
        

Citation for published version:
Abdellaoui, B, Biroud, K, Davila, J & Mahmoudi, F 2015, 'Nonlinear elliptic problem related to the Hardy
inequality with singular term at the boundary', Communications in Contemporary Mathematics, vol. 17, no. 03,
1450033. https://doi.org/10.1142/S0219199714500333

DOI:
10.1142/S0219199714500333

Publication date:
2015

Document Version
Peer reviewed version

Link to publication

Electronic version of an article published as Communications in Contemporary Mathematics, Volume 17, Issue
3, 2015, 1450033, https://doi.org/10.1142/S0219199714500333 © Copyright World Scientific Publishing
Company.  https://www.worldscientific.com/worldscinet/ccm

University of Bath

Alternative formats
If you require this document in an alternative format, please contact:
openaccess@bath.ac.uk

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 05. Jul. 2024

https://doi.org/10.1142/S0219199714500333
https://doi.org/10.1142/S0219199714500333
https://researchportal.bath.ac.uk/en/publications/e557ac66-9fec-494e-a510-b4f77c7ce2a9


NONLINEAR ELLIPTIC PROBLEM RELATED TO THE HARDY

INEQUALITY WITH SINGULAR TERM AT THE BOUNDARY

B. ABDELLAOUI, K. BIROUD, J. DAVILA, AND F. MAHMOUDI

Abstract. Let Ω ⊂ RN be a bounded regular domain of RN and 1 < p <∞.
The paper is divided in two main parts. In the first part we prove the following

improved Hardy Inequality for convex domains. Namely, for all φ ∈ W 1,p
0 (Ω),

we have∫
Ω

|∇φ|pdx−
(
p− 1

p

)p ∫
Ω

|φ|p

dp
dx ≥ C

∫
Ω

|∇φ|p
(

log

(
D

d

))−p

dx,

where d(x) = dist(x, ∂Ω), D > sup
x∈Ω̄

d(x) and C is a positive constant depend-

ing only on p,N and Ω. The optimality of the exponent of the logarithmic term
is also proved. In the second part we consider the following class of elliptic

problem 
−∆u =

uq

d2
in Ω,

u > 0 in Ω,
u = 0 on ∂Ω,

where 0 < q ≤ 2∗ − 1. We investigate the question of existence and nonexis-
tence of positive solutions depending on the range of the exponent q.

1. Introduction

The starting point of this work is the following Hardy inequality stating that
given a smooth bounded domain Ω of RN and 1 < p < N , then

(1.1) Λp

∫
Ω

|φ|p

dp
dx ≤

∫
Ω

|∇φ|pdx for all φ ∈W 1,p
0 (Ω),

where
d(x) = dist(x, ∂Ω)

and 0 < Λp ≤
(
p−1
p

)p
. In the case where the domain Ω is convex, then Λp =(

p−1
p

)p
and it is never achieved, see for instance [5], [16] and [17]. We refer also to

[12] for details and more general Hardy type inequalities.
Many improvements of (1.1) have been found. In [9], the authors obtain a

remainder term for the Hardy inequality, namely they show that for any 1 < p < N
and p ≤ q < p∗ ≡ Np

N−p , there exists a positive constant C ≡ C(p, q,N,Ω) such that

∫
Ω

|∇φ|pdx−
(
p− 1

p

)p ∫
Ω

|φ|p

dp
dx ≥ C

∫
Ω

|φ|qdx


p
q

∀φ ∈W 1,p
0 (Ω).
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In the case where q = p∗, then

∫
Ω

|∇φ|pdx−
(
p− 1

p

)p ∫
Ω

|φ|p

dp
dx ≥ CD−βint

∫
Ω

dα|φ|qdx


p
q

∀φ ∈W 1,p
0 (Ω)

where Dint = sup
x∈Ω

d(x, ∂Ω), α > 0 is any positive constant and c = c(p, q,N, α) > 0.

Another approach was elaborated in [2] with d(x) replaced by dK(x) = dist(x,K)
where K is a piecewise smooth surface of codimension k, 1 ≤ k ≤ N . In [2] it is

proved that, for any D > sup
x∈Ω

d(x,K) and for all u ∈W 1,p
0 (Ω),

(1.2)∫
Ω

|∇φ|pdx−
∣∣∣∣k − pp

∣∣∣∣p ∫
Ω

|φ|p

dpK
dx ≥ p− 1

2p

∣∣∣∣k − pp
∣∣∣∣p−2 ∫

Ω

|φ|p

dpK

(
log

(
D

dK

))−2

dx

for all φ ∈ W 1,p
0 (Ω). In our setting, we are interested in the case K = ∂Ω and

so k = 1. Also in [2] the authors proved that for 1 ≤ q < p and β > 1 + p
q , the

following inequality holds true

(1.3)

∫
Ω

|∇φ|pdx−
(
p− 1

p

)p ∫
Ω

|φ|p

dp
dx ≥ c

∫
Ω

|∇φ|qd
p
q−1

(
log

(
D

d

))−β
dx


p
q

,

for all φ ∈ W 1,p
0 (Ω), where c > 0 is a universal constant. The exponent of the

logarithm term in this inequality is optimal.
The first goal of this paper is to improve the above inequality (1.3). In fact we

prove the following result.

Theorem 1.1. Let Ω ⊂ RN be a convex bounded domain. Suppose that 1 < p <∞
and let D > sup

x∈Ω̄

d(x). Then for all φ ∈ C∞0 (Ω):

1) if p < 2, there exists a constant positive C such that

(1.4)

∫
Ω

|∇φ|pdx−
(
p− 1

p

)p ∫
Ω

|φ|p

dp
dx ≥ C

∫
Ω

|∇φ|p
(

log

(
D

d

))−p
dx,

2) if p ≥ 2, then there exists a constant positive C such that

(1.5)

∫
Ω

|∇φ|pdx−
(
p− 1

p

)p ∫
Ω

|φ|p

dp
dx ≥ C

∫
Ω

|∇φ|p
(

log

(
D

d

))−2

dx.

Estimates (1.4), (1.5) are sharp in the sense that the exponents of the term log(Dd )
in right hand sides cannot be bigger than p and 2 respectively.

The aim of the second part of this paper is to study a class of nonlinear ellip-
tic equations with a singular potential, more precisely we consider the following
problem:

(1.6)


−∆u =

uq

d2
in Ω,

u > 0 in Ω,
u = 0 on ∂Ω,
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where Ω ⊂ RN is a smooth bounded domain and 0 < q ≤ 2∗ − 1, where 2∗ = 2N
N−2

for N ≥ 3.
The case q = 1 is widely studied in the literature and it is strongly related to

the Hardy inequality (1.1) and the geometry of the domain Ω. If Ω is a regular

bounded domain with −∆d ≥ 0 in the sense of distribution, then Λ2 =
1

4
and it

never is achieved [2]. Hence the problem (1.6) has no positive solution. Notice
that if Ω is a convex bounded domain, then the above condition is satisfied, see for
instance [2].

If Λ2 <
1

4
, then Λ2 is achieved and the problem (1.6) with q = 1, up to a positive

constant in the right hand side, has a positive bounded solution u ∈W 1,2
0 (Ω) such

that
C1d

α(x) ≤ u(x) ≤ c2dα(x) for all x ∈ Ω

where α =
1 +
√

1− 4Λ2

2
. We refer to [16] for more details and for an example for

explicit domains where the Hardy constant is attainted.
For q 6= 1, the situation is totally different and it is, in some ways, surprising.
Let us describe some previous results when we replace d2(x) by the weight |x|2.

If 0 ∈ Ω then we have existence of positive solutions only if q < 1. If q > 1, then the
equation has no weak (distributional) solution, see [3]. In the case where 0 ∈ ∂Ω,
the situation is different. Indeed, for q < 1, the problem has bounded solutions with
finite energy. For q > 1, in [7] it is shown that the existence of solutions depends
on the geometry of the domain. In fact, if the domain is starshaped with respect
to the origin, there are no finite energy solutions. However, in dumbbell domains
they proved, using truncation arguments, that the equation has positive bounded
solutions.

For the problem (1.6) instead, the situation is quiet different. Indeed, for q < 1
we prove a complete blow-up for a natural approximation scheme.

Theorem 1.2. Assume that q < 1 and let un be the unique positive solution to the
problem

(1.7)


−∆un =

uqn
(d(x) + 1

n )2
in Ω,

un > 0 in Ω,
un = 0 on ∂Ω.

Then un(x)→∞ for all x ∈ Ω.

As a consequence we show that the problem (1.6) has no very weak solution, in
a suitable sense that we describe next.

Definition 1.3. Let h(x, u) be a Caratheodory function in Ω × R. We say that
u ∈ L1(Ω) is a very weak solution to the equation{

−∆u = h(x, u) in Ω,
u = 0 on ∂Ω,

if h(x, u) ∈ L1(d,Ω) and for all ψ ∈ C2(Ω) with ψ = 0 on ∂Ω, we have∫
Ω

u(−∆ψ)dx =

∫
Ω

fψdx.
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As a consequence of the blow-up result in Theorem 1.2, we have the following
non-existence result.

Theorem 1.4. Assume that 0 < q < 1. Then the equation (1.6) has no very weak
positive solution in the sense of Definition 1.3.

For q < 0, we know from the result of [8] that the problem (1.6) has no regular
solution u ∈ C2(Ω) ∩ C(Ω), however Theorem 1.4 provides a strong non existence
result.

If we replace the weight d2 by ds for some s positive, we can prove the existence
of a very weak solution in the sense of Definition 1.3. More precisely we have the
next existence result.

Theorem 1.5. Assume that 0 < q < 1. Then for all s < 2, the problem
−∆u =

uq

ds
in Ω,

u > 0 in Ω,
u = 0 on ∂Ω,

has a positive solution u in the sense of Definition 1.3.

Going back to equation (1.6) in the range 1 < q < 2∗ − 1 and using blow-up
arguments, we are able to show the existence of a solution as a limit of mountain
pass solutions of approximated problems.

Theorem 1.6. Assume that 1 < q < 2∗ − 1, then the problem (1.6) has a bounded

positive solution u ∈W 1,2
0 (Ω).

For the critical case q = 2∗− 1 and if Ω = B1(0) is the unit ball in RN , we prove
existence of a bounded radial positive solution.

Theorem 1.7. Let Ω = BR(0) Assume that N ≥ 3 and q = 2∗ − 1 or N = 1, 2
and q > 1. Then problem (1.6) has a positive radial solution u.

The paper is organized as follows. In the next section we give some prelimi-
nary tools that will be used systematically in the rest of the paper. In particular
inequality (2.2) which can be seen as an extension of the Hardy inequality.

Section 3 will be devoted to the ”improved Hardy inequality”. We first prove
(1.4) and (1.5) see Theorem 1.1. In the last part of the proof we show the optimality
of the exponent of the logarithmic term in (1.4) and (1.5).

Problem (1.6) with q < 1 will be studied in Section 4. We begin by proving a
complete blow up for solutions of the approximated problems. As a consequence,
we get the non-existence result. Then, we show that this nonexistence result is
strongly related to the weight d2 in the sense that if we replace d2 by ds for some
s < 2, then the problem has at least a distributional solution. Some estimates on
the behavior of the solution near the boundary are also obtained.

The case 1 < q < 2∗−1 is considered in Section 5. Then using the mountain pass
theorem, we get the existence of a solution to a family of approximated problem.
Hence, to get the desired existence result, we pass to the limit using Blow-up
technics and the nonexistence results obtained by Gidas-Spruck in [10].

In Section 6 we analyze the critical case q = 2∗−1, then if Ω = BR(0), using the
concentration-compactness argument, we are able to show the existence of a radial
positive solution.
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In the last Section we collect some open problems.
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2. Preliminaries and previous results

In this section, we collect some preliminaries and useful known results. We begin
by the following vectorial inequalities that will be used systematically in first part
of the paper. We first recall the following lemma (see [18] and [13] for complete
proofs)

Lemma 2.1. Assume that 1 < p < ∞, then there exists a positive constant c ≡
c(p) > 0 such that for all a, b ∈ RN we have

1) If p < 2, then

(2.1) |a− b|p − |a|p ≥ c |b|2

(|a|+ |b|)2−p − p|a|
p−2a.b.

2) If p ≥ 2, then

|a− b|p − |a|p ≥ c|a|p−2|b|2 − p|a|p−2a.b,

(2.2) |a− b|p − |a|p ≥ c|b|p − p|a|p−2a.b.

Then, we recall the following extension of Hardy inequality obtained in [12].

Theorem 2.2. Let Ω be bounded domain in RN and suppose that D > sup
x∈Ω

d(x).

Then there exists a positive constant C0 = C(N, p) such that for all u ∈ C∞0 (Ω),∫
Ω

|u|p

d

(
log(

D

d
)

)−p
dx ≤ C0

∫
Ω

|∇u|pdp−1dx.

When dealing with the problem (1.6), the next comparison principle will be of
great utility, see [4] for the proof.

Lemma 2.3. (Comparison principle) Let f be a continuous function such that
f(., u)

u
is decreasing. Assume that u, v ∈W 1,2

0 (Ω) satisfy

−∆u ≥ f(x, u), u > 0, in Ω,
−∆v ≤ f(x, v), v > 0, in Ω.

Then u ≥ v in Ω.

The following weak version of the Harnack inequality is obtained in [3].
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Lemma 2.4. Let h ∈ L∞(Ω) be a nonnegative function and assume that v solves{
−∆v = h(x) in Ω,

v = 0 on ∂Ω.

Then
v(x)

d(x)
≥ c(Ω)

∫
Ω

h(x)d(x) dx, for all x ∈ Ω.

In the following C will denote a constant which may vary from line to line.
Sometimes, when needed, we will explicit the dependence of the constant C on
some of the parameters.

3. An improved Hardy inequality

Proof of Theorem 1.1. We divide the proof into four steps.

(1) The case p = 2.
Let φ ∈ C∞0 (Ω), by a direct computation we get

1

2
∇
(
φ2

d

)
∇d =

φ∇φ∇d
d

− 1

2

φ2

d2
|∇d|2,

thus

|∇φ|2 − 1

4

φ2

d2
=

∣∣∣∣∇φ− 1

2

φ

d
∇d
∣∣∣∣2 +

1

2
∇
(
φ2

d

)
∇d.

Since −∆d ≥ 0 in D′(Ω), then

(3.1)

∫
Ω

(
|∇φ|2 − 1

4

φ2

d2

)
dx ≥

∫
Ω

∣∣∣∣∇φ− 1

2

φ

d
∇d
∣∣∣∣2 dx.

Recall that D > sup
x∈Ω̄

d(x), thus
(
log(Dd )

)−α ∈ L∞(Ω) for all α > 0. Hence

we get the existence of a positive constant C > such that∣∣∣∣∇φ− 1

2

φ

d
∇d
∣∣∣∣2 ≥ C (log(

D

d
)

)−2 ∣∣∣∣∇φ− 1

2

φ

d
∇d
∣∣∣∣2 .

Therefore∣∣∣∣∇φ− 1

2

φ

d
∇d
∣∣∣∣2 ≥ C (log(

D

d
)

)−2(
|∇φ|2 +

1

4
|φ∇d

d
|2 − φ

d
∇d∇φ

)
.

By integration and using Young’s inequality, it follows that

(3.2)

∫
Ω

∣∣∣∣∇φ− 1

2

φ

d
∇d
∣∣∣∣2 dx

≥ C

(1− ε)
∫
Ω

|∇φ|2
(

log(
D

d
)

)−2

dx− Cε
∫
Ω

φ2

d2

(
log(

D

d
)

)−2

dx

 .

Using inequality (1.2) with p = 2 and taking in consideration (3.1) and
(3.2), the result follows in this case.
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(2) The case p > 2.

Let φ ∈ C∞0 (Ω) and define u =
φ

d
p−1
p

.

From [9], we get the existence of a positive constant C1 ≡ C1(p,N) such
that ∫

Ω

|∇φ|pdx−
(
p− 1)

p

)p ∫
Ω

|φ|p

dp
dx ≥ C1

∫
Ω

dp−1|∇u|pdx.

Since ∇u = d−( p−1
p )(∇φ− p−1

p
φ
d∇d), then the last inequality became

(3.3)

∫
Ω

|∇φ|pdx−
(
p− 1

p

)p ∫
Ω

|φ|p

dp
dx ≥ C1

∫
Ω

∣∣∣∣∇φ− p− 1

p

φ

d
∇d
∣∣∣∣p dx.

Using the fact that p > 2, following the arguments of the first case, we
get the existence of positives constants which are independent of φ such
that∣∣∣∣∇φ− p− 1

p

φ

d
∇d
∣∣∣∣p ≥ C (log(

D

d
)

)−2 ∣∣∣∣∇φ− p− 1

p

φ

dp
∇d
∣∣∣∣p .

By (2.2), hence∣∣∣∣∇φ− p− 1

p

φ

d
∇d
∣∣∣∣p ≥ C (log(

D

d
)

)−2{
|∇φ|p + c(p)

(
p− 1

p

)p ∣∣∣∣φ∇dd
∣∣∣∣p

−p
∣∣∣∣(p− 1

p

)
φ

d
∇d
∣∣∣∣p−1

|∇φ|
}
,

where c(p) > 0. Thus by integration and using Young inequality, we get

(3.4)

∫
Ω

∣∣∣∣∇φ− (p− 1

p

)
φ

d
∇d
∣∣∣∣p dx

≥ C

(1− ε)
∫
Ω

|∇φ|p
(

log(
D

d
)

)−p
dx− Cε

∫
Ω

φp

dp

(
log(

D

d
)

)−p
dx

 .

Using again (1.2), combining estimates (3.3) and (3.4), we reach (1.5) and
then we conclude.

(3) The case 1 < p < 2. From [2], we know that

(3.5)

∫
Ω

|∇φ|pdx−
(
p− 1)

p

)p ∫
Ω

|φ|p

dp
dx ≥ C1

∫
Ω

X2−p
∣∣∣∣∇φ− (p− 1)

p

)
φ

d
∇d
∣∣∣∣p dx.

where X ≡ X(d(x)
R ) with X(t) = (1− log t)−1 and R = sup

x∈Ω
d(x).

Since D > R, we can find β > 0 such that

(3.6) X2−p ≥ β
(

log(
D

d
)

)−p
.

Thus combining (3.5) and (3.6), we obtain that∫
Ω

|∇φ|pdx−
(
p− 1)

p

)p ∫
Ω

|φ|p

dp
dx ≥ C3

∫
Ω

(
log(

D

d
)

)−p ∣∣∣∣∇φ− (p− 1

p

)
φ

d
∇d
∣∣∣∣p dx,
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For a constant C3 > independent of φ.
Using (2.1), we obtain(

log(
D

d
)

)−p ∣∣∣∣∇φ− p− 1

p

φ

d
∇d
∣∣∣∣p ≥

C

(
log(

D

d
)

)−p(
|∇φ|p − p

∣∣∣∣(p− 1

p

)
φ

d
∇d
∣∣∣∣p−1

|∇φ|

)
.

Therefore, by Young’s inequality,∫
Ω

(
log(

D

d
)

)−p ∣∣∣∣∇φ− (p− 1

p

)
φ

d
∇d
∣∣∣∣p dx

≥ C

(1− ε)
∫
Ω

|∇φ|p
(

log(
D

d
)

)−p
dx− Cε

∫
Ω

φp

dp

(
log(

D

d
)

)−p
dx

 ,

which implies,

(3.7)

∫
Ω

(
log(

D

d
)

)−p ∣∣∣∣∇φ− (p− 1

p

)
φ

d
∇d
∣∣∣∣p dx+

∫
Ω

φp

dp

(
log(

D

d
)

)−p
dx

≥ C
∫
Ω

|∇φ|p
(

log(
D

d
)

)−p
dx.

Now, using Theorem 2.2 with u =
φ

d
p−1
p

, we get

(3.8)

∫
Ω

φp

dp

(
log(

D

d
)

)−p
dx ≤ C

∫
Ω

∣∣∣∣∇φ− p− 1

p

φ

d
∇d
∣∣∣∣p dx.

Thus, by (3.7) and (3.8), it follows that∫
Ω

|∇φ|pdx−
(
p− 1)

p

)p ∫
Ω

|φ|p

dp
dx

≥ C1

∫
Ω

∣∣∣∣∇φ− (p− 1

p

)
φ

d
∇d
∣∣∣∣p dx

+C2

∫
Ω

((
log(

D

d
)

)−p ∣∣∣∣∇φ− (p− 1

p

)
φ

d
∇d
∣∣∣∣p
)
dx

≥ C
∫
Ω

|∇φ|p
(

log(
D

d
)

)−p
dx.

Hence the result follows at once.

Optimality of exponents.
To prove the optimality of exponents of log(Dd ) in the right hand side of

inequalities (1.4) and (1.5), we use closely the arguments introduced in [9]
.

Without loss of generality assume that 0 ∈ ∂Ω and we consider Bδ(0),
the ball centered at the origin with δ sufficiently small.
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For ε > 0, we set wε = d
p−1
p +ε

(
log
(
D
d

))θ
, where θ > 0, to be chosen later.

Let φ ∈ C2
0(Ω), be such that 0 ≤ φ ≤ 1, supp(φ) ⊂ Bδ(0) and φ = 1 in

B δ
2
(0).

Define Uε(x) ≡ φ(x)wε(x), then supp
(
Uε
)
⊂ Bδ(0).

Let us begin by proving the optimality in the case p ≥ 2. We argue by
contradiction. Suppose the existence of positive constants C and γ such
that∫

Ω

|∇u|pdx−
(
p− 1

p

)p ∫
Ω

|u|p

dp
dx ≥ C

∫
Ω

|∇u|p
(

log

(
D

d

))−2−γ

dx

holds for all u ∈W 1,p
0 (Ω). Since Uε ∈W 1,p

0 (Ω) for all ε > 0, it follows that

(3.9)

∫
Ω

|∇Uε|pdx−
(
p− 1

p

)p ∫
Ω

|Uε|p

dp
dx ≥ C

∫
Ω

|∇Uε|p
(

log

(
D

d

))−2−γ

dx.

Let analyze each term in the above inequality.
If θ < 1

p , then following closely the arguments in [9], their results that

(3.10)

∫
Ω

|∇Uε|pdx−
(
p− 1

p

)p ∫
Ω

|Uε|p

dp
dx ≤ cε1−pθ.

Now we estimate the second member of right hand in (3.9).
Notice that ∇Uε = wε∇φ+ φ∇wε, then∫

Ω

|∇Uε|p
(

log

(
D

d

))−2−γ

dx ≥
∫
B δ

2
(0)

|∇Uε|p
(

log

(
D

d

))−2−γ

dx

≥
∫
B δ

2
(0)

|∇wε|p
(

log

(
D

d

))−2−γ

dx

≥
∫
B δ

2
(0)

d−1+pε(log(
D

d
))p(θ−1)−2−γ |(p− 1

p
) log(

D

d
)− θ|pdx.

Using (2.2), there results that∣∣∣(p− 1

p
) log(

D

d
)− θ

∣∣∣p ≥ c(p)
(

log(
D

d
)
)p
− pθ

(
log(

D

d
)
)p−1

.

Hence∫
Ω

|∇Uε|p
(

log

(
D

d

))−2−γ

dx

≥ c(p)

∫
B δ

2
(0)

d−1+pε

(
log

(
D

d

))pθ−2−γ

dx− c(p, θ)
∫
B δ

2
(0)

d−1+pε

(
log

(
D

d

))pθ−3−γ

dx

=: I1 − I2.
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By using the change of variables r = Ds
1
ε in I1 and I2, we obtain

(3.11)

I1 − I2 =

ε−pθ+γ+1Dpε

[
c(p)

∫ ( δ
2D )ε

0

sp−1

(
log

(
1

s

))pθ−2−γ

ds

−c(p, θ)ε
∫ ( δ

2D )ε

0
sp−1

(
log
(

1
s

))pθ−3−γ
ds

]
.

Combining (3.10) and (3.11), we reach that

Dpε

[
c(p)

∫ ( δ
2D )ε

0

sp−1

(
log

(
1

s

))pθ−2−γ

ds

−c(p, θ)ε
∫ ( δ

2D )ε

0

sp−1

(
log

(
1

s

))pθ−3−γ

ds

]
≥ Cε−γ .(3.12)

Since p > 1, then, for all γ > 0, as ε→ 0, we have

c(p)

∫ 1

0

sp−1

(
log

(
1

s

))pθ−2−γ

ds+ c(p, θ)

∫ 1

0

sp−1

(
log

(
1

s

))pθ−3−γ

ds <∞,

hence we reach a contradiction with (3.12) and the result follows in this
case.

(4) The case p < 2 follows using the same arguments.

Remark 1. In the case where p = 2, then we can define a new space H as the
completion of C∞0 (Ω) with respect to the norm

||φ||2H =

∫
Ω

(
|∇φ|2 − 1

4

φ2

d2

)
dx.

It is clear that H is a Hilbert space. By Theorem 1.1, it follows that

W 1,2
0 (Ω)  H  W 1,q

0 (Ω) ∀ q < 2.

4. The problem (1.6) with q < 1

First we give the proof of Theorem 1.2 about the blow-up for the approximated
problem.

Proof of Theorem 1.2 in the case 0 < q < 1. Notice that the existence and the
uniqueness of un follow using classical minimizing arguments and the comparison
principle Lemma 2.3. It is clear that {un}n is an increasing sequence in n.

We argue by contradiction. We assume that there exist some x0 ∈ Ω such that
un(x0) ≤ C for all n. Then, by Lemma 2.4 it follows that

un(x0)

d(x0)
≥ C

∫
Ω

uqn
(d(y) + 1

n )2
d(y)dy.

Hence we conclude that ∫
Ω

uqn
(d(y) + 1

n )2
d(y)dy ≤ C.
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Since {un}n is an increasing sequence in n, we get the existence of a measurable
function u such that un ↑ u a. e. in Ω and

uqn
(d(y) + 1

n )2
d(y) → uq

d(y)
strongly in L1(Ω).

Let ρ be the unique solution to the problem

(4.1) −∆ρ = 1, ρ ∈W 1,2
0 (Ω).

It is clear that ρ ∈ C1(Ω) and ρ ' d. Using ρ as a test function in (1.7) we reach
that ∫

Ω

undx =

∫
Ω

uqn
(d(x) + 1

n )2
ρdx ≤ C

∫
Ω

uqn
(d(x) + 1

n )2
d(x)dx ≤ C.

Hence ‖un‖L1(Ω) ≤ C and then un → u strongly in L1(Ω). In the same way and by

an approximation argument we can take
ρ

usn
, 0 < s < 1, as a test function in (1.7).

We obtain that

1

1− s

∫
Ω

u1−s
n dx = s

∫
Ω

|∇un|2

us+1
n

ρ dx+

∫
Ω

uq−sn

(d(x) + 1
n )2

ρ dx.

Since u1−s
n → u1−s strongly in L1(Ω), then∫

Ω

uq−sn

(d(x) + 1
n )2

ρ dx ≤ C.

Therefore using Fatou’s lemma we obtain that∫
Ω

uq−s

d(x)
dx ≤ C for all 0 < s < 1.

As a conclusion we have proved that

uq

d
∈ L1(Ω) and

uq−s

d
∈ L1(Ω) for all 0 < s < 1.

Fix s such that q < s < 1, then since s−q
s + q

s = 1,

F ≡
(uq
d

) s−q
s ∈ L

s
s−q (Ω) and G ≡

(uq−s
d

) q
s ∈ L

s
q (Ω).

Therefore, using Hölder’s inequality we reach that FG ∈ L1(Ω). On the other
hand notice that FG = 1

d /∈ L
1(Ω), a contradiction. We then conclude that un(x)→

∞ for all x ∈ Ω.

Remark 2. In the case where q = 0, if we consider the problem

(4.2) −∆w =
1

ds

where s ≤ 2, we can prove the following assertions:

(1) If s < 2, then the problem (4.2) has a unique positive bounded solution

w ∈W 1,2
0 (Ω).

(2) If s = 2, then there is non positive bounded solution.

Notice that, if s > 1, then 1
ds /∈ L

1(Ω)∪M(Ω) where M(Ω) is the space of bounded
Radon measures.
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For simplicity of writing, we set σ = −q.

Proof of Theorem 1.2 when q < 0. Let un ∈ L∞(Ω) be the unique positive
solution to the problem

(4.3)


−∆un =

1

uσn(d(x) + 1
n )2

in Ω,

un > 0 in Ω,
un = 0 on ∂Ω.

We claim that un(x0)→∞ for all x0 ∈ Ω.
The main idea is to construct a suitable subsolution blowing-up at each point of

Ω.
For s ≥ 0, we set

H(s) =
(

log(s+ 1)− s

s+ 1

) 1
1+σ

,

then

H ′(s) =
1

σ + 1

s

(s+ 1)2
H−σ(s)

and

H ′′(s) = − σ

σ + 1
(

s

(s+ 1)2
)2H−2σ−1(s) +

1

σ + 1

s− 1

(s+ 1)3
H−σ(s).

Define vn = H(C0nφ1) where φ1 is first eigenfunction of the laplacian and C0 is a
positive constant that we will chose later.

In what follows, C will denote a constant which can vary from line to line and
that is independent of n.

By a direct computations, we reach that

−∆vn = C0nH
′(C0nφ1)(−∆φ1)− C2

0n
2H ′′(Cnφ1)|∇φ1|2

≤ C0λ1nφ1H
′(C0nφ) + C2

0n
2|H ′′(C0nφ1)||∇φ1|2.

Notice that

C0nφ1H
′(C0nφ1) =

1

σ + 1

(C0nφ1)2

((C0nφ1) + 1)2
H−σ(C0nφ1) ≤ 1

Hσ(C0nφ1)

≤ C

((C0φ1) + 1
n )2Hσ(C0nφ1)

.

On the other hand we have

|C2n2H ′′(C0nφ1)|∇φ1|2| ≤
σC

σ + 1

C2
0

((C0φ1) + 1
n )2Hσ(C0nφ1)

( C0φ1

Cφ1 + 1
n

)2

H−σ−1(C0nφ1) +

+
CC2

0

σ + 1

1

((C0φ1) + 1
n )2Hσ(C0nφ1)

.

Using the fact that (
s

s+ 1
)2H−q−1(s) ≤ C, it follows that

|C2
0n

2H ′′(C0nφ1)|∇φ1|2| ≤
CC2

0

σ + 1

1

((C0φ1) + 1
n )2Hσ(C0nφ1)

.

Going back to the problem of vn, we reach that

−∆vn ≤
C

((C0φ1) + 1
n )2vσn

.
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Since φ1(x) ≥ C1d(x), then choosing C0 such that C0φ1(x) ≥ d(x), it follows that

−∆vn ≤
C

(d(x) + 1
n )2vσn

.

We set ṽn = 1

C
1
q+1

vn, then ṽn satisfies

−∆ṽn ≤
1

(d(x) + 1
n )2ṽσn

.

Thus ṽn is a subsolution to problem (4.3) and then by the comparison principle in
Lemma 2.3, we conclude that ṽn ≤ un. It is clear that ṽn(x0)→∞ for all x0 ∈ Ω.
Hence we conclude.

Proof of Theorem 1.4. We argue by contradiction. We assume that the problem
(1.6) has a non-negative solution u in the sense of Definition 1.3. By the strong
maximum principle u > 0 in Ω. Then, we consider the unique solution un to the
approximated problem (1.7). It is clear that u is a super-solution to problem (1.7).
Hence using a variation of the comparison principle Lemma 2.3 we obtain that

un ≤ un+1 ≤ u for all n.

Hence we get the existence of u ∈ L1(Ω) such that un → u strongly in L1(Ω). This
is a contradiction with the result of Theorem 1.2. Thus we conclude.

Remark 3. Notice that the existence of un follows by minimizing the functional

Jn(v) =
1

2

∫
Ω

|∇v|2dx− 1

q + 1

∫
Ω

|v|q+1

(d(x) + 1
n )2

dx

in W 1,2
0 (Ω). It is clear that

Jn(un) = min
{v∈W 1,2

0 (Ω)\{0}}
Jn(v) = −1− q

1 + q

∫
Ω

uq+1
n

(d(x) + 1
n )2

dx < 0.

We claim that Jn(un) → −∞ as n → ∞. Indeed, define w = φα1 where φ1 is the
first eigenfunction and 1

2 < α < 1
q+1 , thus

∇w = αφα−1
1 ∇φ1.

Recall that φ1 w d(x), then since 2(α− 1) > −1

|∇w|2 = α2φ
2(α−1)
1 |∇φ1|2 ∈ L1(Ω).

Hence we conclude that

Jn(un) ≤ Jn(w) =
1

2

∫
Ω

|∇w|2dx− 1

q + 1

∫
Ω

wq+1

(d(x) + 1
n )2

dx

≤ C − 1

q + 1

∫
Ω

φ
α(q+1)
1

(d(x) + 1
n )2

dx.

On the other hand it is clear that

φ
α(q+1)
1

(d(x) + 1
n )2

w
dα(q+1)

(d(x) + 1
n )2

.
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Then by the monotone convergence Theorem we reach that

dα(q+1)

(d(x) + 1
n )2
↑ dα(q+1)−2.

Since α < 1
q+1 , we conclude that∫

Ω

dα(q+1)−2 =∞.

To prove Theorem 1.5 we need the following result.

Proposition 4.1. Assume that 0 < r < 1, then the problem

(4.4)


−∆w =

1

wr
in Ω,

w > 0 in Ω,
w = 0 on ∂Ω,

has a unique positive solution w such that w ∈ W 1,2
0 (Ω) ∩ L∞(Ω), moreover, there

exist two positive constants C1, C2 such that

(4.5) C1d(x) ≤ w ≤ C2d(x).

The proof of Proposition 4.1 follows using sub-supersolution arguments.

Proof of Theorem 1.5. We follow by approximation. Let un be the unique
positive solution to the problem

(4.6)


−∆un =

uqn
(d(x) + 1

n )s
in Ω,

un > 0 in Ω,
un = 0 on ∂Ω.

Let w be the solution of problem (4.4) with r = s−1 < 1 if 1 < s < 2 and r ∈ (0, 1)
is arbitrary if 0 < s ≤ 1. Using w as a test function in (4.6), we reach that∫

Ω

un
wr

dx =

∫
Ω

uqnw

(d(x) + 1
n )s

dx.

Using estimate (4.5), the definition of r and the Hölder inequality, we obtain that∫
Ω

un
dr
dx ≤ C

∫
Ω

uqn
dr
dx ≤ C

( ∫
Ω

un
dr
dx
)q( ∫

Ω

1

dr
dx
)1−q

.

Since, in any case, r < 1, then 1
dr ∈ L

1(Ω), thus

∫
Ω

un
dr
dx ≤ C.

Using the fact that the sequence {un}n is monotone in n, we get the existence

of a measurable function u such that
un
dr
→ u

dr
strongly in L1(Ω). It is clear that

uqn
(d(x) + 1

n )s
↑ u

q

ds
strongly in L1(d(x),Ω)

thus u is a distributional solution to problem (4.6). It is not difficult to prove
that u is a solution to (4.6) in the sense of Definition 1.3. Notice that if s < q+3

4 ,
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we can prove that u ∈ W 1,2
0 (Ω), moveover, using elliptic regularity we reach that

u ∈ L∞(Ω).

Remark 4.

(1) Using the fact that −∆uσ ≥ σ

u1−σ−qds
for any 0 < σ < 1 − q, we obtain

that u ≥ Cd
2

1−q .

(2) Notice that if q + 1 < s < 2, then
u

ds
/∈ L1(Ω), hence by Lemma (2.4), it

follows that

un(x)

d(x)
≥ C

∫
Ω

uqn
(d(x) + 1

n )s
d(y)dy for all x ∈ Ω

which implies that u(x) ≥ Cd(x) for all x ∈ Ω. Thus

uq

ds
≥ C

ds−q
/∈ L1(Ω)

since s− q > 1.

(3) If 1 + q < s < 2, then for all
2− s
1− q

< θ < 1, there exists C(θ) > 0 such that

u ≥ C(θ)dθ in Ω.

This follows using the fact that if
2− s
1− q

< θ < 1, then

−∆φθ1 ≤ C
φq θ1

ds

where φ1 is the first eigenfunction of the laplacian. Thus by the comparison
principle Lemma 2.3 and up a constant we reach the desired estimate.

Remark 5. If we consider the problem

(4.7)


−∆u =

1

uσnd
s(x)

in Ω,

u > 0 in Ω,
u = 0 on ∂Ω

where s < 2, then using sub-supersolution arguments and apriori estimates, we can
prove that, for all σ > 0, the problem (4.7) has a unique bounded positive solution.
We refer to [8] for more details and extensions.

5. The problem (1.6) with 1 < q < 2∗ − 1

Proof of Theorem 1.6. As in the previous section, we argue by approximation.
Let un ∈ L∞(Ω) ∩W 1,2

0 (Ω) be the “mountain pass solution ”to the approximated
problem

(5.1)


−∆un =

uqn
(d(x) + 1

n )2
in Ω,

un > 0 in Ω,

un = 0 on ∂Ω.
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Notice that un is a critical point of the functional

Jn(v) =
1

2

∫
Ω

|∇v|2dx− 1

q + 1

∫
Ω

|v|q+1

(d(x) + 1
n )2

dx.

Using [1], we obtain that Jn(un) = cn where

cn = inf
γ∈Γ

max
t∈[0,1]

J(γ(t))

and

Γ = {γ ∈ C([0, 1],R with γ(0) = 0 and γ(1) = v1 ∈W 1,2
0 (Ω), Jn(v1) < 0}.

It is not difficult to prove that there exist v1 ∈ C∞0 (Ω) such that Jn(v1) << 0
uniformly in n.

Since cn =
p− 1

p+ 1

∫
Ω

|∇un|2dx, then using the fact that 0 ≤ cn ≤ maxt∈[0,∞) J(tv1) ≤

C for all n, we reach that the sequence {un}n is bounded in W 1,2
0 (Ω).

We claim that

||un||L∞(Ω) ≤ C for all n.

To prove the claim we use blow-up technique as in [6] and [10]. Let {xn}n ⊂ Ω be
such that ||un||L∞(Ω) = un(xn) and suppose by contradiction that un(xn)→∞ as

n → ∞. Since {xn}n is a bounded sequence, we get the existence of x ∈ Ω such
that (up to a subsequence) xn → x .

We divide the proof in two cases:

(1) The first case: x ∈ Ω. We set vn(z) =
un(µnz + xn)

Mn
where Mn = un(xn)

and µn = M
1−q
2

n , then vn solves
−∆vn =

vqn
(d(µnz + xn) + 1

n )2
in Ωn,

vn > 0 in Ωn,

vn = 0 on ∂Ωn,

where Ωn =
1

µn
(Ω− xn) is given by the transformation x 7→ z =

x− xn
µn

.

It is clear that, for z fixed, d(µnz + xn) + 1
n → d(x) = C as n→∞.

By elliptic regularity, see [11], we have that vn ∈ C0,ν for some 0 < ν <
1/2, moreover, ‖vn‖µC0,ν ≤ C uniformly in n.

Passing to the limit as n → ∞, we get the existence of v ∈ C0,ν(RN ) ∩
L∞(RN ) such that v(z) ≤ v(0) = 1 and v solves

−∆v = Cvq, v ≥ 0 in RN .

Since q < 2∗ − 1, we get a contradiction with the non-existence result in
[10].
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(2) The second case: x ∈ ∂Ω. In this case we set µn = M
1−q
2

n (d(xn) + 1
n ),

then vn solves
−∆vn = vqn

( d(xn) + 1
n

d(µnz + xn) + 1
n

)2

in Ωn,

vn > 0 in Ωn,

vn = 0 on ∂Ωn,

Fix z ∈ RN , then
d(xn) + 1

n

d(µnz + xn) + 1
n

→ 1 as n → ∞. Thus passing to the

limit as n → ∞, we get the existence of v such that either, v ∈ C2(RN ) ∩
L∞(RN ) such that v(z) ≤ v(0) = 1 and v solves

−∆v = Cvq, v ≥ 0 in RN ,

or, up to a translation, v ∈ C2(RN+ ) ∩ C0({z ∈ RN , zN ≥ 0}) such that v
solves

−∆v = Cvq, v ≥ 0 in RN+ , v = 0 on zN = 0.

Since q < 2∗−1, we again get a contradiction with the non-existence result
in [10]. Hence the claim follows at once.

On the other hand it is clear that

(5.2) ||un||L∞ ≥ C for all n.

Otherwise, for some subsequence, we have ||un||L∞ → 0, then un solves

−∆un ≤ ||un||q−1
L∞

un

d2 + 1
n

, un ∈W 1,2
0 (Ω).

Choosing n large, we reach that ||un||q−1
L∞ << Λ2, a contradiction with the

Hardy inequality (1.1). Hence we conclude that ||un||L∞ ≥ C for all n.
Recall that u(xn) = ||un||L∞ , we claim that d(xn) > C1 > 0 for all n.

We argue by contradiction, if, for some subsequence, xn → x ∈ ∂Ω and
||un||L∞ → C2 ≥ C. Then as in the proof of the previous uniform estimate,
we set

vn(z) =
un(µnz + xn)

Mn

where

µn = M
1−q
2

n (d2(xn) +
1

n
)

1
2 .

It is clear that µn → 0 as n→∞. As above we reach that vn → v strongly
in C(RN ) where v solves

−∆v = Cvq in RN ,

a contradiction with the result of [10]. Hence the claim follows.

We then conclude that {un}n is bounded in L∞(Ω) ∩W 1,2
0 (Ω) and hence there

exists u ∈ L∞(Ω) ∩W 1,2
0 (Ω) such that

un ⇀ u weakly in W 1,2
0 (Ω) and un → u strongly in Lp(Ω)

for all p ≥ 1.
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To finish we have just to prove that u 6≡ 0. We argue by contradiction, if u ≡ 0,
then un → 0 strongly in Lp(Ω) for all p ≥ 1. We claim that∫

Ω

|∇un|2φ1 → 0 as n→∞,

where φ1 is the first eigenfunction of the laplacian.

To prove the claim we use un(φ1+ c
n ) as a test function in (5.1) for c ≥ sup

Ω̄

φ1(x)

d(x)
.

Therefore we obtain that∫
Ω

|∇un|2(φ1 +
c

n
) +

∫
Ω

un∇un∇φ1 ≤ c
∫
Ω

uq+1
n

d+ 1
n

.

Hence ∫
Ω

|∇un|2(φ1 +
c

n
) +

λ1

2

∫
Ω

u2
nφ1 ≤ c

∫
Ω

uq+1
n

d+ 1
n

≤
(∫

Ω

uq+1
n

(d+ 1
n )2

) 1
2
(∫

Ω

uq+1
n

) 1
2

≤ C
(∫

Ω

uq+1
n

) 1
2 → 0 as n→∞.

Thus
∫
Ω

|∇un|2φ1 → 0 and the claim follows.

By elliptic regularity we conclude that un → 0 strongly in Cloc(Ω). Since d(xn) ≥
C > 0 for all n, then up to a subsequence, un(xn)→ 0 as n→∞, a contradiction
with (5.2). Hence u 
 0 and then the existence result follows.

6. The Problem (1.6) with the critical power q = 2∗ − 1

In this section we will consider (1.6) in the case q = 2∗ − 1 if N ≥ 3 and q > 1
if N = 1, 2. We will assume that Ω = BR(0) is the ball of radius R centered at
the origin and we will work in the space W 1,2

ra (BR(0)) defined as the subspace of

W 1,2
0 (BR(0)) of radial function.
For N ≥ 3, we define

(6.1) S(R) ≡ inf
φ∈W 1,2

ra (BR(0))

∫
BR(0)

|∇φ|2dx(∫
BR(0)

|φ|2∗

d2(x)
dx
) 2

2∗
.

Since φ is a radial function, then∫
Ω

|∇φ|2dx

(∫
Ω

|φ|2∗

d2(x)
dx
) 2

2∗
=

∫ R

0

|φ′(r)|2rN−1dr(∫ R

0

|φ|2∗

(R− r)2
rN−1dr

) 2
2∗
.

Let us begin by proving the following Proposition.

Proposition 6.1. Assume that S(R) is defined as in (6.1), then
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(1) S(R) > 0 for all R > 0,

(2) S(R) = R
4
2∗ S(1).

Proof. We begin with the first point. Let 0 < R1 < R, then∫ R

0

|φ|2∗

(R− r)2
rN−1dr =

∫ R1

0

|φ|2∗

(R− r)2
rN−1dr +

∫ R

R1

|φ|2∗

(R− r)2
rN−1dr

= I(R1) + J(R1).

It is clear that

I(R1) ≤ 1

(R−R1)2

∫ R

0

|φ|2
∗
rN−1dr ≤ C(R,R1, N) ||φ||2

∗

W 1,2
ra (BR(0))

.

We deal now with J(R1). For 0 < R1 < r < R, we have

|φ(r)| ≤
∫ R

r

|φ′(s)|ds ≤
∫ R

r

|φ′(s)|sN−1s1−Nds

≤
(∫ R

r

|φ′(s)|2sN−1ds
) 1

2
(∫ R

r

s1−Nds
) 1

2

≤ C(N)||φ||W 1,2
0

(C(R)(R− r)
(rR)N−2

) 1
2

where

C(R) =

{
1 if N = 3,
RN−3 if N ≥ 4.

Hence∫ R

R1

|φ|2∗

(R− r)2
rN−1 ≤ C(N,R,R1)||φ||2

∗

W 1,2
0

∫ R

R1

(R−r) 2∗
2 −2dr ≤ C(N,R,R1)||φ||2

∗

W 1,2
ra (BR(0))

.

Therefore

J(R1) ≤ C(N,R,R1)||φ||2
∗

W 1,2
ra (BR(0))

and then

S(R) ≥ 1

C(N,R,R1)
> 0.

This complete the proof of the point (1).
To prove the second estimate (2) we consider φ ∈ W 1,2

ra (B1(0)) and we define
for 0 < r < R, the function ψ(r) = φ( rR ). It is clear that ψ ∈ W 1,2

ra (BR(0)) and a
direct computation yields∫ R

0

|ψ′(r)|2rN−1dr(∫ R

0

|ψ|2∗

(R− r)2
rN−1dr

) 2
2∗

= R
4
2∗

∫ 1

0

|φ′(r)|2rN−1dr(∫ 1

0

|φ|2∗

(1− r)2
rN−1dr

) 2
2∗
.

Thus, taking the infimum on the above identity, we get S(R) = R
4
2∗ S(1).

We are now in position to prove Theorem 1.7.

Proof of Theorem 1.7 when N ≥ 3. It is clear that if u is a solution to (1.6)
in B1(0), then v(r) = u( rR ) is a solution to (1.6) in BR(0). Hence we have just to
show that problem (1.6) has a solution in some ball BR(0).
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Notice that S(1) ≤ S, the Sobolev constant. Hence fix R < 1 such that S(R) <
S. To get the desired result we have just to show that S(R) is achieved. Let
{un}n ⊂W 1,2

ra (BR(0)), be a minimizing sequence of S(R) with∫ R

0

|un|2
∗

(R− r)2
rN−1dr = 1.

Without loss of generality we can assume that un ≥ 0.
Hence we obtain that ||un||W 1,2

ra (BR(0)) ≤ C and then we get the existence of

u ∈W 1,2
ra (BR(0)) such that

un ⇀ u weakly in W 1,2
ra (BR(0)), un → u strongly in Ls(BR(0))∀ s < 2∗

and un → u strongly in Lσ(BR(0)\Bε(0)) for all σ > 1 and for all ε > 0. If u 6= 0,
then we get easily that u solves (1.6) with q = 2∗ − 1.

Assume that u ≡ 0, then un → 0 strongly in Lσ(BR(0)\Bε(0)) for all σ > 1 and
for all ε > 0. Fix 0 < R1 < R, then

|un|2
∗

(R− r)2
r ≤ C(N,R,R1)||un||2

∗

W 1,2
ra (BR(0))

(R− r) 2∗
2 −2.

Since 2∗

2 − 2 > −1, then by the dominated convergence theorem, it follows that∫ R

R1

|un|2
∗

(R− r)2
rN−1dr → 0 as n→∞.

Thus, for all 1 < R1 < R, we have∫
BR1

(0)

|un|2
∗

(R− |x|)2
dx→ 1 as n→∞.

Using the Ekeland variational principle, we obtain that, up to a subsequence,

(6.2) −∆un = S(R)
u2∗−1
n

(R− |x|)2
+ o(1).

Now, by the concentration compactness principle, see [14] and [15], it follows that

(1) |∇un|2 ⇀ dµ ≥ µ0δ0, |un|2
∗
⇀ dν = ν0δ0,

(2) µ0 ≥ S
2
2∗ ν0

weakly in the sense of measure, where δ0 is the dirac measure centered at the origin.
Let now φ ∈ C∞0 (BR(0)) ∩W 1,2

ra (BR(0)) be such that

0 ≤ φ ≤ 1, φ ≡ 1 in Bε(0) and φ ≡ 0 in BR(0)\Bε(0),

then using unφ as a test function in (6.2) and letting ε→ 0, we reach that

µ0 ≤ S(R)ν0.

Since µ0 ≥ S
2
2∗ ν0, then µ0 ≤

S(R)

S
2
2∗
ν0.

If µ0 = 0, then ν0 = 0. Hence∫
BR(0)

|un|2
∗

(R− |x|)2
dx→

∫
BR(0)

|u|2∗

(R− |x|)2
dx = 1

a contradiction with the fact that u ≡ 0.
Now, if ν0 > 0, then S

2
2∗ ≤ S(R). Recall that S(R) = R

4
2∗ S(1), since S(1) ≤ S,

we conclude that S ≥ R−
4

2∗−2 . Notice that the Sobolev constant S in independent
of the domain, and in particular it is independent of R. Hence, letting R → 0, we
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reach a contradiction. Thus u 6= 0 and solves (1.6) with q = 2∗ − 1. The strong
maximum principle allows us to get that u > 0 in BR(0).

Notice that, from the above computation, we can conclude that∫
BR(0)

|un|2
∗

(R− |x|)2
dx→

∫
BR(0)

|u|2∗

(R− |x|)2
dx = 1

and then u is a minimizer of S(R).

For the case N = 1, 2 we need the next proposition.

Proposition 6.2. Define

Sq(R) ≡ inf
φ∈W 1,2

ra (BR(0))

∫
BR(0)

|∇φ|2dx(∫
BR(0)

|φ|q+1

d2(x)
dx
) 2
q+1

.

Then

(1) Sq(R) > 0 for all R > 0,

(2) Sq(R) = R
4
q+1S(1).

Proof. We begin by proving that Sq(R) > 0.
If N = 1, then W 1,2

ra (BR(0)) ⊂ L∞(Ω) with a compact inclusion. Hence using
Hardy inequality we obtain that∫

BR(0)

|φ|q+1

d2(x)
dx ≤ ||φ||q−2

∞

∫
BR(0)

|φ|2

d2(x)
dx ≤ C1||φ||q+1

W 1,2
ra (BR(0))

.

Thus ∫
BR(0)

|∇φ|2dx(∫
BR(0)

|φ|q+1

d2(x)
dx
) 2
q+1

≥ 1

C
2
q+1

1

> 0.

As a consequence Sq(R) ≥ 1

C
2
q

1

and the result follows in this case.

Assume that N = 2. We follow closely the computation of Proposition 6.1.
Given 0 < R1 < R, then∫ R

0

|φ|q+1

(R− r)2
rdr =

∫ R1

0

|φ|q+1

(R− r)2
rdr +

∫ R

R1

|φ|q+1

(R− r)2
rdr

= I(R1) + J(R1).

It is clear that

I(R1) ≤ 1

(R−R1)2

∫ R

0

|φ|q+1rdr ≤ C(R,R1)||φ||q+1

W 1,2
ra (BR(0))

.

We deal now with J(R1). It is clear that for R1 < r < R, we have

|φ(r)| ≤ ||φ||W 1,2
ra (BR(0))

(R− r
R1

)
) 1

2

.
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Thus ∫ R

R1

|φ|q+1

(R− r)2
r ≤ C(R1, R)||φ||q+1

W 1,2
ra (BR(0))

∫ R

R1

(R− r)
q+1
2 −2dr.

Since q > 1, then
∫ R
R1

(R− r)
q+1
2 −2dr <∞. Therefore,

J(R1) ≤ C(N,R,R1)||φ||q+1

W 1,2
ra (BR(0))

.

Combining the above estimates, we reach the desired result.
The point (2) follows exactly as the point (2) in Proposition 6.1. Hence we omit

it here. This conclude the proof of the desired result.

Proof of Theorem 1.7 when N = 1, 2. We have just to show that Sq(R) is
achieved.

Let {un}n ⊂W 1,2
ra (BR(0)) be a minimizing sequence of Sq(R) with∫ R

0

|un|q+1

(R− r)2
rN−1dr = 1.

It is clear that the sequence {un}n is bounded in W 1,2
ra (BR(0)) and then un ⇀ u

weakly in W 1,2
ra (BR(0)).

If N = 1, then, up to a subsequence, un → u strongly in C(Ω).

Since |un(r)| ≤ ||un||W 1,2
ra (BR(0))(R− r)

1
2 , then we conclude that

|un|q+1

(R− r)2
≤ C(R− r)

q−3
2 .

Since q > 1, then (R − r)
q−3
2 ∈ L1(0, R) and then by the dominated convergence

Theorem we reach that

|un|q+1

(R− r)2
→ |u|q+1

(R− r)2
strongly in L1(0, R).

Thus
∫ R

0

|u|q+1

(R− r)2
dr = 1 and then u solves (1.6). It is not difficult to prove that

un → u strongly in W 1,2
ra (BR(0)).

Consider now the case N = 2. It is clear that, for R1 < R fixed we have

|un|q+1

(R− r)2
→ |u|q+1

(R− r)2
strongly in L1(0, R1).

To deal with the set (R1, R), we use the estimate

|un(r)| ≤ ||un||W 1,2
0

(R− r
R1

)
) 1

2

.

The existence result now follows using the dominated convergence Theorem.
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7. Further results and Open problems

Assume that 0 < q < 1 < p and consider the following concave-convex problem

(7.1)


−∆u = λuq +

up

d2
in Ω,

u > 0 in Ω,
u = 0 on ∂Ω,

where λ > 0. Using a sub-supersolution arguments we can prove that, for λ small,
problem (7.1) has a positive bounded solution for all p > 1. To see that we have
just to build a suitable supersolution.

Let ψ ∈W 1,2
0 (Ω) be the positive solution of the problem

(7.2)

 −∆ψ =
1

ψβ
in Ω,

ψ = 0 on ∂Ω,

with 0 < β < 1. It is clear that C1d(x) ≤ ψ ≤ C2d(x) for some C1, C2 > 0. Since
p > 1, then we can choose β < 1 such that p > 2− β. Hence we can choose A > 0
such that Aψ is a supersolution to the problem (7.1) at least for λ small. It is clear
that if w, the unique positive solution to{

−∆w = λwq in Ω,
w = 0 on ∂Ω,

is a subsolution to (7.1) with w ≤ Aψ (that follows using the comparison principle
in Lemma 2.3). Thus an iteration argument allows us to conclude.

For problem (7.1), we can summarize the main results in the following Theorem.

Theorem 7.1. Define

M = sup{λ > 0 : the problem (7.1) has a positive solution }
then M <∞ and

(1) For all λ < M , then problem (7.1) has a minimal positive bounded solution.
(2) If λ > M , there is no positive solutions.
(3) If p < 2∗ − 1, there exits a second positive solution at least for λ small.

7.1. Open problems. In this subsection we collect some open problems.

(1) In Theorem 1.7, we have considered the case Ω = BR(0) and we have proved
the existence of a positive radial solution. The behavior of the minimizing
sequence near the boundary of Ω was of great utility to get the compactness
of the minimizing sequence. However the arguments used are not applicable
for a general domain Ω. It seems to be interesting to develop new arguments
in order to analyze the critical problem in general domains.

(2) The case q > 2∗ − 1, is also interesting including for radial domain (when
N ≥ 3). Notice if we set

Sq(R) ≡ inf
φ∈W 1,2

ra

∫
BR(0)

|∇φ|2dx(∫
BR(0)

|φ|q

d2
dx
) 2
q

.

then Sq(R) = 0 for all R > 0. However it is not clear how to prove that the
unique “bounded” solution is 0.
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case, part 1, Rev. Matemática Iberoamericana, 1 (1985), no. 1, 145–201.
[15] P.L. Lions, The concentration-compactness principle in the calculus of variations. The limit

case, part 2, Rev. Mat. Iberoamericana 1 (1985), no. 2, 45–121.

[16] M. Marcus M, V. J. Mizel, Y. Pinchover, On the best constant for Hardy’s inequality in RN ,
Trans. Amer. Math. Soc. 350 (1998), 3237–3255.

[17] T. Matskewich, P. E. Sobolevskii, The best possible constant in generalized Hardy’s inequality

for convex domain in RN , Nonlinear Anal, Theory, Methods and Appl. Vol. 29 (1997), 1601–
1610.

[18] I. Shafrir, Asymptotic behaviour of minimizing sequences for Hardy inequality. Commun.

Contemp. Math. 2 (2000), no. 2, 151–189.

(Boumediene Abdellaoui) Laboratoire d’Analyse Nonlinéaire et Mathématiques Ap-
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