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Abstract 

 

Mixed, wet, plastic streams containing food waste residues are being increasingly collected at 

point of use, but are extremely challenging to recycle and are therefore largely sent to landfill. 

While a challenging waste problem, this also represents an underutilised feedstock, which could 

be co-processed with biomass, increasing the scope of products, easing out seasonal variation in 

biomass production and increasing the production capacity of a traditional biorefinery. One 

promising method of biomass conversion is hydrothermal liquefaction (HTL), where 

lignocellulosic residues are broken down in water at high temperatures and pressures to produce 

a bio-crude oil, a solid residue and an aqueous fertiliser. In this study, the co-processing of 

common plastic waste with pistachio hulls was assessed to investigate the suitability of the HTL 

approach. The HTL of pistachio hulls was undertaken at 350 °C over 15 and 60 minutes, with four 

commonly used plastics: polyethylene, polypropylene, PET and nylon-6, in blends of up to 20 

wt.% plastic to biomass. A novel FT-IR method was developed to estimate the conversion of 

plastics in the system, and the product phases were fully analysed. High yields of up to 35% bio-

crude were achieved, and under optimal conditions, nylon-6 and PET were found to break down 

almost completely in the system. PET generated numerous products that distributed 

predominantly into the aqueous phase; the major decomposition product of nylon-6 was found 

to be the monomer ϵ-caprolactam, also largely partitioning into the aqueous phase. The 

polyolefins were less reactive; a limited degree of decomposition formed oxidised products, 

which distributed into the bio-crude phase. This result represents a highly promising method for 

waste plastic valorisation.   
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1. Introduction 

Agricultural residues can be thermally processed through a variety of methods to produce  bio-

oils or bio-crudes that can be upgraded to chemicals and drop-in biofuels, or even combined in 

a traditional refinery (Elliott et al., 2015). For wet biomass, hydrothermal liquefaction (HTL) has 

been reported to be an economically viable route, which gives high biomass conversion yields 

and produce bio-crudes with favourable higher heating values (30–39 MJ kg-1), lower oxygen 

contents (10–20 wt%), and a controllable water content (0–5 wt%) (Peterson et al., 2008). HTL 

avoids the need for drying the biomass, and instead uses pressurised vessels to keep water in 

the liquid phase; the pressure (10–25 MPa) is generated at moderate temperatures (290–350 °C)  

(Akhtar and Amin, 2011; Arturi et al., 2016; Bi et al., 2017; Demirbaş, 2001; Nazari et al., 2015; 

Tekin et al., 2014). At subcritical conditions, water behaves simultaneously as a solvent, reactant 

and catalyst for a number of biomass decomposition and repolymerization reactions. This results 

in a liquid bio-crude product, as an aqueous phase, a solid residue fraction, and a gaseous 

fraction. 

 
Although the bulk of the early research on HTL has focused on microalgae (Biller et al., 2015), 

HTL of lignocellulosic materials is a promising alternative, especially if waste agricultural 

resources are used. To date, a number of studies have focused on HTL of lignocellulosic biomass. 

Typical bio-crude products from the HTL of lignocellulose includes aliphatic compounds, 

aromatics and phenolic derivatives, carboxylic acids, esters, and some nitrogenous compounds 

depending on the original protein level of the feedstock (Costanzo et al., 2016; Pedersen et al., 

2016; Xiu et al., 2010).  Hydrothermal liquefaction of lignocellulosic biomass is a well-known 

process and in depth modelling demonstrates significant energy and GHG savings in biofuel 

production when compared with fast pyrolysis routes (Tews et al., 2014). For example, a recent 

study has suggested that a fast pyrolysis process caused almost 50 % more global warming 

potential impact compared to the hydrothermal liquefaction process, due to both high energy 

demand in the drying process and high temperature operation of fast pyrolysis in the conversion 

of a lignocellusoic waste product. The assessment of other environmental impacts also indicated 

that the hydrothermal liquefaction operation is more environmentally benign compared to fast 

pyrolysis due to the reduced energy consumption (Chan et al., 2016).  

 

Furthermore, the energy requirements for converting one tonne (1,000 kg) of Chlorella slurry via 

fast pyrolysis, microwave-assisted pyrolysis (MAP), and hydrothermal liquefaction (HTL) were 
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compared. Drying microalgae prior to pyrolysis by using a spray drying process with a 50% energy 

efficiency required an energy input of 4,107 MJ. The overall energy requirement of fast pyrolysis 

was found to be theoretically approximately 1.5x higher than that of HTL. The energy recovery 

ratios for fast pyrolysis, MAP, and HTL of microalgae were 78.7%, 57.2%, and 89.8%, respectively 

(Yang et al., 2017). Technoeconomic studies of the HTL of biomass show significant potential for 

commercialization of technology.  Several lignocellulosic feedstocks have successfully been 

processed at high feed concentrations resulting in high energy recovery and carbon efficiencies. 

These have been demonstrated, that with a suitable processing size, to be economically viable 

(Elliott et al., 2015)  (Zhu et al., 2014).  

Pistachio processing waste is a lignocellulosic material with considerable potential for use as a 

biofuel feedstock (Taghizadeh-Alisaraei et al., 2017). A number of studies investigating the 

pyrolysis of pistachio waste have been published to date. Yields of between 20–33% bio-oil have 

been reported (Demiral et al., 2008) (Apaydin-Varol et al., 2007) (Pütün et al., 2007). Açıkalın et 

al. achieved a yield of over 50%, in a well-swept fixed bed reactor, though the bio-oil did have a 

comparatively low energy content of 19.5 MJ kg−1 (Açıkalın et al., 2012). To date, there have been 

no examples of liquefaction of this feedstock. 

 

Processing of lignocellulosic wastes to biofuels is a promising step towards decreasing the 

environmental impacts of fuel production, but process sustainability can be further enhanced 

through the integration of bio-crude production with waste management, such as the co-

liquefaction of biomass with plastic waste streams. The increasing volumes of plastic waste 

produced globally pose a significant threat to the environment and human health. In 2016, global 

plastic production reached 335 million tonnes (Association of Plastic Manufacturers Europe, 

2017): a dramatic increase compared to 230 million tonnes produced in 2005 (Association of 

Plastic Manufacturers Europe, 2016). According to the World Bank, plastic waste accounts for 8–

12% of total global municipal solid waste (MSW), estimated to increase to 9–13% of the MSW by 

2025 (Bhada-Tata, March 2012 ). Although plastic waste in the UK is partially managed through 

recycling, vast quantities of plastics continue to accumulate in landfill (Wong et al., 2015) due to 

their extremely slow degradation rates (Bezergianni et al., 2017) (Demirbas et al., 2016). The 

most abundant elements in plastic wastes are carbon and hydrogen, and plastics typically have 

high H/C ratios (Karaca and Bolat, 2000) (Shui et al., 2011) (Shui et al., 2013) (Jongwon Kim, 1999), 

and correspondingly high energy contents. Therefore, the conversion of waste plastics to fuel 
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could be an elegant solution to both the issue of plastic waste and sustainable energy production.

  

In recent years, a number of studies on co-pyrolysis and co-liquefaction of biomass and plastics 

have been published (Uzoejinwa et al., 2018) (Wu et al., 2017). Thermochemical co-processing is 

possible, because there is an overlap between the temperature ranges of thermal decomposition 

for biomass and plastics (Jakab et al., 2000).  It has been suggested that plastics, such as 

polyethylene (PE) or polypropylene (PP) can act as a source of hydrogen for biomass liquefaction 

to increase bio-crude yields and improve its fuel properties (Bhattacharya et al., 2009)  (Cao et 

al., 2019; Fekhar et al., 2018) (Cao et al., 2019) However, to date, few reports have elaborated 

on the mechanisms of the interaction. Wu et al. reported the co-hydrothermal liquefaction of 

the microalga Dunaliella tertiolecta with polypropylene (Wu et al., 2017).  Synergistic effects 

were observed for oil production, and the addition of PP led to improvements in the bio-oil 

quality, decreasing bio-crude acid content. Another study by Sørum et al. also demonstrated 

synergistic effects between PVC and pine wood sawdust during co-pyrolysis (Sørum et al., 2001). 

Seemingly, HCl released from the PVC under pyrolytic conditions behaved as an acid catalyst to 

promote dehydration of the biomass.  However, under the same conditions, PE and PP did not 

have a substantial impact on pine wood sawdust pyrolysis. Wang et al. observed that co-

liquefaction of Jingou lignite, wheat straw and plastic waste in sub-critical water gave optimal oil 

yields at a ratio of 5:4:1 (respectively), (Wang et al., 2014).  Interestingly, they also found that 

the addition of tourmaline gave better oil yields and higher oil quality than when using 

conventional catalysts. 

  
In this study, the co-liquefaction of pistachio hulls was undertaken for the first time and co-

processed with several common plastics. Furthermore, the study aimed to elucidate the effect 

of plastic co-liquefaction of pistachio hulls on product distribution, yields, and product chemical 

compositions.  PE, PET, PP, and nylon-6, and mixtures of the above, were used in this study.  

2. Materials and methods 

2.1 Materials 

  

Pistachio hull was selected as a biomass feedstock representative of mixed food waste, and 

blended in varying ratios with polyethylene (PE), polyethylene terephthalate (PET), 

polypropylene (PP) and nylon-6 (hereafter referred to as “nylon”). Pistachio hull biomass (2–5 
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mm particle size) was obtained as a waste material after pistachio processing from the 

Wonderful Company (USA). PE, PET, PP and nylon were obtained from Sigma-Aldrich and ground 

using a commercial food blender to a particle size of <350 μm prior to use. Ultimate analysis was 

conducted following ASTM D5291 to determine carbon, hydrogen and oxygen. The high heating 

value of dry pistachio hull was 17.46 (MJ kg-1) which was measured following ASTM E711. The 

biomass composition is given in the supporting information. 

 

2.2 Hydrothermal liquefaction of co-liquefaction of pistachio hull  

Co-hydrothermal liquefaction of pistachio hulls with plastics was carried out in a 50 mL stainless 

steel batch reactor. The reactor was equipped with a pressure gauge and pressure relief valve, 

and a needle valve to release gaseous products. The temperature was monitored using a 

thermocouple connected to data logging software. In a typical experiment, the reactor was 

loaded with a total of 3 g material (pistachio hull blended with PE, PP, PET, nylon, or a mix of the 

four plastics).  Biomass: plastic weight ratios examined were 100:0, 90:10 and 80:20. The 90:10 

ratio experiments contained 2.7 g of biomass and 0.3 g of either PE, PP, PET or nylon. For the  

80:20 weight ratio, the experiments contained 2.4 g of biomass and 0.6 g of either PE, PP, PET, 

or nylon. The feedstock was mixed with 15 g of distilled water to form a slurry. The reactor was 

sealed and loaded into a preheated furnace to either 500°C or 700°C. The reactor was held in the 

furnace until the temperature reached 350 °C, 60 and 15 min, respectively. Upon reaching the 

desired temperature, the reactor was removed from the furnace and allowed to cool to room 

temperature. Each experiment was repeated three times to determine experimental error. 

 

2.3 Separation of liquefied product 

After cooling, gaseous products were released via the needle valve into an inverted, water-filled 

measuring cylinder to measure total gas volume. Gas phase yield was calculated from volume 

using the ideal gas law. The reactor contents were filtered through a filter paper to separate the 

aqueous phase from the water-insoluble fraction (consisting of the bio-crude and bio-char). The 

solid-liquid mixture remaining on the filter paper was washed repeatedly with chloroform until 

the solvent ran clear. The chloroform was removed using a rotary evaporator at 35 °C for 2 hours 

to isolate the bio-crude. The solids were oven-dried overnight at 60°C to determine the solid 

phase product yield. An aliquot of the aqueous phase products was dried overnight at 60°C to 
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determine the yield of non-volatile organics and inorganics in the aqueous phase, designated as 

“aqueous phase residue”. 

2.4 Yield of product 

The yields of each product phase were calculated as mass percentage on a dry basis. Bio-crude 

was calculated from mass left after remove residual solvent via rotary evaporation. Bio-crude 

yield was determined using the following equation:  

 

𝑦𝑖𝑒𝑙𝑑𝑏𝑖𝑜−𝑐𝑟𝑢𝑑𝑒  =  
𝑚𝑎𝑠𝑠 𝑏𝑖𝑜−𝑐𝑟𝑢𝑑𝑒 (𝑔)

𝑚𝑎𝑠𝑠 𝑑𝑟𝑦 𝑏𝑖𝑜𝑚𝑎𝑠𝑠 (𝑔) + 𝑚𝑎𝑠𝑠 𝑝𝑙𝑎𝑠𝑡𝑖𝑐(𝑔)
× 100    (1) 

 

The char yield was calculated from the collected char mass on the filter paper after letting it dry 

in an oven at 60℃. Solid yield was determined using the following equation: 

 

𝑦𝑖𝑒𝑙𝑑𝑠𝑠𝑜𝑙𝑖𝑑 =  
𝑚𝑎𝑠𝑠 𝑠𝑜𝑙𝑖𝑑 𝑝ℎ𝑎𝑠𝑒 (𝑔)

𝑚𝑎𝑠𝑠 𝑑𝑟𝑦 𝑏𝑖𝑜𝑚𝑎𝑠𝑠 (𝑔) + 𝑚𝑎𝑠𝑠 𝑝𝑙𝑎𝑠𝑡𝑖𝑐 (𝑔)
× 100     (2) 

 

Gas volume was calculated according to literature precedent, by using the ideal gas law and 

assuming that the gas was completely CO2 (Raikova et al., 2016).  

 

𝑦𝑖𝑒𝑙𝑑𝑔𝑎𝑠 =  
(𝑔𝑎𝑠 𝑣𝑜𝑙𝑢𝑚𝑒 × 1.789 × 10−3)

𝑚𝑎𝑠𝑠 𝑑𝑟𝑦 𝑏𝑖𝑜𝑚𝑎𝑠𝑠 (𝑔) + 𝑚𝑎𝑠𝑠 𝑝𝑙𝑎𝑠𝑡𝑖𝑐 (𝑔)
 × 100     (3) 

 

The solid yield in the aqueous phase was calculated by taking a 2.0 g aliquot of the phase and 

drying at 60 ℃. Aqueous phase residue yield was determined using the following equation:    

 

𝑦𝑖𝑒𝑙𝑑𝑎𝑞𝑢𝑒𝑜𝑢𝑠 𝑟𝑒𝑠𝑖𝑑𝑢𝑒 =  
𝑚𝑎𝑠𝑠 𝑜𝑓 𝑏𝑖𝑜−𝑐𝑟𝑢𝑑𝑒 𝑜𝑖𝑙 (𝑔)

𝑚𝑎𝑠𝑠 𝑑𝑟𝑦 𝑏𝑖𝑜𝑚𝑎𝑠𝑠 (𝑔) + 𝑚𝑎𝑠𝑠 𝑝𝑙𝑎𝑠𝑡𝑖𝑐 (𝑔)
 × 100    (4) 

 

The overall mass balance of the reaction was calculated as follows: 

 

𝑚𝑎𝑠𝑠 𝑏𝑎𝑙𝑎𝑛𝑐𝑒 (%) = 𝑠𝑜𝑙𝑖𝑑 (%) + 𝑏𝑖𝑜-𝑐𝑟𝑢𝑑𝑒 (%) + 𝑎𝑞𝑢𝑒𝑜𝑢𝑠 𝑟𝑒𝑠𝑖𝑑𝑢𝑒 (%) + 𝑔𝑎𝑠 (%) (5) 
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2.5 Characterisation of HTL products  

The chemical composition of the volatile fraction of the bio-crude was investigated using an 

Agilent Technologies 7890A GC system fitted with a 30 m × 250 µm × 0.25 µm HP5-MS column, 

coupled to a 5975C inert MSD.  Samples were dissolved in THF, and helium (1.2 mL min-1) was 

used as the carrier gas. Initial oven temperature was set to 50°C, increasing to 250 °C at 10 °C 

min-1. Initial identification of compounds was performed using the NIST mass spectral database.  

 

Solid phase products were analysed using FTIR. Spectra were recorded on a Thermo Scientific 

Nicolet iS5 FTIR spectrometer in the wavenumber range between 4000–600 cm-1. FTIR was used 

to assess the level of unreacted plastic remaining in the solid phase products as a proxy for the 

extent of plastic conversion. Calibration curves were developed by mixing known amounts of 

bio-char from the HTL of pure pistachio biomass with known amounts of plastics and grinding 

finely in a mortar and pestle to ensure a homogeneous blend. The blended samples were 

analysed by FTIR, and two characteristic absorbance’s were selected for each plastic/biomass 

combination, one unique to the plastic, and another unique to the biomass component. The ratio 

of the two absorbance’s was calculated as described in the study of Lao and Li (Lao and li, 2014), 

and used to create a calibration curve, against which the samples of bio-char produced 

experimentally were assessed. Each bio-char sample was analysed in triplicate; average values 

of absorbance ratio were used to calculate conversion. Further information is given in the 

supporting information.  

 

2.6 Elemental analysis, carbon and energy recoveries 

Elemental analysis (carbon, hydrogen and nitrogen content) of the biomass feedstock and 

products was carried out externally at London Metropolitan University on a Carlo Erba Flash 2000 

Elemental Analyser. Oxygen content was determined by difference, assuming 

negligible sulphur in the products.  

𝑂 (𝑤𝑡%) = 100 − 𝐶 − 𝐻 − 𝑁 (𝑤𝑡%)       (6) 

 

The higher heating values (HHV) of the biomass, bio-char and bio-crude were calculated using 

the Dulong formula, where C, H, and N are the weight percentages of each element: 

𝐻𝐻𝑉 (𝑀𝐽 𝑘𝑔−1) = 0.3383𝐶 + 1.422 (𝐻 − (
𝑂

8
))      (7) 
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Energy recovery in each product phase was calculated as follows:  

 

𝐸𝑛𝑒𝑟𝑦 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦 (%) =
𝐻𝐻𝑉 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 (%) × 𝑀𝑎𝑠𝑠 𝑜𝑓 𝑝𝑟𝑜𝑑𝑢𝑐𝑡 (%) 

𝐻𝐻𝑉 𝑜𝑓 𝑓𝑒𝑒𝑑𝑠𝑡𝑜𝑐𝑘 (%)  
     (8) 

3. Results and Discussion 

3.1 Effect of waste plastic contents on bio-crude yields and mass balance 

Initially, the influence of the ratio between pistachio hull waste and plastic in the HTL feedstock 

on the distribution of product phases was investigated. HTL was carried out at 350 °C for 15 

minutes, based on previously reported optimal conditions (Raikova et al., 2019). Mass balances 

are shown in Figure 1a where product yields were calculated on the basis of total feedstock 

(biomass and plastic) input.  

 

In general, co-liquefaction with plastics resulted in an increase in overall bio-char yields relative 

to the HTL of pistachio hulls alone. The most significant impact was observed for co-liquefaction 

with PE, with a substantial increase in bio-char production from 22.1% to 35.6 % at a 10 wt.% 

blend, and from 22.1% to 40.7 % at a 20 wt.% blend. On the addition of PE, the yield of gas phase 

product increased slightly from 15.9 % for pure pistachio to 17.8 % for a 10 wt.% PE blend, but 

decreased slightly for a 20 wt.% PE blend to 15.1 %. Blending feedstocks with polyethylene was 

found to deplete bio-crude yields substantially, with yields decreasing from 34.1 % to 20.4 % for 

a 10 wt.% PE blend, but increasing somewhat to 26.8 % for 20 wt.% PE. The aqueous phase 

residue yield was not significantly impacted by co-liquefaction with PE and only a slight yield 

increase of 1.0–1.5 % was observed for 10 wt.% and 20 wt.% PE blends respectively.  

 

For PP, higher yields of bio-crude were obtained for the 10 wt.% PP blend, whereas slight 

decreases were seen for the 20 wt.% PP blend (bio-crude yields of 36.3 % and 30.7 % 

respectively). The addition of PP also had a significant effect on bio-char production – bio-char 

yield increased from 22.1% to 30.1 % for the 10 wt.% PP blend, and rose further to 40.3 % for the 

20 wt.% PP blend. The gas phase product yields obtained from both the 10 wt.% and 20 wt.% PP 

blends were similar to those obtained for HTL of pure pistachio. Co-liquefaction with PP 

contributed to a modest increase in aqueous phase residue production – (from 8.3% to 10 % for 
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10 wt.% PP loading and up to 9.6 % for the 20 wt.% PP loading). The majority of the PE and PP 

were recovered in the solid phase products. 

 

For PET, the gas phase products were not strongly impacted by co-liquefaction, with 16.2 % gas 

phase produced at 10 wt.% PET, although this dropped to 13.2 % for the 20 wt.% PET blend. Bio-

crude yields obtained on PET co-liquefaction showed a slight increase compared to HTL of pure 

pistachio (bio-crude increased by 0.6 % for the 10 wt.% PET blend to 34.6 %, and remained almost 

unchanged for the 20 wt.% blend). In addition, PET was found to increase bio-char production to 

24.2 % and 37.8 % for the 10 wt.% and 20 wt.% PET blend. As for PE and PP, aqueous phase 

residue obtained from PET blend was again not strongly affected, with a slight increase of 1.7 % 

and 1 % observed for the 10 wt.% and 20 wt.% PET blend. 
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Figure 1 a) Mass balance of HTL product from liquefaction of pistachio hull with PE, PP, 

PET, NY, and plastic mixture at (a) 10 wt.%, and (b) 20 wt.% of plastic blend loading. b) Synergistic 
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effect on bio-crude yields from co-liquefaction of pistachio hull/PET and pistachio/Nylon blends 

(PET = polyethylene terephthalate, NY = Nylon) 

 

In contrast with the other plastics, the increase in bio-char production was much smaller for the 

co-liquefaction of pistachio hull with nylon (24.1 % and 23.8 % bio-char for 10 wt.% and 20 wt.% 

NY, compared to 22.1 % for the liquefaction of pure pistachio hull). Bio-crude yields obtained for 

the nylon blends were 30.0 % for the 10 wt.% NY blend, whilst the 20 wt.% NY blend gave a 

similar yield of 30.1 %. Gas phase product yields decreased from 15.9 % for pure pistachio hull 

to 11.0 % at the 10 wt.% NY blend level and 11.6 % for the 20 wt.% NY blend. Residue from the 

aqueous phase increased substantially from 8.3 % for pure pistachio hull HTL to 15.1 % and 17.5 

% for 10 wt.% and 20 wt.% nylon blends, respectively.  

 

Co-liquefaction of pistachio hull with a mix of the plastics in equal proportions increased bio-char 

production substantially to 30.6 % and 33.9 %, respectively, for 10 wt.% and 20 wt.% blends, 

whilst bio-crude yields decreased to 31.9 % for the 10wt% plastic loading, and subsequently to 

27.1 % for the 20wt% loading. Gas yields were not strongly affected. Aqueous phase residue 

yields obtained from HTL of pistachio hulls with the plastic mix showed a slight increase 

compared to pure pistachio hulls, rising from 8.3 % to 12.6 % and 13.3 % for 10 wt.% and 20 wt.% 

blends, respectively.  

 

Co-processing with plastics does not appear to have a significant benefit in terms of bio-crude oil 

production from pistachio hull. Bio-crude oil yields obtained from co-liquefaction at 10 wt.% and 

20 wt.% plastic blends were similar to those produced from pistachio hull waste alone for PP, 

PET and nylon, and depleted significantly for PE.  With PET and NY there is a potential interaction 

between the biomass and the plastics where the biomass could synergistically aid the breakdown 

of plastic. The synergistic effect of the interaction between biomass and plastics can be 

determined by the equation 9 below: 

 

𝑆𝑦𝑛𝑒𝑟𝑔𝑖𝑠𝑡𝑖𝑐 𝑒𝑓𝑓𝑒𝑐𝑡 = 𝑌𝑏𝑖𝑜𝑐𝑟𝑢𝑑𝑒 − (𝑋𝑝𝑖𝑠𝑡𝑎𝑐ℎ𝑖𝑜  × 𝑌𝑝𝑖𝑠𝑡𝑎𝑐ℎ𝑖𝑜 + (1 − 𝑋𝑝𝑙𝑎𝑠𝑡𝑖𝑐) × 𝑌𝑝𝑙𝑎𝑠𝑡𝑖𝑐) (9) 
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where, Ybiocrude is the yield of bio-crude obtained in experiment, Xpistachio and Xplastic are the 

mass fraction of pistachio and plastics in the total reaction mixture, Ypistachio is the bio-crude yield 

of pure pistachio, and Yplastic is the bio-crude yield of pure plastic.  

 

As PE and PP do not react under these conditions without biomass present, the synergistic effect 

was only calculated for the co-liquefaction of PET/biomass and nylon/biomass blends. Overall 

the presence of biomass enhances the conversion of the plastic in the liquefaction process, and 

a positive correlation was observed for the total bio-crude yield, with the exception of the 10%wt 

nylon blend (Figure 1b). The positive effect of a synergy between biomass and PET, increasing 

the bio-oil yield was also observed by Çepelioğullar and Pütün, during co-pyrolysis of hazelnut 

shells with PET (Çepelioğullar and Pütün, 2013). 

 

3.2 Bio-char composition and properties 

To determine the fate of the plastics, the bio-char was analysed by elemental analysis and FT-IR. 

The elemental composition of the bio-char produced through the co-liquefaction is presented in 

Figure 2. Overall, there was substantial variation in the elemental composition of the bio-chars. 

For example, the carbon content ranged from 50.5–75.5 %, nitrogen content ranged between 

1.3–3.9 %, hydrogen contents between 3.6–9.3 % and oxygen contents of 17.1–44.0 % were 

observed. Co-liquefaction with PET caused the most substantial decrease in C and increase in O 

content in bio-chars (from 61.2 % C and 30.1 % O for pure pistachio bio-char, to 50.5 % C and 44 

% O obtained for bio-char from co-liquefaction of pistachio with 20 wt.% PET). Co-liquefaction 

with PP contributed to an increase in C content (71.9 % and 72.3 % C for 10 wt.% and 20 wt.% PP 

blends, respectively). The additional PE bio-char had the highest carbon content and the lowest 

nitrogen (75.5 % and 1.3 %, respectively). This is suggestive that the PE and PP is not breaking 

down and rather distributing into the char.  
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Figure 2 Elemental composition (determined by elemental analysis) of the bio-char of different 

plastic contents 10 wt.% and 20 wt.% of PE, PP, PET, NY and plastic mixture. 

 

The heating value (HHV) is commonly used to describe the energy content of any fuel (Qian et 

al., 2013). The bio-char produced in the HTL reaction is also suitable for combustion and as such 

the HHV of the bio-chars produced were calculated (Figure 3a). While the bio-char from pistachio 

hull had a very similar energy content to those produced from the nylon and PET reactions, the 

bio-char produced from the PE and PP liquefactions was extremely high with up to 37  MJ kg-1 

observed. This suggests that the majority of the polyolefins are not reacting, and rather 

remaining in the bio-char increasing the HHV.   

 One method of assessing the suitability of bio-chars as a solid fuel is to determine and 

compare the elemental ratios of H/C and O/C through a Van Krevelen diagram (Van Krevelen, 

1950). The H/C and O/C ratios also give an indication of the structural transformation (Wang et 

al., 2015) and surface hydrophilicity of bio-char (Tan et al., 2015). In this study, similar to the 

HHV, an increase of H/C ratios was found for the presence of PE and PP blends compared to pure 

pistachio, and a slight increase in the H/C ratios from 0.92 to 1.09 and 1.08 for the presence of 

20 wt.% PP and PE blends, respectively. In the contrast, the H/C ratio was much smaller for 

pistachio with PET. The H/C ratio obtained for the bio-char from nylon blends were 0.74 and 0.66 

for 10 wt.% and 20 wt.% nylon blends. 
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Figure 3 a) Bio-char heating value of the bio-char of different plastic contents 10 wt.% and 20 

wt.% of PE, PP, PET, and NY. b) Van Krevelen diagram with H:C and O: molar ratio for co-

liquefaction of biomass with plastics char, coal, and lignin (Kookana et al., 2011) 

 
 

For the O/C ratio (the degree of polarity), the additional PET has the highest O/C ratio (0.45 and 

0.44 for10 wt.% and 20 wt.% PET blends). Co-liquefaction of nylon contributed to an increase 

0.43 for 20 wt.% nylon but slight decrease to 0.36 for 10 wt.% nylon blend. The smallest O/C ratio 

was found in the additional PE (0.16 and 0.13 for 10 wt.% and 20 wt.% PE blends). Similarly, 0.18 

C/O ratio was observed for 10 wt.% and 20 wt.% PP blends.  The H/C and O/C ratios for the bio-

chars in this study were plotted and compared to typical solid heating fuels (Figure 3b).   
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A lower H/C and O/H ratio have been assumed to be due to a greater the degree of aromaticity 

and stability (Kookana et al., 2011). The positions of the bio-char from PE and PP were similar to 

coal, and were presumably increased by a large level of unreacted plastic in the solid residue.  

For the bio-char from biomass/PET and biomass/nylon were found ranging in between lignin and 

nature char, this indicates a higher level of conversion in these reactions.  

 

3.3 Identification of major functional groups in bio-char 

Hydrothermal conversion of biomass produces bio-char as one of the major products, although 

HTL bio-char is structurally different to bio-char derived from high-temperature pyrolysis (Hu et 

al., 2018). For example, HTL bio-char tends to have a higher abundance of oxygen-containing 

functional groups (Liu et al., 2010). In order to achieve a better understanding of the effect of 

plastics on pistachio hull HTL, bio-chars were analysed using FT-IR to identify the key functional 

groups present. 

 

The FT-IR spectra of bio-char from HTL of pure pistachio contained strong absorption bands at 

2800–3300 cm-1, attributable to C–H stretching vibrations from methyl and methylene-

containing organic compounds. An absorbance attributed to alkane bending is seen at 1066–

1145 cm-1. The presence of esters and acids in the spectra is evidenced by the strong C=O 

absorbance at 1800–2000 cm-1. The absorption peak observed around 1612 cm-1 can be assigned 

to aromatic rings in lignin and thus verified to the presence of lignin in bio-char (Konsolakis et al., 

2015). A vibration at 1570 cm-1 and 898 cm-1 can be attributed to the presence of aromatic rings, 

likely arising from asphaltenic materials in the bio-char (Wang and Griffiths, 1985) (Lua and Yang, 

2004). A similar observation was also reported for the pyrolysis of pistachio shell (Açıkalın et al., 

2012; Apaydin-Varol et al., 2007) and green fabrication of Cu/pistachio shell nanocomposite 

(Taghizadeh and Rad-Moghadam, 2018).  

 

For bio-char from co-liquefaction of pistachio hull with PE, peaks of moderate intensity were 

observed at 2936, 1593, 1267 cm-1, similar to those obtained for bio-char from HTL of pure 

pistachio hull. However, sharp peaks at 2850 and 2920 cm-1 are also present, which are not 

observed for pure pistachio hull bio-char, attributable to C–H bonds (Figure 4a). In addition, 

peaks were observed at 1451 and 1376 cm-1, which were also seen in the FT-IR specta of pure 
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PE, but not in the spectra of the bio-char from pistachio hull liquefaction. These findings suggest 

the presence of unreacted polyethylene in the HTL char. 

  

On comparing the spectra of the bio-char from the HTL of pistachio hull, the bio-char from 

pistachio hull co-liquefaction with PP, and pure unreacted PP, absorbance attributable to C–H 

bond stretching vibrations at 2920 cm−1 and 2849 cm-1 are present in the co-processed samples 

and the pure PP, which are not seen for bio-char from pure pistachio hulls (Figure 4b). 

Additionally, with increasing PP loading in the blended samples, peaks at 1365 and 1420 cm-1 

attributable to alkane C–H bending sharpen, suggesting the presence of increasing amounts of 

unreacted PP.  

 

For bio-char produced from blended pistachio hull and PET, a number of peaks at similar 

wavenumbers to pure PET were observed (2920 cm-1, 1017 cm-1, 872 cm-1), suggesting the 

presence of some unreacted plastic. However, a number of additional peaks unique to the 

blended pistachio/PET bio-char, and not present in either pure PET or bio-char from pure 

pistachio, were also observed at 820, 1400 and 1575 cm-1: these are attributed to C–H, O–H and 

C=C bonds. The appearance of new absorbance peaks can be taken as evidence of reactions 

occurring between the biomass and PET under HTL conditions, and the formation of new 

compounds (Figure 4c).  

 

In contrast, the FT-IR spectra of bio-char from the HTL of pistachio hulls blended with nylon were 

almost identical to the spectrum of pure pistachio hull bio-char (weak absorbance at 1570 cm- 1, 

1249 cm-1, 1068 cm-1 and 720 cm-1, corresponding to O–H stretching vibrations and aromatic C=C 

bonds (Figure 4d). The presence of nylon co-feedstock in HTL reactions did not appear to change 

to composition of the bio-char, suggesting that nylon reacted more completely, forming more 

soluble products than the other three plastics examined.  

 

The FTIR spectra of the char are high similar however, those produced from the co-liquefaction 

with PE and PP blends show a far stronger absorbance at ⁓2800-3000 cm-1 suggestive of an 

aliphatic functional group (Chen et al., 2008). These intensive peaks, coupled to the enhanced C 

and H contents, as well as HHV of the char strongly suggest unreacted polymer. In contrast, the 

intensity of these peaks decreased substantially in the char produced from the PET and nylon co-
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liquefaction studies. So much so, that the FTIR spectra of the biochar produced from the nylon 

blends closely resembles the char produced from pure pistachio hull. These results suggest that 

during co-liquefaction of pistachio and nylon, there is synergetic interaction between the two 

components improving decomposition. The complete decomposition of nylon is in agreement 

with another previous study of the co-liquefaction with macroalgae (Raikova et al., 2019).  The 

most resistant polymer to decomposition was PE and this is presumably due to the to the high 

activation energy needed to decompose the polymer, the instability of the potential secondary 

products and to diffusion limitation caused by PE melted during the HTL process (Burra and 

Gupta, 2018).  

    

 

 
 

Figure 4 FTIR of pure plastics and solid phase from hydrothermal co-liquefaction of pistachio hull 

with (a) polyethylene, (b) polypropylene, (c) polyethylene terephthalate, and (d) nylon.  

 

3.4 Quantification of unreacted plastic in bio-char   

The presence of plastics alongside pistachio hull biomass had an effect on the yields and 

composition of the four product phases. It is important to be able to quantitatively understand 
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what proportion of the plastic remained unconverted in the HTL reaction, and how plastic 

degradation products are distributed between the four product phases. Co-liquefaction of 

pistachio hulls with all four plastics enhanced the partitioning of material to the bio-char phase. 

This may be attributable to a number of factors: the presence of unreacted plastics, plastics 

partially or entirely converted to new solid-phase product molecules, biomass-derived solids 

converted to bio-char in higher quantities in the presence of plastic or a combination of the 

above. By identifying the proportion of unreacted plastics in the bio-char phase, it is possible to 

assess the degree of plastic conversion. Fourier transform infrared (FTIR) spectroscopy has 

played an important role in quantitative analysis of mixed solid materials in a number of studies, 

and can be a simple and inexpensive technique for determining plastic content in biogenic 

samples. 

 

Chen et al. demonstrated quantitative determination of clay minerals, quartz and carbonates, as 

well as organic matter in shale, using KBr-FTIR spectroscopy (Chen et al., 2014). Pandey and 

Pitman used FTIR to investigate the lignin content in wood and wood decayed by the brown-rot 

fungus Coniophora puteana, by identifying characteristic FTIR absorbance peaks for lignin and 

wood, and using the ratio of peak intensities to determine lignin content (Pandey and Pitman, 

2004). Lao et al. demonstrated that FTIR could be used to quantify biomass in wood-plastic 

composites. FTIR was used to analyse the wood samples and plastics independently, and peaks 

which were unique to the biomass and plastic components were identified (Lao and li, 2014). 

Taking a number of composites with different biomass contents, the peak ratios of the signature 

biomass and plastic peaks were calculated, and univariate regression was used to generate 

equations to predict biomass content in composites. Another study of wood-plastic composites 

by Stark and Matuana (Stark and Matuana, 2007) used Attenuated Total Reflectance Fourier 

Transform Infrared (ATR-FTIR) spectroscopy combined with principal component analysis to 

classify wood-plastic composites species.  

 

In this study, the conversion of plastics were estimated by plotting calibration curves of known 

amounts of the plastics with bio-char generated from the reaction which contained only 

pistachio hull. Calibration curves were created for each plastic/biomass combination 

(polyethylene/pistachio hull, polypropylene/pistachio hull, polyethylene terephthalate/pistachio 

hull, nylon/pistachio hull) by mixing bio-char from HTL of pure pistachio hull with plastics at a 
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range of known concentrations. Calibration curves and further information are provided in the 

Supplementary Information (Table S3–S6, and Figure S1–S4). 

 

The content of unreacted plastics in the bio-char phase can be used to determine the overall 

conversion, which includes plastics converted to water-soluble material in the aqueous phase, 

as well as bio-crude, volatile gas-phase products and plastic-derived materials in the solid bio-

char phase that have undergone reactions to form new molecules (although it excludes polymer 

chains that may have undergone reactions and lost several repeat units, but remained otherwise 

unchanged in the bulk of the chain). 

 

𝐶𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 (%) =
𝑢𝑛𝑐𝑜𝑛𝑣𝑒𝑟𝑡𝑒𝑑 𝑝𝑙𝑎𝑠𝑡𝑖𝑐 𝑖𝑛 𝑏𝑖𝑜−𝑐ℎ𝑎𝑟 (%)× 𝑏𝑖𝑜−𝑐ℎ𝑎𝑟 𝑦𝑖𝑒𝑙𝑑 (𝑔)

𝑝𝑙𝑎𝑠𝑡𝑖𝑐 𝑖𝑛 𝑓𝑒𝑒𝑑𝑠𝑡𝑜𝑐𝑘 (𝑔)
    (10) 

  

Conversions of the bulk plastic are presented in Figure 5. Nylon demonstrated the highest overall 

conversion through HTL (84 %); PET conversion was also high (53 %). In contrast, polyethylene and 

polypropylene were highly resistant to degradation. For polyethylene, only 17 % was converted 

into HTL products at a 10 wt.% blend, but no conversion was observed for the 20 wt.% blend. For 

polypropylene, approximately 9 % was converted at 20 wt.% blend level, although the 10 wt.% 

blend showed little reactivity. Out of all the plastics examined, PE blends were remarkably 

resistant to degradation. Co-liquefaction of PE blends is may attributed to diffusion limitation 

caused by PE melted during HTL process and increase in the stability of its decomposed (Burra 

and Gupta, 2018).  

 

Figure 5 Extent of plastic conversion under HTL conditions 
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3.5 Bio-crude elemental composition 

The main product produced from the HTL conversion was the bio-crude that can be converted 

into an array of platform chemicals and biofuels (Biller et al., 2015). Elemental composition of 

the bio-crude produced from co-liquefaction of pistachio hulls with plastics did not change 

substantially relative to bio-crude from pure pistachio hulls (Figure 6a). Carbon content increased 

slightly for co-liquefaction with PE and PET, although small reductions were seen for co-

liquefaction with PP and NY. Nitrogen content slightly increased with the addition of PE and 

nylon, which gave rise to increases in bio-crude N from 1.73 % for pure pistachio hull bio-crude 

to 2.18 % and 2.43 % for 10 wt.% and 20 wt.% PE blend loading and increased to a maximum of 

3.47 % for a 20 wt.% nylon blend level. Oxygen levels were relatively high (ca. 18 %), and were 

not strongly affected by co-liquefaction with plastics, with the exception of PE, which decreased 

bio-crude O content to 10–13 %.  

 

The HHV of bio-crude from co-liquefaction of pistachio hull with plastics was found to be in the 

range of 32–38 MJ kg-1 (Figure 6b). In the presence of PE, the HHV increased from 33.6 MJ kg-1 

for pure pistachio hull bio-crude to 38.0 and 36.8 Mj/kg for 10 wt.% and 20 wt.% PE blends. 

However, HHV decreased slightly by 0.6–1.4 % for 20 wt.% blends of PP, PET and nylon. This value 

was higher than the HHV obtained from pyrolysis pistachio (19.45 MJ kg-1) (Açıkalın et al., 2012). 

The presence of plastics in biomass hydrothermal liquefaction contribute mostly more increasing 

in the heating value of bio-crude obtained by reducing the high oxygen content of bio-crude from 

pure biomass, this resulted can be confirmed by various studies on co-pyrolysis with plastics and 

biomass (Jung et al., 2010) (Zhou and Yang, 2015) (Aydinli and Caglar, 2010).  

 

Hydrothermal liquefaction as employed in this study is a relatively low-energy technique because 

it doesn’t require the vaporisation of water. Due to specific heat capacity and the low 

compressibility of water, the energy consumption required to achieve the critical conditions is 

not excessive, with the completed reaction taking place within 15 minutes. The energy required 

for hydrothermal liquefaction is less in terms of biomass drying and dewatering processing due 

to the avoidance of the evaporation step. Therefore, hydrothermal liquefaction processing can 

lead to high net energy values. This investigation can  be confirmed by various studies including 

(Watson et al., 2019) (Chan et al., 2016) (Yang et al., 2017) (Zhu et al., 2014) (Elliott et al., 2015).  
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Figure 6 (a) Bio-crude composition from the co-liquefaction of pistachio hulls with 10 wt.% and 

20 wt.% PE, PP, PET and NY blend loading, b) bio-crude heating value, and (c) the energy 

recovery in the bio-crude products from the co-liquefaction of pistachio hulls with PE,PP, PET 

and NY at 10 wt.% and 20 wt.% blend levels. 
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In order to determine the effective outcome, the energy in the feedstock is converted into the 

bio-crude phase product which is a key target of hydrothermal liquefaction products. The energy 

recovery was calculated based on the bio-crude yield, elemental composition and heating value 

obtained. Considering the energy recovery (Figure 6c), the highest overall energy recovery was 

found for 20 wt.% blend PET (70%), this was observed to be similar to bio-crude produced from 

straw types via pyrolysis (Tröger et al., 2013). Energy recovery was also enhanced compared to 

the HTL from pure pistachio (60%). In contrast, 10 wt.% blend PE showed the lowest energy 

conversion (38%), this result is relative to lower bio-crude oil productive of co-liquefaction 

pistachio with PE. 

 

3.6 Bio-crude chemical composition 

In order to investigate the effect of plastics on the bio-crude composition, GC-MS was used to 

characterise the bio-crudes produced from co-liquefaction of pistachio hull with PP, PE, PE, NY 

and mixtures of the above. The compounds identified were classified into three categories based 

on the functional groups: (1) monoaromatics such as benzene, phenol and their derivatives, (2) 

aliphatic compounds such as cyclopentene and cyclohexene, and (3) oxygenated compounds 

such as acetic acid-4-methylphenyl ester for example. The majority of compounds identified in 

each bio-crude were composed predominantly of phenolic compounds – these presumably 

originate from lignin, which is one of the major components of the pistachio hulls.  

 
GC-MS analysis of the bio-crude from pure pistachio hull showed the presence of phenolic 

compounds, substituted cyclopentenones, and low levels of 4-methyl,1,2-benzenediol. PET, PP 

and nylon are more susceptible to degradation than PE – kinetic studies on the decomposition 

of polyolefins have found that the minimum amount of energy required to activate PP and PE 

was equal to 243 and 301 kJ mol-1, respectively (Wall et al., 1954). For co-liquefaction with PE, 

degradation of the polymer chains through a random scission mechanism was expected to form 

aliphatic hydrocarbons (Pei et al., 2012).  

 

A slight increase in ketone formation was observed in the presence of PE, however, no increase 

in the abundance of medium- or long-chain aliphatic hydrocarbons was detected as evidence of 

PE fragmentation (although it is possible that fragmentation products were present, but too large 

to be soluble).  
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An unexpected increase in the relative abundance of pyridinol and its derivatives was also 

observed in the presence of PET, suggesting that PET activates protein decomposition in the 

pistachio hull biomass. Additionally, the presence of variously substituted benzenediols and 

phenols may originate from PET decomposition, although terephthalic acid monomer was not 

observed. Co-liquefaction of biomass with nylon 6 resulted in the appearance of a large peak 

attributable to monomeric caprolactam in the bio-crude. Caprolactam has previously been 

shown to depolymerise in aqueous conditions at temperatures as low as 120°C (Brydson, 1999). 

Caprolactam is soluble in both chloroform and water, so is likely to be distributed between the 

bio-crude and aqueous phases. A summary of the most abundant compounds in the bio-crudes 

produced, identified using GC-MS, is presented in the Supporting Information (Table S7).  

3.7 Aqueous phase 

Co-liquefaction of pistachio hulls with PE, PP and PET in the aqueous phase showed a decreased 

carbon and nitrogen content (Table 1). The total organic carbon and total nitrogen in the aqueous 

product phases is distributed very similarly with 16.7 %, 17.5 % and 18.4 % for carbon 

concentration and 0.87, 0.86 and 0.72 % for nitrogen at a 10 wt.% blend of PE, PP, and PET, 

respectively. Aqueous phase carbon and nitrogen contents decreased slightly for both 10 wt.% 

and 20 wt.% blends of PE and PP. In contrast, co-liquefaction with nylon shows increases in both 

carbon and nitrogen content in the aqueous phase at 20.8 and 31.7 % for 10 wt.% and 20 wt.% 

nylon blend loading. This observation is predominantly due to the formation of water-soluble 

caprolactam with the depolymerisation of nylon.  

 

Table 1 Elemental composition of aqueous phases produced from liquefaction of pistachio hulls 

with plastics 

Sample TOC (g L-1) TN (g L-1) 

100% biomass 17.9 0.94 

10% PE 16.7 0.87 

10% PP 17.5 0.86 

10% PET 18.4 0.72 

10% NY 20.9 1.87 

10% Mix 19.7 1.26 

20% PE 15.0 0.81 

20% PP 15.8 0.78 

20% PET 18.6 0.64 

20% NY 31.7 3.54 

20% Mix 22.2 1.91 
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3.8 Optimisation of reaction time and heating rate 

Although it has previously been shown that bio-crude yields are increased at faster heating rates 

and shorter reaction times (Hietala et al., 2016; Valdez et al., 2012) (Faeth et al., 2013) (Eboibi et 

al., 2014), longer reaction times and slower heating may enhance the decomposition of 

unreactive plastics such as PE and PP under HTL conditions. HTL reactions were therefore carried 

out using slower heating rates (5.5 °C min-1) to achieve longer reaction times, giving an overall 

reaction time of 60 min. Longer reaction times did not appear to increase bio-crude production, 

instead contributing to increasing bio-char and gaseous products (fig. 7), in line with previous 

studies on biomass liquefaction (Bezergianni et al., 2017; Duan and Savage, 2011). At longer 

reaction times, bio-crude products can polymerise to give heavier oil fractions and solid phase 

materials, but long reaction times can also result in hydrocracking of organic compounds into 

gases, further reducing the bio-crude yields. In terms of bio-crude production, there is no benefit 

to using reaction times longer than 15 min. 
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Figure 7 Effect of longer reaction time on products yield where (a) is a plastic loading (PP, PE, 

PET, NY or mixture) of 10 wt.% (b) is a plastic loading of 20 wt.% (PP, PE, PET, NY or mixture) 

and c) is the total plastic conversion in the reaction for PE, PP, PET and NY.  
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Similarly, FT-IR spectroscopy of the bio-char produced from co-liquefaction at slower heating 

rates suggested that slower heating rates and increasing the reaction time did not facilitate the 

conversion of plastics. The majority of the peaks observed occurred at identical wavenumbers to 

those seen in bio-char produced under more severe reaction conditions, with more intense 

absorbance’s suggesting the presence of higher levels of plastics in the bio-char. Notably, C–H 

adsorption bands were observed at 2924 cm-1and 2850 cm-1 the PET blends, and at 2935 cm-1 

and 2868 cm-1 for nylon, which were not observed for the bio-chars produced at faster heating 

rates (see Figure S7 in Supporting Information for all spectra).  

 

The conversion of plastic was calculated using Eqn. 10, as previously. Compared to faster heating 

rates, HTL carried out at slow heating rates (5.5 °C min-1) gave rise to lower overall conversions 

of plastics in all cases with the exception of the 10 wt.% NY blend (a slight increase from 74 to 82 

% conversion for slow heating rates) and the 20 wt.% NY (a modest increase from 84 to 88 % 

conversion). This indicates that faster heating rates are preferred for optimising both overall bio-

crude yield and plastic conversion. 

4. Conclusions 

Hydrothermal liquefaction is a highly promising conversion technology for lignocellulosic 

biomass. In this study the addition of PE, PP, PET and Nylon to the liquefaction of pistachio hulls 

was investigated, to determine the suitability of co-processing the waste feedstocks together. 

Promisingly, both PET and nylon-6 were depolymerised under HTL conditions, and in the case of 

nylon-6, the monomer ϵ-caprolactam was recovered predominantly in the aqueous phase. The 

polyolefins were much less resistant to decomposition, though what was broken down 

partitioned into the bio-crude phase and increased the HHV of the bio-crudes substantially.  

Although co-liquefaction of lignocellulosic residues and contaminated plastic wastes is a 

potentially elegant means to utilising waste streams for value creation, taking steps to further 

enhance the conversion of the recalcitrant polyolefins is necessary before plastic waste can 

become an integral part of a biorefinery.  
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Co-processing of common plastics with pistachio hulls 
via hydrothermal liquefaction 

 

Supporting Information 

 

1.1 Properties of pistachio hull feedstock 
Table S1 – Properties of pistachio hull feedstock 

Properties Result Method 

Moisture  14.31 wt.% ASTM E1755 

Ash  4.24 wt. %  ASTM E1755 

Volatile Matter 70.09 wt. % ASTM E1755 

Fixed Carbon 11.35 wt. %  ASTME1755 

Carbon  41.22 wt. %  ASTM D5291 

Sulfur 0.13 wt. %  ASTM E3177 

Hydrogen 6.98 wt. %  ASTM D5291 

Nitrogen 1.34 wt. %  ASTM D5291 

Oxygen by Difference  46.08 wt. % ASTM D5291 

Lower Heating Value 17.45 MJ kg-1 ASTM E711 

Higher Heating Value 18.97 MJ kg-1 ASTM E711 

 

1.2 Feedstock elemental compositions 

The elemental compositions of the plastic feedstocks is presented in Table S2. PE and PP had the 

highest energy content (measured as HHV) of all five feedstocks due to their high carbon and 

hydrogen content. PET possessed the lowest energy content as a result of its high oxygen 

content; the HHV of pistachio hull biomass was somewhat higher. Nylon contained high levels of 

nitrogen, and had an HHV of 28.6 MJ kg-1. The initial energy contents and elemental compositions 

of the feedstocks will have an impact on the yields and compositions of bio-crudes produced by 

HTL, and high feedstock oxygen and nitrogen content can pose a significant challenge – O- and 

N-rich bio-crudes would require significant further upgrading to create usable fuels. 
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Table S2 – Elemental composition and HHV of plastics 

Element Analysis (%) C H O N HHV (MJ kg-1) 

Pistachio hull 49.3 6.8 46.1 1.78 17.5 

PE 84.9 12.2 2.9 <0.1 45.6 

PP 85.1 13.3 1.5 <0.1 47.4 

PET 43.7 4.0 52.0 0.41 11.2 

NY 60.8 8.1 19.1 12.0 28.6 

 

1.3 Calibration curves for quantification of unreacted plastics in bio-char using FTIR 
The FTIR and resulting calibration curves for quantification of unreacted plastics in bio-char using 

FTIR are presented below. The quantity of unreacted plastic in bio-char samples was used to 

calculate, by extension, the percentage of plastic feed undergoing conversion to other products 

(bio-crude, aqueous or gaseous). This method makes a number of assumptions; in particular, 

that the bio-char formed from pistachio hull in the presence of plastics does not undergo any 

changes in composition, apart from containing unreacted plastics, and that any plastics in the 

bio-char are entirely unchanged. These assumptions mean that the method must be treated 

cautiously as a semi-quantitative approximation. In some cases, conversions <0% were observed; 

these have been approximated as 0% after accounting for error.  

1.3.1 Polyethylene in bio-char 

Figure S1a shows infrared spectra of eight samples of pure pistachio hull bio-char blended with 

unreacted PE at concentrations within the range 0–100 wt.%. The strong absorption band at 898 

cm-1 was taken as a representative peak for pistachio hull bio-char. The band at 2917 cm-1 was 

chosen as a reference for PE. The relative intensities of the characteristic bands were used as 

indicators of PE content in bio-chars. Peak intensity ratios (PIR) were calculated for each blend, 

and used to create a calibration curve, shown in Figure S1b. A high coefficient of determination 

(R2) was obtained for the calibration curve (0.9538). PIRs were then calculated from the FTIR 

spectra of the bio-char resulting from HTL of pistachio hull/polyethylene at 10 wt.% and 20 wt.% 

blends to quantify unreacted PE. 

 

The calculated values for unreacted PE in co-liquefaction chars are summarised in Table S2. For 

the reactions carried out at a fast heating rate, the content of unreacted PE in the bio-char was 

calculated as 26 % and 60 % for 10 wt.% and 20 wt.% PE blend levels, respectively; 31 % and 63 
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% unreacted PE were detected in the bio-char for slow heating rates for 10 wt.% and 20 wt.% PE 

blends.  

 

 

  
 

Figure S1 – (a) FTIR spectra of pistachio hulls bio-char with different polyethylene contents, and 

(b) peak intensity ratio calibration curve for polyethylene content in pistachio hull bio-char. 
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Table S3 – Calculated percentage concentrations of unreacted polyethylene in bio-char from 
co-liquefaction of pistachio hull with PE. 

 PE  Pistachio 
hull bio-

char 

PIR Predictive equation R2 Unreacted PE 
in char (%) 

  2917 cm-1 898 cm-1 2917:898 y = 31.419 + 7.4862 0.9538  

Fast heating rate 

10%PE 0.0434 0.0408 1.0640   26 

20%PE 0.0582 0.0270 2.1578   60 

Slow heating rate 

10%PE 0.037521 0.030315 1.237711   31 

20%PE 0.097836 0.042746 2.288778   64 

 

1.3.2  Polypropylene in bio-char 

As previously, the absorbance band at 898 cm-1 was used as the indicative band for pistachio hull 

bio-char, whilst the strong peak at 2914 cm-1 was used to represent PP (Figure S2a). However, 

two calibration curves were created in this case for the blend level ranges 0–38 % PP in bio-char, 

and 38–100 % PP. Coefficients of determination of <0.85 were obtained in both cases. Unreacted 

polypropylene in bio-char was calculated to make up 37 % and 50 % of the total bio-char for the 

faster heating rate, and 55 % and 56 % for the slower heating rate for co-liquefaction of 10 

wt.% and 20 wt.% PP blends in biomass, respectively (Figure S2b).   
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Figure S2 – (a) FTIR spectra of pistachio hull bio-char with different polypropylene contents and 

(b) peak ratio calibration curve for polypropylene in pistachio bio-char. 
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Table S4 – Calculated percentage concentrations of unreacted polypropylene in bio-char from 
co-liquefaction of pistachio hull with PP. 

 PP  Pistachio 
hull bio-

char 

PIR Predictive equation R2 Unreacted PP 
in char (%) 

 2914 cm-1 898 cm-1 2914:898 0–37 % PP: 
y = 121.75x – 35.169  

 
37–100 % PP: 

y = 8.2531 + 46.303  

0.852 
 
 

0.9636 

 

Fast heating rate 

10%PP 0.017744 0.029852 0.594401   37 

20%PP 0.019885 0.028489 0.698003   50 

Slow heating rate 

10%PP 0.040715 0.038076 1.06929472   55 

20%PP 0.06919 0.057573 1.20177729   56 

 

  

1.3.3 Polyethylene terephthalate in bio-char 

For co-liquefaction of PET/biomass, difficulties in homogenising the calibration samples meant 

that a somewhat lower coefficient of determination was obtained for the calibration curve (R2 = 

0.81). A number of absorbances were examined, and the calibration curve for PET/biomass bio-

char was established using the peak in the region 898 cm-1 as the reference for pistachio bio-

char. The strongest absorption band observed for PET occurred at 726 cm-1 (assigned to the 

aromatic ring) (Figure S3a).  
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Figure S3 (a) FTIR spectra of pistachio hulls bio-char with different polypropylene contents, and 

(b) peak ratio calibration curve for polyethylene terephthalate in pistachio bio-char. 
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Table S5 – Calculated percentage concentrations of unreacted polyethylene terephthalate in 
bio-char from co-liquefaction of pistachio hull with PET.  
 

 PET  Pistachio 
hull bio-char 

PIR Predictive 
equation 

R2 Unreacted PET 
in char (%) 

 726 cm-1 898 cm-1 726:898 y = 36.92x – 32.155 0.8077  

Fast heating rate 

10%PET 0.020853 0.016007 1.302738   22 

20%PET 0.030037 0.048166 1.603535   32 

Slow heating rate 

10%PET 0.070744 0.053181 1.330259   23 

20%PET 0.08616 0.042746 2.01563   46 

 

1.3.4 Nylon in bio-char 

For nylon, the representative absorbance band was selected as 1534 cm-1, whilst 898 cm-1 was 

used for pistachio hull bio-char. For all the calibration curves, the coefficient of determination 

(R2) exceeded 0.98. The results showed that the content of unreacted nylon in co-liquefaction 

bio-char was around 11 % and 9 % for fast heating rates, and 7 % and 11 % for slow heating rate, 

for 10 wt.% and 20 wt.% nylon/pistachio blends respectively. This signifies a substantially higher 

overall conversion of nylon under HTL conditions relative to the other plastic feedstocks 

examined. 
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Figure S4 – (a) FTIR spectra of pistachio hulls with different nylon contents, and (b) Peak ratio 

calibration curve for nylon in pistachio bio-char. 

 

Table S6 – Calculated percentage concentrations of unreacted nylon in bio-char from co-
liquefaction of pistachio hull with NY. 
 

 NY  Pistachio 
hull bio-

char 

PIR Predictive equation R2 Unreacted NY 
in char (%) 

  1534 cm-1 898 cm-1 1534:898 y = 14.249x – 10.103 0.9843  

Fast heating rate 

10%NY 0.026013 0.017696 1.469988   11 

20%NY 0.021795 0.015897 1.371049   9 

Slow heating rate 

10%NY 0.045761 0.038718 1.181887   7 

20%NY 0.087956 0.058233 1.510419   11 
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1.4 GC/MS analysis of bio-crudes 
The identities of notable compounds in bio-crudes from co-liquefaction of biomass with plastics, 

identified using GC/MS, are presented in Table S7 below. Compounds were not quantified; 

shaded cells indicate the presence of a compound. 

 

Table S7 – Identities of notable compounds in bio-crude products from co-liquefaction of 

pistachio hull with 20 wt.% plastics (fast heating rate). 

Compound identified 
 

100 % 
biomass 

20 wt.% 
PE 

20 wt.% 
PP 

20 wt.% 
PET 

20 wt.% 
NY 

20 wt.% 
mix 

Relative abundance 

Styrene       

Butanoic acid, 4-hydroxy-       

Cyclohexene, 4-ethenyl-       

2-Cyclohexen-1-one, 4,4,6-trimethyl-       

Phenol       

.alpha.-Methylstyrene       

Benzaldehyde       

Butyrolactone       

Hexylene glycol       

2-Cyclopenten-1-one, 2-methyl       

2-Cyclopenten-1-one, 3-methyl       

2-Cyclopenten-1-one, 3-ethyl       

2-Cyclopenten-1-one, 2,3-dimethyl       

Phenol, 2-methyl       

Phenol, 2-methoxy-       

Benzyl alcohol       

Phenol, 3-methyl       

Acetophenone       

p-Cresol       

2-Cyclopenten-1-one, 3-ethyl-       

Mequinol       

3-Pyridinol       

4-Pyridinol       

4-Pyridinemethanol       

2(1H)-Pyridinone, 3-methyl-       

3-Pyridinol, 6-methyl-       

1-Cyclohexene-1-carboxylic acid       

1,2-Cyclooctadiene       

Hydroquinone       

Benzoic acid       

Cyclooctane, 1,2-dimethyl-       

Phenol, 4-ethyl-       
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Compound identified 
 

100 % 
biomass 

20 wt.% 
PE 

20 wt.% 
PP 

20 wt.% 
PET 

20 wt.% 
NY 

20 wt.% 
mix 

Relative abundance 

Tetradecane       

4-Tetradecene, (E)-       

Decane, 6-ethyl-2-methyl-       

Cresol       

Catechol       

Caprolactam       

1,2-Benzenediol, 4-methyl-       

Phenol, 2,6-dimethoxy-       

Phenol, 4-ethyl-2-methoxy-       

Diphenyl sulfone       

Benzene, (ethylthio)- 
   

 
  

1,2-Benzenediol, 3-methyl       

1,2-Benzenediol, 3-methoxy       

1,4-Benzenediol, 2-methyl-       

Benzene, 1,2,4-trimethyl-5-(1-
methylethyl)- 

      

Phenol, 2,6-dimethoxy-       

Phenol, 2-methoxy-4-propyl-       

Phenol, 4-methyl-2-nitro- 
   

 
   

4-Ethylthiophenol       

Ethanone, 1-(2-hydroxyphenyl)-       

Phenol, 3-pentadecyl-       

1-Hexadecyne       
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1.5 FTIR of bio-chars obtained at from slow HTL (60 min)  

 

  

Figure S7 – FTIR of pure plastics and bio-char from slow (60 min) HTL of pistachio hull with (a) 

polyethylene, (b) polypropylene, (c) polyethylene terephthalate, and (d) nylon 6. 
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1.6 Biomass proximate analysis 
 

Table S8 Analysis of pistachio hull feedstock 

Analyses Pistachio hull 

Proximate (wt.%)  
 Total ash 9.4 
 Water Extractable Others  15.6 
Biomass composition (wt.%)   
 Lignin  26.6 
 Glucan  13.6 
 Xylan  5.0 
 Galactan  2.8 
 Arabinan  4.8 
 Fructan  0.0 
 Acetyl  1.4 
Elemental (wt.%)  
 C 41.22 
 H 6.98 
 N 1.34 
 O 46.08 

 

 


