild type 

channel.12 The particle mesh Ewald method was used for the treatment of periodic 

electrostatic interactions, with an upper threshold of 1 Å for grid spacing.22 

Electrostatic and van der Waals forces were calculated every time step. A cut-off 

distance of 12 Å was used for van der Waals forces. A switching distance of 10 Å 

was chosen to smoothly truncate the non-bonded interactions. Only atoms in a 

Verlet pair list with a cut-off distance of 13.5 Å (reassigned every 20 steps) were 

considered. The SETTLE algorithm was used to constrain all bonds involving 

hydrogen atoms, to allow the use of a 2 fs time step throughout the simulation.23 MD 

simulations were performed in the NPT ensemble. The Nose-Hoover-Langevin 

piston was employed to control the pressure with a 200 fs period, 50 fs damping 

constant, and the desired value of 1 atmosphere.24-25 The system was coupled to a 

Langevin thermostat to sustain a temperature of 300 K throughout. In the 

equilibration process, the same protocol was used for all of the systems. The 

systems were subjected to 10,000 steps of minimization, with harmonic constraints 

(force constant 20 kcal mol−1Å−2) on protein atoms, lipid headgroups and 

crystallographic water and ions. Harmonic restraints were gradually reduced to a 

force constant of 2 kcal mol−1Å−2 and removed in consecutive steps from the lipid 

headgroups, protein side-chains and protein backbone over the course of a 3.5 ns 

trajectory. Unbiased MD simulations were then performed for 20 ns to equilibrate the 
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system. Coordinates and velocities from this point were used as the starting point for 

subsequent biased simulations. 

Umbrella Sampling Simulations 

Umbrella sampling has been used to calculate the Potential of Mean Force (PMF) of 

ion translocation through the mutated KcsA selectivity filter. Ion permeation involving 

three ions was examined, simulating the events connecting the S1/S3/SCAV and 

SEC/S1/S3 configurations, with either a water molecule (KWK mechanism) or a gap 

(KK mechanism) in the S2 site. The initial and final configurations were considered to 

be equivalent, and thus the energetics obtained is representative of the permeation 

of a single ion. The three ions are denoted K1 (exterior ion), K2 (central ion) and K3 

(interior ion). Two biasing potentials were initialized acting on the K3 ion and the 

center of mass of the K1 and K2 ions. Individual simulations were predominantly 

spaced 0.5 Å apart, adopting a force constant of 20 kcal mol−1Å−2 for the harmonic 

potential. In the extremities of K1 (extracellular) and K3 (intracellular), windows were 

spaced 1 Å apart, adopting a force constant of 10 kcal mol−1Å−2 for the harmonic 

potential. In a single scenario (T75C-KK), the chosen collective variables resulted in 

degenerate states, i.e. mixing of different ion configurations in simulations at fixed 

harmonic potentials. Thus, simulations with three biasing potentials acting on 

individual ions were performed. Ions were moved to their starting configurations 

during an initial 10 ps trajectory, with weak restraints applied to the backbone atoms 

of residues E71 to D80. Simulations of 500 ps were then performed for each 

configuration. The positions of water molecules in the selectivity filter were monitored 

throughout, and simulations exhibiting water molecules with unconventional 

behaviour were removed from subsequent analysis. The initial 100 ps of the 

trajectories were considered as equilibration and also removed. The weighted 

histogram analysis method was used to unbias the data and obtain the PMF in two 

(T75C-KWK, T75A-KWK, T75A-KK) or three-dimensions (T75C-KK).26 Error 

estimates were obtained by calculating PMF profiles for 100 ps portions of the 

trajectory and combining them. 

It should be noted here, that differences in the activation gate are neglected, on the 

basis of structural studies of voltage-gated K+ channels which exhibit comparable ion 

occupancies in the crystal structures of representative open-conductive and closed-

conductive states.27-28 Furthermore, substitution of T75 position has dramatic 
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consequences on the coupling of the activation-inactivation gates.7 Therefore, further 

mutations in this position in either of structures used would likely destabilize the 

channel structure. 

RESULTS 

KWK Mechanism 

Firstly, the long-established KWK mechanism in the T75A and T75C mutant 

channels is investigated, denoted T75A-KWK and T75C-KWK, respectively. In the 

following discussion, it can be assumed that all selectivity filter sites are filled with K+ 

ions or water molecules. The 2D PMF of the T75A mutant channel (Figure 2A) 

exhibits three minima corresponding to S1/S3, S0/S2, S0/S2/S3B and S2/S3B 

configurations, where B represents the lower boundary of the site. The S1/S3 site is 

the most thermodynamically stable and progression of ions from S1/S3 to S0/S2 

poses the largest barrier to conduction (~5 kcal/mol), where the behaviour of the 

third ion is omitted (Table 1). This mechanism is inconsistent with the traditional 

KWK mechanism, which involves S1/S3/S4B and S0/S2/S4 configurations. It is 

therefore apparent that elimination of the S4 site abolishes the knock-on effect of the 

intracellular ion and increases the maximum barrier to conduction. Following 

evolution of the S0/S2 configuration, the remainder of the permeation event can be 

completed with low energetic barriers (~2 kcal/mol) on approach of the third ion. 

Table 1. Maximum barrier to the conduction process in KcsA mutant channels 

Simulation Energy Barrier (kcal/mol ± SD) 

T75A-KWK 5.7 ± 1.1 

T75A-KK 5.6 ± 0.7 

T75C-KWK 7.2 ± 0.7 

T75C-KK 5.3 ± 0.2 

In contrast to the above, the wild-type and T75C mutant channel differ primarily by 

the electrostatics of the S4 site, as threonine and cysteine are similar sizes. 

Configurations S1/S3/SCAV, S0/S2/SCAV, S0/S2/S4 and S2/S3 represent minima in 

the conduction mechanism in the 2D PMF of the T75C channel (Figure 2B). As 

expected, the S4 site is restored, though the S4B site remains unviable. S0/S2/S4 

constitutes the lowest energy state, followed by S1/S3/SCAV, the energy of which 

fluctuates in a ~2 kcal/mol range dependent on the position of the ion in the central 
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cavity. Similar to the T75A mutant channel, conduction is initiated by the interchange 

between S1/S3 to S0/S2 configurations. In this case, the barrier to this process is at 

a minimum (~3-4 kcal/mol), when the cavity ion is approximately 6 Å below the S3 

site. Movement of this ion towards the S4 site, requires an additional 3 kcal/mol. 

Overall, transition from S0/S2/S4 and S2/S3 limits conduction to the greatest extent, 

with a calculated barrier in excess of 6 kcal/mol. 

T75A-KWK T75C-KWK 

  

T75A-KK T75C-KK 

  

Figure 2. PMF profiles of (A) T75A-KWK, (B) T75C-KWK, (C) T75A-KK and (D) T75C-KK 

simulations, obtained using umbrella sampling. Figure 2D is a projection onto two collective 

variables, derived from the 3D-PMF calculated directly from the simulation. Ion 

configurations are represented using a simplified representation of the selectivity filter, 

defined in Figure 1A, with K+ ions and water molecules shown as blue and red spheres, 

respectively. 
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KK Mechanism 

Next, the energetics of the KK mechanism in the T75A and T75C mutant channels is 

evaluated, denoted T75A-KK and T75-KK, respectively. Here, sites not occupied by 

K+ ions are empty unless specifically mentioned. In the T75A mutant channel, four 

minima can be identified on the permeation pathway in the 2D PMF corresponding to 

configurations: S1/S3/SCAV, S1/S2/S4, S0/S2/S3 and S0/S1/S3 (Figure 2C). Minima 

representing S2/S3/SCAV configurations are also found. S1/S3 and S2/S3 

configurations are similar in energy and separated by low energy barriers (~2 

kcal/mol); thus, it is likely that S2/S3 can unwittingly evolve from S1/S3 but does not 

necessarily play a direct role in conduction. The energy of certain selectivity filter 

configurations varies dependent on the position of the ion in the central cavity. The 

maximum barrier to conduction (5 kcal/mol) arises from the progression of one ion 

from the cavity to S4, and the accompanying movement of a second ion from S3 to 

S2. The remaining energetic barriers are of the order of 1-3 kcal/mol. However, 

intermediary steps with direct ion-ion interactions (S1/S2/S4, S0/S2/S3 and 

S0/S1/S3) are visibly higher in energy than the initial S1/S3 state.  

In the 3D PMF of the T75C channel mutant (Figure 1D), an additional minimum is 

observed representing a S0/S2/S4 configuration, which is similar in energy to 

S0/S2/S3. In this case, however, S0/S2/S4, S0/S2/S3 and S0/S1/S3, form part of the 

elevated energy region of the PMF, although S1/S2/S4 is excluded. As a result, high 

energy barriers (between 5-6 kcal/mol) are realized in three separate regions of the 

PMF: i) entrance of ion to S4 from the cavity, when other ions occupy S1 and S3, ii) 

movement of ion to S0 from S1, when other ions occupy S2 and S4, and iii) a 

concerted movement of ions from S2 and S0, to S1 and SEC, respectively, to return 

to the S1/S3 starting conformation. Moreover, the energy barrier of the backward 

transition of movement iii) is in excess of 7 kcal/mol. It should be noted that the 

marked stability of the cavity site is a result of occupation of the S4 site by a water 

molecule, intersecting the cavity and S3 ions. 

DISCUSSION 

By using umbrella sampling simulations, the PMF for both KK and KWK mechanisms 

in the T75A and T75C mutant channels has been evaluated. From these, the 

maximum barrier to conduction has been calculated for all scenarios to be in the 
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range 5-7 kcal/mol. This is a significant increase from values calculated for the wild-

type KcsA channel, which is frequently cited as 2-3 kcal/mol9-10, 12 justifying the 

diminished conductances recorded experimentally.4, 7 

The increased barriers can be attributed to differences in the observed mechanisms 

of conduction, as a result of tuning the properties of the S4 site. For example, the 

threonine-cysteine substitution maintains a comparable side-chain volume yet 

transforms the electrostatic properties, rendering the S4B site inhospitable. On the 

other hand, both side-chain volume and polarity are reduced on substitution of 

threonine to alanine, which merges the S4 site with the central cavity, effectively 

removing both S4 and S4B regions. In the KWK mechanism, the difference is stark. 

In the absence of the S4B site, in both T75A and T75C, the approach of an 

intracellular K+ ion, to promote the concerted movement of ions from S1/S3 to S0/S2 

in the KWK mechanism, is unworkable. Thus, removal of threonine in this scenario 

eliminates the long-established “knock-on” aspect of conduction. In the KK 

mechanism, the sequence of atomic movements is unchanged. However, two-ion 

configurations are evidently more favorable than those with three ions. This 

observation is in agreement with experimental data which documents a reduction in 

the total ion occupancy of the T75C filter to less than two (~1.7).4 

Subsequently, it is of interest to examine if the calculated PMF profiles can 

rationalize the ion occupancies estimated from the crystal structure of the T75C 

channel.4 In the mutated filter, the ion occupancies of S2 and S4 are diminished, 

whilst those in S1 and S3 are basically sustained. In the accompanying publication, 

Zhou and Mackinnon contemplate this in terms of the KWK mechanism, suggesting 

that the S1/S3 configuration may be more energetically favorable than the S2/S4 

configuration in the mutant channel. However, in the PMF profile of this process 

(T75C-KWK), configurations involving S2 are energetically equivalent to those that 

involve S1 and S3, and in fact, the S0/S2/S4 configuration is found to be the most 

thermodynamically stable, advocating that this is not the case. What is more, the free 

energy of the S1/S3/SCAV(-9.0) configuration in the PMF profile of the KK mechanism is 

at least 2-6 kcal/mol lower than other configurations involving the S2 site, with 

energetic barriers of ~5 kcal/mol to evolve from this. Considering this model, it can 

be suggested that the S1/S3 configuration, where the S2 site is vacant, is primarily 

responsible for the elevated electron densities in S1/S3. It then follows that the S2 
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density may arise from configurations where S2 is occupied, but S4 remains empty, 

such as S0/S2/SCAV (KWK), S2/S3B (KWK), S2/S3 (KK) and S0/S2/S3B (KK). 

Finally, we remark on the significance of the ion in the central cavity of the T75C 

channel. Our PMF profiles reveal several minima in the central cavity which overlap 

well with the electron density presented in the crystal structure and stabilize certain 

selectivity filter configurations. It is worth noting that the S1/S3/SCAV(-9.0) configuration, 

in the KK mechanism, includes a water molecule in the region considered as S4, 

inferring that a potential hybrid pathway, involving both vacant and hydrated sites 

may exist. 

CONCLUSIONS 

The agreement among multiple approaches used to study ion flux in K+-channels 

suggests a consensus mechanism of ion permeation across the selectivity that has 

been put to test in recent years with the proposal of an alternative way by which ions 

can cross the selectivity filter of K+-channels via direct Coulomb repulsion between 

contacting cation.29 Some past experimental work showed that mutation of S4 

reduces the total occupancy of the filter to less than two ions on average by lowering 

the occupancy of the S2-S4 configuration, without changing the S1-S3 configuration 

much. Although this resulting reduction of occupancy means that ion configurations 

others from the ones involved in the canonical mechanism are likely to be involved, 

calculations using complicated kinetic networks to relate occupancy to conduction 

did not provide deeper insight into the conduction mechanism.30 Here, to help solve 

this enigma and provide further insight into conduction in K+-channels, umbrella 

sampling simulations have been performed to evaluate the potential of mean force of 

KcsA mutant channels, where the S4 site is substituted. Substitution of the threonine 

residue to hydrophobic residues of differing sizes (alanine and cysteine) notably 

increases the maximum barrier to ion permeation, in line with the reduced 

conductance rates obtained from single-channel recordings in prior experimental 

studies. Moreover, insights are provided into the deviant ion occupancies reported 

for the T75C mutant channel, indicating the dominant mechanism of conduction in 

this channel involves vacant sites in the selectivity filter. Overall, the barriers for 

KWK or KK conduction in the T75A channel are similar. Therefore, there is no 

preferred mechanism for ions to travel along the pore which is in line with the data 

we reported for the wild type KcsA and KirBac channels previously.12 The movement 
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of ions can be accompanied at times by water molecules as exemplified in streaming 

potential experiments but this is not necessarily always the case. We propose that 

the permeation mechanism by which multiple ions in the selectivity filter of a K+-

channel are hit by an incoming ion applies equally to the mutant structures, and the 

energy patterns suggest a picture in which the ions can travel either alone or 

accompanied by water molecules. The fractional contribution of each mechanism will 

then be reflected in the electron density reported from crystallographic experiments. 

This then explains why the S1/S3 configuration, where the S2 site is vacant, is 

primarily responsible for the elevated electron densities in S1/S3 in the mutant 

structures; S2 is the only site where a vacant can be realistically materialised as both 

S1 and S3 are easily accessible by water molecules (or ions) from the intracellular 

and extracellular media. This model further supports the view that in K+-channels 

with the threonine residue at S4 in the selectivity filter mutated, there is not a 

preference for ions to travel through the selectivity filter either in isolation without 

intervening water molecules or accompanied by water molecules. 
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