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Abstract  1 

Subcortical brain structures are integral to motion, consciousness, emotions, and 2 

learning. We identified common genetic variation related to the volumes of nucleus 3 

accumbens, amygdala, brainstem, caudate nucleus, globus pallidus, putamen, and thalamus, 4 

using genome-wide association analyses in almost 40,000 individuals from CHARGE, 5 

ENIGMA and the UK-Biobank. We show that variability in subcortical volumes is heritable, 6 

and identify 48 significantly associated loci (40 novel at the time of analysis). Annotation of 7 

these loci utilizing gene expression, methylation, and neuropathological data identified 199 8 

genes putatively implicated in neurodevelopment, synaptic signaling, axonal transport, 9 

apoptosis, inflammation/infection, and susceptibility to neurological disorders. This set of 10 

genes is significantly enriched for Drosophila orthologs associated with 11 

neurodevelopmental phenotypes, suggesting evolutionarily conserved mechanisms. Our 12 

findings uncover novel biology and potential drug targets underlying brain development 13 

and disease. 14 

  15 
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Subcortical brain structures are essential for the control of autonomic and 16 

sensorimotor functions1,2, modulation of processes involved in learning, memory, and 17 

decision-making3,4, as well as in emotional reactivity5,6 and consciousness7. They often act 18 

through networks influencing input to and output from the cerebral cortex8,9. The 19 

pathology of many cognitive, psychiatric, and movement disorders is restricted to, begins 20 

in, or predominantly involves subcortical brain structures and related circuitries10. For 21 

instance, tau pathology has shown to manifest itself early in the brainstem of individuals 22 

with Alzheimer’s disease before spreading to cortical areas through efferent networks11. 23 

Similarly, the formation of Lewy bodies and Lewy neurites in Parkinson’s disease appears 24 

early in the lower brainstem (and olfactory structures) before affecting the substantia 25 

nigra12.  26 

Recent investigations have identified genetic loci influencing the volumes of the 27 

putamen, caudate, and pallidum, which pointed to genes controlling neurodevelopment 28 

and learning, apoptosis, and transport of metals13,14. However, a larger study combining 29 

these samples, which include individuals of a broad age-range across diverse studies, 30 

would enable increased power to identify additional novel genetic variants contributing to 31 

variability in subcortical structures, and further improve our understanding of brain 32 

development and disease. 33 

We sought to identify novel genetic variants influencing the volumes of seven subcortical 34 

structures (nucleus accumbens, amygdala, caudate nucleus, putamen, globus pallidus, 35 

thalamus, and brainstem – including mesencephalon, pons, and medulla oblongata), 36 

through genome-wide association (GWA) analyses in almost 40,000 individuals from 53 37 
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study samples (Supplementary Table 1-3) from the Cohorts of Heart and Aging Research in 38 

Genomic Epidemiology (CHARGE) consortium, the Enhancing Neuro Imaging Genetics 39 

through Meta-Analysis (ENIGMA) consortium, and the United Kingdom Biobank (UKBB). 40 

 41 

RESULTS 42 

 43 

Heritability 44 

To examine the extent to which genetic variation accounts for variation in subcortical 45 

brain volumes, we estimated their heritability in two family-based cohorts: the 46 

Framingham Heart Study (FHS) and the Austrian Stroke Prevention Study (ASPS-Fam). Our 47 

analyses are in line with previous studies conducted in twins15, suggesting that variability 48 

in subcortical volumes is moderately to highly heritable. The structures with highest 49 

heritability in the FHS and the ASPS-Fam are the brainstem (ranging from 79-86%), 50 

caudate nucleus (71-85%), putamen (71-79%) and nucleus accumbens (66%); followed by 51 

the globus pallidus (55-60%), thalamus (47-54%), and amygdala (34-59%) (Figure 1, 52 

Supplementary Table 4). We additionally estimated SNP-based heritability using GCTA in 53 

the Rotterdam Study, and LD score regression (LDSC) in the full European sample. As 54 

expected, SNP-based heritability estimates were somewhat lower, ranging from 47% for 55 

the thalamus to 17% for the amygdala using GCTA, and ranging from 33% for the 56 

brainstem to 9% for the amygdala using LDSC. These values are consistent with heritability 57 

estimates reported by the UKBB14. 58 

 59 
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Genome-wide associations 60 

We undertook a GWA analysis on the MRI-derived volumes of subcortical structures 61 

using the 1000 Genomes Project16 reference panel (phase 1 v.3) for imputation of missing 62 

variants in CHARGE and ENIGMA. The UKBB performed imputation of variants using the 63 

HRC reference panel17 (see details on image acquisition and genotyping in Supplementary 64 

Table 5 and Supplementary Table 6, respectively). Our sample comprised up to n = 37,741 65 

individuals of European ancestry from 48 study samples across CHARGE, ENIGMA and the 66 

UKBB. Additionally, we included three samples for generalization in African-Americans (up 67 

to n = 769), and two for generalization in Asians (n = 341). Details on the population 68 

characteristics, definition of the outcome and genotyping can be found in the supplement 69 

(Supplementary Tables 2-5). Each study examined the association of genetic variants with 70 

minor allele frequency (MAF) ≥1% to the volumes of subcortical structures (average 71 

volume for bilateral structures) using additive genetic models adjusted for sex, age, total 72 

intracranial volume (or total brain volume in the UKBB); as well as age2, population 73 

structure, psychiatric diagnosis (ENIGMA cohorts), and study site when applicable. After 74 

quality control, we conducted meta-analyses per ethnicity combining all samples using 75 

sample-size-weighted fixed effects methods in METAL18. An analysis of genetic correlations 76 

showed consistency of associations across the CHARGE-ENIGMA and the UKBB (rg > 0.94; P 77 

< 1.46 × 10-15), demonstrating the similar genetic architecture of subcortical volumes in 78 

these two datasets. 79 

We identified 48 independent genome-wide significant single nucleotide 80 

polymorphisms (SNPs) across all seven subcortical structures, 40 of which are novel at the 81 
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time of analysis (Table 1). Among these, 26 SNPs were located within genes (one missense, 82 

25 intronic), and 22 in intergenic regions. Most of the inflation observed in the quantile 83 

plots (Supplementary Figure 1) is due to polygenic effects. We carried forward these 48 84 

SNPs for in-silico generalization in African-American and Asian samples, and performed a 85 

combined meta-analysis of all samples (Supplementary Table 7). Of the 46 SNPs present in 86 

the generalization samples, the direction of association was the same for 13 across all 87 

ethnicities and for an additional 6 SNPs in either the African-American or the Asian 88 

samples. In the combined meta-analysis, 43 of the 48 associations remained significant, and 89 

for 21 SNPs, the strength of association increased when all samples were combined. 90 

Although we did not find significant associations for most SNPs at the generalization 91 

sample level, likely due to their limited sample size, the sign test for the direction of effect 92 

suggested that a large proportion of the SNPs associated with subcortical volumes in the 93 

European sample are also associated in the African-American and Asian samples at the 94 

polygenic level (P < 1 × 10-4 ; Supplementary Table 8).  95 

To functionally annotate the 48 SNPs identified in the European sample, we used Locus 96 

Zoom19, investigated expression quantitative trait loci (eQTL) and methylation QTL 97 

(meQTL) in post-mortem brains from the Religious Order Study and the Rush Memory and 98 

Aging Project (ROSMAP), and also queried cis- and trans-eQTL datasets in brain and non-99 

brain tissues for the top 48 SNPs or their proxies (r2>0.8), using the European population 100 

reference (Supplementary Tables 9-12). Lead variants and their proxies were annotated to 101 

genes based on the combination of physical proximity, eQTL and meQTL, which in some 102 

instances assigned more than one gene to a single SNP. Most of our index SNPs had genes 103 
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assigned based on more than one functional source. This strategy allowed us to identify 104 

199 putatively associated genes (Supplementary Table 13). More details can be found in 105 

the Supplementary note. 106 

 107 

Associations with cognition and neuropathology 108 

Although individual SNPs were not related to neuro-pathological traits or cognitive 109 

function in ROSMAP (Supplementary Table 14), we found that cortical mRNA expression of 110 

12 of our putatively associated genes was associated with neuropathological alterations 111 

typically observed in Alzheimer’s Disease (Supplementary Table 15). These included β-112 

amyloid load / presence of neuritic plaques (APOBR, FAM65C, KTN1, NUPR1, OPA1) and tau 113 

density / neurofibrillary tangles (FAM65C, MEPCE, OPA1, STAT1). Many of these genes, 114 

together with ANKRD42, BCL2L1, RAET1G, SGTB, and ZCCHC14, were also related to 115 

cognitive function. 116 

 117 

Phenotypic and genetic correlations 118 

We explored both phenotypic (Supplementary Table 16) and genetic (Supplementary 119 

Table 17) correlations among subcortical volumes. We also investigated genetic 120 

correlations of subcortical volumes with traits previously examined in the CHARGE and 121 

ENIGMA consortia, including MRI-defined brain volumes20,21,22, stroke subtypes23, 122 

anthropometric traits24, general cognitive function25, Alzheimer’s disease26, Parkinson’s 123 

Disease27, bipolar disorder and schizophrenia28, and attention deficit/hyperactivity 124 

disorder (ADHD)29. We observed strong phenotypic and genetic overlap among most 125 



Satizabal et al. 
 

29 
 

subcortical structures using LDSC methods, consistent with our finding that many of the 126 

loci identified have pleiotropic effects on the volumes of several subcortical structures.  127 

As expected, we found strong genetic correlations among the nuclei composing the 128 

striatum, particularly for nucleus accumbens with caudate nucleus (P = 9.83 × 10-19), and 129 

with putamen (P = 1.02 × 10-17). The genetic architecture of thalamic volume highly 130 

overlapped with that of most subcortical volumes, except for the caudate nucleus. In 131 

contrast, there were no significant genetic correlations for the volume of the brainstem 132 

with that of most structures, with the exception of very strong correlations with volumes of 133 

the thalamus (P = 1.56  × 10-22) and the globus pallidus (P = 1.52 × 10-21). Individual level 134 

analyses using GCTA in the Rotterdam Study (n = 3,486) showed similar correlations 135 

despite the smaller sample. 136 

We also observed strong genetic correlations for hippocampal volumes with amygdalar 137 

and thalamic volumes. Height correlated with thalamic volumes and volume of the 138 

brainstem was inversely correlated with ADHD. Notably, caudate nucleus volumes 139 

correlated with white matter hyperintensity burden. 140 

 141 

Cross-species analysis  142 

To investigate for potential evolutionarily conserved requirements of our gene-set in 143 

neurodevelopment, neuronal maintenance, or both, we examined available genetic and 144 

phenotypic data from the fruit fly, Drosophila melanogaster. Importantly, compared to 145 

mammalian models, the fly genome has been more comprehensively interrogated for roles 146 

in the nervous system. We found that a large proportion of candidate genes for human 147 
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subcortical volumes are strongly conserved in the Drosophila genome (59%), and many of 148 

these genes appear to have conserved nervous system requirements (Supplementary Table 149 

18). To examine if this degree of conservation was greater than that expected by chance, 150 

we leveraged systematic, standardized phenotype data based on FlyBase annotations using 151 

controlled vocabulary terms. Indeed, 22% of the conserved fly homologs are documented 152 

to cause “neuroanatomy defective” phenotypes in flies, representing a significant (P = 7.3 × 153 

10-4), nearly two-fold enrichment compared to 12.9% representing all Drosophila genes 154 

associated with such phenotypes (Supplementary Table 19). 155 

 156 

Partitioning heritability 157 

We further investigated enrichment for functional categories of the genome using 158 

stratified LDSC methods30 (Figure 2). Super enhancers were significantly enriched in most 159 

subcortical structures, with 17% of SNPs explaining 43% of SNP-heritability in the 160 

brainstem, 39% in the caudate, 44% in the pallidum, 37% in the putamen, and 38% in the 161 

thalamus.  Similarly, strong enrichment was observed for regular enhancers (H3K27ac 162 

annotations from Hnisz31) in several subcortical structures, explaining over 60% of their 163 

SNP-heritability. Conserved regions were enriched in the nucleus accumbens and the 164 

brainstem, with 2.6% of SNPs explaining 53% and 35% of their SNP heritability, 165 

respectively. Finally, only the brainstem showed enrichment for transcription start sites 166 

(TSS), with 1.8% of SNPs explaining 26% of this structure SNP-heritability. Full results are 167 

presented in Supplementary Table 20. 168 

 169 
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Protein-protein interactions 170 

To explore potential functional relationships between proteins encoded by our set of genes, 171 

we conducted protein-protein interaction analyses in STRING32. Our results showed 172 

enrichment of genes involved in brain-specific pathways (i.e. regulation of neuronal death 173 

and neuronal apoptosis), as well as immune-related (i.e. antigen processing, Epstein-Barr 174 

virus infection) and housekeeping processes (i.e. proteasome, cell differentiation, 175 

signaling). Figure 3 shows these protein networks, and the detailed pathways are 176 

presented in Supplementary Table 21.   177 
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DISCUSSION 178 

We undertook the largest GWA meta-analysis of variants associated with MRI-derived 179 

volumes of the nucleus accumbens, amygdala, brainstem, caudate nucleus, globus pallidus, 180 

putamen, and thalamus; in almost 40,000 individuals from 53 study samples worldwide. 181 

Our analyses identified a set of 199 candidate genes influencing the volume of these 182 

subcortical brain structures, most of which have relevant roles in the nervous system. 183 

Our results show wide overlap of genetic variants determining the volume of 184 

subcortical structures as elucidated from genetic correlations and individual look-ups 185 

among structures. We find that 26 candidate genes may influence more than one structure. 186 

For instance, significant SNPs near KTN1, are also associated with the volume of the 187 

nucleus accumbens, caudate nucleus, and globus pallidus, suggesting that this genomic 188 

region may have an important role in determining multiple subcortical brain volumes 189 

during development. Furthermore, 14 of the candidate genes were associated with the 190 

caudate, globus pallidus and putamen, supporting the shared genetic architecture of the 191 

functionally defined corpus striatum. 192 

We identified genes implicated in neurodevelopment. We confirm the 11q14.3 genomic 193 

region near the FAT3 gene, previously associated with the caudate nucleus13, additionally 194 

associated with the putamen in our analysis. This gene encodes a conserved cellular 195 

adhesion molecule implicated in neuronal morphogenesis and cell migration based on 196 

mouse genetic studies33. SNPs near PBX3 were associated with caudate volume. PBX3 is 197 

robustly expressed in the developing caudate nucleus of the non-human primate, Macaca 198 

fuscata, consistent with a role in striatal neurogenesis34.  199 
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We found several genes involved in insulin/IGF1 signaling, including IGF1, PAPPA, 200 

GRB10, SH2B1 and TXNDC5 across the amygdala, brainstem, caudate, and putamen. PAPPA 201 

encodes a secreted metalloproteinase that cleaves IGFBPs, thereby releasing bound IGF. 202 

Although IGF may be beneficial in early- and midlife, its effects may be detrimental during 203 

aging. Studies of PAPPA similarly support antagonistic pleiotropy. Low circulating PAPPA 204 

levels are a marker for adverse outcomes in human embryonic development35, but in later 205 

life, higher levels have been associated with acute coronary syndromes and heart 206 

failure36,37. Further, Grb10 and SH2B1 act as regulators of insulin/IGF1 signaling through 207 

their SH2 domains38. Finally, TXNDC5 has been suggested to increase IGF1 activity by 208 

inhibiting the expression IGFBP1 in the context of rheumatoid arthritis39.  209 

Additional genes related to neurodevelopment include PTPN1 (brainstem), ALPL and 210 

NBPF3, (both related to the globus pallidus), and SLC20A2 (nucleus accumbens). In studies 211 

of both human and mouse embryonic stem cells, PTPN1 was implicated as a critical 212 

regulator of neural differentiation40. In addition, PTPN1 encodes a target for the 213 

transcriptional regulator encoded by MECP2, which causes the neurodevelopmental 214 

disorder Rett Syndrome, and inhibition of PTPB1 is being explored as a therapeutic 215 

strategy in mouse Rett models41. ALPL mediates neuronal differentiation early during 216 

development and post-natal synaptogenesis in transgenic mouse models42. ALPL may also 217 

help propagate the neurotoxicity induced by tau43, and its activity increases in Alzheimer’s 218 

disease44 and cognitive impairment45. NBPF3 belongs to the neuroblastoma breakpoint 219 

family, which encodes domains of the autism- and schizophrenia-related DUF1220 220 

protein46. SLC20A2, related to the globus pallidus and the thalamus, encodes an inorganic 221 
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phosphate transporter for which more than 40 mutations have been described in 222 

association with familial idiopathic basal ganglia calcification (Fahr’s Syndrome)47,48. It is 223 

interesting to note that other three solute carrier genes were identified in this GWA 224 

(SLC12A9, SLC25A29, SLC39A8), suggesting that the molecular transport of metals, amino 225 

acids, and other solutes across the cellular membrane could play an important role in the 226 

development of subcortical brain structures. 227 

Several genes were related to synaptic signaling pathways. We found a SNP in NPTX1 228 

related to the thalamus, a gene expressed in the nervous system which restricts synapse 229 

plasticity49, and induces β-amyloid neurodegeneration in human and mouse brain tissues50. 230 

Additionally, the identified an intronic SNP in SGTB for the brainstem, which was an eQTL 231 

for the expression of SGTB in dorsolateral prefrontal cortex. Experimental rat models 232 

showed that βSGT, highly expressed in brain, forms a complex with the cysteine string 233 

protein and heat-shock protein cognate (CSP/Hsc70) complex to function as a chaperone 234 

guiding the refolding of misfolded proteins near synaptic vesicles51. Other experimental 235 

studies in C. elegans, showed that the genetic manipulation of the ortholog, sgt-1, 236 

suppresses toxicity associated with expression of the human β-amyloid peptide52. Other 237 

genes involved in synaptic signaling are CHPT1 (brainstem), involved in 238 

phosphatidylcholine metabolism in the brain; KATNA1(brainstem), a conserved regulator 239 

of neuronal process formation, outgrowth, and synaptogenesis53,54; and DLG2 (putamen), 240 

encoding an evolutionarily conserved scaffolding protein involved in glutamatergic-241 

mediated synaptic signaling and cell polarity55 that has been associated with 242 

schizophrenia56, cognitive impairment57, and Parkinson’s disease58.  243 
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Another set of SNPs point to genes involved in autophagy and apoptotic processes, 244 

such as DRAM1 and FOXO3, both related to brainstem volumes. DRAM1 encodes a 245 

lysosomal membrane protein involved in activating TP53-mediated autophagy and 246 

apoptosis,59 and mouse models mimicking cerebral ischemia and reperfusion have found 247 

that inhibiting the expression of DRAM1 worsens cell injury60. The top SNP was also 248 

associated with a CpG site proximate to active TSS upstream of DRAM1 in several mature 249 

brain tissues (S3.6). FOXO3 has been recently identified as pivotal in an astrocyte network 250 

conserved across humans and mice involved in stress, sleep, and Huntington's disease61, 251 

and has been related to longevity62. In Drosophila, a FOXO3 ortholog regulates dendrite 252 

number and length in the peripheral nervous system63, and in the zebrafish, Danio rario, 253 

Foxo3a knockdown led to apoptosis and mispatterning of the embryonic CNS64. Additional 254 

genes involved in apoptotic processes are BCL2L1 (globus pallidus and putamen), BIRC6 255 

(globus pallidus) and OPA1 (brainstem). 256 

Other genes have been implicated in axonal transport. We confirm the association 257 

between the 13q22 locus near KTN1 with putamen volume13and expand by showing that 258 

this region is also associated with the nucleus accumbens, caudate and the globus pallidus . 259 

The most significant SNP (rs945270) is a robust eQTL for KTN1 in peripheral blood cells. 260 

This gene encodes a kinesin-binding protein involved in the transport of cellular 261 

components along microtubules65, and impairment of these molecular motors has been 262 

increasingly recognized in neurological diseases with a subcortical component66. The 5q12 263 

locus upstream from MAST4 was associated with nucleus accumbens volume. MAST4 264 

encodes a member of the microtubule-associated serine/threonine kinases. This gene has 265 
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been associated with hippocampal volumes20 and juvenile myoclonic epilepsy67,and it 266 

appears to be differentially expressed in the prefrontal cortex of atypical cases of 267 

frontotemporal lobar degeneration68. In Drosophila, the knockdown of a conserved MAST4 268 

homolog enhanced the neurotoxicity of human tau69, which aggregates to form 269 

neurofibrillary tangle pathology in Alzheimer’s disease. Further, we identified SNPs near 270 

NEFL and NEFM (globus pallidus), where the top SNP was an eQTL for these genes in 271 

subcortical brain tissue and esophagus mucosa. NEFL encodes the light chain, and NEFM 272 

the medium chain of the neurofilament. These proteins determine neuronal caliber and 273 

conduction velocity70. Mutations in NEFL/M genes have been related to neuropsychiatric 274 

disorders and both proteins are increasingly recognized as powerful biomarkers of 275 

neurodegeneration71. 276 

Finally, several of our candidate genes are also involved in inflammation, immunity 277 

and infection (ANKRD42, DEFB124, IL27, NLRC4, PILRA/B, TRIM23, TRIM4), in line with the 278 

PPI analysis highlighting the KEGG-Epstein-Barr virus infection pathway. This suggests that 279 

immune-related processes may be an important determinant influencing subcortical 280 

volumes, as has been shown by other GWAS of neurologic traits72,73. 281 

 282 

Overall, the loci identified by our study pinpoint candidate genes not only associated 283 

with human subcortical brain volumes, but also reported to disrupt invertebrate 284 

neuroanatomy when manipulated in Drosophila and many other animal models. Thus, our 285 

results are in line with the knowledge that the genomic architecture of central nervous 286 

system development has been strongly conserved during evolution. Partitioning 287 
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heritability results suggest the nucleus accumbens and the brainstem are particularly 288 

enriched in conserved regions.  289 

 290 

One of the main limitations of our study was the small size of our generalization 291 

samples, which limits the generalizability of our results to non-European ethnicities. 292 

However, our analyses suggest significant concordance for the direction of effect across all 293 

ethnicities at the polygenic level. We hope diverse samples become increasingly available 294 

to further confirm our findings and make new discoveries. Additionally, we have focused 295 

on the discovery of common and less frequent variants. Further efforts to also reveal rare 296 

variants and epigenetic signatures associated with subcortical structures will provide an 297 

even more refined understanding of the underlying mechanisms involved. 298 

 299 

In conclusion, we describe multiple genes associated with the volumes of MRI-derived 300 

subcortical structures in a large sample, leveraging diverse bioinformatic resources to 301 

validation and follow-up our findings. Our analyses indicate that the variability of 302 

evolutionarily old subcortical volumes of humans is moderately to strongly heritable, and 303 

that their genetic variation is also strongly conserved across different species. The majority 304 

of the variants identified in this analysis point to genes involved in neurodevelopment, 305 

regulation of neuronal apoptotic processes, synaptic signaling, axonal transport, 306 

inflammation/immunity, and susceptibility to neurological disorders. We show that the 307 

genetic architecture of subcortical volumes overlaps with that of anthropometric measures 308 

and neuropsychiatric disorders. In summary, our findings greatly expand current 309 
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understanding of the genetic variation related to subcortical structures, which can help 310 

identify novel biological pathways of relevance to human brain development and disease. 311 
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Figure 1. Heritability and Manhattan plot of genetic variants associated with subcortical brain volumes in the 518 

European sample. 519 

 520 

a. Family-based heritability (h2) estimates were performed with SOLAR in the Framingham Heart Study (n = 895) and the 521 

Austrian Stroke Prevention-Family Study (n = 370). b. Combined Manhattan plot highlighting the most significant SNPs across 522 

all subcortical structures (nucleus accumbens = 32,562; amygdala = 34,431; brainstem = 28,809; caudate = 37,741; pallidum = 523 

34,413; putamen = 37,571; thalamus = 34,464). Variants are colored differently for each structure (see legend in a). Linear 524 

regression models were adjusted for sex, age, age², total intracranial volume (CHARGE) or total brain volume (UKBB), and 525 

population stratification. The solid horizontal line denotes genome-wide significance as set in this study after additional 526 

Bonferroni correction for six independent traits (P <5 × 10-8/6 = 8.3 × 10-9 for two-sided tests), the dashed horizontal line 527 

denotes the classic genome-wide threshold of P < 5 × 10-8. Individual Manhattan plots can be found in the Supplementary note. 528 
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Figure 2. Partitioning heritability by functional annotation categories.  529 

 530 

Analyses performed in the European sample (nucleus accumbens = 32,562; amygdala = 34,431; brainstem =28,809; caudate = 531 

37,741; pallidum = 34,413; putamen = 37,571; thalamus = 34,464). Plotted ellipses represent enrichment (proportion of h2g 532 

explained / proportion of SNPs in a given functional category) for subcortical structures (y-axis) across 28 functional 533 

categories (x-axis). The color bar indicates the magnitude and direction of enrichment. Starred pairs denote significant over-534 

representation after Bonferroni correction for 168 tests (28 annotation categories and 6 independent traits, P < 3 × 10-4).  535 

DHS, DNase I hypersensitivity site; TSS, transcription start site.536 
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Figure 3. Protein-protein interaction network of 158 genes enriched for common variants influencing the volume of 537 

subcortical structures.  538 

 539 

The edges represent protein-protein associations, where the edge color indicates the predicted mode of action (bright green, 540 

activation; pink, posttranslational modification; red, inhibition; dark blue, binding, purple, catalysis; light blue, phenotype; 541 

black, reaction; yellow, transcriptional regulation) and the edge shape the predicted action effects (arrow, positive, flat arrow, 542 

negative; oval arrow, unspecified). Colored nodes represent the queried proteins and first shell of interactors (5 maximum), 543 

whereas white nodes represent the second shell of interactors (5 maximum). 544 
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Table 1. Genome-wide associationa results for subcortical brain volumes in Europeans from CHARGE, ENIGMA, and the UKBB 545 

SNP Chr Position Function A1/A2 A1 Freq. Weight Z-score Pb Direction I² 

Nucleus accumbens (n=32,562)         

rs9818981c 3 190602087 intergenic A/G 0.09 32,282 -6.23 4.70E-10 --- 63.2 

rs13107325 4 103188709 missense T/C 0.06 32,283 6.15 7.74E-10 +++ 76.2 

rs11747514c 5 65839259 intronic T/G 0.22 32,562 -5.99 2.11E-09 --- 0.0 

rs868202c 14 56195762 intergenic T/C 0.56 32,562 5.90 3.55E-09 +++ 0.0 

Amygdala (n=34,431)         

rs11111293c 12 102921296 intergenic T/C 0.78 34,313 6.25 4.16E-10 +++ 0.0 

Brainstem (n=28,809)         

rs11111090 12 102326461 intergenic A/C 0.52 28,809 10.79 3.70E-27 +++ 0.0 

rs10217651c 9 118923652 intronic A/G 0.39 28,809 9.78 1.40E-22 +++ 0.0 

rs869640c 5 65015128 intronic A/C 0.72 28,809 -8.40 4.36E-17 --- 9.5 

rs9398173c 6 109000316 intronic T/C 0.33 28,809 -7.95 1.80E-15 --- 19.0 

rs10792032c 11 68984602 intergenic A/G 0.49 28,648 7.75 9.08E-15 +++ 39.4 

rs4396983c 4 15132604 intergenic A/G 0.44 28,809 -7.02 2.27E-12 --- 73.6 

rs9322194c 6 149920249 intronic T/C 0.34 28,156 6.91 4.94E-12 +++ 0.0 

rs7972561c 12 107139983 intronic A/T 0.33 28,809 6.90 5.05E-12 +++ 0.0 
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rs2206656c 20 49130119 intronic C/G 0.61 28,809 6.83 8.26E-12 +++ 0.0 

rs12479469c 20 61145196 intergenic A/G 0.33 25,822 -6.80 1.08E-11 --- 65.6 

rs4784256c 16 52814559 intergenic A/G 0.40 28,809 6.76 1.41E-11 +++ 0.0 

rs555925c 3 193544359 intergenic T/G 0.41 27,934 6.37 1.88E-10 +++ 62.9 

rs12313279c 12 102846504 intronic A/G 0.29 28,809 6.21 5.39E-10 +++ 24.9 

rs9505301c 6 7887131 intronic A/G 0.89 28,691 -6.05 1.41E-09 --- 43.2 

rs11684404c 2 88924622 intronic T/C 0.66 28,809 -5.95 2.73E-09 --- 0.0 

rs112178027c 17 27564013 intergenic T/C 0.17 28,809 -5.90 3.67E-09 --- 0.0 

Caudate nucleus (n=37,741)         

rs3133370 11 92026446 intergenic T/C 0.67 37,741 7.52 5.59E-14 +++ 44.9 

rs6060983c 20 30420924 intronic T/C 0.70 37,741 7.04 1.95E-12 +++ 0.0 

rs7040561c 9 128528978 intronic A/T 0.85 34,049 -6.26 3.84E-10 --- 0.0 

rs2817145c 1 3133422 intronic A/T 0.19 35,598 6.20 5.71E-10 +++ 65.3 

rs148470213c 14 56193700 intergenic T/C 0.54 29,429 6.18 6.48E-10 ++? 0.0 

rs1987471c 16 28825866 intergenic T/G 0.63 37,741 5.87 4.40E-09 +++ 0.0 

rs12445022c 16 87575332 intergenic A/G 0.33 37,741 5.87 4.45E-09 +++ 0.0 

rs55989340c 14 100635222 intergenic A/G 0.74 37,741 -5.86 4.62E-09 --- 52.0 

rs4888010c 16 73895046 intergenic A/G 0.47 37,741 5.86 4.67E-09 +++ 74.9 
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rs35305377c 7 99938955 intronic A/G 0.55 33,429 -5.84 5.36E-09 --- 47.8 

Globus pallidus (n=34,413)         

rs2923447 8 42439848 intergenic T/G 0.59 34,413 8.11 4.88E-16 +++ 34.0 

rs10129414c 14 56193272 intergenic A/G 0.44 34,413 -7.53 5.11E-14 --- 0.0 

rs196807c 8 24682649 intergenic A/G 0.18 34,295 6.44 1.17E-10 +++ 21.1 

rs10439607c 20 30258541 intronic A/G 0.30 34,413 -6.28 3.35E-10 --- 0.0 

rs4952211c 2 32611512 intronic T/C 0.43 34,252 -5.86 4.72E-09 --- 61.9 

rs12567402c 1 21870213 intronic T/C 0.33 34,214 5.81 6.17E-09 +++ 0.0 

Putamen (n=37,571)         

rs945270 14 56200473 intergenic C/G 0.58 37,571 15.03 5.02E-51 +++ 57.3 

rs62098013 18 50863861 intronic A/G 0.38 37,571 8.92 4.59E-19 +++ 33.9 

rs6087771 20 30306724 intronic T/C 0.71 36,291 8.69 3.75E-18 +++ 7.5 

rs35200015c 11 117383215 intronic A/G 0.19 37,571 -8.19 2.51E-16 --- 0.0 

rs1432054 11 83260225 intronic A/G 0.64 37,571 -7.94 2.10E-15 --- 0.0 

rs7902527c 10 118715399 intronic A/G 0.24 37,108 6.29 3.13E-10 +++ 0.0 

rs2244479c 7 50738987 intronic T/C 0.65 36,291 -5.92 3.17E-09 --- 32.1 

rs2410767c 5 87705268 intronic C/G 0.78 37,571 5.88 3.99E-09 +++ 0.0 

rs1187162c 11 92011126 intergenic T/C 0.42 37,571 5.84 5.14E-09 +++ 0.0 
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Thalamus (n=34,464)           

rs12600720c 17 78448640 intronic C/G 0.69 33,023 6.25 4.06E-10 +++ 0.0 

rs142461330c 7 55012097 intergenic T/C 0.92 34,185 -5.90 3.69E-09 --- 0.0 

a Linear regression models are adjusted for sex, age, age², total intracranial volume (CHARGE) or total brain volume (UKBB), 546 

and population stratification.  547 

b P-values are two-tailed. Significance was set at P < 8.3 × 10-9 after additional Bonferroni correction for six independent traits 548 

(5 x 10-8/6). 549 

c Novel SNPs  550 

Chr = chromosome; Freq. = frequency of the coded allele; A1 = coded allele; A2 = non-coded allele 551 
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ONLINE METHODS 552 

 553 

Study population 554 

The present effort included 53 study samples from the Cohorts of Heart and Aging 555 

Research in Genomic Epidemiology (CHARGE) consortium 74, the Enhancing Neuro Imaging 556 

Genetics through Meta-Analysis (ENIGMA) consortium75, and the United Kingdom Biobank 557 

(UKBB)76. Briefly, the CHARGE consortium is a collaboration of predominantly population-558 

based cohort studies investigating the genomics of age-related complex diseases, including 559 

those of the brain (depts.washington.edu/chargeco/wiki/). The ENIGMA consortium brings 560 

together various studies, approximately 75% of which are population-based, with the 561 

remainder using case-control designs for various neuropsychiatric or neurodegenerative 562 

diseases (enigma.ini.usc.edu/). The UKBB is a large-scale prospective epidemiological 563 

study of over 500,000 individuals aged 40-69 years from the United Kingdom, established 564 

to investigate the genetic and non-genetic determinants of middle and old age diseases 565 

(www.ukbiobank.ac.uk/).  566 

Our sample consisted of up to n=37,741 individuals of European ancestry. We 567 

additionally included three generalization samples of African-Americans (up to n=769), 568 

and two generalization samples of Asians (n=341). All participants have provided written 569 

informed consent and participating studies obtained approval from their institutional 570 

review board or equivalent organization. The institutional review boards of Boston 571 

University and the University of Southern California, as well as the local ethics board of 572 

Erasmus University Medical Center approved this study. 573 

http://www.ukbiobank.ac.uk/
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Exclusion criteria comprised prevalent dementia or stroke at the time of the MRI scan, 574 

and when available, presence of large brain infarcts or other neurological pathologies seen 575 

at the MRI that could substantially influence the measurement of brain volumes (e.g. brain 576 

tumor, trauma). Individual studies applied the exclusion criteria prior to analyses. 577 

 578 

Definition of phenotypes 579 

Our study investigated the volumes of seven subcortical structures: nucleus accumbens, 580 

amygdala, brainstem, caudate nucleus, globus pallidus, putamen, and thalamus. These 581 

phenotypes were defined as the mean volume (in cm3) of the left and right hemispheres, 582 

with the exception if the brainstem that was simply defined as total volume (in cm3). Each 583 

study contributed magnetic resonance imaging (MRI) data obtained using diverse 584 

scanners, field strengths, and acquisition protocols. The estimation of volumes for the 585 

seven subcortical brain structures and total intracranial volume was generated by freely 586 

available and in-house segmentation methods previously described and validated. 587 

Summary statistics for subcortical brain volumes in CHARGE study samples are presented 588 

in Supplementary Table 3, and the study-specific MRI protocols and software are described 589 

in Supplementary Table 5. We have recently published results describing the genetic 590 

variation associated with hippocampal volumes20, and therefore, we have not included that 591 

brain structure in this report. 592 

 593 

Genotyping 594 

Genotyping was performed using a variety of commercial arrays across the 595 

participating studies. Study samples and genetic variants underwent similar quality control 596 
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procedures based on genetic homogeneity, call rate, minor allele frequency (MAF), and 597 

Hardy-Weinberg Equilibrium. Good quality variants were used as input for imputation to 598 

the 1000 Genomes Project (phase 1, version 3) reference panel16, or the Haplotype 599 

Reference Consortium (HRC, version 1.1)17 in the UKBB, using validated software packages. 600 

A detailed description of the genotyping and quality control carried by each study is 601 

described in Supplementary Table 6.  602 

 603 

Heritability  604 

Heritability of subcortical brain volumes was estimated in the Framingham Heart Study 605 

(FHS)77 and the Austrian Stroke Prevention Study Family Study (ASPS Fam)78, two 606 

population-based cohorts with family structure. We used SOLAR79 to determine the ratio of 607 

the genetic variance to the phenotypic variance, including variance component models that 608 

were adjusted for age, sex, total intracranial volume, as well as age squared and principal 609 

components if required, in the same way it is described for the genome-wide association 610 

(GWA) analysis. We also estimated the variance of subcortical structures explained by SNPs 611 

in a sample of n=3,486 unrelated participants from the Rotterdam Study using GCTA80, and 612 

additionally in the full European sample using LDSC regression methods81. Supplementary 613 

Table 4 provides family- and SNP-based heritabilities for subcortical structures.  614 

 615 

Genome-wide associations and meta-analysis 616 

In CHARGE and ENIGMA, each study undertook a GWA analysis on the volumes of seven 617 

MRI subcortical brain structures (or those that were available to each study) according to a 618 

common predefined analysis plan. Studies including unrelated participants performed 619 
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linear regression analyses, whereas those including related participants conducted linear 620 

mixed models to account for familial relationships. Models assumed additive genetic effects 621 

and were adjusted for age, sex, total intracranial volume and, if applicable, they were 622 

additionally adjusted for age2, principal components to account for population 623 

stratification, psychiatric diagnosis (ENIGMA cohorts), and study site. Individual studies 624 

shared summary statistics to a centralized, secured computing space. Analysis in the UKBB 625 

sample followed a similar approach in n=8,312 unrelated participants although the genetic 626 

data used for these analyses uses only those variants imputed using the HRC17 reference 627 

panel. As the data released by the UKBB did not include total intracranial volume, linear 628 

regression models in this sample are adjusted for age, age2, sex, total brain volume, and 629 

principal components. We used LDSC methods81 to investigate the genetic correlations for 630 

all subcortical structures between the CHARGE-ENIGMA and the UKBB. There was no 631 

evidence suggesting differences in the genetic architecture of both samples. 632 

Prior to meta-analysis, we performed quality control at the study-level summary 633 

statistics using a series of quality checks implemented in EasyQC82. Filters were set to 634 

remove SNPs with poor imputation (R2 < 0.5), rare (MAF < 0.1%), or with an effective allele 635 

count (2 x MAF x study sample size x imputation quality) < 20. Finally, we only considered 636 

variants present in at least 70% of the total European sample for each structure. 637 

Fixed-effects meta-analyses weighting for sample size were performed using METAL18, 638 

given that not all samples used the same methods for acquisition and post-processing of 639 

brain images. We used the LD score regression intercept to correct for population 640 

stratification and cryptic relatedness81. Quantile and Manhattan plots are presented for 641 

each subcortical structure in Supplementary Figure 1. To correct for multiple comparisons 642 
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across our seven traits, we calculated the Pearson’s correlation among subcortical 643 

structures adjusting for age, sex and intracranial volume in n=4,459 participants from the 644 

Rotterdam Study. After 1,000 permutations, the resulting number of independent traits 645 

was of six, leading to the definition of a significant threshold as P < (5 × 10-8/6) = 8.3 × 10-9. 646 

To select our top independent SNPs in the European meta-analysis, we ran a multi-SNP-647 

based conditional & joint association analysis (GCTA-COJO)80 using n=6,921 participants 648 

from the Rotterdam Study as the reference sample. In secondary analyses, we looked for 649 

the association of our index SNPs (the most significant variant in each locus) with the other 650 

six subcortical structures. 651 

We conducted separate meta-analyses by ancestry, and further performed a combined 652 

meta-analysis including all samples. Forest plots were created to explore the contribution 653 

of participating studies to each of the significant SNPs (Supplementary Figure 4). To assess 654 

signal overlap with African-American and Asian samples, we first clumped variants with P 655 

< 1 × 10-4 in the European sample, and then ran binomial sign tests for the correlation of 656 

the direction of association across ethnic groups.  657 

 658 

Functional annotations  659 

We used Locus Zoom19 based on the hg 19 UCSC Genome Browser assembly for the 660 

visualization of the nearest genes within a ±500 Kb genomic region. We also investigated 661 

cis (1 Mb) expression quantitative trait loci (eQTL) and methylation QTL (meQTL) for our 662 

index SNPs in post-mortem brains from the Religious Order Study and the Rush Memory 663 

and Aging Project (ROSMAP). In ROSMAP, the dorsolateral prefrontal cortex (DLPFC) was 664 

selected for initial multi-omics data generation, as it is relevant to multiple common 665 
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neuropathologies and cognitive phenotypes in the aging population83. RNA was extracted 666 

from the gray matter of DLPFC, and next-generation RNA sequencing (RNA-Seq) was done 667 

on the Illumina HiSeq for samples with an RNA integrity score > 5 and a quantity threshold 668 

> 5 ug, as previously described83,84. We quantile-normalized the fragments per kilobase of 669 

transcript per million fragments mapped (FPKM), correcting for batch effect with 670 

Combat84,85. These adjusted FPKM values were used for analysis. A subset of 407 671 

participants had quality-controlled RNA-Seq data and were included in the eQTL analysis.  672 

DNA methylation levels from the gray matter of DLPFC were measured using the 673 

Illumina HumanMethylation450 BeadChip, and the measurements underwent QC 674 

processing as previously described (i.e. detection p < 0.01 for all samples)83, yielding 708 675 

participants with 415,848 discrete CpG dinucleotide sites with methylation measurement. 676 

Any missing methylation levels from any of quality-controlled CpG dinucleotide sites were 677 

imputed using a k-nearest neighbor algorithm for k = 10083. A subset of 488 participants in 678 

our study had quality-controlled genome-wide methylation data and were included in the 679 

cis-methylation QTL analysis. Finally, the associations between our index SNPs and CpG 680 

sites were plotted along Roadmap Epigenomic chromatin states for ten brain tissues86.  681 

We further queried cis and trans eQTLs in non-brain and brain tissues from additional 682 

eQTL repositories87. We searched for proxies to our index SNPs with a r2>0.8 using the 683 

European population reference in rAggr (1000G, phase 1, Mar 2012), and then queried 684 

index and proxy SNPs against eQTLs from diverse databases.88 Blood cell related eQTL 685 

studies included fresh lymphocytes and leukocytes, leukocyte samples in individuals with 686 

Celiac disease, whole blood samples, lymphoblastoid cell lines (LCL) derived from 687 

asthmatic children, HapMap LCL from 3 populations, a separate study on HapMap CEU LCL, 688 
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LCL population samples, neutrophils, CD19+ B cells, primary PHA-stimulated T cells, CD4+ 689 

T cells, peripheral blood monocytes, long non-coding RNAs in monocytes and CD14+ 690 

monocytes before and after stimulation with LPS or interferon-gamma, CD11+ dendritic 691 

cells before and after Mycobacterium tuberculosis infection and a separate study of 692 

dendritic cells before or after stimulation with lipopolysaccharide (LPS), influenza or 693 

interferon-beta; micro-RNA QTLs, DNase-I QTLs, histone acetylation QTLs, and ribosomal 694 

occupancy QTLs were also queried for LCL; splicing QTLs and micro-RNA QTLs were 695 

queried in whole blood. Non-blood cell tissue eQTL searches included omental and 696 

subcutaneous adipose, visceral fat stomach, endometrial carcinomas, ER+ and ER- breast 697 

cancer tumor cells, liver, osteoblasts, intestine and normal and cancerous colon, skeletal 698 

muscle, breast tissue (normal and cancer), lung, skin, primary fibroblasts, sputum, 699 

pancreatic islet cells, prostate, rectal mucosa, arterial wall and heart tissue from left 700 

ventricles and left and right atria. Micro-RNA QTLs were also queried for gluteal and 701 

abdominal adipose and liver. Methylation QTLs were queried in pancreatic islet cells. 702 

Further mRNA and micro-RNA QTLs were queried from ER+ invasive breast cancer 703 

samples, colon-, kidney renal clear-, lung- and prostate-adenocarcinoma samples. Brain 704 

eQTL studies included brain cortex, cerebellar cortex, cerebellum, frontal cortex, gliomas, 705 

hippocampus, inferior olivary nucleus (from medulla), intralobular white matter, occiptal 706 

cortex, parietal lobe, pons, pre-frontal cortex, putamen (at the level of anterior 707 

commussure), substantia nigra, temporal cortex, thalamus and visual cortex. eQTL data 708 

was integrated from online sources including ScanDB89, the GTEx Portal90, and the 709 

Pritchard Lab91. Cerebellum, parietal lobe and liver eQTL data was downloaded from 710 

ScanDB and cis-eQTL were limited to those with P<1.0 × 10-6 and trans-eQTLs with P < 5.0 711 
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× 10-8. Results for GTEx Analysis V6 for 48 tissues were downloaded from the GTEx Portal 712 

(www.gtexportal.org). For all gene-level eQTL, if at least 1 SNP passed the tissue-specific 713 

empirical threshold in GTEx, the best SNP for that eQTL was always retained.  714 

 715 

Associations of cognition and neuropathology phenotypes with gene expression in 716 

brain 717 

We further related cognitive function and neuropathological findings to the expression 718 

of the 199 gene set influencing subcortical volumes in 508 brains from the ROSMAP 719 

samples.  720 

Briefly, brain autopsies were performed as previously described and each brain was 721 

inspected for common pathologies relating to loss of cognition in aging populations92,93. In 722 

this report, we included: neurofibrillary tangles, neuritic plaques, β-amyloid load, tau 723 

density, hippocampal sclerosis, Lewy bodies and neuronal loss in substantia nigra. 724 

Neurofibrillary tangles and neuritic plaques were visualized by modified Bielschowsky 725 

silver stain, then counted and scaled in five brain regions: mid-frontal, temporal, inferior 726 

parietal, entorhinal cortex, and hippocampus CA1. Composite scores for each of these three 727 

pathology types were derived by scaling the counts within each of the five regions, and 728 

taking the square root of the average of the regional scaled values to account for their 729 

positively skewed distribution92-94. β-amyloid load and tau tangle density were measured 730 

by immunohistochemistry and square root transformed as previously described95. Lewy 731 

bodies were identified using immunohistochemistry and were further dichotomized as 732 

present or absent based on the recommendations of the Report of the Consortium on DLB 733 

International Workshop96. Hippocampal sclerosis was recorded as either present or absent 734 
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as evaluated with H&E stain. Nigral neuronal loss was assessed in the substantia nigra in 735 

the mid to rostral midbrain near or at the exit of the 3rd nerve using H&E stain and 6 736 

micron sections using a semi-quantitative scale (0–3)97. 737 

Global cognition was computed as a composite score of 19 (ROS) and 17 (MAP) 738 

cognitive tests performed at annual evaluations including five cognitive domains: episodic 739 

memory, semantic memory, working memory, perceptual speed, and visuospatial 740 

ability92,93. From these scores, we created normalized summary measures to limit the 741 

influence of outliers. We used global cognition proximate to death to derive cognitive 742 

reserve. Separately, the residual slope of global cognitive change and the residual slopes of 743 

cognitive change in the five cognitive domains were derived through general linear mixed 744 

models, controlling for age at enrollment, sex, and education. 745 

 746 

Phenotypic and genetic correlations 747 

We estimated the Pearson's partial phenotypic correlations among the volumes of 748 

subcortical structures in 894 participants from the Framingham Heart Study. Similarly, to 749 

the GWA, these analyses were corrected for the effects of sex, age, age², total intracranial 750 

volume and PC1.  751 

Genetic correlation analyses were performed using LDSC regression methods81. The 752 

GWA meta-analysis results for the seven subcortical brain structures were correlated with 753 

each other’s, as well as with published GWA studies on the following traits: hippocampal 754 

volume20, intracranial volume21, white matter hyperintensities22, stroke subtypes23, adult 755 

height and body mass index24, fat-free mass and whole-body water mass98, Alzheimer’s 756 
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disease26, Parkinson’s Disease27, general cognitive function25, bipolar disorder and 757 

schizophrenia28, and ADHD29. 758 

 759 

Look-up of functional orthologs in Drosophila melanogaster 760 

For the cross-species assessment of gene-phenotype relationships in Drosophila, we 761 

relied on a similar analytic approach as in prior work99. Human genes were mapped to 762 

corresponding Drosophila orthologs using DIOPT: Drosophila Integrated Ortholog 763 

Prediction Tool (www.flyrnai.org/diopt)100, which incorporates 14 distinct algorithms to 764 

define orthology. Fly gene orthologs were defined based on a DIOPT score of 2 or greater, 765 

indicating at least 2 algorithms were in agreement on the pairing. When more than one of 766 

the fly ortholog was predicted, all such genes meeting this threshold were included in our 767 

analyses. This resulted in a gene set consisting of 168 Drosophila homologs of human 768 

candidate genes at subcortical volume susceptibility loci. The resulting 37 genes associated 769 

with “neuroanatomy defective” phenotypes in Drosophila (22%) were annotated based on 770 

the controlled vocabulary terms implemented in FlyBase (flybase.org/)101. Genes causing 771 

"neuroanatomy defective" phenotypes in Drosophila include both loss- or gain-of-function 772 

genetic manipulations of fly gene homologs. Loss-of-function studies included both 773 

classical mutant alleles (e.g. point mutations, gene deletions, or transposon insertions) or 774 

gene knockdown using RNA interference transgenic strains. Gain-of-function experiments 775 

were based on tissue specific overexpression of the fly gene orthologs. The hypergeometric 776 

overlap test was used to assess for enrichment of “neuroanatomy defective” phenotypes 777 

among the conserved gene set. 778 

 779 
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Protein-protein interactions and network analysis 780 

We used the human STRING database resource (string-db.org)32 for the exploration of 781 

direct (physical) and indirect (functional) protein-protein interactions based on the gene 782 

set derived from the GWA results and functional annotations (Supplementary Table 13). 783 

The input parameters included a medium-confidence interaction scores (0.4) with first and 784 

second shells of maximum 5 interactors. Finally, we generated a protein-protein 785 

interaction network based on known and predicted interactions. 786 

 787 

Partitioning heritability 788 

Partitioned heritability was estimated with stratified LDSC methods30. This method 789 

partitions SNP heritability using GWAS summary results and accounting by LD. We used 790 

the meta-analysis results from the European sample to partitioning SNPs by 28 functional 791 

categories, including: coding, intron, promoter, 3’/5’ UTRs, digital genomic footprint (DGF), 792 

transcription factor binding sites, chromHMM and Segway annotations for six cell lines, 793 

DNase I hypersensitivity sites (DHS), H3K4me1, H3K4me3 and H3K9ac marks, two sets of 794 

H3K27ac marks, super-enhancers, conserved regions in mammals, and FANTOM5 795 

enhancers. Significance was set at P < (0.05/(28 x 6)) = 3 × 10-4.  796 

 797 

Data availability 798 

The genome-wide summary statistics that support the findings of this study will be made 799 

available through the CHARGE dbGaP (accession number phs000930) and ENIGMA 800 

(http://enigma.ini.usc.edu/research/download-enigma-gwas-results) websites. 801 

 802 

http://enigma.ini.usc.edu/research/download-enigma-gwas-results
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 Editorial summary:  866 

Genome-wide analysis identifies variants associated with the volume of seven different sub-cortical 867 

brain regions defined by magnetic resonance imaging. Implicated genes are involved in 868 

neurodevelopmental and synaptic signaling pathways.  869 
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