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GRADIENT RECOVERY IN ADAPTIVE FINITE ELEMENT

METHODS FOR PARABOLIC PROBLEMS

OMAR LAKKIS AND TRISTAN PRYER

Abstract. We derive energy-norm a posteriori error bounds, using gradient
recovery (ZZ) estimators to control the spatial error, for fully discrete schemes

for the linear heat equation. This appears to be the first completely rigorous

derivation of ZZ estimators for fully discrete schemes for evolution problems,
without any restrictive assumption on the timestep size. An essential tool for

the analysis is the elliptic reconstruction technique.

Our theoretical results are backed with extensive numerical experimenta-
tion aimed at (a) testing the practical sharpness and asymptotic behaviour of

the error estimator against the error, and (b) deriving an adaptive method

based on our estimators.
An extra novelty provided is an implementation of a coarsening error “preindi-

cator”, with a complete implementation guide in ALBERTA in the appendix.

1. Introduction

Gradient recovery a posteriori error estimators have been widely used since their
dissemination in the engineering and scientific computation community by [ZZ87],
for which we will often refer to them shortly as ZZ estimators. Since their introduc-
tion they have constituted the most serious rival to residual estimators introduced
earlier on in [BR78]. The key to ZZ estimator’s success is their implementation’s
simplicity, mild dependence upon the problem’s data, and striking superconver-
gence and asymptotic exactness properties. On the other hand, residual esti-
mators, which are the main competitor to ZZ estimators, are a bit more involved
in implementation and cost more to compute, but they are easier to handle from
the mathematical analysis view-point in deriving rigorous upper and lower bounds.
This situation has led to most of the theoretical results for evolution equations
being obtained in the last two decades via residual estimators; we refer to [LM06]
for a review. Meanwhile rigorous mathematical work on recovery estimators has
progressed, especially in the last decade, but mostly for stationary elliptic equa-
tions, e.g., [AO00, BX03a, BX03b, CB02, FV06, LZ99, Pic03, XZ04]. In contrast,
very little progress was made on evolution problems, where an exception is [LW06],
where the main analytic difficulty comes from the singularly perturbed nature of
the elliptic problems arising from time-stepping procedures.

The aim of our work is to bridge the gap between the practical use of ZZ es-
timators in adaptivity for evolution equations, studied by [ZW98, Pic03], and the
rather mature error control theory via recovery for stationary equations. We fo-
cus on the model problem provided by the linear heat equation. [LW06], who are
to our knowledge the only researchers to have explored this issue in depth, while
obtaining satisfactory error bounds for spatially discrete schemes, must assume un-
realistically small time-steps for the fully discrete case. In this paper we push one
step forward by thoroughly analysing the fully discrete backward Euler schemes.
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2 OMAR LAKKIS AND TRISTAN PRYER

Namely, we provide reliable error bounds. The efficiency and asymptotic exactness
of the bounds is dealt with computationally.

Our main analytical tool to tackle the fully discrete scheme’s difficulties is the el-
liptic reconstruction in the fully discrete context, studied in [LM06], which provides
a way to take advantage of elliptic a posteriori error estimates based on gradient
recovery following the exposition of [AO00].

The elliptic reconstruction technique, introduced under this name by [MN03],
involves the error’s splitting into two parts, a parabolic error and an elliptic error,
through the use of the elliptic reconstruction of the discrete solution, defined in
(3.1). This allows to utilise existing elliptic a posteriori estimators for the elliptic
part and standard parabolic energy estimates to control the second part. Despite
this technique being initially introduced to derive sharp bounds for lower order
spatial error norms, such as L2(Ω) [MN03, LM06, LM07] and L∞(Ω) [DLM09],
we apply it here as an analysis tool in an energy-norm framework, where a direct
approach may lead to a highly complicated analysis for the fully discrete scheme.
In fact, the single most interesting feature of the elliptic reconstruction, is that the
parabolic error’s energy norm term is of higher order (with respect to the spatial
mesh-size parameter) than the elliptic error, as seen in [LM06]. In this paper we
show, rigorously, that the full energy error can be accounted for only by the elliptic
error, as long as data and time-step are resolved well enough (cf. Lemma 3.3).
This crucial observation is also used to obtain residual a posteriori estimates for
nonconforming methods in [GL08]. Note that, it is part of the adaptive methods
practitioner’s folklore to employ heuristic versions of this argument. By way of ex-
ample, we quote “the [full parabolic] discretisation in energy norm can be bounded
by the [elliptic error] estimator” from [ZW98].

Although we treat the case of the Laplace operator, for simplicity, in this pa-
per, our results can be extended to cover more general elliptic operators, even
time-dependent ones, by using appropriate elliptic gradient recovery techniques,
described by [FV06], and a more careful time-step analysis, as in [GL08].

The paper is organised as follows. In §2 we introduce the model problem, and its
discretisations via conforming finite elements in space and backward Euler in time
and we review the known results, about recovery estimators for elliptic problems,
that will be used in the sequel. In §3 we describe the elliptic reconstruction tech-
nique and illustrate its use for the spatially semidiscrete problem. This paves the
way to tackle the fully discrete problem in §4, where our main results are stated.
In §5, using numerical tests, we study the practical behaviour of the estimators and
in §6 we explore the adaptive schemes based on our estimators.

As we have used the finite element toolbox ALBERTA, written and documented
by [SS05], for the tests, we have taken the opportunity to implement a coarsening
preindicator, previously unavailable and (for space’s sake) fully described in the
Appendix A. This estimator predicts the “information loss” error that will occur
under coarsening of the mesh at each timestep of the adaptive method and is crucial
in an adaptive code to control information loss during coarsening.

2. Set up

2.1. The model problem. Let Ω ⊂ R
d be a bounded polyhedral domain and

consider the (generalised or weak) Laplace operator denoted by

A : H1
0(Ω) → H−1(Ω)

u 7→ A u := −∆u := −div∇u = −
∑d
i=1 ∂

2
i u.

(2.1)
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We denote by L2(Ω) the space of square summable functions on Ω, with inner
product and norm respectively defined by

〈f, g〉 :=

∫
Ω

f(x)g(x) dx and ‖f‖ := 〈f, f〉1/2 . (2.2)

We will use the standard [Cia78, Eva98, ] Sobolev spaces

H1(Ω) := {φ ∈ L2(Ω) : ∇φ ∈ L2(Ω)} , (2.3)

H1
0(Ω) :=

{
φ ∈ H1(Ω) : φ|∂Ω = 0

}
(2.4)

and H−1(Ω) := dual
(
H1

0(Ω)
)
. (2.5)

Let T > 0, the model parabolic problem consists in finding a function u ∈
L2(0, T ; H1

0(Ω)) and ∂tu ∈ L2(0, T ; H−1(Ω)) such that

∂tu(t) + A u(t) = f(·, t), for all t ∈ (0, T ] ,

u(x, 0) = u0(x), for x ∈ Ω,
u(x, t) = 0, for (x, t) ∈ ∂Ω × (0, T ] .

(2.6)

We consider the case where u0 ∈ L2(Ω) and f ∈ L2(0, T ; L2(Ω)) for which the
problem (2.6) admits a unique solution [Eva98, ].

Problem (2.6) is understood in the following weak form

〈∂tu(t), φ〉+ a(u(t), φ) = 〈f(t), φ〉 ∀ φ ∈ H1
0(Ω), t ∈ (0, T ]

u(·, 0) = u0(·),
(2.7)

where 〈·, ·〉 is defined in (2.2) and a(φ, ψ) := 〈∇φ,∇ψ〉. The form a(·, ·) is clearly
bounded and coercive, i.e.,

a(φ, φ) ≥ α ‖φ‖21 ∀ φ ∈ H1
0(Ω), (2.8)

where α = (1 + C2
P)−1 and CP is the Poincaré constant. The bilinear form defines

an inner product on H1
0(Ω) and hence we can denote the energy norm ‖·‖2a := a(·, ·).

These observations justify our use of ‖·‖a (instead of ‖·‖H1(Ω)) as the norm of

H1
0(Ω) to be with the implied dual norm on H−1(Ω) in (2.5).

2.2. Spatial discretisation. Let T be a conforming, not necessarily quasiuni-
form, triangulation of Ω, i.e., (1) K ∈ T means K is an open simplex (triangle for
d = 2 or tetrahedron for d = 3), (2) for any K,J ∈ T we have that K ∩ J is a full
subsimplex (i.e., it is either ∅, a vertex, an edge, a face, or the whole of K and J)
of both K and J and (3)

⋃
K∈T K = Ω. The shape regularity of T is defined as

the number

µ(T ) := inf
K∈T

ρK
hK

, (2.9)

where ρK is the radius of the largest ball contained inside K and hK is the longest
side of K. An indexed family of triangulations {T n}n is called shape regular if

µ := inf
n
µ(T n) > 0. (2.10)

We will use henceforth the usual convention where h : Ω → R denotes the mesh-size
function of T , i.e.,

h(x) := hT (x) := max
K3x

hK , and hn := hT n . (2.11)

With a triangulation T as described above, and an integer p ≥ 1 considered
fixed in the sequel, we may consider the finite element space

V :=
{
Φ ∈ H1

0(Ω) : Φ|K ∈ Pp ∀K ∈ T
}

; (2.12)
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and P
k denotes the linear space of polynomials in d variables of degree no higher

than a positive integer k. The spatially discrete finite element solution in V, is the
function U : [0, T ]→ V such that

〈∂tU,Φ〉+ a(U,Φ) = 〈f, Φ〉 ∀ Φ ∈ V,
U(x, 0) = U0 := ΠVu0(x) ∀ x ∈ Ω,

(2.13)

where ΠV : L2(Ω) → V is a suitable projector (or an interpolator if the data u0 is
in a higher regularity subspace of L2(Ω), e.g., T -wise continuous) and 〈·, ·〉 is the
same as in (2.7) and (2.2).

We will often write the scheme (2.13) in its pointwise form

∂tU +AU = P0f and U(0) = U0, (2.14)

where the finite dimensional space operator A : V → V is the discrete Laplacian
defined, through the Riesz representation in V, by

〈AV,Φ〉 = a(V, Φ) ∀ Φ ∈ V, (2.15)

and P0 : L2(Ω)→ V is the L2(Ω)-projection operator such that, for each v ∈ L2(Ω),

〈P0v, Φ〉 = 〈v, Φ〉 ∀ Φ ∈ V. (2.16)

The pointwise form is convenient as it allows for a more compact notation.

2.3. Fully discrete scheme. Subdivide the time interval [0, T ] into a partition of
N consecutive adjacent subintervals whose endpoints are denoted t0 = 0 < t1 <
. . . < tN = T . The n-th timestep is defined as τn := tn− tn−1. We will consistently
use the shorthand Fn(·) := F (·, tn) for a generic time function F .

The backward Euler method consists in finding a sequence of functions, Un ∈ Vn,
such that for each n = 1, . . . , N we have:

1

τn

〈
Un − ΛnUn−1, Φ

〉
+ a(Un, Φ) = 〈fn, Φ〉 ∀ Φ ∈ Vn,

U0 = Π0u0,

(2.17)

where ΛV : C0(Ω) → V denotes the Lagrange interpolation operator, Λn := ΛV
n

,
and Π0 is defined as ΠV.

Note our nonrestrictive use of the Lagrange interpolator as a “data-transfer”
operator from a finite element space to the next. We do this to reflect exactly what
we do in practical computations (where interpolation is faster than averaging). All
our analysis applies, however to a different data-transfer operator, including the
L2(Ω) projector, if necessary.

As with the semidiscrete scheme the fully discrete scheme can be written in a
pointwise form as follows:

Un − ΛnUn−1

τn
+AV

n

Un = Pn0 f
n and U0 = Π0u0, (2.18)

where An = AV
n

and Pn0 = PV
n

0 (cf. (2.15)).

2.4. Recovery a posteriori estimators. The stationary elliptic problem corre-
sponding to a steady state of the evolution equation (2.6) is,

given g ∈ L2(Ω), find w ∈ H1
0(Ω) such that A w = g, (2.19)

where the operator is understood in a generalised sense and the solution is a weak
one. The finite element discretisation of the elliptic problem (2.19) consists in

finding W ∈ V such that a(W,Φ) = 〈g, Φ〉 ∀ Φ ∈ V. (2.20)

We shall henceforth denote by w and W the solutions of (2.19) and (2.20).
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From the literature on elliptic a posteriori estimation [AO00, BR78, Cia78, Ver96,
BX03a, ZZ87, ] there is a variety of ways to compute upper and lower bounds for the
error in some functional space X (e.g., H1

0(Ω), L2(Ω) and L∞(Ω)). For instance,
a generic upper a posteriori X -norm error bound takes the form

‖w −W‖X ≤ E [W, g,X ,V] , (2.21)

where E is an appropriate estimator functional.
One way of providing an estimator functional consists, for example, in start-

ing by applying a gradient postprocessing operator (postprocessor), say G, to the
approximate solution W . And then proving that ‖GW −∇W‖ is equivalent to
the error ‖∇w −∇W‖. Gradient recovery operators form a subclass of gradient
postprocessors.

Recovery operators can be built in a variety of ways such as local weighted aver-
aging (where the gradient is sampled from neighbouring elements) [Pic03, ], discrete
L2(Ω)-projection (using least squares fitting) [ZZ87, ] or global L2(Ω)-projection
(where a full discrete problem is solved) [BX03a, ]. In our numerical results we
use local weighted averaging, defined explicitly in (5.4), but our theoretical results
can be applied with any choice of recovery operator that provide upper and lower
bounds for the elliptic problem. The fundamental idea behind these approaches is
to build an approximation GW of ∇w which is more regular than the piecewise
discontinuous gradient ∇W ; the extra regularity is aimed at obtaining a higher
approximation order.

2.5. Definition (gradient recovery operator, from [AO00]). A gradient recovery
(ZZ) operator on V is a linear operator G : V → V

d which enjoys the following
properties:

Consistency: we have, with ΛV : C0(Ω) → V denoting the Lagrange inter-
polator,

G(ΛVv)
∣∣
K

= ∇v|K ∀ v ∈ Pp+1, K ∈ T . (2.22)

Local bound: there exists a CZZ > 0 such that

‖GV ‖L∞(K) ≤ CZZ ‖∇V ‖L∞(K̂) ∀ V ∈ V, K ∈ T , (2.23)

where K̂ is the patch generated by K (the union of all L ∈ T such that
L ∩K 6= ∅).

For simplicity, we assume that the operator is in a mesh-local relation with
∇V noting, nonetheless, that global methods such as the global L2(Ω)-projection
proposed by [BX03a, BX03b] exist and can be included in our discussion.

Under certain regularity assumptions recovery estimators are shown to be asymp-
totically exact. For instance, [Zlá77] shows that if w ∈ Hs+1(Ω), with reference to
(2.19) and (2.20), its approximation W ∈ V satisfies the following superconvergence
property : ∥∥∇(W − ΛVw)

∥∥ = O(hp+ζ) for some ζ ∈ (0, 1] . (2.24)

A review of superconvergence results is given by [KN87]. If (2.24) is satisfied then
the recovered gradient also satisfies the following superconvergence property [AO00,
]:

‖∇w −GW‖ = O(hp+ζ) for some ζ ∈ (0, 1] . (2.25)

The reach of Zlámal’s result is appreciated by stating the following consequence.

2.6. Lemma (gradient recovery a posteriori estimate from [AO00]). Let V be the
finite element space defined in (2.12) and G : V→ V

d a gradient recovery operator
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according to §2.5. If w,W are the solutions of (2.19) and (2.20), respectively, and
(2.25) holds then the recovery operator is asymptotically exact, in the sense that

lim
hT→0

‖∇W −GW‖
‖∇(W − w)‖

= 1. (2.26)

Thus, there exist δ0 ≥ 0, such that δ0(h)→ 0 as h→ 0 and

(1− δ0) ‖∇W −GW‖ ≤ ‖∇[W − w]‖ ≤ (1 + δ0) ‖∇W −GW‖ (2.27)

for all partitions T of Ω satisfying hT < h0.

2.7. Remark (recovery in absence of regularity). Lacking Zlámal’s regularity as-
sumption, recovery-based estimators are empirically observed to be efficient, reliable
estimators, even on meshes with low shape-regularity [Car04, ].

For more details about recovery-based estimators we refer to the available liter-
ature [BX03a, BX03b, XZ04, LZ99, AO00, FV06, ].

2.8. Definition (gradient recovery a posteriori estimator functional). Lemma 2.6
then justifies the use of the recovery estimator in the H1

0(Ω)-norm (and by equiva-
lence the energy norm) by defining, for the rest of this paper, the gradient recovery
a posteriori estimator functional

E [V ] := E
[
V,H1

0(Ω),V
]

:= ‖GV −∇V ‖ , for V ∈ V, (2.28)

where G is a gradient recovery operator as defined in §2.5.

2.9. Assumption (elliptic a posteriori error estimates). We will consider henceforth
the blanket assumption that for a fixed h0, there are some c0 < C0, such that
for any V with mesh-size h < h0, for w and W solutions of (2.19) and (2.20),
respectively and E defined in 2.8 the following bounds are true

c0E [W ] ≤ ‖∇[W − w]‖ ≤ C0E [W ] . (2.29)

Optionally, we will assume asymptotic exactness, in which case

C0 ≤ 1 +B(h0) and c0 ≥ 1 + β(h0), (2.30)

for some continuous functions B and β that vanish at 0.
Assumptions (2.29) and (2.30) are true, modulo hierarchic oscillation terms of

the data function g in (2.20). These assumptions are thus justified, for example,
when g is in a finite dimensional space, for example g ∈ V as we shall assume in
the sequel, by isolating the bulk of the oscillations in data-approximation terms.
For a thorough discussion of the oscillation in the context of recovery, we refer to
[FV06].

The lower bound is not needed for the theory to be developed herein, as we will
prove only upper bounds. Nonetheless, this property is required for the efficiency
of the parabolic estimators in practical situations.

3. Semidiscrete scheme

To make the link between the parabolic problem and the elliptic recovered gra-
dient estimates we utilise the elliptic reconstruction technique [MN03, LM06, ]. To
make the discussion more accessible, we first do this for the spatially (semi)discrete
scheme. We divide the error into two parts—one called elliptic error the other
parabolic error—via the elliptic reconstruction of the discrete solution. Because
the elliptic error can be directly bounded under the blanket Assumption 2.9, it is
enough to show that the full error can be bounded in terms of the elliptic error
only. This result is in accordance with the fact that the parabolic error on uni-
form meshes is of higher h-order in the energy norm with respect to the elliptic
(and thus the full) error, as observed by [LM06]. The main result of this section is
summarised in Theorem 3.6.
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3.1. Definition (elliptic reconstruction). The elliptic reconstruction operator is
defined as R : V→ H1

0(Ω) such that

A [RV ] = AV, (3.1)

where A is the discrete elliptic operator defined in (2.15). In weak form, equation
(3.1) reads

a(RV, Φ) = 〈AV,Φ〉 ∀ Φ ∈ H1
0(Ω), (3.2)

and it is well defined in virtue of the elliptic problem’s well Sydney’s. We will refer to
the function RV as the elliptic reconstruction of V , while the elliptic reconstruction
operator R will be called the reconstruction operator (or just the reconstructor)
from V.

If U(t) denotes the solution of (2.14) at time t, we shall indicate by ω(t) its
reconstruction RU(t).

Thus, posing g(t) := AU(t), we then see U(t) is the finite element solution
corresponding to the elliptic problem of finding ω(t) ∈ H1

0(Ω) such that A ω(t) = g.

3.2. The error and its splitting. For the whole of this section we shall consider
u to be the solution of (2.6), understood in the weak sense, and U its semidiscrete
approximation given by (2.14). The corresponding semidiscrete error is defined by

e(t) := U(t)− u(t), (3.3)

and can be split, using the elliptic reconstruction ω = RU defined in §3.1, as
follows:

e(t) = (ω(t)− u(t))− (ω(t)− U(t)) =: ρ(t)− ε(t). (3.4)

We shall refer to ε and ρ here defined as the elliptic (reconstruction) error and the
parabolic error respectively. Using this notation we have the estimate

‖∇[U − u] (t)‖ ≤ ‖∇ρ(t)‖+ ‖∇ε(t)‖ , (3.5)

where, following the remarks made in Definition 3.1 and Assumption 2.9, the elliptic
error can be bounded by the computable elliptic a posteriori estimator functional
E :

‖ε(t)‖a = ‖∇ε(t)‖ ≤ C0E [U(t)] . (3.6)

It is therefore sufficient to bound the error’s energy norm using the elliptic error’s
energy norm.

3.3. Lemma (elliptic energy bound for parabolic semidiscrete error). If e, ε are
defined as in §3.2 then, for each t ∈ [0, T ], we have

‖e(t)‖2 +

∫ t

0

‖e(s)‖2a ds ≤ ‖e(0)‖2 +

∫ t

0

‖ε(s)‖2a+ 2 〈P0f(s)− f(s), e(s)〉 ds. (3.7)

Proof From the the exact problem (2.6), the semidiscrete scheme (2.14), and the
splitting (3.4)

∂te+ A ρ = ∂t[U − u] + A [ω − u] = ∂tU +AU − ∂tu−A u = P0f − f. (3.8)

Testing with e we obtain

〈∂te, e〉+ a(ρ, e) = 〈P0f − f, e〉 (3.9)

and thus
1

2
dt‖e‖2 + ‖e‖2a = 〈P0f − f, e〉 − a(ε, e) . (3.10)

Integration from 0 to t yields

‖e(t)‖2+2

∫ t

0

‖e‖2a = ‖e(0)‖2+2

∫ t

0

〈P0f − f, e〉−2

∫ t

0

a(ε, e) ∀t ∈ [0, T ] . (3.11)
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Hence, by Young’s inequality on a(ε, e), we have

‖e(t)‖2 + 2

∫ t

0

‖e‖2a ≤ ‖e(0)‖2 + 2

∫ t

0

〈P0f − f, e〉+

∫ t

0

‖e‖2a +

∫ t

0

‖ε‖2a , (3.12)

whereby the claim is verified. �

3.4. Remark (proliferation of
√

2 syndrome). Let a, b, c ≥ 0 such that a2 ≤ c2 +ab,
then, by Young’s inequality, it follows that a2 ≤ 2c2 + b2. Note however that the
factor “2” in 2c2 is not needed, in that we also have that a ≤ c + b. If 1 > a ∼
c� b > 0, then the first bound provides a/c ≈

√
2 whereas the second bound gives

a/c ≈ 1, which is tighter.
The following result, which generalises a ≤ c+ b, is extremely simple yet useful

in avoiding this “proliferation of
√

2 syndrome” from repeated usage of Young’s
inequality.

3.5. Proposition (L2 simplification rule). If a,b ∈ RN , N ∈ N, c ∈ R and f, g ∈
L2(D), for some measurable domain D, are such that

|a|2 + ‖f‖2 ≤ c2 + aᵀb +

∫
D

fg, (3.13)

then (
|a|2 + ‖f‖2

)1/2

≤ |c|+
(
|b|2 + ‖g‖2

)1/2

, (3.14)

where all the vector norms are Euclidean, and the function norms L2(D).

Proof
Denote by α := (|a| , ‖f‖) and β := (|b| , ‖g‖).
If |α| ≤ |β| then (3.14) is trivially satisfied. Otherwise we have |α| > |β| whereby

(3.13) and the Cauchy–Bunyakovskiy–Schwarz inequality imply that

|α|2 ≤ c2 + |a| |b|+ ‖f‖ ‖g‖+ |β|(|α| − |β|)

≤ c2 + 2 |α| |β| − |β|2 .
(3.15)

Hence (|α| − |β|)2 ≤ c2, and thereby

|α| ≤ |c|+ |β| , (3.16)

as claimed. �

3.6. Theorem (a posteriori semidiscrete error estimate). With u and U as defined
by (2.6) and (2.13), respectively, and an estimator functional E as defined in (2.28),
we have(
‖U(t)− u(t)‖2 +

∫ t

0

‖U − u‖2a

)1/2

≤ ‖U(0)− u(0)‖+ C0 ‖E [U ]‖L2[0,T ] + 2 ‖P0f − f‖L2(0,T ;H−1(Ω)) . (3.17)

Proof Using Lemma 3.3 we have

‖e(t)‖2 +

∫ t

0

‖e‖2a ≤ ‖e(0)‖2 +

∫ t

0

‖ε‖2a + 2

∫ t

0

〈
PV

0 f − f, e
〉
. (3.18)

Using Proposition 3.5, we obtain(
‖e(t)‖2 +

∫ t

0

‖e‖2a

)1/2

≤
(
‖e(0)‖2 +

∫ t

0

‖ε‖2a

)1/2

+ 2

(∫ t

0

‖P0f − f‖
2
H−1(Ω)

)1/2

.

(3.19)
Assumption (2.29) and the discussion in §3.2 ensure then that
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‖e(t)‖2 +

∫ t

0

‖e‖2a

)1/2

≤
(
‖e(0)‖2 + C2

0

∫ t

0

E [U ]
2

)1/2

+ 2

(∫ t

0

‖P0f − f‖
2
H−1(Ω)

)1/2

, (3.20)

which implies the claim. �

3.7. Remark (short versus long integration times). The bound for the pointwise
in time L2(Ω) error, ‖e(t)‖, appearing on the left-hand side of (3.17), is tight only
for very short times. For example, it is well-known that on a uniform mesh of size

h→ 0 on a convex domain Ω the energy term
(∫ t

0
‖e‖2a

)1/2
is O(hp), while ‖e(t)‖ is

O(hp+1).

3.8. Remark (dealing with the H−1(Ω) norm). In practise the H−1(Ω) norm can
be well approximated as shown by Lemma 3.9, so, in the lack of a priori information,
the last term in (3.17) may be replaced using the Poincaré inequality

2 ‖P0f − f‖L2(0,T ;H−1(Ω)) ≤ 2CP(Ω) ‖P0f − f‖L2(Ω×(0,T )) . (3.21)

It is also possible to obtain bounds by using the Cauchy–Bunyakovskiy–Schwarz
inequality for L2(Ω) on the term 〈P0f − f, e〉—rather than the (H−1,H1

0) duality—
and “absorb” the resulting sup[0,t] ‖e‖ into the first term on the right hand side of

(3.17). However, whenever possible, we shy away from this procedure as it incurs
in artificially higher constants and a L1 [0, T ] accumulation on the right-hand side
while the energy term on the left-hand side accumulates like L2 [0, T ]. This time-
accumulation disparity between the error and the estimator is likely to result in
an error–estimator ratio bound that has the order of

√
T , that is, although having

the right order of convergence, the estimator will overestimate the error over long
integration times.

We show now how to practically approximate the H−1(Ω) norm of an arbitrary
given function v ∈ L2(Ω).

3.9. Lemma (computing the H−1(Ω) norm). Let v ∈ L2(Ω), consider the functions
ψ ∈ H1

0(Ω) and Ψ ∈ V such that

A ψ = v and AΨ = P0v, (3.22)

where A and P0 are the discrete Laplacian and the L2(Ω) projection on V, respec-
tively. Then, recalling our convention whereby ‖v‖H1

0(Ω) = ‖∇v‖ we have

‖v‖2H−1(Ω) = ‖ψ‖2H1
0(Ω) = ‖ψ −Ψ‖2H1

0(Ω) + ‖Ψ‖2H1
0(Ω) . (3.23)

Proof With ψ and Ψ as given in (3.22) we have Φ ∈ V

〈A ψ −AΨ |Φ〉 = 〈v − P0v, Φ〉 = 0, (3.24)

i.e., that ψ −Ψ is Galerkin-orthogonal to V. Also, we have

‖v‖H−1(Ω) = ‖ψ‖H1
0(Ω) . (3.25)

Indeed, on the one hand

‖v‖H−1(Ω) := sup
φ∈H1

0(Ω)

〈v, φ〉
‖φ‖H1

0(Ω)

= sup
φ∈H1

0(Ω)

〈∇v,∇φ〉
‖φ‖H1

0(Ω)

≤ sup
φ∈H1

0(Ω)

‖ψ‖H1
0(Ω) ‖φ‖H1

0(Ω)

‖φ‖H1
0(Ω)

= ‖ψ‖H1
0(Ω) ,

(3.26)
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and, on the other hand

‖v‖H−1(Ω) := sup
φ∈H1

0(Ω)

〈∇ψ,∇φ〉
‖φ‖H1

0(Ω)

≥ 〈∇ψ,∇ψ〉
‖ψ‖H1

0(Ω)

= ‖ψ‖H1
0(Ω) . (3.27)

By the above, Galerkin-orthogonality and Pythagoras’s Theorem, we have

‖v‖2H−1(Ω) = ‖ψ‖2H1
0(Ω) = ‖ψ −Ψ‖2H1

0(Ω) + ‖Ψ‖2H1
0(Ω) . (3.28)

�

3.10. Remark (the H−1(Ω) norm approximation). The next-to-last term ‖ψ −Ψ‖H1
0(Ω)

is the error of a function and its Ritz projection. This can be easily estimated with
a fully computable a posteriori estimator functional E such that

‖ψ −Ψ‖H1
0(Ω) ≤ E [Ψ, v,V] = O(hr

V
), (3.29)

where hV is the “mesh-size” of the space V.
Hence the H−1(Ω) can be computed using the relation:

‖v‖2H−1(Ω) = ‖Ψ‖2H1
0(Ω) + ζ[Ψ, v]2, where ζ[Ψ, v] ≤ E [Ψ ] . (3.30)

The term ‖Ψ‖H1
0(Ω) is clearly computable, by computing Ψ , which involves one

L2(Ω)-projection, one stiffness matrix inversion and one (discrete) energy norm
computation. Furthermore

‖v‖2H−1(Ω) = ‖Ψ‖2H1
0(Ω) + O(h2r

V
). (3.31)

Hence, if Ψ is finite with respect to the mesh-size hV, i.e., ‖Ψ‖ = O(h0
V
), then we can

approximate the H−1(Ω) of a function with as much precision as the finite element
method allows it for the energy norm. On the other hand if Ψ is small, precisely,
Ψ = O(hs

V
) with s > 0 (implying that v is small as well), then this result has to

be handled with more care for the error to be of some order of hV higher than the
computed quantity.

3.11. Remark (sharper versions of Theorem 3.6). The error estimate (3.17) can be
tightened further to(

1

2
‖e(t)‖2 +

∫ t

0

‖e‖2a

)1/2

≤ 1√
2
‖e(0)‖+

(∫ t

0

‖P0f − f‖H−1(Ω) + C2
0E [U ]

2

)1/2

. (3.32)

But this estimate becomes noticeably better only when one of the terms ‖e(0)‖ or
‖P0f − f‖H−1(Ω) dominates the E [U ] term, which should not be allowed to happen.

So there is no need to lengthen the discussion by insisting on such tight bounds, as
long as it is possible to obtain the elliptic a posteriori estimate constant C0 in the
leading term on the right-hand side.

4. Fully Discrete scheme

The main result of this section—and the paper—is the a posteriori error bound,
stated in Theorem 4.6, on the error between the approximate solution U of the fully
discrete problem (2.18) and that of the exact problem (2.6).

The analysis in this section follows narrowly the one we performed in §3, albeit
with the complications that the fully discrete scheme imports. We will first extend
the discrete solution sequence to a continuous-time function. Then we derive an
error identity on which we mimic the energy techniques of §3 to bound the error’s
energy norm in terms of some residual terms and the elliptic error’s energy norm,
which is finally controlled via gradient recovery estimators.
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4.1. Time extension of the discrete solution. Recalling the fully discrete
scheme (2.18), the fully discrete solution is the sequence of finite element func-
tions Un ∈ Vn defined at each discrete time tn, n = 0, . . . , N . Define the piecewise
linear (affine) extension

U(t) :=

N∑
n=0

Unln(t), (4.1)

where we use the one-dimensional piecewise linear continuous Lagrange basis func-
tions , defined for t ≥ 0 , as

ln(t) :=


(t− tn−1) /τn, for t ∈ (tn−1, tn] (and n > 0) ,

(tn+1 − t) /τn+1, for t ∈ (tn, tn+1]

0, otherwise.

(4.2)

We warn the reader that we use the same symbol, U , to indicate the fully discrete
solution’s extension to [0, T ], as the one we used for its semidiscrete counterpart in
§ 3.

4.2. Elliptic reconstruction and error splitting. Next we define the elliptic re-
construction, needed for the following analysis, similarly to that of the semidiscrete
scheme (cf. (3.1)). For each n ∈ [0 : N ], with the discrete elliptic operator An as in
2.3, we define the corresponding elliptic reconstruction operator Rn : Vn → H1

0(Ω),
for each V ∈ Vn, by solving for RnV the elliptic problem

A RnV = AnV, (4.3)

which can be read in the weak form as

a(RnV, Φ) = 〈AnV, Φ〉 ∀ Φ ∈ H1
0(Ω). (4.4)

We denote

ωn := RnUn, for each n = 0, . . . , N, (4.5)

and this sequence’s piecewise linear extension by ω : [0, T ]→ H1
0(Ω), i.e.,

ω(t) :=
N∑
n=0

ωnln(t). (4.6)

As in the semidiscrete analysis we introduce symbols for the full error e := U−u,
the elliptic error ε := ω − U and the parabolic error ρ := ω − u, whereby

e = ρ− ε, (4.7)

and, based on the Assumption 2.9,

‖ε(t)‖a ≤ C0E
[
Unln(t) + Un−1ln−1(t)

]
≤ C0

(
E [Un] ln(t) + E

[
Un−1

]
ln−1(t)

)
for t ∈ [tn−1, tn] .

(4.8)

The last step is guaranteed by the linearity of the operators G and ∇, hence the
homogeneity E [λV ] = |λ| ‖GV −∇V ‖, and by the triangle inequality .

4.3. Lemma (parabolic error identity). For each n = 1, . . . , N and each t ∈
(tn−1, tn) we have

∂te(t) + A ρ(t) =
(
ΛnUn−1 − Un−1

)
/τn + A [ω(t)− ωn] + Pn0 f

n − f(t). (4.9)

Proof By the definition of U , (4.1), for each n = 1, . . . , N and t ∈ (tn−1, tn) we
have

∂tU(t) = Unl′n(t) + Un−1l′n−1(t) =
(
Un − Un−1

)
/τn (4.10)
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and using the fully discrete scheme (2.18), we have

∂tU(t) + A ωn =
(
ΛnUn−1 − Un−1

)
/τn +

(
Un − ΛnUn−1

)
/τn +AnUn

=
(
ΛnUn−1 − Un−1

)
/τn + Pn0 f

n.
(4.11)

Hence

∂tU(t) + A ω(t) =
(
ΛnUn−1 − Un−1

)
/τn + A [ω(t)− ωn] + Pn0 f

n (4.12)

and, using the exact PDE (2.6), we get

∂te(t) + A ρ(t) = ∂tU(t) + A ω(t)− ∂tu(t)−A u(t)

=
(
ΛnUn−1 − Un−1

)
/τn + A [ω(t)− ωn] + Pn0 f

n − f(t),
(4.13)

as stated. �

4.4. Definition (a posteriori error indicators). The notation we introduce here will
be valid for the rest of the article.

elliptic error indicator via recovery:

εn := E
[
Un,H1

0(Ω),Vn
]

= C0 ‖∇Un −Gn[Un]‖ , (4.14)

with the functional E as defined in §2.8, and1

ε̃2
n :=

1

3

(
ε2
n + ε2

n−1 + εnεn−1

)
≤ 1

2

(
ε2
n + ε2

n−1

)
. (4.15)

time-discretisation error indicators:

θn :=
1√
3

{∥∥Pn0 fn − Λn∂Un −(Pn−1
0 fn−1 − Λn−1∂Un−1

)∥∥
H−1(Ω)

for n ≥ 2,∥∥P 1
0 f

1 − Λ1∂U1 −A0U0
∥∥

H−1(Ω)
for n = 1,

(4.16)
where ∂Un :=

(
Un − Un−1

)
/τn, (cf. Lemma 3.9), also possible to use in

its alternative (faster to compute but not as sharp) version

θ̃n := Cµ
∥∥Un−1 − Un

∥∥
a
, (4.17)

where Cµ is dependent on the shape regularity µ of the family of triangu-
lations defined in (2.10).

mesh-change (coarsening) error indicators: a main mesh-change indi-
cator

γn := τ−1
n

∥∥ΛnUn−1 − Un−1
∥∥

H−1(Ω)
, (4.18)

and a higher order mesh-change indicator

γ̃n := Cµ
′

{∥∥ĥn(Pn0 fn − Λn∂Un − Pn−1
0 fn−1 + Λn−1∂Un−1

)∥∥ , n ≥ 2,∥∥ĥ1

(
P 1

0 f
1 − Λ1∂U1 −A0U0

)∥∥ , n = 1,
(4.19)

where ĥn(x) = max {hn−1(x), hn(x)} for x ∈ Ω and a constant C ′µ.
data approximation error indicator:

βn := τ−1
n

∫ tn

tn−1

‖Pn0 fn − f(t)‖H−1(Ω) dt. (4.20)

4.5. Remark (computing H−1(Ω) norms). Clearly the H−1(Ω) norms appearing
in Definition 4.4 cannot be computed in practise. The corresponding indicators can
be replaced by upper bounds using the (dual) Poincaré inequality

‖φ‖H−1(Ω) ≤ CP ‖φ‖ . (4.21)

Other alternatives, as described in Remark 3.8 are possible but will not be described
here.

1In the numerical experiments we use (ε2n + ε2n−1)/2 instead of ε̃n.
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4.6. Theorem (a posteriori estimate for fully discrete scheme). Let the sequence
(Un)n∈[0:N ], U

n ∈ Vn, be the solution of the fully discrete problem (2.17) and U its

piecewise linear time-extension as in (4.1). Let u be the exact solution of the exact
problem (2.6) then(∥∥UN − u(T )

∥∥2

2
+

∫ T

0

‖U(t)− u(t)‖2a dt

)1/2

≤‖U(0)− u(0)‖√
2

+ ηN (4.22)

where the (global) error estimator is given by the following discrete L2(0, T ) sum-
mation of the error indicators defined in §4.4:

η2
N =

N∑
n=1

(ε̃n + γn + βn + θn)
2
τn. (4.23)

Proof The proof shadows that of Lemma 3.3 and Theorem 3.6, but we must take
into account the complications arising from the time discretisation. For the reader’s
convenience we divide it into steps.
Step 1. Using the notation from Lemma 4.3 and identity (4.9) therein we have
that

∂te(t) + A e(t) = A ε(t) +
(
ΛnUn−1 − Un−1

)
/τn

+A [ω(t)− ωn] + Pn0 f
n − f(t).

(4.24)

Testing this with e we obtain

1

2
dt ‖e(t)‖2 + ‖e(t)‖2a = a(ε(t), e(t)) +

〈(
ΛnUn−1 − Un−1

)
/τn, e(t)

〉
+ 〈A [ω(t)− ωn] , e(t)〉+ 〈Pn0 fn − f(t), e(t)〉 ,

(4.25)

for all t ∈ (tn−1, tn) and each n = 1, . . . , N . Integrating over [0, T ] gives∥∥eN∥∥2
/2 +

∫ T

0

‖e(t)‖2a dt =
∥∥e0
∥∥2
/2 +

∫ T

0

a(ε(t), e(t)) dt

+

N∑
n=1

∫ tn

tn−1

〈(
ΛnUn−1 − Un−1

)
/τn, e(t)

〉
+ a(ω(t)− ωn, e(t)) + 〈Pn0 fn − f(t), e(t)〉 dt

=: B1 + B2 + B3 + B4 +
∥∥e0
∥∥2
/2.

(4.26)

We proceed by bounding each of the terms Bj , j = 1, . . . , 4, appearing in the
right-hand side of (4.26).

Step 2. The first term to be bounded in (4.26) yields the spatial discretisation
error indicator as follows:

B1 =

∫ T

0

a(ε(t), e(t)) dt =

N∑
n=1

∫ tn

tn−1

a(ε(t), e(t)) dt

≤
N∑
n=1

(∫ tn

tn−1

‖ε‖2a

)1/2(∫ tn

tn−1

‖e‖2a

)1/2

≤
N∑
n=1

ε̃nτ
1/2
n

(∫ tn

tn−1

‖e‖2a

)1/2
(4.27)

where we have used (4.15) and in view of (4.8) and (4.15), we may write∫ tn

tn−1

‖ε‖2a ≤ ε
2
n−1

∫ tn

tn−1

l2n−1 + 2εn−1εn

∫ tn

tn−1

ln−1ln + ε2
n

∫ tn

tn−1

l2n = ε̃2
nτn. (4.28)
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The second term in (4.26) contains mesh-change term which we bound as follows:

B2 =

N∑
n=1

∫ tn

tn−1

〈(
ΛnUn−1 − Un−1

)
/τn, e(t)

〉
dt

≤
N∑
n=1

∥∥ΛnUn−1 − Un−1
∥∥

H−1(Ω)
τ−1
n

∫ tn

tn−1

‖e(t)‖a dt

≤
N∑
n=1

γnτ
1/2
n

(∫ tn

tn−1

‖e‖2a

)1/2

(4.29)

where γn is defined by (4.18).

Similarly the data error term is bounded as follows

B4 =

∫ T

0

〈Pn0 fn − f(t), e(t)〉 dt ≤
N∑
n=1

βnτ
1/2
n

(∫ tn

tn−1

‖e‖2a

)1/2

, (4.30)

where βn is defined in (4.20).

Step 3. The third term in (4.26) yields a time discretisation term and is a bit more
involved to estimate. Using the definition of ωn, ω and Rn, given in (4.3) and (4.6),
we observe that

B3 =

N∑
n=1

∫ tn

tn−1

a(ω − ωn, e(t)) dt

=

N∑
n=1

∫ tn

tn−1

a
(
ln−1(t)Rn−1Un−1 + ln(t)RnUn −RnUn, e(t)

)
dt

=

N∑
n=1

∫ tn

tn−1

ln−1(t)a
(
Rn−1Un−1 −RnUn, e(t)

)
dt

=

N∑
n=1

∫ tn

tn−1

ln−1(t)
〈
An−1Un−1 −AnUn, e(t)

〉
dt

≤
N∑
n=1

∥∥An−1Un−1 −AnUn
∥∥

H−1(Ω)

(∫ tn

tn−1

l2n−1

)1/2(∫ tn

tn−1

‖e‖2a

)1/2

≤
N∑
n=1

θnτ
1/2
n

(∫ tn

tn−1

‖e‖2a

)1/2

,

(4.31)

where in the last passage we use the discrete scheme (2.18) for the substitution

AnUn =
(
ΛnUn−1 − Un

)
/τn + Pn0 f

n for n ≥ 1. (4.32)

Step 4. Grouping together (4.26), (4.27), (4.29), (4.30) and (4.31), we obtain∥∥eN∥∥2
/2 +

∫ T

0

‖e(t)‖2a dt

≤
∥∥e0
∥∥2
/2 +

N∑
n=1

(ε̃n + γn + βn + θn) τ1/2
n

(∫ tn

tn−1

‖e‖2a

)1/2

. (4.33)

Using an L2 simplification (cf. §3.5), we conclude that(∥∥eN∥∥2

2
+

∫ T

0

‖e(t)‖2a dt

)1/2

≤
∥∥e0
∥∥

√
2

+

(
N∑
n=1

(ε̃n + γn + βn + θn)
2
τn

)1/2

. (4.34)

Referring to the notation in (4.1) and Definition 4.4, we obtain the result. �
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4.7. Remark (the alternative time indicator). Assuming there is no mesh change
from time tn−1 to time tn, then the discrete Laplacians An−1 and An, defined
in (2.15), coincide. Thus the time discretisation error indicator θn, which is part of
the estimator ηN in Theorem 4.6, can be written as

θn =
1√
2

∥∥AnUn −An−1Un−1
∥∥

H−1(Ω)
=

τn√
2
‖An∂tU‖H−1(Ω) . (4.35)

In the form given in (4.16) and using the dual Poincaré inequality (4.21), this
indicator is easily bounded.

A more precise, but slightly more expensive, calculation can be done using
Lemma 3.9. The same idea, will be used in the next result where we show that the
indicator θn is equivalent, up to higher order terms, to the alternative time indica-
tor θ̃n, defined in (4.17), which requires only an energy norm computation. This
alternative time indicator, which is more common in energy estimates [Pic98, e.g.],

θ̃n is also more “natural”, as it measures the time derivative in the energy norm
as opposed to the H−1 norm of the time derivative of AU . Due to mesh-change
effects, this simpler indicator comes at the (affordable) price of having to add the
higher order mesh change term γ̃n to the otherwise simpler γn.

4.8. Theorem (alternative time estimator). With the same assumptions and no-
tation of Theorem 4.6 we have(∥∥UN − u(T )

∥∥2

2
+

∫ T

0

‖U(t)− u(t)‖2a dt

)1/2

≤‖U(0)− u(0)‖√
2

+ η̃N (4.36)

where the (alternative global) error estimator is given by the following discrete
L2(0, T ) summation of the error indicators defined in §4.4:

η̃2
N :=

N∑
n=1

(
ε̃n + γn + γ̃n + βn + θ̃n

)2

τn. (4.37)

Proof We proceed similarly to the proof of Theorem 4.6, in steps. The notation is
the same and steps 1 and 2 are identical.
Step 3. This step starts similarly to its homologue in the proof of Theorem 4.6 by
observing that

B3 =

N∑
n=1

∫ tn

tn−1

ln−1(t)
〈
An−1Un−1 −AnUn, e(t)

〉
dt. (4.38)

The function An−1Un−1 − AnUn belongs to V
n + V

n−1, but in general it is in
neither of Vn nor Vn−1). Thus, to proceed, we use the L2(Ω)-projection and the
Clément–Scott–Zhang interpolator denoted respectively by

P̌n : L2(Ω)→ V
n + V

n−1 and Π̂n : L2(Ω)→ V
n ∩ Vn−1. (4.39)

We recall that the operators Π̂n and P̌n are both known [SZ90, Car02, resp.] to
enjoy the following stability properties for all n = 0, . . . , N :∥∥∥Π̂nφ

∥∥∥
a
≤ C1,µ ‖φ‖a ∀ φ ∈ H1(Ω), (4.40)∥∥P̌nφ∥∥

a
≤ C2,µ ‖φ‖a ∀ φ ∈ H1(Ω), (4.41)

where µ is the shape-regularity of the triangulation family {T n}n=0,...,N defined in

(2.10). Furthermore, the following interpolation inequality is valid [LM06, §B.3]∥∥∥(ψ − Π̂nψ
)
/ĥn

∥∥∥ ≤ C3,µ ‖ψ‖a ∀ ψ ∈ H1
0(Ω), n = 1, . . . , N, (4.42)

where ĥn := max {hn, hn−1}.
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Step 4. Using these operators, we derive that

B3 =

N∑
n=1

∫ tn

tn−1

〈
An−1Un−1 −AnUn, P̌ne(t)

〉
ln−1(t) dt

=

N∑
n=1

∫ tn

tn−1

(〈
An−1Un−1 −AnUn, P̌ne(t)− Π̂nP̌ne(t)

〉
+
〈
An−1Un−1 −AnUn, Π̂nP̌ne(t)

〉)
ln−1(t) dt

≤
N∑
n=1

∫ tn

tn−1

(∥∥ĥn(An−1Un−1 −AnUn
)∥∥ ∥∥ĥ−1

n

(
P̌ne(t)− Π̂nP̌ne(t)

)∥∥
+ a
(
Un−1 − Un, Π̂nP̌ne(t)

) )
ln−1(t) dt.

(4.43)

Using inequalities (4.40), (4.41) and (4.42), we get the bound

B3 ≤
N∑
n=1

∫ tn

tn−1

(
C3,µ

∥∥ĥn(An−1Un−1 −AnUn)
∥∥∥∥P̌ne(t)∥∥

a

+ C1,µ

∥∥Un−1 − Un
∥∥
a

∥∥P̌ne(t)∥∥
a

)
ln−1(t) dt

≤
N∑
n=1

(
C3,µ

∥∥ĥn(An−1Un−1 −AnUn)
∥∥+ C1,µ

∥∥Un−1 − Un
∥∥
a

)
× C2,µ

∫ tn

tn−1

‖e(t)‖a ln−1(t) dt

≤
N∑
n=1

(
γ̃n + θ̃n

)(∫ tn

tn−1

‖e‖2a

)1/2

(4.44)

by taking Cµ := C1,µC2,µ/3, Cµ
′ := C3,µC2,µ/3 in (4.17) and (4.19) for the last

step.
We may now conclude exactly like the last step in the proof of Theorem 4.6, albeit
with θn replaced by γ̃n + θ̃n. �

5. Computer experiments: convergence rates

In this section and in §6 we study the numerical behaviour of the error indicators
and estimators and compare this behaviour with the true error on three model prob-
lems. The C code that we used includes the adaptive FEM library ALBERTA [SS05,
]. The quadrature formal error is made negligible with respect to other error by
using overkill quadrature formulas (exact on polynomials of degree 17 and less).

5.1. Benchmark problems. Consider three benchmark problems, the solution of
which is known. Namely, take d = 2, each problem’s data f, u0 is then chosen such
that the exact solution to 2.6 is given by:

u(x, t) = sin(πt) exp
(
−10 |x|2

)
, (5.1)

u(x, t) = sin(20πt) exp
(
−10 |x|2

)
, (5.2)

u(x, t) = t sin
2 arctan(x2/x1)

3
x2/3 exp

(
−1

1− |x|2

)
, (5.3)

The domain Ω for Problems (5.1) and (5.2) is the square S := (−1, 1) × (−1, 1).
Problem (5.3), whose solution’s gradient is singular at the origin, is considered on
the L shaped domain Ω = S r [0, 1]× [−1, 0]. The benchmark problems (5.1) and
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(5.2) have been chosen such that they can be compared with previous numerical
studies [LM06, ].

For all Problems (5.1)–(5.3), we take zero initial condition, u0 = 0 to avoid
dealing with the initial adaptivity which is a side issue here.

The solution (5.2) has a time dominant discretisation error, while (5.3) was
constructed to have a dominant spatial error. It is the product of a linear function in
time, a well known solution to Laplace’s equation producing the spatial singularity
and a mollifier.

Problem (5.1) is used to test asymptotic behaviour of the indicators under uni-
form space-time refinements further in §5.5. Problems (5.3) and (5.2) will be used
to test the adaptive strategies in §6.

5.2. Gradient recovery implementation. The recovery operator, Gn, is ob-
tained by taking the discontinuous gradients of the numerical solution at the super
convergent sampling points [AO00, ] (and references therein). The recovery op-
erator used here is built in the following way: fixing V ∈ V

n, for each degree of
freedom x, we define

Gn[V ](x) :=

∑
K∈T n:x∈K |K| ∇V |K (x)∑

K∈T n:x∈K |K|
, (5.4)

This defines a unique piecewise polynomial field Gn[V ] ∈ V
d. (Note that for-

mula (5.4) is non trivial for only for those DOF that are are on the boundary of an
element; for the internal DOF, that arise in using Pp elements for p ≥ 3, it is not
necessary to calculate anything.)

5.3. Definition (experimental order of convergence). Given two sequences a(i) and
h(i)↘ 0, i = l, . . . ,, we define experimental order of convergence (EOC) to be the
local slope of the log a(i) vs. log h(i) curve, i.e.,

EOC(a, h; i) :=
log(a(i+ 1)/a(i))

log(h(i+ 1)/h(i))
. (5.5)

5.4. Definition (effectivity index). The main tool deciding the quality of an esti-
mator is the effectivity index (EI) which is the ratio of the error and the estimator,
i.e.,

EI(tn) := ηn/‖U − u‖L2(0,tn;H1
0(Ω)). (5.6)

If EI(tn)→ 1 as supx,n hn(x)→ 0 then we say the estimator is asymptotically exact.

5.5. Indicator’s numerical asymptotic behaviour. In the following conver-
gence rate tests we discuss the practical realisation of Theorems 4.6 and 4.8, to
which we refer for notation.

We use a uniform timestep and uniform meshes that are fixed with respect to
time. Hence for each test we have Vn = V

0 = V and τn = τ(h) for all n = 1, . . . , N .
For each test we fix the polynomial degree p and two parameters k, c and then
compute a sequence of solutions with h = h(i) = 2−i/2, and τ = chk for a sequence
of refinement levels i = l, . . . , L.

Due to the finite element space invariance in time, the coarsening indicator γn
vanishes and is thus not computed (this indicator will be discussed in §6).

The initial value being zero makes the initial error U(0) − u(0) zero. Thus we
do not need to calculate this term in the estimator.

For all solutions the boundary values are not exactly zero, but of a negligible
value, hence little interpolation error is committed here (nonetheless some care is
taken when dealing with very small errors). Finally, the data approximation error
term, βn, though important for highly oscillatory data, will not be studied here
given the regularity of our data.
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Therefore, what we compute on a space-time uniform mesh are the indicators
εn and θn (or θ̃n,γn), defined in §4.4, and the corresponding cumulative indicators
(En)n=1,...,N and (Θn)n=1,...,N defined by:

E2
m :=

m∑
n=1

(
ε2
n + ε2

n−1

)
τn/2 (for space) ,

and Θ2
m :=

m∑
n=1

θ2
nτn or

m∑
n=1

(
θ̃2
n + γ̃2

n

)
τn (for time) .

(5.7)

From the Theorems 4.6 and 4.8, we know that

‖Un − u(tn)‖2 ≤ E2
m +Θ2

m +

m∑
n=1

β2
nτn. (5.8)

Our results and the comments are reported in the captions of figures.
In Figures 1–4 we visualise the results and comment them, for Problem (5.1)

for conforming finite elements of polynomial degree p = 1, . . . , 4, respectively.
Having fixed p, k, c such that τ = chk, for each level i, we plot Θm and Em,
‖U − u‖L2(0,tm;H1

0(Ω)), their experimental order of convergence and the effectivity

index EI(tm) versus (discrete) time tm = 0, . . . , T . The conclusion is that the esti-
mator is sharp and reliable, but to achieve asymptotic exactness (or close) the time
indicator must be made smaller than the space indicator by taking τ � hp. In all
these tests we used the first form for Θm appearing in (5.7).

In Figure 5 we summarise a comparison between the two time indicators θn and
θ̃n, showing that the latter yields a much sharper bound, but with the added cost
of having to compute the higher order term γ̃n.

6. Computer experiments: adaptive schemes

We present now an adaptive algorithm based on the error indicators defined
in §4.4. As with many adaptive methods for time-dependent problems [Pic98,
SS05, CJ04, ], we perform space and time adaptivity separately. Adaptivity is
controlled via the indicators ηn and ηn (or η̃n)—see Theorems 4.6 and 4.8—which
are kept under a given tolerance tol.

Namely, at each timestep tn−1 → tn, we use adaptive schemes for elliptic prob-
lems as to minimise the indicators ε̃n and βn. There are different strategies to
perform the timestep adaptivity, all geared towards minimising θn (or var θn). Fi-
nally, the coarsening estimator γn is minimised by precomputing it and performing
only one coarsening operation at the beginning of each timestep.

Note that it is not in the scope of this paper to prove any rigorous result about the
adaptive algorithm and, based on heuristic arguments only, we use it for illustration
purposes.

6.1. Space adaptivity via maximum strategy. At each timestep an elliptic
problem is solved. For linear elliptic problems, convergence of adaptive schemes
is reasonably well understood [MNS02, BDD04, ] so we follow the criteria given
therein, namely the Maximum Strategy.

The algorithm we used can be pseudocoded as follows.

6.2. Space Adapt.

Require: (Uold,Vold, tolε, kmax, t, τ, ξ, tolγ)
Ensure: (Unew,Vnew) solution of (2.17)

procedure Coarsening
γ = (γK)K∈T := Coarsening Preindicator(Uold,Vold) (cf. §A.12).
T := Mesh(Vold)
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find C ⊂ T such that
∑
K∈C (γK)2 ≤ tol2γ

T := Coarsen(T ,C ) using [SS05, §1.1.2–1.1.3]
end procedure
procedure Maximum Strategy Refinement [SS05]

k := 0
compute εn using (4.14)
R := ∅ . refinement set
while εn > tolε and k ≤ kmax do

for K ∈ T n do
if ε2

K,n ≥ ξmaxL∈T n ε2
L,n then

R := {K} ∪R . mark K for refinement
end if

end for
T := Refine(T ,R) using [SS05, §1.1.1] . hence update (Uold,V)
set ΛnUn−1 := Uold, τn = τ , tn = t and solve for Un in (2.18)
U := Un

compute εn using (4.14)
k := k + 1

end while
end procedure
return (U,V)

6.3. Coarsening. In time-dependent problems mesh coarsening , which is not to
be confused with the coarsening needed in proving optimal complexity for adaptive
schemes [BDD04, ], is used to reduce DOF that become redundant in time.

Mesh coarsening is a delicate procedure and should be used sparingly as to avoid
needless overhead computing time. In Algorithm 6.2, coarsening is performed only
once, at the beginning, for each time-step.

The coarsening strategy we propose is based on predicting the effect of a possible
removal of degrees of freedom. The reason for this is that in ALBERTA (and many
other finite element codes) upon coarsening, all DOF-dependent vectors (encoding
finite element function coefficients) are “coarsened” via interpolation. This makes
it possible to compute the effect of coarsening, and the coarsening estimator γn
defined in (4.18), before mesh-change occurs. The details of this procedure are
discussed in § A.

6.4. Timestep control. Timestep control can be achieved using two different
strategies.

An implicit timestep control strategy used is ready implemented in ALBERTA
[SS05, ] using Algorithm 6.2 upon each timestep.

Here we propose an explicit timestep control strategy which we have implemented
in ALBERTA. The reason for this is that the implicit strategy, though better in terms
of timestep determination, is very time-consuming as it requires the repeated solu-
tion of the timestep. In contrast, the explicit strategy has a rougher—nonetheless
still satisfactory— control over the timestep, but it is much faster. The conclusion
is that the ideal control should be a smart implicit/explicit-switching algorithm.

The explicit strategy can be described as follows.

6.5. Explicit Timestep Adapt.

Require: (τ0, t0, T,T 0, u0, tolε, kmax, ξ, tolγ , tolθ,min, tolθ)

Ensure: (τn,V
n, Un)n=1,...,N satisfying (2.17) and possibly

∫ T
0
‖U − u‖2 ≤ tol2

(U0,V0) = Initial Space Adapt(T 0, u0, kmax, ξ, κ) . data interpolation
n := 1
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τn := τn−1

tn := tn−1 + τn
while tn ≤ T do

(Un,Vn) := Space Adapt(Un−1,Vn−1, tolε, kmax, τn, tn, ξ, tolγ)
compute θn
if θn > tolθ then

τn+1 := τn/
√

2
else if θn ≤ tolθ,min then

τn+1 :=
√

2τn
end if
tn+1 := tn + τn+1

n := n+ 1
end while
return (Un)n=1,...,N ,

where the global tolerance tol is given by the relation

tol2 = T
(
tol2θ + tol2ε + tol2γ

)
. (6.1)

Note that this algorithm does not guarantee reaching a tolerance, unlike more
sophisticated ones found in the literature [CJ04, e.g.], but it guarantees termination
in reasonable CPU times.

6.6. Numerical results. In Tables 1–3 we compare the implicit timestep control
strategy described by algorithm 6.5 with a uniform timestep scheme. For the uni-
form strategy we take a stationary mesh in time and set τ = 0.04h2. We calculate
the error for various numerical simulations using differing values of h using the
uniform strategy and set those values as tolerances for the adaptive scheme varying
ξ appropriately.

Each column displays results for either the uniform strategy or the adaptive
strategy using various thresholds. These columns are further subdivided into two,

the first containing
∑N
n=1 dimV

n (i.e., the total number of degrees of freedom from
all meshes over time) which we denote DOF and the second containing CPU time
(secs) for all model problems (5.1)–(5.3).

Uniform Adaptive
ξ = 0.65 ξ = 0.70 ξ = 0.75

tol DOF’s CPU DOF’s CPU DOF’s CPU DOF’s CPU
0.573 232,290 3 24,080 4 22,792 5 22,240 4
0.295 3,489,090 49 42,042 8 39,414 8 38,630 6
0.149 54,097,020 598 82,172 15 77,932 15 76,452 16
0.0625 OOM OOM 206,709 39 195,810 37 191,650 37

Table 1. Explicit timestep control with various spatial maximum
strategy thresholds for Problem (5.1). The adaptive method clearly
saves DOF and CPU time over the uniform method.

Uniform Adaptive
ξ = 0.65 ξ = 0.7 ξ = 0.75

tol DOF’s CPU DOF’s CPU DOF’s CPU DOF’s CPU
0.296 3,489,090 47 12,092 5 11,430 5 11,498 5
0.21 13,940,289 196 17,038 7 16,140 8 16,201 7
0.104 54,097,020 602 106,188 32 100,058 29 22,597 10

0.03125 OOM OOM 513,694 120 460,637 118 449,568 115

Table 2. Explicit timestep control with various spatial maxi-
mum strategy thresholds for spatial-error dominant Problem (5.3).
Adaptivity saves DOF and CPU.
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Uniform Adaptive

ξ = 0.7 ξ = 0.75

tol DOF’s CPU DOF’s CPU DOF’s CPU

1.000 925,809 12 159,070 43 127,610 58

0.569 3,489,090 49 237,960 142 204,376 180

0.295 54,097,020 605 471,733 755 471,542 920

0.149 OOM OOM 940,618 1410 940,138 1850

Table 3. Implicit timestep control with various spatial maxi-
mum strategy thresholds for spatial-error dominant Problem (5.2).
Adaptivity saves DOF (even better than explicit control) but the
CPU time grows very quickly due to overhead.

Uniform Adaptive

ξ = 0.7 ξ = 0.75

tol DOF’s CPU DOF’s CPU DOF’s CPU

1.000 925,809 12 135,788 5 127,004 4

0.569 3,489,090 49 198,628 7 194,311 8

0.295 54,097,026 605 397,716 15 395,876 16

0.149 OOM OOM 2,177,666 79 2,079,081 76

Table 4. Explicit timestep control with various spatial maximum
strategy thresholds for time-error dominant Problem (5.2)

6.7. Remark (implicit timestep control on fast oscillating solutions). We take note
of the CPU times from the results for Problem (5.2). These show that implicit
timestep control is undesirable for fast oscillating functions. This is because the
timestep searching becomes computationally inefficient. Numerical simulations for
an explicit timestep control strategy is given in Table 4. This algorithm is described
in detail in the ALBERTA manual [SS05, §1.5.4] The results show although for a
method with low tolerance we use more degrees of freedom we make a substantial
gain on the CPU time.

We then fix a value of ξ and compare an adaptive strategy with uniform for a
single value of tol. This is to illustrate how the number of degrees of freedom of the
mesh change over time, and how the implicit timestep control affects the timestep
size for all test problems in Figures 6.

6.8. Incompatible data singular solution. We close the paper by testing the
adaptive algorithm on an example with incompatible initial and boundary condi-
tions, which is the type of situation where adaptivity is really needed in practise.
Consider problem (2.6) with Ω = (0, 1)× (0, 1), f = 0 and u0 = 1. The initial con-
ditions are thus incompatible with the homogeneous Dirichlet boundary valid for
all positive times. The exact solution u, though singular at all points of ∂Ω × {0},
can be readily evaluated “by hand” and may be represented in terms of Fourier
series of the Laplacian’s eigenvalues. Namely, we have

u(x, t) =

∞∑
m,n=1

Cm,n exp(−
(
m2 + n2

)
π2t) sin(mπx1) sin(nπx2), for t > 0, (6.2)

where the constant Cm,n is given by

Cm,n =
4

nmπ2
(1− cos (mπ)− cos (nπ) + cos (nπ) cos (mπ)) . (6.3)

Since the solution (6.2) is an infinite Fourier series it cannot be computed exactly,
but its rapid decay allows to truncate early with machine-epsilon precision.
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In order to generate a reference tolerance, which is common for the uniform and
the adaptive scheme we couple h = 0.05τ and run the uniform refinement code. We
use then the error computed as a tolerance for the adaptive scheme, results of this
are shown in Figure 7. In Figure 8 we visualise the adapted FE mesh for Problem
(6.2) at various times.
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Appendix A. Coarsening error preindicator implementation

We describe next a practical implementation of the coarsening error preindicator
(we use this term to emphasise the fact that this indicator can be computed a priori,
as opposed to the other indicators involved in the adaptive strategy). Since we used
ALBERTA for our computations, this section relies substantially on the principles
described in the manual [SS05]. We briefly describe these principles in the next
paragraph, in order to expose the main idea behind the coarsening preindicator.

A.1. Refinement, coarsening and interpolation in ALBERTA. Mathemati-
cally, a simplicial mesh (or partition, or triangulation) is a set of disjoint open
simplexes, the union of the closure of which is Ω. A mesh into a new mesh is
refined by bisecting a subset of its simplexes, following a special procedure which
ensures mesh conformity (e.g., no hanging nodes) and does not deteriorate shape-
regularity (on fully fitted polygonal domains). A mesh is thus represented as a
binary tree, where each node represents a simplex. The children of each simplex
are thus the 2 subsimplexes obtained by bisection. Hence, from a coding view-point,
refinement means growing the binary tree.

The inverse of refinement is coarsening. Thus coarsening a mesh in ALBERTA
consists in removing pairs of sibling simplexes (both marked for coarsening) and
produces the new—coarsened—mesh where the pairs of siblings are replaced by
their parent.

The coarsening preindicator is a real number defined on each simplex, of the tri-
angulation to be coarsened. This estimator can in fact be precomputed with respect
to coarsening. This is in contrast with usual a posteriori error estimators which
can be postcomputed only (i.e., after the discrete solution has been computed). To
clarify this point, let us focus on the particular situation of interest. Let Un−1 be
the solution from the previous timestep; Un−1 ∈ V

n−1, the finite element space
with respect to mesh T n−1. The error due to coarsening appears in the term

Un−1 − ΛnUn−1. (A.1)

This term is nonzero only when simplexes are coarsened.
Furthermore, we assume that the new mesh T n is a refinement of T n

0 , which is
a coarsening of the old mesh T n−1:

T n−1 coarsen−−−−→ T n
0

refine−−−→ · · · refine−−−→ T n (A.2)

If Λn0 is the Lagrange interpolator onto the finite element space Vn0 , relative to
the new coarse mesh T n

0 , it is not very difficult to predict Λn0U
n−1 without actually

computing it. Therefore this term can be predicted from (a) the simplexes of T n−1

marked for coarsening which leads to T n
0 and (b) the values of Un−1.

Note that since T n
0 is subsequently refined but not coarsened to produce T n, as

depicted in (A.2), then the additional coarsening error will be zero. Namely, if Λn
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denotes the Lagrange interpolant onto Vn, the finite element space over T n, which
is a refinement of T n

0 , then ΛnUn−1 = Λn0U
n−1, and thus

Un−1 − ΛnUn−1 = Un−1 − Λn0Un−1. (A.3)

The coarsening strategy therefore consists in choosing a subset of simplexes of
T n−1 which minimises term

∥∥Un−1 − Λn0Un−1
∥∥ before producing the new coarse

mesh T n
0 .

The rest of this section describes how Un−1 − Λn0Un−1 can be precomputed.

A.2. Notation. Let K be an element of the new coarse mesh T n
0 resulting from

the coarsening of its two children which we denote by K±. (Note that K+ and
K− correspond to child[0] and child[1] of K in the ALBERTA manual [SS05].)
Define the fine space

Y :=
{
Φ|K : Φ ∈ Vn−1

}
. (A.4)

Likewise define the coarse space X to be the local finite element space, i.e.,

X := {Φ|K : Φ ∈ Vn0} ; (A.5)

simply put we just have X = P
p. We introduce also the fine spaces Y±, defined like

Y, but restricting functions over K±, respectively (so functions in Y
± are in fact

the same as X = P
p, albeit with different domains).

Denote by {x0, . . . ,xL} and
{
x±0 , . . . ,x

±
L

}
the set of Lagrange degrees of freedom

on the simplex K and its children K±, respectively. We indicate with
{
π0, . . . , πL

}
and

{
π0
±, . . . , π

L
±
}

the corresponding Lagrange polynomial bases of X and Y
±, re-

spectively, whereby

πi(xj) = πi±(x±j ) = δij . (A.6)

For short we will write these bases as column vectors π =
(
π0, . . . , πL

)ᵀ
, etc. We

also define the (local) coarse-on-fine matrixes by

A± :=
(
π(x±0 ) . . . π(x±L )

)
=
(
πi(x±j )

)
i,j=0,...,L

. (A.7)

These matrixes are closely related to ALBERTA’s refine-interpolation matrix [SS05,
matrix A (1.5) in §1.4.4 ].

A.3. Proposition (coarse-on-fine matrix properties). The matrixes A+ and A− are
independent of K,K+,K− and

π|K± = A±π±. (A.8)

Proof Fix i = 0, . . . , L. Because πi is a polynomial and
{
π0

+, . . . , π
L
+

}
is a polyno-

mial basis, it follows that

πi =

L∑
j=0

aijπ
j
+, (A.9)

for some vector
(
ai0, . . . , a

i
L

)
. Applying πi to x+

j , and recalling (A.6), we obtain

aij = πi(x+
j ), (A.10)

and hence

πi =
[
A+π+

]i
. (A.11)

�

A.4. Example (quadratic elements in 2 dimensions). To make the discussion more
accessible, we will illustrate it as we go with the concrete situation where p = 2
(quadratic elements) and d = 2. Following the ALBERTA conventions the relation
between the coarse and fine triangles is given by the following diagram.
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0 1

2

34

5

0

01

1

2 2

5 5

3

34

4

KK+ K− K+ K−refineK

coarsen(K+,K−)

In this case, the coarse-on-fine matrixes are computed as follows:

A+ =


1 3/8 −1/8

−1/8 −1/8
1

1/2
1/2 1

1 3/4 1/4

 , A− =


−1/8 −1/8

1 −1/8 3/8
1

1/2 1
1/2

1 1/4 3/4

 (A.12)

A.5. Degrees of freedom and global–local relations. Denote by U the generic
finite element function in the old space Vn−1 and let V := Λn0U . Then we have

U = uᵀΨ and V = vᵀΦ, (A.13)

where Ψ =
(
Ψ0, . . . , ΨN

)ᵀ
and Φ =

(
Φ0, . . . , ΦM

)ᵀ
, are the columns of nodal La-

grange piecewise polynomial bases of Vn−1 and V
n
0 , respectively, and u and v are

the corresponding vectors of DOF values.
There are L+1 degrees of freedom (DOF) per simplex, e.g., L = 5 for p = 2 = d.

The simplexK in T n
0 comes with a local-to-global index relation g = g

T n
0

K : [0 : L]→
[0 : M ] whereby

Φg(i)
∣∣∣
K

= πi ∀ j = 0, . . . , L. (A.14)

It follows that the finite element function V is locally represented on K by

Y := V |K =

L∑
i=0

vg(i)π
i =: yᵀπ. (A.15)

Similarly we have g± = gT n−1

K± : [0 : L]→ [0 : N ] such that

Y ± := U |K± =

L∑
j=0

ug±(j)π
j
± =: y±ᵀ

π±. (A.16)

The relation between the DOF coefficients u and v will be described next.

A.6. Local fine–coarse DOF relations. Some degrees of freedom—that is those
depicted in yellow or bright—are removed during coarsening. The others, which
are kept, have their local index change. This information is fully encoded in the
fine-to-coarse index maps c± : D± → C± where

D± :=
{
j = 0, . . . , L : x±j ∈ {x0, . . . ,xL}

}
. (A.17)

and

C± := c±(D±) ⊆ [0 : L] . (A.18)

A basic property of the fine-to-coarse maps is that

C+ ∪ C− = [0 : L] , (A.19)

but C+ and C− need not be disjoint (in fact, for conforming methods these are never
disjoint). The fine-to-coarse maps c± are injective and we denote their inverses, the
coarse-to-fine maps, by d± : C± → D±.
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In the example above, p = 2 = d, the fine-to-coarse maps c± : D± → [0 : 5],
satisfy D+ = D− = {0, 1, 2, 5} (though D+ and D− do not generally coincide, as
seen for p = 3, d = 2, e.g.) and evaluated by the schedule

j = 0 1 2 3 4 5,
c+(j) = 2 0 5 − − 4,
c−(j) = 1 2 5 − − 3.

(A.20)

It follows that C+ = {0, 2, 4, 5} and C− = {1, 2, 3, 5} and

i = 0 1 2 3 4 5,
d+(i) = 1 − 0 − 5 2,
d−(i) = − 0 1 5 − 2.

(A.21)

A.7. Remark (redundancy of the coarse-to-fine maps). The coarse-to-fine maps
c± and their inverses d± are partially redundant with A±. Namely, if j ∈ D±, then
j = d±(i) and i = c±(j), for some i = 0, . . . , L. By definition of c± it follows that
x±j = xi. Therefore

[A±]
k
j = πk(x±j ) = πk(xi) = δki . (A.22)

We have thus proved the following result that will be used to compress A± in the
sequel.

A.8. Proposition (redundant coarse-on-fine columns). If j ∈ D±, then A±’s j-th
column is described by

[A±]
k
j = δkc±(j). (A.23)

A.9. Precomputing the coarsening error. The coarsening error is the differ-
ence between U , to which we have access via u, and its interpolation on the lo-
cally coarser mesh V , to which we have no direct access. Working locally at the
coarsening-marked element K+ (and similarly for K−), all we need is to compute
V |K+ and subtract it from U |K+ .

Recalling that in ALBERTA V = Λn0U is built by simply “dropping” the coeffi-
cients of the DOF removed by coarsening we have

yᵀπ = Y = V |K =
∑
i∈C+

ug+(d+(i))π
i +

∑
i∈C−rC+

ug−(d−(i))π
i, (A.24)

that is, for j = 0, . . . , L, we set

vg(i) := yi :=

{
ug+(d+(i)) = y+

d+(i) if i ∈ C+

ug−(d−(i)) = y−d−(i) otherwise .
(A.25)

(Note that the vector y is the same for the two siblings K± and needs to be
calculated only once.) Following the example with p = 2 = d, we see that

y =
(
y+

1 , y
−
0 , y

+
0 , y

−
5 , y

+
5 , y

+
2

)ᵀ
=
(
y+

1 , y
−
0 , y

−
1 , y

−
5 , y

+
5 , y

−
2

)ᵀ
.

(A.26)

To conclude we rewrite the coarse basis, π, in terms of the fine one, π+, using
Proposition A.3 as follows:

V |K+ = Y |K+ = yᵀ π|K+ = yᵀA+π+. (A.27)

Thus the coarsening error on K+ is calculated as

[U − V ]|K+ = y+ᵀ
π+ − yᵀA+π+ = π+

ᵀ
(

y+ − A+ᵀ
y
)

=

L∑
j=0

(
y+
j − yᵀ[A+]j

)
π+
j .

(A.28)
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Recalling Proposition A.8, if j ∈ D+ we have

yᵀ[A+]j =

L∑
i=0

ykδ
k
c+(j) = yc+(j) = y+

j , (A.29)

and thus the coefficient for π+
j is 0, and it needs not be calculated. Proceeding

similarly on K− we may summarise the findings as follows.

A.10. Theorem (coarsening error calculation). Let U ∈ V
n−1 with the notation

of §A.5, to calculate the coarsening error that would result from coarsening the
elements K+,K− ∈ T n−1 into K ∈ T n

(1) calculate y following (A.25) using the coarse-to-fine map d+ defined in §A.6,
(2) obtain the error using

[U − Λn0U ]|K+ =
∑

j∈[0:L]rD+

(
y+
j − yᵀ[A+]j

)
πj+,

[U − Λn0U ]|K− =
∑

j∈[0:L]rD−

(
y−j − yᵀ[A−]j

)
πj−.

(A.30)

A.11. Remark. Note that the j-th coefficient of the coarsening error’s local DOF
vector is zero when j ∈ D±, respectively. So the calculation needs to be carried
out only for those j 6∈ D±.

Also, the coefficients for the DOF that are common to K+ and K− must be
equal, so they can be in fact computed once.

For example in the case of quadratic elements in d = 2 we have

Y + − Y |K+ =π3
+

(
y+

3 −
3

8
y+

1 +
1

8
y−0 −

3

4
y+

2

)
+π4

+

(
y+

4 +
1

8
y+

1 +
1

8
y−0 −

1

4
y+

2 −
1

2
y+

5 −
1

2
y−5

)
,

Y − − Y |K− =π3
−

(
y−3 +

1

8
y+

1 +
1

8
y−0 −

1

2
y−5 −

1

2
y+

5 −
1

4
y+

2

)
+π4
−

(
y−4 +

1

8
y+

1 −
3

8
y−0 −

3

4
y+

2

)
(A.31)

A.12. Coarsening error algorithm. As seen in §A.9, the information needed
for the coarsening error computation for Lagrange finite elements of degree p in
dimension d, is contained in the coarse-on-fine matrixes A± defined by (A.7) and
the fine-to-coarse maps, d±, and their domains C± defined in A.6. This information
is independent of the particular pair of simplex siblings K± and their parent K and
can be included in the code via given index permutations and efficient matrix-vector
multiplication.

With this information at hand and the notation previously introduced in this
section, we formulate an ALBERTA-implementable algorithm to precompute the
coarsening error on all seimplexes.

Coarsening Preindicator.

Require: (U = uᵀΦ,V,T )
Ensure: γ = (γK : K ∈ T )

for all K ∈ T do
if childorder(K) = 02 then

2The element information in ALBERTA is quite local and to determine whether an element
is left or right child is not trivial. In ALBERTA 1.2 this can be done utilising EL->index which
provides a global indexing of elements. Testing the EL INFO->parent->child[0]->index against
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D := D+, D′ := D−, c := c+, c′ := c−, A := A+

else
D := D−, D′ := D+, c := c−, c′ := c+, A := A−

end if
K ′ := siblingK
initialise two local DOF vectors y and r
for all j ∈ D do

yc(j) = ugK(j)

end for
for all j ∈ D′ do

yc′(j) = ugK′ (j)
end for
for all j /∈ D ∪D′ do

rj = ugK(j) − y [TA]j
end for
γK = 0
for all i /∈ D ∪D′ do

for all j /∈ D ∪D′ do
γK = γK + rirj 〈Φi, Φj〉K

end for
end for

end for

A.13. Coarsening preindicator matrixes. To close, we provide here the in-
formation needed to implement Algorithm A.12 for Lagrange piecewise Pp finite
elements in dimension d = 2. (For dimension 3 the situation is complicated by the
“types” of tetrahedrons, whereby the matrixes A± and the maps c± may depend
on the type and is not covered in this appendix.)

A.14. P1 elements. The coarse-on-fine matrixes (omitting 0 entries for clarity)
are given by

A+ =

 1 1/2
1/2

1

 ,A− =

 1/2
1 1/2

1

 , (A.32)

the fine-to-coarse maps and the coarse-to-fine maps are respectively given by

i = 0 1 2,
c+(i) = 2 0 −,
c−(i) = 1 2 −,

and
i = 0 1 2,

d+(i) = 1 − 0,
d−(i) = − 0 1.

(A.33)

A.15. P2 elements. See the worked example in §A.

EL->index gives the correct child order of K. In ALBERTA 2.0 EL->index is unavailable so we
check the global index of DOF for both parent and children.
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A.16. P3 elements. The coarse-on-fine matrixes are given by

A+ =



1 −1/16 5/16 1/16 −1/16
−1/16 1/16 1/16 1/16

1
−1/4 −1/8

1/2
1/2 1
−1/4 1 3/8

9/16 15/16 1 −1/16 3/16
9/16 −5/16 −1/16 −3/16

1 1/2 3/4


(A.34)

and

A− =



−1/16 1/16 1/16 −1/16
1 −1/16 1/16 5/16

1 1/16
−1/4 1

1/2 1 −1/8
1/2 −3/16
−1/4 3/16

9/16 −1/16 −5/16 3/8
9/16 −1/16 15/16 1

1/2 1 3/4


(A.35)

the fine-to-coarse maps

i = 0 1 2 3 4 5 6 7 8 9,
c+(i) = 2 0 − − 7 9 − 5 6 −,
c−(i) = 1 2 − − 9 8 − 3 4 −.

(A.36)

and the coarse-to-fine maps

i = 0 1 2 3 4 5 6 7 8 9,
d+(i) = 1 − 0 − − 7 8 4 − 5,
d−(i) = − 0 1 7 8 − − − 5 4.

(A.37)
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A.17. P4 elements. The coarse-on-fine matrixes are given by

A
+

=

                         

1
3
5
/
1
2
8

−
5
/
1
2
8

3
/
1
2
8

−
5
/
1
2
8

3
/
1
2
8

−
5
/
1
2
8

−
5
/
1
2
8

3
/
1
2
8

3
/
1
2
8

−
5
/
1
2
8

−
5
/
1
2
8

−
5
/
1
2
8

1
−
1
/
1
6

3
/
1
6

1
/
8

1
/
1
6

−
3
/
8

−
1
/
8

1
/
2

1
/
2

1
−
3
/
8

1
3
/
8

−
1
/
1
6

3
/
1
6

1
−
1
/
8

5
/
1
6

3
5
/
3
2

1
1
5
/
3
2

−
3
/
3
2

1
/
3
2

−
1
/
3
2

5
/
3
2

1
−
3
5
/
6
4

4
5
/
6
4

9
/
6
4

1
/
6
4

3
/
6
4

1
5
/
6
4

7
/
3
2

−
5
/
3
2

−
3
/
3
2

1
/
3
2

3
/
3
2

5
/
3
2

9
/
1
6

−
3
/
1
6

3
/
8

1
5
/
1
6

1
9
/
1
6

−
3
/
1
6

−
3
/
8

−
5
/
1
6

1
3
/
4

3
/
4

                         

A
−

=

                         

−
5
/
1
2
8

3
/
1
2
8

3
/
1
2
8

−
5
/
1
2
8

−
5
/
1
2
8

−
5
/
1
2
8

1
−
5
/
1
2
8

3
/
1
2
8

−
5
/
1
2
8

3
5
/
1
2
8

−
5
/
1
2
8

3
/
1
2
8

1
3
/
1
6

−
1
/
1
6

1
5
/
1
6

−
1
/
8

−
3
/
8

1
3
/
8

1
/
2

1
1
/
2

−
3
/
8

−
1
/
8

3
/
1
6

−
1
/
1
6

1
/
1
6

1
/
8

1
/
3
2

−
3
/
3
2

−
5
/
3
2

7
/
3
2

5
/
3
2

3
/
3
2

1
1
/
6
4

9
/
6
4

4
5
/
6
4

−
3
5
/
6
4

−
1
5
/
6
4

−
3
/
6
4

1
/
3
2

−
3
/
3
2

1
5
/
3
2

1
3
5
/
3
2

5
/
3
2

−
1
/
3
2

−
3
/
1
6

9
/
1
6

−
5
/
1
6

−
3
/
8

−
3
/
1
6

9
/
1
6

1
5
/
1
6

3
/
8

1
3
/
4

1
3
/
4

                         .

The fine-to-coarse maps are given by

i = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14,
c+(i) = 2 0 10 − 9 − − 14 − 6 7 8 − − 12,
c−(i) = 1 2 10 − 14 − − 11 − 3 4 5 − − 13.

and the coarse-to-fine maps by

i = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14,
d+(i) = 1 − 0 − − − 9 10 11 4 2 − 14 − 7,
d−(i) = − 0 1 9 10 11 − − − − 2 7 − 14 4.
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Figure 1. Numerical Results for Problem (5.1) with P1 and h =
h(i) = 2−i/2, i = 4, . . . , 9 (details in §5.5).
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(a) Mesh-size is h and timestep τ = 0.1h. On top we plot the EOC’s of the single

cumulative indicators E and Θ. Below we plot their logs. Both indicators have EOC→ 1,
but the cumulative time error indicator Θm is dominant. The estimator is reliable and

sharp, but not asymptotically exact and results in EI� 1.
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(b) Timestep is τ = 0.1h2. This choice leads to EOC[Θm] → 2 and EOC[Em] ≈ 1, i.e.,
the time indicator Θm is of higher order than the spatial indicator Em which leads the

estimator’s order. Thus we obtain asymptotic exactness EI → 1, as expected from ZZ

estimators for p = 1.
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Figure 2. Numerical Results for (5.1) with P2 elements and h =
h(i) = 2−i/2 with i = 3, . . . , 8. We compute the same quantities as
in Figure 1.
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(a) Timestep τ = 0.1h2. The cumulative time error indicator Θm is dominant with
EOC[Θm]→ 2, but EI� 1.
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(b) Timestep is τ = 0.1h3, with In the bottom set of results the spatial is dominant
(EOC ≈ 2) showing the estimator is sharp and reliable for higher order polynomials as

well, and close to asymptotically exact (EI just smaller than 1).
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Figure 3. Numerical Results for (5.1) with P3 elements for mesh-
sizes h(i) = 2−i/2, i = 2, . . . , 6.. We compute the same quantities
as in Figures 1 and 2.
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(a) Timestep is τ = 0.1h3. Again, the time indicator is dominant and EOC[Θm] → 3,
but EI� 1.
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(b) Timestep is τ = 0.1h4. The elliptic error is dominant (EOC[Em] → 3) and the

estimator is sharp and reliable with very good EI.
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Figure 4. Results for (5.1) with P
4 elements and h(i) = 2−i/2,

i = 2, . . . , 6. We compute the same time accumulation quantities
as in Figures 1–3.
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(a) Mesh-size is τ = 0.1h4. Again, the time indicator is dominant with order EOC[Θm]→
4) and a quite good EI in this case.
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(b) Mesh-size is τ = 0.1h5. The spatial error is dominant and EOC[Em]→ 4. Effectivity

index improves slightly over previous case.
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Figure 5. For each m = 1, . . . , N we plot values and EOC’s

of two alternative time indicators
(∑m

n=1 τnθ̃
2
n

)1/2
(above) and(∑m

n=1 τnθ
2
n

)1/2(below) and the alternative mesh-change indicator∑m
n=1 τnγ̃

2
n (above-right). All quantities are plotted against time.

We took a uniform timestep τ = 0.1h and mesh-size h = 2−i,
i = 4, . . . , 9. The numerical results show (1) that the two time
indicators are equivalent in order, as expected, and (2) that the
term

∑m
n=1 τnγ̃

2
n is indeed a higher order term and can be safely

ignored in most practical schemes. The indicators θ̃n have a better
effectivity index.
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Figure 6. Adaptive (green) against uniform (red) degrees of free-
dom and timestep sizes. In each pair of graphs we plot the (log of)
the DOF against time on the left, and the timestep against time
on the right.
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(a) Implicit timestep control for Problem

(5.1). The explicit timestep control yields
the same results (but is much more CPU

efficient), thus it is not shown.
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(b) Implicit timestep control for Prob-

lem (5.2), where the spatial error domi-
nates. The explicit timestep control yields

the same meshes and time-steps, thus not

shown.
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(c) Explicit timestep control for Problem
(5.3), where the time discretisation error

dominates. Interesting when compared

with Figure 7(d).
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(d) Implicit timestep control for Problem
(5.3). Comparing with Figure 7(c) shows

that the implicit timestep control yields

more efficient timestep and meshes, but
at a much higher CPU cost (cf. Tables 3

and 4).
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Figure 7. Implicit timestep control for Problem (6.2).
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Figure 8. The adaptive scheme for (6.2) using implicit timestep control.

(a) Mesh at time

tn = 0.007544 with

dim(Vn) = 894, 677

(b) Mesh at time

tn = 0.033302 with

dim(Vn) = 98, 773

(c) Mesh at time

tn = 0.127492 with

dim(Vn) = 18, 613

(d) Mesh at time

tn = 0.393893 with

dim(Vn) = 3, 525
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