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Abstract 

 

Anodic passivation for copper exposed to aqueous NaCl (model seawater) is rate limited by 

diffusion of a poorly soluble Cu(I) chloro species. As a result, a protective layer of CuCl forms 

on copper metal (with approx. 1 m thickness) that is then put under strain at more positive 

applied potentials with explosive events causing current spikes and particulate product expulsion. 

In this report, the mechanism for this explosive film rupture and particle expulsion process is 

shown to occur (i) in the absence of underlying anodic gas evolution, and (ii) linked to the 

presence/nature of gaseous solutes. The film rupture event is proposed to be fundamentally 

dependent on gas bubble nucleation (triggered by the release of interfacial stress) with surface 

tension effects by dissolved gases affecting the current spike pattern. Oxygen O2, hydrogen H2, 

and helium He suppress current spikes and behave differently to argon Ar, nitrogen N2, and 

carbon dioxide CO2, which considerably enhance current spikes. Vacuum-degassing the 

electrolyte solution results in behaviour very similar to that observed in the presence of helium. 

The overall corrosion rate for copper microelectrodes is compared and parameters linked to 

passivation and corrosion processes are discussed. 

Graphical Abstract            

 

Keywords: Electrochemistry, Passivation, Copper, Dissolved gas, Stochastic, Colloid 
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1. Introduction 

Copper is known to be resistant to atmospheric corrosion due to the formation of patina [1,2]. In 

contrast, in marine environments copper (for example as the conductor in cables) corrodes 

significantly [2,3]. Such drastic changes in corrosion resistance are explained by the presence 

of chloride ions Cl−, in marine environments (as a major component of seawater; approx. 0.5 to 

0.6 M NaCl), known for its aggressive corrosive behavior towards metals.  

 

The fundamental understanding of the copper corrosion and anodic passivation mechanisms in 

marine environments are important to developing effective corrosion inhibition/control processes. 

The copper corrosion mechanism in chloride-containing environments has been widely studied 

by electrochemistry to investigate corrosion product formation and the effects of altering pH, 

temperature, and salinity [4–8]. It is possible to consider lowering anodic overpotentials (which 

are well-studied) but also exploiting more partial passivation and corrosion processes at higher 

anodic overpotentials (which are addressed here). 

 

Corrosion prevention is usually linked to sacrificial electrodes and cathodic protection, but an 

alternative strategy can be based on anodic passivation in cases in which protective passive 

films can be grown. Passive films have been grown on copper during anodic passivation in a 

variety of environments such as phosphate- [9–11], carbonate- [12–14], and chloride-containing 

[12,15–18] media. Copper corrosion processes during anodic passivation are complex, and 

passive films can be susceptible to breakdown, caused by a variety of variables including anodic 

potential [19], point defects [20] and anion vacancies in the passive films [21,22]. Here, we are 

interested in the CuCl passive film formed in model seawater at high anodic overpotentials. 
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More specifically, we are interested in the dynamic electrochemical behaviour observed for 

copper metal electrodes in neutral chloride-containing media, where both periodic [23] and 

stochastic [8] corrosion phenomena have been observed during anodic polarization. 

Interestingly, periodic phenomena have also been observed for copper in acidic chloride media 

[23–29], in acetate [30], and in phosphoric acid media [31], using stationary electrodes or using 

hydrodynamic conditions (at a rotating disk electrode). Such current oscillations and noise during 

anodic polarization in chloride-containing media have been explained and modelled based on 

the competing growth (Reaction 1) and dissolution (Reaction 2) of a film of CuCl in neutral 

chloride-containing electrolytes. 

 

Cu(s) + Cl−(aq)         CuCl(s) + e−    Reaction 1  

CuCl(s) + Cl−(aq)       CuCl2−(aq)    Reaction 2  

 

Fig. 1 gives a schematic of the hypothesised copper corrosion mechanism during anodic 

polarisation conditions presented in this study. Fig. 1a depicts the formation of the kinetically 

favoured, insoluble CuCl film, which partially passivates the Cu surface at potentials >−0.11 V 

vs. SCE. Although schematically depicted as dense film, this film is polycrystalline and probably 

porous to some degree. CuCl has previously been shown by in situ Raman spectroscopy as the 

predominant corrosion product under high overpotential conditions up to +5.00 V vs. SCE in 0.5 

M NaCl(aq) [8]. Following CuCl formation, Fig. 1b shows the formation of Cu(II) species (red 

blocks) at the Cu | CuCl interface, postulated to occur at approximately +0.14 V vs. SCE [8].  

 

It is the formation of Cu(II) that has been linked to the onset of noise seen in voltammetric data, 

and suggested to be linked to the breaking up of the CuCl film (see Fig. 1) [8,32]. The nature of 

the active Cu(II) species is yet to be shown conclusively, though we can expect the formation of 

a variety of copper complexes during the anodic polarisation of copper in aerated chloride media, 

where Cu2O, CuO and Cu2Cl(OH)3 have also been identified [1,6,7,32,33]. When investigating 
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the passivation of copper with CuCl at potentials positive of +0.2 V vs. SCE, explosive events 

are seen as current spikes linked to the “colloidal dissolution” (Fig. 1d) of CuCl [8]. The cause 

and the contributing factors for these colloidal dissolution events are yet to be determined. The 

potential region has previously also been assigned to “pitting corrosion” [21]. 

 

 

Fig. 1. Simplified schematic drawing of (a) the growth and dissolution of polycrystalline CuCl as CuCl2− at the surface 

of anodically passivated copper metal, (b) the redox driven formation of Cu(II) species at the Cu | CuCl interface, 

(c) the subsequent instability of the CuCl film due to Cu(II) species and bubble nucleation driven film rupture, and 

(d) the subsequent abrupt expulsion of colloidal CuCl [8]. 

 

 

The factors that contribute to these processes are further investigated in this work where in 

particular, the role of dissolved gases is highlighted. The explosive “rupture” of the CuCl film is 

suggested to be linked to the nucleation of gas bubbles possibly linked to the sudden release of 

interfacial tension (see Fig. 1c). Gaseous solutes have been reported previously to significantly 

change the surface tension of the water | gas interface [34–36], and thereby affect bubble 

nucleation rates. Bubble nucleation has been reported to be relevant also in wear and tribological 

processes [37]. Therefore, gaseous solutes may affect the anodic passivation and corrosion of 

copper. 
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In this work, we attempt to contribute to the understanding of the dynamic passivation and 

corrosion processes for copper in aqueous 0.5 M NaCl. More specifically, we are interested in 

the corrosion mechanism in the anodic passivation potential region and in the effects of the 

presence/absence of dissolved gases on voltammetric responses. The results suggest that in 

the absence of any underlying anodic gas evolution, the abrupt break down of the passive CuCl 

film is strongly affected by the type/presence of gas in the aqueous electrolyte. 

 

2. Experimental 

Chemicals. All experiments were carried out at room temperature (20 ± 2 °C) and in aqueous 

NaCl electrolyte (0.05 M, 0.10 M, 0.50 M, or 1.00 M). Aqueous 0.5 M NaCl was used to simulate 

seawater conditions. NaCl (Sigma-Aldrich, >99.9% purity) and deionized water (Millipore, 18.2 

M cm) were used to prepare the solutions. 

 

Instrumentation. A three-electrode (reference, counter, and working electrode) system was 

employed with a saturated calomel electrode (SCE) or a Ag wire pseudo-reference electrode, 

an epoxy-mounted Cu disc working microelectrode (25, 50, 125 and 150 µm nominal diameter), 

and Pt wire counter electrode. An Autolab potentiostat (µAutolab Type III, Metrohm) and GPES 

software were used for all electrochemical measurements. An Ivium Compactstat system (Ivium, 

Netherlands) was employed for bipotentiostat experiments where a second working electrode 

was required. Voltammetry experiments were performed from the open circuit potential (OCP) 

at approx. −0.25 V vs. SCE to +5.00 V vs. SCE at a scan rate of 5 mV s−1 (with 1 mV steps). 
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Fig. 2 (a) Photograph of the three-electrode electrochemical cell (working electrode (WE), reference electrode (RE) 
and counter electrode (CE)) for the preparation of degassed electrolyte. (b) Labelled photograph of a 125 µm 
nominal diameter copper wire mounted in a glass tube with epoxy. 

 

Degassing experiments required the use of a home-made glass electrochemical cell (see Fig. 

2a) with a tap to allow for gas removal under vacuum. The cell was filled with electrolyte (0.5 M 

NaCl) to above the tap. Three electrodes (Cu working electrode, Pt counter electrode, Ag wire 

pseudo-reference electrode) were inserted through a quick-fit seal. With the tap open, the cell 

was placed into a vacuum chamber (Thermo Scientific Heraeus Vacutherm Oven VT6025, with 

a membrane pump producing approximately 100 mbar vacuum) for 1 hour at room temperature. 

The chamber was then quickly re-pressurized and the tap immediately closed to ensure that the 

gas cannot re-enter into the inner electrolyte solution. The reference electrode potential in 

aqueous 0.5 M NaCl for the Ag pseudo-reference was determined as +0.01 V vs. SCE. 

 



8 
 

Scanning electron microscopy (SEM) (JEOL SEM6480LV) was used for surface and recession 

analysis of the corroded Cu electrodes. After performing linear sweep voltammetry, the 

electrodes were rinsed with deionized water and sonicated in deionized water for 5 minutes to 

remove the corrosion product. The electrodes were then dried and placed under vacuum 

overnight before analysis or surface morphology and recession. 

 

Fabrication of the Copper Microelectrodes. Four sizes of copper microelectrodes were 

constructed with copper microwire of nominal diameters 25 μm, 50 μm, 125 μm, and 150 µm 

(see Fig 2b). The microelectrodes were assembled by threading the copper microwire (ADVENT 

Materials, 99.90% purity) through a glass tube (5 mm outer diameter), and immobilizing the wire 

with a non-conducting transparent epoxy (PRESI MA2+ resin and 100 CC catalyst; 1:10 

catalyst:resin by weight) by either allowing the resin to set at room temperature for 12 hours, or 

at 100 °C for 1 hour. The resin and metal wire were polished firstly with CarbiMet paper (Buehler, 

P600 and P1200) and lapping film (3M U.K.) with water to achieve a flat surface, then finished 

on a MicroCloth (Buehler, PSA backed) with an alumina suspension (Buehler, 1.0 µm then 0.3 

µm diameter particle size). The electrode was then washed with plenty of deionised water and 

sonicated in deionised water to remove alumina if needed. The copper electrodes were re-

polished and re-used after measurements. All electrode diameters were calibrated using SEM 

by imaging the polished Cu surface. Table 1 summarises the measured copper electrode 

diameter values. 

 

Table 1. Cu electrode nominal diameters and diameters (/ µm) calculated by SEM imaging clean, 
polished Cu electrodes 

Nominal Diameter / µm Diameter Determined by SEM / µm 

150 

125 

50 

25 

167 ± 2 

132 ± 2 

56 ± 2 

28 ± 1 
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3. Results and Discussion 

Effects of Salinity. Fig. 3 shows typical current-voltage (I-V) curves for a 125 µm nominal 

diameter copper microelectrode immersed in aqueous NaCl solution. The applied potential 

initially starts in the Cu(0) potential range, −0.25 V vs. SCE, and is scanned positively at a scan 

rate of 5 mV s−1 (see Fig. 3a) to +5.0 V vs. SCE. An initial oxidative peak at −0.11 V vs. SCE is 

observed in 1.0 M and 0.5 M NaCl reflecting the formation of an insoluble Cu(I)Cl film, which 

partially passivates the electrode surface. When the concentration of aqueous NaCl takes one 

of the lower values 0.10 or 0.05 M NaCl (see Fig. 3a), the oxidation potential shifts positively, 

consistent with findings by Lal and Thirsk [38] and Starosvetsky et. al. [39]. When scanning the 

electrode potential more positive of 0.2 V vs. SCE, a sudden change occurs where a more 

dynamic current response (current noise) is detected, which is associated with the breakup and 

re-growth of the CuCl film. The resulting colloidal CuCl particles are expelled and found later in 

the vicinity of the electrode deposited onto the insulator shrouding [8].  

 

Fig. 3b shows an expanded view of the voltammetric data to approx. 0.3 V vs. SCE. With lower 

chloride concentration, the onset of the oxidation (marked by an asterisk “*”) shifts to more 

positive potentials, and CuCl film formation is suppressed possibly due to the formation of 

another type of film, e.g. a passive oxide film. The integration of the Cu(0/I) oxidation peak 

(indicated by the shaded area shown for the data at 0.5 M NaCl, Fig. 3b) gives a charge of 50 

µC, which implies an average film thickness of approximately 1 µm (calculated assuming a CuCl 

density 4.14 g cm−3). 
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Fig. 3. Linear sweep voltammograms (LSVs) at room temperature for a 125 µm nominal diameter copper electrode 
at 5 mV s−1 in 1.00 M, 0.50 M, 0.10 M and 0.05 M aqueous NaCl in ambient conditions from OCP at −0.25 V vs. 
SCE to +5.00 V vs. SCE. (a) full potential range and (b) rescaled up to 0.3 V vs. SCE. Asterisk (*) indicates the 
onset of copper oxidation. 

 

The noise features in Fig. 3a appear to be stochastic, but in fact there is a significant level of 

reproducibility in the position and magnitude of the spike signals as can be demonstrated by 

employing two copper microelectrodes simultaneously. Two identical copper electrodes of 125 

µm nominal diameter were employed simultaneously in the same electrolyte solution (0.5 M 

NaCl) with a bipotentiostat simultaneously scanning the voltage applied to both working 

electrodes, WE1 and WE2 (see Fig. 4).  

 

Perhaps surprisingly, similarities in current response between WE1 and WE2 are pronounced, 

indicating that the nature of these spike signals is not purely stochastic, but also voltage 

dependent. With physical conditions similar at both electrodes, the onset and magnitude of the 

“noise” signals are observed to be similar for the two electrodes in the same NaCl solution. The 

precise timing of individual spikes, naturally, varies. The time taken from noise onset to colloidal 
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dissolution characteristics (I > 20 µA) appears to be linked to both time and applied potential 

shown by the change in scan rate from 2 to 10 mV s−1 (see Fig. 4a-c).  

 

 

Fig. 4. Simultaneous linear sweep voltammograms at room temperature for two identical 125 µm Cu working 
electrodes (WE1 and WE2) from −0.3 to +4.0 V vs. SCE in 0.5 M NaCl in ambient conditions at (a) 2 mV s−1, (b) 5 
mV s−1, and (c) 10 mV s−1 

 

This complex dependency of current spikes on both applied potential and time could be studied 

in more depth with chrono methods, but mechanistic information from this type of experimental 

data would be very hard to extract without further insight into the mechanism. Therefore, 
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additional voltammetry experiments based on solution gas content, electrode diameter, and 

temperature are considered next. 

 

Effects of Degassing, De-aeration, Diameter and Temperature. With voltammetric current 

responses clearly reflecting the physical conditions at the electrode surface, it is interesting to 

explore the effects of various parameters such as electrode diameter and temperature on the 

current responses. The effects of inert gas were also studied by saturating the electrolyte with 

argon and performing voltammetry in a specially designed electrochemical cell (see Fig. 2a). To 

show that gas saturation was influencing the corrosion mechanism, the electrolyte was degassed 

using a vacuum system to contrast to the argon saturation conditions.  

 

To explore the effects of gas on the dynamic anodic passivation for copper, linear sweep 

voltammetry was employed from the initial CuCl film formation (approximately −0.05 V vs. Ag 

wire) to more positive potential where large current spikes can be attributed to colloidal 

dissolution. Argon-saturation of the electrolyte leads to a visible increase in current spike events 

(see Fig. 5a) compared to ambient conditions. Conversely, degassing (vacuum degassing) 

considerably lowers current spike signals. These results point to a possible explanation based 

on the argon-saturation leading to enhanced bubble nucleation and subsequent film rupture, 

which is inhibited during linear sweep voltammetry in the degassed electrolyte. The saturation 

of NaCl electrolyte with air (78% N2 and 21% O2 [40]) resulted in an apparent dampening of 

current spikes. Since O2 has an additional chemical effect on the corrosion process, this will be 

investigated and discussed later. First, the effects of argon saturation and degassing are 

investigated further with changing electrode diameter (Fig. 5). 

 

Voltammetric data were obtained for 150, 125, 50, and 25 µm nominal diameter copper 

microelectrodes. The same argon-saturation effects seen for the 150 and 125 µm diameter 

copper electrodes (Fig. 5a-b) are also observed for the smaller 25 and 50 µm diameter copper 

microelectrodes (see Fig. 5c-d), where there is an increased frequency of current spikes and 
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thus colloidal dissolution events. The Ar-saturation effects on larger diameter electrodes (150 

and 125 µm) are more pronounced compared to those at smaller electrodes (50 and 25 µm). 

This observation is related to the diffusional flux being higher at a smaller electrode since for a 

microelectrode of radius r, the steady state flux density is proportional to 𝑟−1. One would expect 

the CuCl film thickness at the smaller diameter electrode to be, at least approximately, similar to 

that observed for larger diameters. The charge under peak 1 for electrodes with 150, 125, 50, 

and 25 µm nominal diameters is approximately 74, 53, 10, and 3 µC respectively, confirming 

similar CuCl film thicknesses (0.8-1.4 µm).  

 

Fig. 5. Linear sweep voltammograms at room temperature from open circuit (approx. −0.2 V) to +5.0 V vs. Ag wire 
showing the initial CuCl(s) peak 1 in Ar-saturated, ambient, and degassed 0.5 M NaCl for (a) 150 µm, (b) 125 µm, 
(c) 50 µm, and (d) 25 µm at 5 mV s−1. Illustrated in (d) is the proportional relationship between the area under the 
voltammetric response and charge. 
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To further investigate the effects of Ar-saturation and degassing of the 0.5 M NaCl(aq) electrolyte, 

125 µm diameter Cu electrodes were carefully cleaned after linear sweep voltammetry in Ar-

saturated, ambient and degassed 0.5 M NaCl(aq), and the corroded copper surface imaged by 

scanning electron microscopy (SEM). SEM images in Fig. 6 show significant morphological 

differences in the Cu surface when comparing degassed (Fig. 6a) and Ar-saturated (Fig. 6c) 

conditions. Pitting is observed for all conditions showing that pitting plays a major role in the 

dynamic anodic passivation mechanism for Cu in chloride-containing media. Remarkably, 

however, considerably more, larger pits (~800 nm diameter) are observed for the Ar-saturated 

sample, whereas fewer, smaller pits (~400 nm diameter) are observed for the degassed sample.  

 

Direct anodic gas evolution is not observed during linear sweep voltammetry in Ar-saturated 

NaCl(aq). However, one could hypothesise with strong support from SEM imaging that gas 

bubbles nucleate at the corroding surface. This could be linked to very low levels of gas 

production or simply an increasing strain in the film and subsequently release of the strain with 

nucleation of a bubble. This then leads to expulsion of CuCl particulates. The formation of a 

crack in the CuCl film could be associated with rapid uptake of gas as viscous water would not 

fill the resulting crack fast enough. It is the nucleation of gas bubbles, which could in this way be 

contributing to the colloidal dissolution of CuCl during voltammetry (see Fig. 5).  

 

When converting the charge Qtotal into a theoretical recession due to dissolution of copper 

(copper density of 8.92 g cm−3 [41] and assuming a one-electron dissolution without side 

reactions), the rate of estimated copper recession is considerably higher for the smaller diameter 

electrodes (see Fig. 7a-b). This is consistent with an increased flux at smaller microelectrodes. 

This increase in flux is responsible for current spike features in Fig. 5c and Fig. 5d being less 

apparent. 
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Fig. 6. Backscattered scanning electron microscopy (SEM) images of 125 µm Cu electrodes with corrosion products 
removed after linear sweep voltammetry in (a) degassed, (b) ambient and (c) Ar-saturated 0.5 M NaCl(aq) at 5 mV 

s−1 from approx. −0.2 to +5.0 V vs. Ag. (1) at ×600 magnification and (2) at ×3000 magnification. 
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It is interesting to compare the calculated recession effects (based on total charge) with 

experimental data obtained from scanning electron microscopy (SEM). Fig. 7c-e shows that the 

recession of a 125 µm Cu electrode after linear sweep voltammetry from −0.2 to +5.0 V vs. Ag 

wire (at 5 mV s−1) for all three cases (Ar-saturated, ambient, and degassed solution) is indicative 

of a recession of 17-21 µm. This estimate contrasts with values based on electrochemical charge 

(see Fig. 7a-b) of 25-34 µm. Although the agreement is reasonable, there must be some 

additional current possibly due to generating some Cu(II). Overall, the effect of the presence of 

air or argon on the rate of the recession process seems minor. One important conclusion at this 

point is the absence of any additional currents linked to gas evolution, for example, linked to 

oxygen evolution. In the absence of anodic gas evolution, it seems possible that externally 

supplied gases could affect the processes at the corroding copper surface. 

 

Fig. 7. (a) total charge, Qtotal / mC and (b) estimated electrode recession (/ µm) for 150 (■), 125(⬤), 50(▲), and 25 

(▼) µm nominal diameter Cu microelectrodes corresponding to linear sweep voltammogram data from current 
responses given in Fig. 9 in degassed, ambient, and Ar-saturated 0.5 M NaCl (assuming all Cu(s) + Cl−(aq)  
CuCl(s) + 1e−). Also shown are scanning electron microscopy (SEM) images of recessed 125 µm nominal diameter 
Cu electrodes after linear sweep measurements from open circuit (approx. −0.2 V vs. Ag wire) to +5.0 V vs. Ag wire 
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at 5 mV s−1 in (c) degassed, (d) ambient, and (e) Ar-saturated 0.5 M NaCl(aq). Errors calculated from triplicate 
experiments. 

 

 

Changes in temperature are likely to be important in affecting corrosion rates directly (via 

Arrhenius-type activation energies or via viscosity [42]) as well as indirectly via gas solubility 

[35,43].The overall effects of temperature are thus investigated for 125, 50 and 25 µm nominal 

diameter copper microelectrodes (Fig. 8). The voltammetry data given in Fig. 8a1-c1 show that 

a decrease in temperature from 23 °C to 3 °C visibly decreases the number of current spikes 

observed during the anodic polarisation of copper in 0.5 M NaCl(aq). More importantly, the 

integrated corrosion current (charge, Q) which directly reflects the rate of corrosion, decreases 

at lower temperatures. Although processes studied here are complex, it is possible to treat the 

integrated corrosion current as a composite process with a composite activation parameter to 

reveal (at least in first approximation) underlying mechanistic trends.  

 

Temperature studies enable the calculation of an approximate composite activation energy, Ea 

(Fig. 8a2-c2) as per the Arrhenius equation (based on the integrated corrosion current, Q ∝

𝑒−𝐸a/𝑅𝑇) for the overall corrosion rate averaged over these extended voltages. Data for lnQ 

versus T-1 is plotted in Figure 8 and the slope from the data is equal to Ea/R. Based on this, the 

apparent Ea for copper corrosion (typically 16 to 24 kJ mol−1) is consistent with that typical for 

diffusion processes in aqueous media [44]. This suggests that Cu(I) is being formed at constant 

concentration (given by the solubility product) at the CuCl(s) | water interface and transported 

into the bulk solution via diffusion. This process appears to dominate in the rate of the multi-step 

overall reaction at these types of microelectrodes.  

 

It is hypothesised that a slight increase in the apparent composite activation energy for the larger 

diameter electrodes (125 µm) could be linked to a change in the type of diffusion from more 

spherical to more planar diffusion with increasing electrode diameter (decreasing the flux and 

thereby causing a change in the composite activation energy). More work will be needed to 

resolve further components contributing to the activation energy. 
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Fig. 8. (a1-c1) Linear sweep voltammograms at 23, 15 and 3 °C from open circuit (approx.−0.3 V vs. SCE) to + 5.0 
V vs. SCE at 5 mV s−1 in ambient 0.5 M NaCl. (a2-c2) Arrhenius plots for ln(Q / C) versus T−1 (/ K−1) at a range of 
temperatures from 3 to 25 °C for (a) 125, (b) 50, and (c) 25 µm diameter (ɸ) Cu microelectrodes. Errors calculated 
from triplicate experiments. 
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Effects of Dissolved Gases. As previously observed for Ar-saturation and degassing studies 

(see Fig. 5) the level of dissolved gas appeared to play a crucial role in the corrosion and 

passivation behaviour of the copper electrodes. The effects of Ar, air, and degassing have been 

mentioned previously; in this section the survey of gas effects on the copper 

corrosion/passivation behaviour is expanded to include He, H2, O2, N2, and CO2 (Fig. 9). It is 

important to consider the effects of gases present in marine environments such as CO2 and O2, 

as well as H2 which is produced by a number of subsea processes including cathodic protection 

[45,46] and scale formation [46,47]. Helium was chosen to investigate the effects of an inert gas, 

which is commonly employed in deaeration of solutions. 

 

Fig. 9 shows that the initial oxidation peak at approx. −0.05 V vs. Ag associated with the 

formation of CuCl(s) is present for all instances of gas saturation and degassing, and current 

“noise” is always detected. Such consistency shows that the underlying chemistry remains 

mostly the same, i.e. the formation of CuCl(s), dissolution of CuCl2−(aq) and the formation of 

strain and subsequent instabilities due to Cu(II) formation (see Fig. 1). To investigate the 

consistency of the initial chemistry, the approximate thicknesses of CuCl formed at −0.05 V vs. 

Ag for each electrolyte environment was determined, and the results are given in Table 2. For 

all gas-saturation scenarios and degassing other than for O2-saturation, the estimated thickness 

(assuming CuCl density of 4.14 g cm−1) is the same as for ambient conditions, at approx. 1 µm. 

O2-saturation, however, seems to have an effect on CuCl film formation, where only a thickness 

of approx. 0.4 µm is calculated. This possibly indicates the formation of a CuCl film with improved 

passivation linked to defects or a change in grain size. 

 



20 
 

 

Fig. 9. Linear sweep voltammograms at room temperature for 125 µm nominal diameter Cu microelectrode from 
open circuit (−0.2 V) to + 5.0 V vs. Ag wire at 5 mV s−1 in (a) He-saturated, (b) H2-saturated, (c) O2-saturated, (d) 
N2-saturated, (e) Ar-saturated, (f) CO2-saturated, (g) air-saturated, (h) ambient, and (i) degassed aqueous 0.5 M 
NaCl. 
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Another key difference observed in all cases given in Fig. 9 is the current spikes attributed to 

colloidal dissolution events, which are either enhanced or suppressed compared to ambient 

conditions depending on the presence and type of dissolved gas. Data shown in Fig. 9a suggest 

that He suppresses the rupture of the CuCl film in a very similar way to the degassing of the 

electrolyte. Also, H2- and O2-saturation results in voltammetric features that seem similar. In 

contrast, N2 and CO2 (Fig. 9d and Fig. 9f, respectively) have similar effects to Ar (Fig. 9e, 

discussed previously), where current spike events are enhanced for all three gases compared 

to ambient conditions, with CO2 having the greatest effect. 

 

Table 2. Calculated CuCl thickness (/ µm) from oxidation peak at −0.05 V vs. Ag in voltammetry 
data for He-saturated, H2-saturated, O2-saturated, N2-saturated, Ar-saturated, CO2-saturated, 
air-saturated, ambient, and degassed aqueous 0.5 M NaCl using the SEM determined electrode 
diameter (132 ± 2) µm assuming CuCl density of 4.41 g cm−3. Errors are calculated from triplicate 
experiments. 

Gas He H2 O2 N2 Ar CO2 Air Ambient Degassed 

Film 

Thickness  

/ µm 

1.12  

± 

0.02 

1.09 

± 

0.02 

0.43 

± 

0.02 

0.88 

± 

0.02 

0.78 

± 

0.01 

1.17 

± 

0.11 

1.06 

± 

0.03 

1.02 

± 0.02 

0.87 

± 0.01 

 

Perhaps interestingly, for CO2-saturated conditions at high applied potential, almost repetitive 

pulses of current bursts occur. In fact, voltammetry for N2-, Ar- and CO2-saturated NaCl solution 

exhibit current spike uniformity upwards of 3 V vs. Ag in 0.5 M NaCl, potentially indicative of 

underlying oscillatory behavior. To develop an understanding of the role of these different gases 

in the anodic passivation mechanism, the observed voltammetric responses will be compared to 

the known effect of gases on surface tension of water.  

 

Lubetkin [48] evaluated surface tension effects of gases on aqueous electrolyte media and 

discussed the relevance in the nucleation kinetics of gas bubbles. The discussion by Lubetkin 

highlights the role of gases as surfactants, altering surface tension of water γ, in turn affecting 
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bubble nucleation rates J, proposing that J ∝ exp(γ3) [49]. The effects that different gases have 

on water surface tension has to be taken into consideration to understand the effect of different 

gases on the copper corrosion mechanism. The change in surface tension with gas pressure is 

denoted b (see Table 3). 

 

Both helium and hydrogen show very small or insignificant effects on water surface tension due 

to a lack of molecular interaction. This could be a reason for voltammetric data for degassed and 

He- or H2-saturated solution showing very similar characteristics without any bigger current 

spikes. The remaining noise signal positive of 0.21 V vs. Ag (0.20 V vs. SCE) could be linked to 

residual gas pressure or the pure water vapour pressure. Nitrogen and argon show enhanced 

current spikes with similar characteristics, in agreement with very similar values for d/dp (see 

Table 3).  

 

Voltammetric data for CO2 (Fig. 9f) is rich in current spikes particularly in the potential range 

from 0.8 to 1.4 V vs. Ag in agreement with a much stronger effect of CO2 on surface tension (see 

Table 3). However, the chemistry occurring in CO2-saturated electrolyte could significantly differ 

from that in the presence of inert gas saturation. The pH could be slightly lowered due to CO2 

dissolution and this could lead to additional effects (including active participation of carbonates 

in passivation). In fact, in aqueous NaCl, localized variations in pH are possible and very difficult 

to measure or control. The effects are therefore not further considered in this report. 

 

Table 3. The change in aqueous surface tension with pressure, b = dγ/dp for different gases, 
reproduced from Massoudi and King [34]. 

Gas 𝒃 ≡
𝒅𝜸

𝒅(𝒑𝒓𝒆𝒔𝒔𝒖𝒓𝒆,𝒑)
 / (10−5 N cm−1 atm−1) 

He 0.0000 

H2 −0.0250 

O2 −0.0779 

N2 −0.0835 
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Ar −0.0840 

CO2 −0.7789 

 

The trend in current spikes can be shown quantitatively by performing a peak search above a 

chosen threshold for each voltammetric dataset given in Fig. 9. The threshold was determined 

as 3× root-mean-square (RMS) of the current signals. Fig. 10 suggests a monotonic correlation 

between the number of peaks above the threshold npeak as a function of b. 

 

Fig. 10. Plot of the number of current spikes npeak during linear sweep voltammetry measurements in CO2-, Ar-, N2-, 
H2- and He-saturated 0.5 M NaCl(aq) (Fig. 9) as a function of b (Table 3, the ability of the chosen gas to lower 

surface tension). Peak search threshold = 3 × RMS for each data set. Errors are calculated from triplicate 
experiments. 
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One significant case of inconsistency of gas behaviour with data in Table 3 is that of O2-

saturation. O2-saturation seems to result in similar current suppression effects (Fig. 9c) 

compared to degassing the electrolyte (current spikes remain <10 µA throughout the 

voltammetric sweep). One explanation could be that O2-saturation can be assumed to have 

additional chemical effects on the corrosion process. Even for 20% oxygen (air-saturated 

electrolyte, Fig. 9g) there is a suppression effect on current spikes when compared to N2-

saturated solution. Oxygen gas is known to react with copper and various copper complexes 

giving insoluble copper hydroxyl-chlorides, Cu2(OH)3Cl (via Reaction 3 and Reaction 4) [50–52]. 

These could affect the growth and grain structure of the CuCl film. 

 

4CuCl(s) + O2(g) + 4H2O(l)       2Cu2(OH)3Cl(s) + 2HCl(aq)   Reaction 3 

2Cu(s) + O2(g) + Cl−(aq) + 2H2O(l)       Cu2(OH)3Cl(s) + OH−(aq)    Reaction 4 

 

Since CuCl is shown to be the predominant corrosion product during anodic polarisation [8,53–

55], a reaction with oxygen forming basic copper chlorides modifying the CuCl film, possibly at 

the grain structures of the film, could result in improved passivity (e.g. lower current spikes in 

voltammograms).  

 

Table 4. Table of calculated Cu microelectrode recession (/ µm) based on electrochemical data 
in linear sweep voltammograms (LSVs) from −0.2 V to +5.0 V vs. Ag wire at 5 mV s−1 in aqueous 
0.5 M NaCl, using the SEM determined diameter (132 ± 2) µm in the calculations. Errors are 
calculated from triplicate experiments. 

Gas H2 He O2 CO2 N2 Ar Air Ambient Degassed 

Electrode 

Recession  

/ µm 

23.4 

± 3.5 

9.6 

± 4.8 

16.2 

± 0.5 

35.6 

± 0.6 

28.8 

± 3.9 

32.0 

± 5.4 

32.7 

± 4.0 

30.9 

± 3.2 

25.7 

± 8.5 
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Finally, it is interesting to ask whether the overall rate of corrosion (or Qtotal ∝ electrode recession) 

is significantly affected in these different electrolyte conditions. For each voltammetric response 

(from −0.2 to 5 V vs. Ag at 5 mV s−1) given in Fig. 9, the total charge (assuming all Cu  Cu+ + 

e−) and thus electrode recession of the system, has been estimated (based on a Cu density 8.96 

g cm−1 [41]). The results are given in Table 4. The corrosion rate for O2-saturation appears low 

at 16 µm compared to 23-36 µm for CO2, H2, Ar, and degassing (Table 4). The value for helium 

is even lower at 10 µm. Therefore, passivation of the CuCl film appears to be effective based on 

both (i) chemical reaction due to O2-saturation and (ii) suppressed nucleation of gas bubbles for 

He-saturated electrolyte. 

 

4. Conclusions 

 

In this report, we have explored the effects of diameter, electrolyte concentration, dissolved gas 

levels and type, and temperature on the formation of partial passivation films on copper 

microlectrodes immersed in aqueous NaCl solutions. We find that salinity affects the solubility of 

the protective CuCl film, whereby the solubility of CuCl increases with decreasing chloride 

concentration, consistent with the known solubility product for CuCl. In aqueous 0.5 M NaCl a 

partially passive film of CuCl is formed with typically 1 m thickness independent of the copper 

microelectrode diameter. However, voltammetric signals clearly reflect the changes in 

dissolution flux away from the smaller diameter electrodes in terms of a higher total charge per 

area (or a higher apparent rate of recession).  

 

Current spikes observed during voltammetry have been linked to the sudden rupture of the 

passive CuCl film. Experiments with two simultaneously scanning electrodes yielded very similar 

current spike pattern, suggesting reproducible effects from electrolyte environment and 

dissolved gases. SEM studies at the corroded Cu surface showed considerable changes in 

morphology, where many large pits were observed for Ar-saturated conditions compared to 

fewer, smaller pits for degassed conditions. Such observations indicate that the large current 
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spikes are the result of bubble nucleation at the corroding surface, possible triggered by the 

release of strain during film cracking. 

 

Temperature studies allowed the approximate determination of composite activation energies at 

25 to 125 µm diameter Cu electrodes. Overall corrosion rates were obtained, consistent with a 

dominating effect of diffusion of poorly soluble copper species away from the electrode surface. 

Further work needs to be conducted to improve the understanding of these processes.  

 

The observation that there is no significant underlying gas evolution even at very positive applied 

potentials allowed effects from gaseous species in the solution phase to be detected. Comparing 

the effects of vacuum-degassing and saturation with a range of gases (He, H2, Ar, N2, O2, air, 

CO2) showed that gases have a characteristic effect on the corrosion/passivation mechanism. 

CuCl film rupture and colloidal dissolution events increased in frequency in Ar- or CO2-saturated 

electrolyte and were suppressed in degassed or He/H2-treated electrolyte. This behaviour is 

consistent with the known effect of gases on water surface tension and on the related effects on 

gas bubble nucleation kinetics. O2-saturation is proposed to affect the chemistry of the anodic 

corrosion process significantly, both in the initial stage of corrosion/passivation (CuCl formation) 

and throughout the corrosion process. It is proposed that oxygen reacts with the CuCl film, 

modifying the CuCl film mechanical properties, and leading to the formation of a more 

passive/stable film. 

 

In some data sets, a more oscillatory/regular spike pattern is observed. Such observations could 

be linked also to local viscosity changes and/or Marangoni flow at the interface. There are further 

effects and phenomena that are not considered in this exploratory report. Further study will be 

needed to develop a better understanding of the noise component during the anodic corrosion 

of copper.  
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The link of gas bubble nucleation to passive film rupture could be more widely applicable for 

processes without intrinsic gas evolution. Bubble nucleation is linked to the ability of gases to 

act as surfactants by changing the surface tension of water. A range of distinct behaviours were 

observed from helium (which appears to suppress current spikes) to CO2 (which appears to be 

current spike enhancing). Further study of these phenomena will be required.  
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