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Abstract 32 

In a bipedal walk, the human body experiences continuous changes in stability especially 33 

during weight loading and unloading transitions which are reported crucial to avoid fall. Prior 34 

stability assessment methods are unclear to quantify stabilities during these gait transitions due 35 

to methodological and/or measurement limitations. This study introduces Nyquist and Bode 36 

methods to quantify stability gait transitional stabilities using the neuromechanical output 37 

(CoP) and somatosensory input (GRF) responses. These methods are implemented for five 38 

different walking conditions grouped into walking speed and imitated rotational impairments. 39 

The trials were recorded with eleven healthy subjects using motion cameras and force 40 

platforms. The time rate of change in O/Is illustrated impulsive responses and modelled in the 41 

frequency domain. Nyquist and Bode stability methods are applied to quantify stability 42 

margins. Stability margins from outputs illustrated loading phases as stable and unloading 43 

phases as unstable in all walking conditions. There was a strong intralimb compensatory 44 

interaction (p<0.001, Spearman correlation) found between opposite limbs. Overall, both 45 

walking groups illustrated a decrease (p<0.05, Wilcoxon signed-rank test) in stability margins 46 

compared with normal/preferred speed walk. Further, stabilities quantified from outputs were 47 

found greater in magnitudes than the instability quantified from inputs illustrating the 48 

neuromotor balance control ability. These stability outcomes were also compared by applying 49 

extrapolated-CoM method. These methods of investigating gait dynamic stability are 50 

considered as having important implications for the assessment of ankle-foot impairments, 51 

rehabilitation effectiveness, and wearable orthoses.   52 

Key words: Gait, transitional phases, dynamic stability, Nyquist and Bode, neuromotor 53 
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1. Introduction 102 

Gait dynamic stability is important for independence while performing daily living 103 

activities. Various stability assessment techniques are reported earlier mainly categorised into 104 

clinical and laboratory-based methods (Neptune & Vistamehr, 2018). Clinically, walking 105 

stabilities are assessed applying Berge balance, Time up and go tests in which questionnaires 106 

are used or stopwatch measurements are made from patients. Laboratory-based methods 107 

involve sophisticated equipment and are reported with precise quantification of gait dynamic 108 

stabilities. Laboratory methods are further categorised into discrete point or continuous time 109 

series stability evaluations of a gait cycle using related measurement signals. Laboratory 110 

methods are not yet being applied in clinical environments due to diversified outcomes and 111 

multiple biomechanical signals being used. Further, the stability evaluation criteria in these 112 

methods are based on a comparison between testing and control subjects to define a gait being 113 

stable or unstable. 114 

Considering methodological choices, firstly, the discrete events stability evaluations include 115 

lower limb joints peak angles and moments (Soares, de Castro, Mendes, & Machado, 2014), 116 

spatiotemporal parameters (step width, step length), or extrapolated center-of-mass (XCoM) 117 

difference from base-of-support (BoS) (Hof, 2008; Sivakumaran, Schinkel-Ivy, Masani, & 118 

Mansfield, 2018). In the second category, stability evaluations involve continuous time series 119 

bulk data of measurement waveforms, these include, Lyapunov exponent, Floquet multiplier, 120 

(Ihlen et al., 2012; Kang & Dingwell, 2009) and intraclass correlation methods (Rabuffetti et 121 

al., 2011). These methods were used to quantify gait stabilities as a unit-less factor which was 122 

assumed consistent over the entire stride. Both these discrete and continuous time series 123 

methods are being indistinct to evaluate gait transitional phases i.e. loading and unloading 124 

phases which are reported critical considering gait dynamic stabilities (Bizovska et al., 2014; 125 

Svoboda et al., 2017). The loading and unloading phases include ~30% of stance from heel 126 

contact and towards toe-off events respectively, also known as double limb support time in a 127 

gait cycle. During these transitions, body weight is transferred from one limb to others 128 

(Bizovska et al., 2014), neuromotor programs is modulated (Rabuffetti et al., 2011), and 129 

muscles activate to maximum level to provide acceleration to trailing limb and decelerate to 130 

the leading limb (La Scaleia, Ivanenko, Zelik, & Lacquaniti, 2014). Despite these vital 131 

biological transformations taking place during these phases, the gait dynamic stabilities have 132 

been remained unquantified during these gait phases.  133 

Considering measurement signals, prior methods used multiple variables to evaluate gait 134 

stabilities. For example, most widely used extrapolated-CoM (XCoM) method attempt to 135 

quantify BoS from different foot positions, these include, foot centre of pressure (CoP) 136 

trajectory, toe marker, or heel marker positions. This method quantifies margins of stability 137 

(MoS) as XCoM maximum sways from BoS at HC and TO events and assumes double limb 138 

support time zero (Hof, 2008). Another most reliable method ‘Lyapunov exponent’ is reported 139 

to use multiple variables e.g. markers positions data from either trunk, pelvis, lower limb 140 

segments, joints, EMGs or their higher order derivatives to evaluate dynamic stability. A few 141 

studies are also reported to have criteria of at least five variables needed in the Lyapunov 142 

exponent method to be precise (Kang & Dingwell, 2009). In comparison, the neuromotor 143 

balance control theory states that lower limb muscles activate in response to CoM positions or 144 

acceleration (Allen & Ting, 2016; Graham, Carty, Lloyd, & Barrett, 2017) and CoP gives 145 

measure of resultant neuromotor balance control (Lugade & Kaufman, 2014), however, CoP is 146 
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independent to that of CoM (Winter, 2009). Despite the use of body’s CoP and CoM being 147 

widely reported in relation to stability evaluation, their application for gait transitional phases 148 

stability evaluation has been remained uninvestigated due to methodological limitations.  149 

More recent studies have introduced Nyquist and Bode (N&B) methods to quantify gait 150 

dynamics stabilities related to knee deficiencies (Ardestani, ZhenXian, Noori, Moazen, & Jin, 151 

2019; Morgan, Zheng, Bush, & Noehren, 2016) and postural perturbations (Hur, Duiser, 152 

Salapaka, & Hsiao-Wecksler, 2010). These are control engineering stability analysis 153 

techniques with the capability of evaluating transient and steady-state stabilities. Earlier, these 154 

methods were widely used for design and control in medical robots, however, their application 155 

in gait stability evaluations is relatively new. In this study, we have applied these methods 156 

using resultant ground reaction forces (GRF) biomechanical signals such that the tail of GRF 157 

vector presents CoP (output) and head of GRF vector presents CoM-acceleration (input) 158 

responses by the neuromotor (Appendix Fig. A1). These methods are implemented here 159 

specifically for stability evaluations during gait transitional phases. 160 

2. Methods 161 

2.1. Participants 162 

A total of eleven healthy subjects participated in this study (age 30±1yr, weight 74±3kg, 163 

and height 1.72±2.5m) after confirming no prior anatomical or neuromuscular impairments. 164 

Each subject signed an informed consent form which was approved by the institutional ethical 165 

review board at the University of Leeds.  166 

2.2. Experimental Protocol 167 

Two different walking conditions i.e. preferred walking speeds and rotational impairments 168 

are simulated in this study to evaluate gait transitional stabilities. Following prior studies 169 

(Rabiei, Eslami, & Movaghar, 2016; Soares et al., 2014), the rotational foot impairments were 170 

imitated using self-designed wedge-shaped foot insoles (Fig. A3). The insoles were designed 171 

in pairs using Styrofoam sheet (high density, thickness 1inch, compressive strength 690kPa) 172 

and wedged to ±10° using a hot wire cutter. The Styrofoam material preserves the loading 173 

impacts compared to commercially available soft insoles and helps in imitating eversion and 174 

inversion foot deficiencies. In this study, these foot conditions were imitated to a moderate 175 

range i.e. -10° laterally inclined insole for inverted/supinated foot and +10° medially inclined 176 

insole for the everted/pronated foot. Each insole was further cut into two parts i.e. hindfoot and 177 

forefoot to allow forefoot flexible motion during the push-off phase. Both parts were joined 178 

together using gaffer tape. These insoles were made portable to perform dynamic activities and 179 

worn by each participant using Velcro straps.  180 

2.3. Data Collection 181 

The trials were conducted in motion capture lab using 12 infrared cameras (Oqus cameras, 182 

400 Hz), two force platforms (AMTI BP400600-2000, 1 kHz), and 26 reflective markers were 183 

attached to each subject at lower limbs as illustrated in Fig. A1. The placement of the markers 184 

was made following Visual-3D help document (C-Motion_Markers, 2019) as illustrated in Fig. 185 

A2. There are two distinct force plates mounted on the lab floor in the pathway. The subjects 186 

were instructed to adjust their steps to ensure each foot was positioned at a separate force plate. 187 

After getting familiar, the experiments were recorded using Qualisys software. Each force plate 188 
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measures three-dimensional (3D) ground reaction forces (GRFs) and two-dimensional (2D) 189 

centre of pressure (CoP) position trajectories. The recorded data from each foot was used for 190 

further analysis. Each subject performed five trials for each of the five walking conditions. 191 

These five walking conditions were further grouped into walking speed (slow, normal and fast) 192 

and rotational foot impairments (everted and inverted foot). A self-selected normal speed walk 193 

was considered as a reference in both groups. The sequence in which trials were recorded 194 

included slow, normal, and fast speed trials at first and thereafter imitated inverted and everted 195 

foot walking conditions were performed at a self-selected preferred walking speed. While 196 

simulating rotational foot impairments, each subject was asked to get familiar by walking with 197 

wedged insoles in both feet, and after feeling comfortable, the trials were recorded. The trials 198 

were recorded on an 8m walking track. During each trial, the data from the limb movements 199 

were recorded in terms of 3D marker coordinates, 3D GRFs, and 2D CoP-position. Markers 200 

coordinates were used to compute ankle-foot angles and margin-of-stability (MoS). The GRFs 201 

and CoP position data were used to evaluate stability margins in anterior-posterior and medial-202 

lateral directions.  203 

2.4. Data Processing 204 

The rotational ankle-foot angles for simulated walking conditions were computed in the 205 

Visual-3D motion analysis software (Fig. A4) following the procedure defined in the 206 

software’s help document (C-Motion_Angles, 2019). Firstly, lower-limb markers position data 207 

was exported to Visual-3D software as C3D files. Each C3D file includes 26 markers (x, y, z) 208 

coordinates those were attached to foot, ankle and shank segments. Secondly, this data was 209 

used to construct the body’s anatomical model, and finally, a built-in command used to 210 

compute rotation of foot w.r.t shank reference. The rotation of foot w.r.t shank measures ankle 211 

joint angles along (x, y, z) directions. The rotational angles present the rotation of ankle-foot 212 

along the anterior-posterior axis of the ankle-foot joint. An outward ankle-foot rotation is called 213 

inversion and an inward rotation is called eversion. The outcomes from everted/inverted foot 214 

simulations abnormalities (using ±10° wedged insoles) were further confirmed by evaluating 215 

ankle-foot rotational angles experimentally in Visual-3D. Fig. 4 illustrates the trajectories 216 

(mean±Std.) for the normal, everted and inverted foot conditions. A maximum difference of 217 

everted and inverted foot trajectories was computed w.r.t to the normal foot trajectory. These 218 

differences in rotational angles were found as 6.66°(±2.67) for the everted foot and 219 

6.77°(±2.49) for an inverted foot condition. These experimentally obtained rotational angles 220 

are in approximation to the wedged angles of wearable insoles. These ranges imitate moderate 221 

range rotational impairments and are consistent with a previous study (Rabiei et al., 2016). The 222 

ground reaction force (GRF) and CoP raw data were exported directly to MATLAB-2017a. 223 

The anterior-posterior and medial-lateral components of both of these two signals were 224 

processed further. For each of the individual subjects, the GRF (Newton) data recorded during 225 

each trial was normalised by the respective subject’s body mass (kg) to obtain CoM-226 

acceleration (i.e. GRF/mass). For each of the measured signals, both the amplitude and 227 

respective time axes information was used for further processing. The time rate of change of 228 

CoP and CoM-acceleration were computed. In each trial, both amplitude and time axes were 229 

recorded for the whole stance phase which was further analysed by diving stance into 230 

subphases (i.e. loading and unloading). These sub-phases also present initial and ending double 231 

limb support phases of a gait cycle (Bizovska et al., 2014). The input data set for each of the 232 

measured signals consist of (100 samples × 55 trials). Equations (1-3) were applied to the rows 233 
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(i.e. samples in each column) such that two consecutive samples were used to compute mean 234 

CoP-velocity and RMS CoM-oscillations for respective input signals. For each trial, at first, 235 

equation (1) was applied to compute actual CoP-velocity and thereafter equation (2) was 236 

applied to compute mean values of the actual CoP-velocities following (Bizovska et al., 2014; 237 

ImageJ-macros, 2019; Mei et al., 2013). The averaging of actual CoP-velocity applying Eq. 2 238 

helps to smoothen the noise as also illustrated in Fig. 1(a). Similarly, equations (1) and (3) were 239 

used to compute the rate of change in CoM-acceleration and RMS CoM-oscillations following 240 

(Cattaneo et al., 2014; Rabuffetti et al., 2011). 241 

𝑉𝐶𝑂𝑃_𝑎𝑐𝑡𝑢𝑎𝑙 =  
𝑑𝑥𝑖

𝑑𝑡𝑖
=

|𝑦𝑖+1−𝑦𝑖|

|𝑡𝑖+1−𝑡𝑖|
                                         (1) 242 

𝑉𝐶𝑂𝑃_𝑎𝑣𝑒𝑟𝑎𝑔𝑒 =
𝑑𝑥𝑖+𝑑𝑥_𝑠𝑢𝑚

𝑑𝑡𝑖+𝑑𝑡_𝑠𝑢𝑚
                                             (2) 243 

Where ′𝑑𝑥𝑖′ and  ′𝑑𝑡𝑖′ are the differences between two consecutive samples measuring CoP 244 

positions i.e. 𝑦𝑖 , 𝑦𝑖+1 and time samples i.e. 𝑡𝑖 , 𝑡𝑖+1. Similarly, ′𝑑𝑥_𝑠𝑢𝑚′ and ′𝑑𝑡_𝑠𝑢𝑚′ present 245 

the sum of previous differences and current samples difference. 246 

𝑎𝐶𝑜𝑀̇ =  √(�̇�1
2 + �̇�2

2)/2                                             (3) 247 

Where ′𝑎𝐶𝑜𝑀
̇ ′ presents RMS value of CoM-oscillation, ′𝑎1′̇  and ′𝑎2′̇  are the rate-of-change of 248 

CoM-acceleration and present two consecutive samples of a waveform. 249 

During the loading phases, both signals (mean CoP-velocity and RMS CoM-oscillations) 250 

showed the instant rise and thereafter exponential decay in magnitudes. Oppositely during 251 

respective unloading phases, an exponential rise and thereafter an instant decay was observed 252 

in the measurement signals as illustrated in Fig.1. Following engineering control theory, a 253 

linear dynamic system that illustrates the aforementioned signal characteristics is considered 254 

as an output response to the unit impulse input. That unit input assumption helps in identifying 255 

the best-fit model by applying reverse engineering i.e. model identification approach as 256 

reported previously (Anderson et al., 2009; Morgan et al., 2016). These impulsive responses 257 

were windowed such that initial 30% of stance from HC presented as loading phase and last 258 

30% towards toe-off presented as unloading phase (Bizovska et al., 2014). The mean CoP-259 

velocity impulses were filtered applying first-order Butterworth at 30Hz following (van der 260 

Linden, van der Linden, Hendricks, van Engelen, & Geurts, 2010) and RMS CoM-oscillations 261 

were filtered using second-order Butterworth at 10Hz (Sivakumaran et al., 2018). 262 
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 263 

Fig. 1. Impulsive waveforms during gait transitions. The time rate of change in CoP and 264 

CoM-acceleration illustrated during loading and unloading phases for normal speed trials in 265 

the anterior-posterior direction. For each of the actual, mean, and RMS plots of respective 266 

signals, each data set present mean±Std. for 55 trials (i.e. 11 subjects × 5 trials). (a) CoP-267 

velocity actual and mean data, (b) CoM-oscillations actual data, (c) Root-mean-square (RMS) 268 

values of CoM-oscillations. 269 

   Following neuromotor balance control, in this study, the CoP and CoM-oscillations are 270 

modelled as output and input responses respectively as shown in Fig. 2. It is widely reported 271 

earlier that any change in the body’s CoM-acceleration acts as a feedback to reweight 272 

neuromotor control to activate lower limb muscles (Allen & Ting, 2016; Blum, Lamotte 273 

D’Incamps, Zytnicki, & Ting, 2017; La Scaleia et al., 2014). Similarly, the CoP is reported as 274 

a measure of neuromuscular control towards posture and gait (Lugade & Kaufman, 2014; 275 

Portela, Rodrigues, & de Sá Ferreira, 2014; Winter, 2009), however, the CoP trajectory is 276 

independent to the CoM. Following these well-known facts, we have modelled and analysed 277 

both signals independently. Also, prior studies analysed CoP (Bizovska et al., 2014; 278 

DiDomenico, McGorry, & Banks, 2013; Lugade & Kaufman, 2014) and CoM-acceleration 279 

(Cattaneo et al., 2014; Lencioni et al., 2014; Rabuffetti et al., 2011) signals independently while 280 

evaluating gait dynamic stability. A detailed neuromotor balance control loop is constructed in 281 

Fig. 2 with all constituent components. Considering neuromotor feedbacks, CoM-oscillations 282 

are reported as major somatosensory feedback that counts almost 70% along with vision and 283 

hearing those contribute 30% in overall (Bekkers et al., 2014). Summarising, CoP reflects 284 

changes in neuromotor independently in Fig. 2 and CoM-oscillations acts as a biomechanical 285 
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trigger to whom neuromotor respond. One requirement of applying N&B analyses techniques 286 

is the linear time-invariant models of the measuring system. The resultant waveforms (i.e. mean 287 

CoP-velocity and RMS CoM-oscillations) illustrated artefacts due to repeated trials performed 288 

with multiple subjects which included differences in anthropological data, markers adjustments 289 

and foot insoles placements. These artefacts induce non-linearity in the data, hence, cleaned by 290 

applying principal component analysis (PCA) following earlier studies (Anderson et al., 2009; 291 

Sklavos, Porrill, Kaneko, & Dean, 2005; Tan & Hammond, 2007). The PCA transform the 292 

output data as a linear combination of involved variables, implemented here for individual 293 

walking conditions and transitional phases following (Maslivec et al., 2018). 294 

The time-series waveforms for both loading and unloading phases were cleaned from 295 

artefacts by applying PCA. The methodological choice of PCA is adapted from earlier studies 296 

(Anderson et al., 2009; Maslivec et al., 2018; Robbins, Astephen Wilson, Rutherford, & 297 

Hubley-Kozey, 2013). Also, the Inspect 3D software (Inspect3D, 2018) was used for repeated 298 

measure data artefacts removal, however, we implemented PCA using MATLAB. The input 299 

variables are mean CoP-velocity and RMS CoM-oscillations. Each of the repeatedly measured 300 

variables consists of time-series waveforms data (input matrix:100×55), where 100 presents 301 

samples per trial and 55 presents the total number of trials (11 subjects×5 trials). PCA converts 302 

measured waveforms into various time dimensions also known as orthogonal signals (Cohen, 303 

2014). The variance in these repeatedly measured input waveforms is described along each 304 

time dimension also known as principal components (orthogonalized signals). General criteria 305 

reported earlier is that the PCs should be used which explained at least 80% of the variability 306 

(Robbins et al., 2013).  307 

In this study, principal components (PCs) that explain maximum variance (>90%) are used 308 

for reconstruction. For each variable, the output waveforms were reconstructed using X=ZUt 309 

(Z: score matrix, U: coefficient matrix, X: output matrix). The PCA performed here also helps 310 

to approximate the linear behaviour of time-series data that follows prior studies with similar 311 

changing period signal characteristics (Anderson et al., 2009; Downes et al., 2012; Sklavos et 312 

al., 2005). A low dimensionality in our data indicates a low-order linear model for the 313 

underlying system and any non-linearities are likely to be small. Hence, the least-square linear 314 

regression models are identified as best-fit to the measured waveforms. The mean of each 315 

subject’s reconstructed waveforms (trials) was used in subsequent analysis. 316 
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 317 

Fig. 2. Neuromotor balance control illustrated using resultant biomechanical signals. The 318 

CoM imbalances quantified as CoM-oscillations (rate-of-change in CoM-acceleration) acts as 319 

somatosensory input that acts as a feedback to reweight muscles activity at the onset of the 320 

perturbations. The centre-of-pressure (CoP) measures resultant neuromuscular response 321 

towards posture and gait, independent to the centre-of-mass (CoM). 322 

2.5. Frequency domain Transfer Functions (TFs)   323 

The loading and unloading phases reconstructed waveforms were modelled using least 324 

square linear regression technique. A sum of exponent models was found the best fit (R2: 325 

99±0.5%) for CoP-velocity and a sum of sinusoidal functions was found the best fit (R2: 326 

99±0.5%) for CoM-oscillations. These time-domain models were converted to frequency 327 

domain applying Laplace transformation in MATLAB-2017a following (Morgan et al., 2016) 328 

and resultant models are named as transfer functions (TF). A transfer function is the ratio of 329 

Laplace of output to input polynomials. The roots of numerator polynomial present zeros of a 330 

TF and roots of denominator polynomial present poles of a TF. If the poles lie on the left half 331 

of the s-plane the system is defined as stable, otherwise unstable.   332 

2.6. Nyquist and Bode Stability Criteria 333 

Nyquist and Bode methods are implemented by assuming linear time-invariant models as 334 

illustrated by low dimensionality (PCA) in the input waveforms for both mean CoP-velocity 335 

and RMS CoM-oscillations. Both of these two signals quantify resultant effects of whole limb 336 

motions, hence, non-linearities in CoM-oscillations caused by mass-inertia changes around the 337 

individual joints (ankle, knee and hip) are likely to be small. These open-loop TFs modelled 338 
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from CoP-velocity and CoM-oscillations were excited by unit impulse input perturbations 339 

(Morgan et al., 2016) and stability margins were quantified following Nyquist and Bode 340 

stability criteria (Bavafa-Toosi, 2017). The Nyquist plot presents a TF/model in a polar plot in 341 

which the point (-1, 0j) is used to define critical stability. The difference of a system’s gain and 342 

phase plots from this critical point is used to quantify stability as gain margin (GM) and phase 343 

margin (PM) (Fig. A5). The gain margin (decibel/dB) presents the magnitude of a system’s 344 

gain at a frequency where the corresponding phase plot cuts ±180°±2kπ axes (Bavafa-Toosi, 345 

2017). Similarly, the phase margin (degrees) presents the magnitude of a phase at a frequency 346 

where the corresponding gain plot cuts the 0dB axis. In control theory, a GM measures 347 

robustness of a system and a PM measures the stability of a dynamic system. These margins 348 

present the difference from an unstable region if a system is stable, conversely these present 349 

the distance from a stable region if a system is unstable. A system might have multiple gain 350 

and phase margins, however, the smallest of them is considered critical as it is closest to 351 

instability region if presented for a stable system, and vice-versa (Bavafa-Toosi, 2017).  352 

2.7 Extrapolated-CoM difference from BoS 353 

For comparing between gait events and phases stabilities, the discrete events based MoS(s) 354 

were also evaluated by computing extrapolated-CoM (XCoM) and BoS following the methods 355 

used by (Lugade, Lin, & Chou, 2011; Sivakumaran et al., 2018). The XCoM difference from 356 

BoS boundary (CoP position) was computed at heel contact (HC) and toe-off (TO) events in 357 

both anterior-posterior and medial-lateral directions. The MoS(s) at HC presents the starting 358 

point of a loading phase and at TO event presents ending point of an unloading phase. A 359 

decrease in MoS(s) gives an indication of poor balance control, however, in some cases, an 360 

increase in XCoM movement w.r.t BoS at toe-off also indicates poor balance control (Lugade 361 

et al., 2011). In this study, a decrease in MoS(s) at toe-off event is considered as an indication 362 

of poor balance control compared with control subjects trials at normal speed.  363 

2.8 Statistical Comparison 364 

After analysing the modelled TFs, the stability outcomes i.e. GM, PM, and MoS are tested 365 

for the normality applying Shapiro-Wilk test. Observing non-normality in the data (p<0.05), 366 

the Wilcoxon signed-rank test was applied in SPSS (version 23, Chicago, IL, USA) to compare 367 

stability outcomes between simulated walking conditions and a normal walk. A parameter was 368 

considered statistically significant if p<0.05. Also, both mean CoP-velocity and RMS CoM-369 

oscillation waveforms illustrated non-normal distribution. Hence, the Spearman’s correlations 370 

were evaluated between intralimb mean CoP-velocities (O/P), and between mean CoP-velocity 371 

(O/P) and RMS CoM-oscillations (I/P).  372 

3. Results    373 

The best fit models to CoP-velocity (O/P) waveforms illustrated stable responses in loading 374 

phases and unstable responses during unloading phases. Considering rotational impairments, 375 

the stability (PM) decreased (p<0.05) in both everted and inverted foot walks during loading 376 

phases (Fig. 3a) and instability (GM, PM) decreased (p<0.05) in an inverted foot alone during 377 

respective unloading phases (Fig. 4a, Table A1) in anterior-posterior (AP) direction. In medial-378 

lateral (ML) direction, both rotational impairments showed a decrease (p<0.05) in stability 379 

(Fig. 3c), however, there was no significant difference found during unloading phases (Fig. 380 

4c). Considering walking speed group, the stability (PM) decreased (p<0.05) at slow speed in 381 



12 
 

loading phase (Fig. 3e and 3g) and instability (GM, PM) decreased (p<0.05) at fast speed 382 

during unloading phases (Fig. 4e and 4g).  383 

 384 

Fig. 3. Stability margins comparison during loading phases applying N&B methods (left) and 385 

extrapolated-CoM method (right). (a-d) rotational impairments in anterior-posterior (AP) and 386 

medial-lateral (ML) directions, (e-h) walking speed group in AP and ML directions,  shows 387 

significant (p<0.05) difference. 388 

Considering rotational impairments, in AP direction, both eversion and inversion conditions 389 

showed a decrease (p<0.05) in MoS(s) at HC (Fig. 3b, Table A1) and TO (Fig. 4b, Table A1). 390 

In ML direction, an inverted foot walk illustrated an increase in MoS(s) at both HC (Fig. 3d) 391 

and TO (Fig. 4d) events. An everted foot showed a decrease in MoS only at HC (Fig. 3d). The 392 

MoS(s) quantified from the extrapolated-CoM method at HC showed no significant difference 393 

in walking speeds in AP direction (Fig. 3f), however, increased in ML direction (Fig. 3h). At 394 
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TO event, MoS decreased (p<0.05) at slow speed and increased at fast speed in AP direction 395 

compared to a normal walk (Fig. 4f). Both slow and fast speed walks illustrated increased 396 

MoS(s) in ML direction (Fig. 4h). 397 

 398 

Fig. 4. Instability margins comparison during unloading phases applying N&B methods (left) 399 

and extrapolated-CoM method (right). (a-d) rotational impairments in anterior-posterior (AP) 400 

and medial-lateral (ML) directions, (e-h) walking speed group in AP and ML directions, 401 

shows significant (p<0.05) difference. 402 

Comparatively, the best-fit CoM-oscillations (I/P) models illustrated unstable responses 403 

during both loading and unloading phases (Table A2) in AP direction. In a rotational group, 404 

the instability (PM) was increased in an everted foot walk during loading and in an inverted 405 

foot walk during the unloading phase. During loading phases, a walk at fast speed showed an 406 

increase (p<0.05) in instability in terms of PMs, and during unloading, a slow speed walk 407 
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decreased (p<0.05) in instability. However, the instability quantified by GMs at fast speed 408 

decreased (p<0.05) during loading and increased in unloading phases. Stability margins 409 

quantified from I/Ps were compared with one from O/Ps for each of the walking conditions as 410 

illustrated in Fig. 5. 411 

 412 

Fig 5. Comparison of neuromotor outputs and inputs. Stability margins quantified from the 413 

neuromotor output (CoP-velocity) and input (CoM-oscillation) responses in the anterior-414 

posterior direction. The input instability is greater than outputs in all walking conditions.   415 

An intralimb interaction between loading and unloading phases CoP-velocities (Table 1) 416 

showed strong negative correlations between them with p<0.001 in respective walking 417 

conditions. However, there was no correlation found between CoP-velocity and CoM-418 

oscillations during both loading and unloading phases.  419 

Table 1. Spearman’s correlation between opposite limbs loading and unloading phases. 420 

Walking 

Conditions 

Normal 

(p-value) 
Eversion* 

(p-value) 
Inversion* 

(p-value) 
Slow 

(p-value) 
Fast 

(p-value) 

Anterior-

posterior 

-0.809 

(0.001) 

-0.834 

(0.001) 

-0.779 

(0.001) 

-0.864 

(0.001) 

-0.778 

(0.001) 
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Medial-lateral 

 

-0.842 

(0.001) 

-0.812 

(0.001) 

-0.791 

(0.001) 

-0.777 

(0.001) 

-0.772 

(0.001) 

   *Symmetric restrictions applied for both right and left foot. 421 

 422 

4. Discussion 423 

This study evaluates dynamic stability during gait transitional phases applying Nyquist and 424 

Bode (N&B) methods. Overall results illustrated significant differences in stability margins 425 

with the effect of self-selected walking speeds and rotational impairments. In this study, 426 

walking stabilities are evaluated using resultant neuromechanical O/I signals i.e. CoP and 427 

CoM-acceleration that provide redundancy in measurements compared with multiple signals 428 

being used earlier. Further, N&B methods used a distinct cut-off (0dB, ±180°±2kπ) to define 429 

and quantify stable or unstable gait phases independent to comparing with control subjects. 430 

This implies that the stability definitions are standardized rather being dependent on fluctuating 431 

references. The phase margins quantified applying N&B methods are also compared with 432 

extrapolated-CoM method, however, the former evaluates stabilities within gait phases 433 

(loading and unloading) and the later evaluates discrete gait events (HC, TO) which present 434 

start and endpoints of respective phases. 435 

Studies regarding neuromotor control reported the independence of CoP signals from CoM 436 

(Winter, 2009). Our results confirmed this statistically and illustrated poor correlation 437 

(Spearman’s correlations) between these two signals. This biological fact helps to analyse both 438 

signals independently. The methodological steps defined here for CoP or CoM-acceleration 439 

based stability analysis are adopted from literature with waveforms having similar time-varying 440 

characteristics (Anderson et al., 2009; Downes et al., 2012). The most important one is the 441 

linear model identification for the plant. A plant model is identified from lower limb balance 442 

control signals i.e. CoP measures resultant neuromotor output and CoM-acceleration measures 443 

somatosensory feedback which counts almost 70% (Bekkers et al., 2014) of all neuromotor 444 

feedbacks. The time rate-of-change illustrated impulsive nature characteristics of measured O/I 445 

signals, that enable us to quantify the time and amplitude differences between normal and other 446 

simulated walking conditions. The PCA applied here to clean the O/I signals illustrated a low 447 

dimensionality that helps to approximate plant O/Is as linear regression models following 448 

(Anderson et al., 2009). Prior studies analyse CoP/CoM signals in the time domain and stability 449 

outcomes are reported for the whole gait cycle in terms of either range-of-motion (ROM) 450 

(Lugade & Kaufman, 2014) or the time constant and residual instability (Cattaneo et al., 2014; 451 

Rabuffetti et al., 2011). The methods define here quantify gait transitional phases i.e. weight 452 

loading and unloading gait sub-phases which are critical in muscles activation and hence in 453 

neuromotor balance control. In this study, a frequency domain analysis to the modelled signals 454 

provides a way to extract important balance control differentials (i.e time differences as PM 455 

and amplitude differences as GM) with standard set criteria.  456 

The stability margins from neuromechanical O/P illustrated loading phases as stable and 457 

unloading phases as unstable. This is consistent with extrapolated-CoM method in which 458 

XCoM was reported within BoS at heel contact as a measure of stability and swayed outside 459 

the BoS at toe-off gave a measure of instability (Lugade et al., 2011). Further, our results 460 

illustrated a strongly negative correlation between opposite limb loading and unloading phases 461 

CoP-velocities (O/P). Both loading and unloading phases took place in parallel but out of 462 
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phase. This correlation illustrates that one limb during its loading phase (stable) is used to 463 

compensate for the opposite limb’s unloading phase (unstable) by an intralimb interaction. This 464 

interaction is also reported earlier in elderly subjects which used their leading limb to 465 

compensate the reduced push-off from trailing limb (Hernández, Silder, Heiderscheit, & 466 

Thelen, 2009). However, there was no correlation found between rate dependant CoP and 467 

CoM-acceleration waveforms which showed their independence consistent with findings 468 

reported by Winter (Winter, 2009).  469 

The results from rotational impairments showed a decrease in stability margins in loading 470 

phases observed both in anterior-posterior and medial-lateral directions. That was due to the 471 

reduced area during foot contact (HC) with the floor in these conditions (Õunpuu et al., 2013). 472 

These findings were also determined to be consistent with event-based MoS(s) evaluations. 473 

Overall, the inverted foot was found least stable in this group with decreased PM(s) both in AP 474 

and ML directions. Previously, the inverted ankle sprain is described as the most sensitive 475 

sports injury and has a chronic contribution towards gait instability (Hernández et al., 2009).  476 

During respective unloading phases, our methods showed a decrease in inverted foot 477 

instability in the forward direction (AP). That is consistent with outcomes reported in lateral 478 

ankle sprains patients who were observed reluctantly to put bodyweight at the forefoot (Ihlen 479 

et al., 2012). However, the MoS(s) applying extrapolated-CoM method showed a decrease in 480 

MoS(s) at TO event (poor balance control) compared to a normal walk. In the medial-lateral 481 

direction, N&B stability methods showed decreasing trends in instability for both inversion 482 

and eversion, however, remained statistically insignificant whereas MoS illustrated an increase 483 

in instability in the inverted foot. These contradictions between GMs and MoS(s) might be due 484 

to the consideration of CoM along with CoP in MoS evaluations that increases/decreases the 485 

sensitivity of measurements whereas N&B methods analysed CoP and CoM signals 486 

independently as a neuromotor O/I. Our methods (N&B) illustrated that the rotational 487 

impairments significantly affected gait transitional stabilities with a decrease in stabilities 488 

during loading and decrease in instability during unloading phases.  489 

The effect of walking speed on gait dynamic stability is reported earlier with inconsistent 490 

outcomes e.g. slow walking speed is reported more stable in one study and negated in another 491 

(Bruijn, van Dieën, Meijer, & Beek, 2009; Gigi et al., 2015). The stability margins quantified 492 

here at self-selected walking speed showed that a normal/preferred speed walk was more stable 493 

(PM) than a slow walk and had no difference with fast speed during the loading phase. This 494 

finding is consistent with studies (Fan, Li, Han, Lv, & Zhang, 2016; Kavanagh, 2009) in which 495 

a preferred walking speed showed the best compromise for frontal plane stability during single 496 

limb support and smooth weight transfer during double limb support. A self-selected normal 497 

walking speed is also reported to conserve the transformation energies (kinetic to potential and 498 

vice versa) during gait transitions (Beyaert, Vasa, & Frykberg, 2015; Lu, Kuo, Chang, Lu, & 499 

Hong, 2017). During respective unloading phases, a decrease in instability at fast speed walk 500 

made its preference over slow and normal speed walks which did not illustrate any mutual 501 

difference. This is consistent with findings from a prior study in which a fast speed walk is 502 

reported with increased stability considering entire gait cycle waveforms applying local 503 

dynamic stability method (Lu, Lu, Lin, Hsieh, & Chan, 2017). The extrapolated-CoM also 504 

supported these findings with increased MoS(s) at fast speed in both AP and ML directions. 505 

Applying N&B stability measures, the conclusions may be drawn that the normal and fast 506 
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walking speeds are equally stable during loading phases and a fast speed walk decrease in 507 

instability during the unloading phase of double limb support.  508 

A comparison between stability outcomes from neuromotor O/Is i.e. CoP-velocity and 509 

CoM-oscillations illustrated that during loading phases, the outputs have more stable and less 510 

unstable margins (magnitudes) compared with respective inputs during both loading and 511 

unloading phases as illustrated earlier in Fig. 5. Furthermore, the gain margins quantified 512 

applying N&B methods illustrated the robustness of O/I impulsive responses in terms of 513 

magnitudes. During loading, all walking conditions showed infinite GMs which means 514 

neuromotor control is robust enough to accommodate large perturbations while loading. This 515 

was also illustrated during the respective unloading phases in which there is a significant 516 

decrease in input GMs observed compared with outputs. That increase in output’s stability 517 

during loading and decrease in output’s instability during the unloading illustrates the 518 

neuromotor balance control ability in response to somatosensory inputs. 519 

4.1. Limitations 520 

Unlike in MoS evaluations, the N&B methods are appropriate for dynamic gait assessments 521 

and are not suitable for a static gait. These methods are sensitive to best-fit models applying 522 

system identification as a small compromise in best fit can result in a large difference in 523 

stability margins. This study evaluated anterior-posterior GRFs as a somatosensory input, 524 

however, the vertical GRF having maximum magnitudes are needed to be investigated in 525 

future. Lastly, the walking speeds are evaluated for over ground trials which increase the 526 

variance among the participants at each preferred speed. Treadmill based trials are speculated 527 

to illustrate further stability differences during gait transitional phases.        528 

5. Conclusions 529 

Stability margins evaluated during gait transitional phases illustrated significant differences 530 

in loading phases and partially affected unloading phases. The rotational impairments 531 

significantly decreased stabilities during loading phases both in AP and ML directions and only 532 

inverted foot illustrated decrease in forward instability during the unloading phase. A slow 533 

speed walk showed a decrease in loading stability and a fast speed walk illustrated a decrease 534 

in instability during the unloading phase of double limb support. The methods described in the 535 

current manuscript also illustrate the neuromotor balance control ability quantified distinctly 536 

from input and output responses. The N&B methods provide an alternative stability assessment 537 

technique with the advantage of distinct criteria and evaluation of gait subphase. The use of 538 

resultant neuromechanical signals makes these methods potentially suitable for stability 539 

evaluation in either type of lower limb impairments, with/without wearable devices, and 540 

walking on varying terrains.  541 

6. Declarations of interest: 542 

None. 543 

Acknowledgements 544 

The corresponding author would like to thank his PhD scholarship sponsor, University of 545 

Engineering and Technology, Lahore, Pakistan. The authors would like to thank all the 546 

participants and lab staff. 547 



18 
 

Appendix A: Supplementary Figures and Tables 548 

 549 

 550 

Figure A.1 Motion capture system and measurement signals illustrating ground 551 

reaction force vector trace with tail presenting centre of pressure trajectory and vector 552 

head present CoM-acceleration (GRF/mass). 553 

 554 

 555 

Figure A.2 Markers placement at lower-limbs anatomical positions illustrated. 556 

 557 
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 558 

 559 

Figure A.3 (a) Wedged insoles illustrated for inverted foot walk, (b) rotational foot 560 

abnormalities illustrated, fig. adopted from https://www.oastaug.com/ankle-sprains-561 

high-vs-low/.  562 

 563 

 564 

Figure A.4 Ankle-foot rotational angles illustrated for the normal and simulated 565 

inverted and everted foot conditions. A maximum difference(arrows) between the 566 

normal-everted foot and normal-inverted foot trajectories illustrate the rotational 567 

angles obtained experimentally in response to wedged foot insoles. 568 
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 569 

(a) Bode plots 570 

 571 

(b) Nyquist plot 572 

Figure A.5 Bode plots and equivalent Nyquist plot illustrating distinct references, cut-573 

off frequencies and stability margins. 574 

 575 

 576 

 577 

 578 

 579 

 580 

 581 

 582 

 583 
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Table A.1 Stability margins quantified from CoP-velocity and MoS(s) for walking speed 584 

and rotational impairments. 585 

Walking 

Conditions 

GM 

(dB) 

PM 

(deg) 

MoS-HC 

(m) 

GM 

(dB) 

PM 

(deg) 

MoS-TO 

(m) 

Anterior-posterior 

Normal  ∞ 91.7 

1.27 

0.296 

0.032 

-15.78 

3.14 

80.07 

3.18 

0.292 

0.026 

Slow  ∞ 91.03 

0.45 

0.289 

0.04 

-15.91 

2.51 

80.42 

3.18 
0.261 

0.03 

Fast  ∞ 91.53 

0.86 

0.301 

0.025 
-10.79 

4.01 
71.38 

8.12 
0.304 

0.024 

Eversion ∞ 90.75 

0.32 
0.273 

0.021 

-14.33 

2.58 

78.41 

3.71 
0.268 

0.031 

Inversion ∞ 90.59 

0.21 
0.273 

0.027 
-12.58 

3.21 
75.46 

5.61 
0.270 

0.023 

Medial-lateral 

Normal  ∞ 92.28 

1.45 

0.0494 

0.008 

-12.45 

2.52 

75.65 

3.98 

0.0609 

0.013 

Slow  ∞ 91.51 

0.81 
0.0604 

0.0132 

-13.26 

3.06 

76.71 

4.58 
0.0734 

0.008 

Fast  ∞ 91.92 

1.12 
0.0612 

0.008 
-9.27 

3.41 
68.11 

8.8 
0.0747 

0.013 

Eversion ∞ 91.14 

0.40 
0.0316 

0.011 

-11.40 

3.26 

73.22 

6.44 

0.0566 

0.014 

Inversion ∞ 91.0 

0.38 
0.0606 

0.013 

-11.27 

3.26 

72.89 

7.07 
0.079 

0.013 
Bold values showing p<0.05 when compared with a normal walk. Mean walking speeds i.e. Normal (1.132 m/s), 586 
Slow (0.86 m/s), and Fast (1.356 m /s).  587 

Table A.2 Stability margins quantified from CoM-oscillations for walking speed and 588 

rotational impairments. 589 

Walking 

Condition 

GM 

(dB) 

PM 

(deg) 

GM 

(dB) 

PM 

(deg) 

Normal -148.66 

6.75 

78.36 

12.90 

-111.96 

2.33 

89.963 

0.009 

Slow -148.66 

6.75 

78.36 

12.90 

-114.72 

3.75 
89.917 

0.023 

Fast -141.30 

3.46 
87.48 

2.42 
-114.87 

2.66 

89.973 

0.012 

Eversion -133.11 

3.91 
89.37 

2.27 

-104.03 

9.46 
89.899 

0.11 

Inversion -142.53 

7.56 

85.06 

3.59 
-115.37 

2.16 
90.101 

0.308 
Bold values showing p<0.05 when compared with a normal walk. 590 
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Appendix B: Abbreviations 591 

BoS base of support 592 

CoM centre of mass  593 

CoP centre of pressure  594 

deg degree (unit of angle) 595 

dB decibel (unit of gain) 596 

GM gain margin 597 

GRF ground reaction force 598 

I/P input 599 

LTI linear time-invariant 600 

MoS margin of stability 601 

N&B Nyquist and Bode 602 

O/I output/input 603 

O/P output 604 

PCA principal component analysis 605 

PM phase margin 606 

R2 coefficient of determinant  607 

ROM range of motion 608 

Std. standard deviation 609 

TF transfer function 610 

XCoM extrapolated CoM 611 

 612 

 613 

 614 

 615 

 616 

 617 

 618 

 619 

 620 

 621 

 622 

 623 
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