
        

Citation for published version:
Chen, Q, Zhang, C, Zang, J & Ning, D 2019, 'A coupled Particle-In-Cell (PIC)-Discrete Element Method (DEM)
solver for fluid-solid mixture flow simulations', Journal of Fluids and Structures, vol. 91, 102772, pp. 1-15.
https://doi.org/10.1016/j.jfluidstructs.2019.102772

DOI:
10.1016/j.jfluidstructs.2019.102772

Publication date:
2019

Document Version
Peer reviewed version

Link to publication

Publisher Rights
CC BY-NC-ND

University of Bath

Alternative formats
If you require this document in an alternative format, please contact:
openaccess@bath.ac.uk

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 05. Jul. 2024

https://doi.org/10.1016/j.jfluidstructs.2019.102772
https://doi.org/10.1016/j.jfluidstructs.2019.102772
https://researchportal.bath.ac.uk/en/publications/4f51a8ca-deae-45cf-bc3b-abef129ac663


A coupled Particle-In-Cell (PIC)-Discrete Element Method (DEM)

solver for fluid-solid mixture flow simulations

Qiang Chena,b, Chongwei Zhangb, Jun Zanga,b,∗, Dezhi Ningb

aResearch Unit for Water, Environment and Infrastructure Resilience (WEIR), Department of
Architecture and Civil Engineering, University of Bath, BA2 7AY, U.K.

bState Key Laboratory of Coastal and Offshore Engineering, Dalian University of Technology, Dalian,
116024, China

Abstract

In this paper, a coupled Particle-In-Cell (PIC)-Discrete Element Method (DEM) model is

developed for numerical simulations of complex fluid-solid mixture flows. The fluid-solid

interaction part is solved using the hybrid Eulerian-Lagrangian PIC model, and the solid-

solid interaction part is simulated using the Lagrangian DEM model. The PIC model gives

the coupled PIC-DEM model both Eulerian efficiency and Lagrangian flexibility, compared

to purely Lagrangian methods such as Smoothed Particle Hydrodynamics (SPH). The time

step difference between the PIC model and the DEM model is handled using the idea of

subcycles. In addition, a straightforward method is proposed for mitigating the issue of

unphysical gaps between solids during collision due to the use of the Cartesian cut cell

method for fluid-solid interaction. The PIC-DEM model is validated by physical experiments

of the collapse of solid cylinder layers with and without water. Following that, the capability

of the numerical model is further demonstrated through a more complex problem of solid

dumping through fall pipes. The results show great potential of the PIC-DEM model being

a useful tool for simulating complex fluid-solid mixture flows.

Keywords: Particle-In-Cell (PIC) method, Discrete element method (DEM), fluid-solid

mixture flows, fall-pipe solid dumping

1. Introduction

Numerical simulation of fluid-solid mixture flows, typically involving large number of

solids, remains an important challenge in a number of engineering disciplines such as coastal
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and offshore engineering. For example, floating foams are being investigated as an anti-

sloshing technique for oil and liquefied natural gas (LNG) transport (Zhang et al., 2019).

Numerical modelling in such area involves complex coupling amongst fluid-fluid, fluid-solid

and solid-solid interactions. The numerical time steps required for modelling each phase vary

significantly due to different interaction mechanisms. In addition, difficulties arise in dealing

with numerical schemes such as free-surface tracking/capturing, solution of the advection

term, fluid-solid interface tracking/capturing and solid-solid collisions. Traditional methods

for such simulations are usually purely Lagrangian; for example, meshless fluid models,

such as Smoothed Particle Hydrodynamics (SPH) (Violeau and Rogers, 2016), are typically

coupled with the Lagrangian Discrete Element Method (DEM) model for solids (Cundall and

Strack, 1979). However, the Lagrangian nature has made these methods computationally

very expensive. It is therefore desired that Eulerian methods are to be incorporated into

such coupling methods for numerical efficiency, which is the aim of this paper.

Despite being traditionally very expensive, meshless methods such as SPH (Violeau and

Rogers, 2016) and moving particle semi-implicit (MPS) method (Koshizuka and Oka, 1996)

are more suitable for simulating complex fluid flows, compared to conventional grid-based

Eulerian methods. This is because meshless methods are natural in tracking free surfaces

(particularly with large deformations) and solving any transport terms (He et al., 2018).

Moreover, the fluid-solid interface is always clearly represented in the calculations of these

meshless models (Zhang et al., 2009). Since the DEM is also fully Lagrangian, many re-

searchers focusing on meshless method, particularly the SPH method, have made efforts to

couple such fluid models with DEM for simulating complex fluid-solid mixture flows (see

e.g. Zhang et al. (2009); Canelas et al. (2016); He et al. (2018)). The fully Lagrangian DEM

(Cundall and Strack, 1979) has become very popular for solid-solid interaction in many

engineering fields since its invention. The use of the overlap between solids for calculating

contact forces has made this method efficient in both CPU time and memory storage re-

quirement. A comprehensive review of the DEM for simulations of complex granular flows

can be found in Guo and Curtis (2015).

Earlier attempts to involve Eulerian methods for fluid-solid mixture flow simulations

can be found in the works of Glowinski et al. (1999) and Patankar et al. (2000), where

the Distributed Lagrangian multiplier (DLM) method has been developed for fluid-solid in-

teractions. However, no free surface was considered in these simulations. Recently, Chen

et al. (2016) developed a Particle-In-Cell (PIC) method based solver for simulating wave

interaction with floating bodies in the maritime engineering field. The PIC method was ini-
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tially developed in an attempt to combine the advantages of both Eulerian and Lagrangian

methods for fluid flows (Harlow, 1964). It features from a combined use of Lagrangian par-

ticles and Eulerian grid. In particular, the particles are used to solve the transport terms

and track the free-surface position for Lagrangian flexibility, while the gird is employed for

solving the non-advection terms for computational efficiency. One of the primary benefits

arising from the particle nature of the PIC method is that this method incorporates the

flexibility and accuracy of meshless methods in terms of handling large free-surface defor-

mations and solving the transport terms. Another benefit due to the grid nature is that it is

very convenient to incorporate any grid-based optimised numerical schemes in PIC. This is

because the main calculations, such as the enforcement of incompressibility and boundary

conditions, are on the background grid. For more details and recent developments on the

PIC method, the reader is referred to the works of Edwards and Bridson (2012), Maljaars

et al. (2018) and Chen et al. (2019). In this paper, we further extend the PIC model of

Chen et al. (2016) to simulate complex fluid-solid mixture flows (with free surface) through

coupling with a DEM model. The coupled model is referred to as PIC-DEM hereafter. The

aim, as mentioned above, is to take advantage of the hybrid Eulerian-Lagrangian nature of

the PIC method to improve numerical efficiency. Note that despite being hybrid, the main

computations of the PIC part are on an Eulerian grid. Hence, numerical efficiency can be

expected; in fact, with new innovations, the PIC method could be several orders faster than

SPH (Violeau and Rogers, 2016; Chen, 2017).

The paper is organised as follows: Section 2 gives an overview of the PIC-DEM model.

Next, in Section 3 the numerical model is first validated against an existing experiment of

the collapse of multiple solid cylinder layers with and without water. Then, an extension

numerical study on fall-pipe solid dumping is conducted. Finally, in Section 4 conclusions

are drawn.

2. Numerical Model

In the PIC-DEM model developed for fluid-solid mixture flows, the fluid-solid interaction

part is resolved using the PIC model and the solid-solid interaction part is computed by the

DEM model. In the following subsections, the PIC model, the DEM model and the coupling

algorithm for the PIC-DEM model are introduced. In this paper, the PIC-DEM model is

developed in two spatial dimensions (2D).
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2.1. The PIC model

The present PIC model solves the incompressible Newtonian Navier-Stokes equations for

single-phase flow:

∇·u = 0 , (1)

∂u

∂t
+ (u · ∇)u = −1

ρ
∇p+ ν∇2u + g , (2)

where, in 2D, u = [u,w]T is the velocity field; g = [0.0,-9.81 m/s2]T represents the body

force due to gravity; p is pressure; t is time, and ν and ρ are the kinematic viscosity and

density of the fluid, respectively.

The solution of the governing equations follows the PIC methodology proposed in Brack-

bill and Ruppel (1986). Both a set of Lagrangian particles and a background Eulerian grid

are employed to discretise the computational domain (see Fig. 1). The particles carry the

fluid properties such as the mass and momentum, while the background grid is employed

solely for computational convenience. During each time step, the velocity field carried by

the particles is first mapped onto the grid in a mass and momentum conserving way, and

the free-surface location indicated by the particles are also reconstructed on grid. Then,

Eq. 1 and Eq. 2, ignoring the advection term (the second term at the left hand side (LHS)

of Eq. 2), are solved on the grid for an updated divergence-free velocity field. Finally, the

acceleration field (i.e. velocity change between the initially mapped velocity field and the

updated divergence-free velocity field) on the grid is interpolated to increment the velocity

field carried by the particles and the remaining advection term is solved by moving the par-

ticles in a Lagrangian manner. Detailed implementations of these steps are introduced in

the works of Chen et al. (2016) (2D version) and Chen et al. (2018) (3D version with domain

decomposition based MPI parallelisation). In what follows, only the major components of

the PIC model associated with the development of the PIC-DEM model are introduced.

As incompressible flows are assumed, during the solution on the grid a pressure Pois-

son equation (PPE) is constructed and solved for the fluid pressure. During the solution

of the PPE, the boundary conditions for both the free surface and the solid surface are

incorporated:

p = 0 on ζ(x, t), (3)

where ζ(x, t) represents the free-surface position reconstructed on the grid based on the

4



Free surface

Freely movable

solids

Fluid

particle

Staggered

grid

Solid

i,ji-1,j i+1,j

i,j+1i-1,j-1 i+1,j+1

i,j-1i-1,j-1 i+1,j-1

x

z

Fluid

Fig. 1: Sketch of the computational domain, the staggered grid and the fluid particles.

particle position, and

u = Ub and n · (∆tρ−1∇p) = n · (Ũb −Un+1
b ) on ∂ΩS(x, t), (4)

where ∂ΩS denotes the solid surface; Un+1
b is the velocity on the solid surface at time step

n+ 1; n is the unit outward normal vector of the solid surface and Ũb represents a tentative

velocity on the solid surface. Note that the tentative velocity is not involved in the final

solution for the fluid pressure and therefore does not need to be calculated (see Eq. 5 in

what follows).

The PPE is discretised and solved in a finite volume sense. Over a fluid cell, Gij, that

is partially occupied by a solid (or, in other words, cut by a solid), the discretised PPE can
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be expressed by (see detailed derivations in Chen et al. (2016)):

Ei− 1
2
,j ·

∆t(pn+1
i−1,j − pn+1

i,j )

ρ∆x
+ Ei+ 1

2
,j ·

∆t(pn+1
i+1,j − pn+1

i,j )

ρ∆x

+ Ei,j− 1
2
·

∆t(pn+1
i,j−1 − pn+1

i,j )

ρ∆z
+ Ei,j+ 1

2
·

∆t(pn+1
i,j+1 − pn+1

i,j )

ρ∆z

= Ei+ 1
2
,j · ũi+ 1

2
,j −Ei− 1

2
,j · ũi− 1

2
,j +Ei,j+ 1

2
· w̃i,j+ 1

2
−Ei,j− 1

2
· w̃i,j− 1

2
−
∫
Gij

⋂
∂ΩS

n ·Un+1
b dl ,

(5)

where E denotes the length of a cell edge that is not occupied by solids; ∆x = ∆z are the

grid sizes; dl represents the line differential. Special attention should be drawn to the last

term at the right hand side (RHS) of Eq. 5. The velocity integral requires the velocity on

the solid surface at the time step n + 1, i.e. Un+1
b . However, this is unknown at the time

step n for freely moving solids. To resolve this issue, the solid velocity Un+1 is reinterpreted

using the fluid pressures in cells immediately surrounding the solid:

Un+1 = Un + ∆tM−1
s Jpn+1 + ∆tM−1

s (Fg + Fcollision), (6)

where Un and Un+1 are the solid velocities at time steps n and n + 1, respectively; ∆t

is the time step for the fluid solver; Ms is the mass matrix of the solid; J is an operator

that transfers the fluid pressures to fluid forces, Ffluid, on the solid; Fg and Fcollision are the

external forces due to gravity and solid-solid collisions, of which the latter is computed using

the DEM model introduced in the following sections. Once Un+1 is constructed, Un+1
b can

be reinterpreted straightforwardly to the same components as in Eq. 6 using the law of rigid

body motion. When substituting the reconstructed Un+1
b to Eq. 5, the terms associated with

∆tM−1
s Jpn+1 are moved to the LHS of Eq. 5. This revises only the coefficients of the matrix

of the linear system of equations. In such way, the fluid pressure is implicitly resolved for in

the PIC model, which makes the model both efficient and stable. For detailed computations

of the operator J, the reader is referred to Chen et al. (2016) (in 2D) and Chen et al. (2019)

(in 3D).

Once the fluid pressure, pn+1, is obtained on the grid, a divergence-free velocity field

on the grid can be calculated using the pressure projection method (Chorin, 1968). As

mentioned above, the particles carrying the updated velocity field are then advected through

the divergence-free velocity field on the grid. Also, the positions and velocities of the solids

are updated at this stage; details are given in Section 2.3.
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2.2. The DEM model for solid-solid contact

2.2.1. The contact force calculation

The DEM model presented in Zhang et al. (2009) is slightly modified for the current

simulations. The contact forces between two solids are simulated by a spring and dashpot

model. In particular, the contact forces and moments acting on a solid i due to a solid j is

calculated as:

Fj→i,ξ(t) = kξδij(t) + cξUij,ξ(t) , (7)

Fj→i,η(t) = kη (Uij,η(t)∆tDEM) + cηUij,η(t) , (8)

Mj→i(t) = Fj→i,η(t)Ri , (9)

where the subscripts ξ and η represent the normal and tangent directions, respectively; kξ

and kη are the stiffnesses coefficients in the normal and tangent directions, respectively; cξ

and cη are the damping coefficients in the normal and tangent directions, respectively; δij is

the overlapped distance between the solids i and j; Uij,ξ and Uij,η are the relative velocities

in the normal and tangent directions, respectively; ∆tDEM is the time step used in the DEM

modelling and Ri is the arm length. Note that for the spring force in Eq. 8 (i.e. the first

term at the RHS), while only one time step displacement in the tangent direction is used

here (i.e. Uij,η(t)∆tDEM), an accumulated value of the displacement during the contact is

applied in Zhang et al. (2009).

In Eq. 7 and Eq. 8, the stiffness and damping coefficients are calculated as:

kξ =
mij‖g‖
θ∆x

, (10)

cξ = 2α
√
mijkξ , (11)

kη =
kξ

2(1 + ψ)
, (12)

cη =
cξ√

2(1 + ψ)
. (13)

In the above equations, mij = (mi + mj)/2, where mi and mj are the masses of the solids

i and j, respectively. However, note that in this paper only solids with an identical mass

are simulated, i.e. mi = mj. θ is a coefficient that controls the penetration length and is

set at 1% for all of the simulations in this paper. ψ is the Poisson ratio and α is the tuning

parameter.

In addition to Eq. 7-Eq. 13, the following restraints are also enforced during the simula-
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tion:

Fj→i,ξ(t) = Fj→i,η(t) = 0 if δij(t) = 0 , (14)

|Fj→i,η(t)| ≤ µ|Fj→i,ξ(t)| , (15)

where µ is the maximum static friction coefficient.

The total contact forces and moments acting on the solid i is thus a sum up of all the

contact forces due to its neighbouring solids:

Fi =
∑
j

Fj→i , (16)

Mi =
∑
j

Mj→i . (17)

Also, in order to ensure numerical stability in the DEM simulation, following Zhang et al.

(2009) ∆tDEM is calculated by:

∆tDEM =
2π

γ

√
mij

kξ
, (18)

where γ is set at 150 in the current simulations, which gives a DEM time step similar to that

recommended in Robinson et al. (2014). Other recommendations of the coefficient γ can

also be found in the open literature (see e.g. Zhang et al. (2009) and Canelas et al. (2016)).

Note that typically ∆tDEM is smaller than the time step ∆t used in the fluid modelling. A

coupling algorithm is thus required to deal with the difference between the time steps; this

is introduced in Section 2.3.

2.2.2. A gap problem and solution

In the current Cartesian cut cell method based numerical model for fluid-solid interac-

tion (see Section 2.1), it is desired that one computational cell is at most occupied by one

solid. It is numerically troublesome and can often lead to numerical instability issue if one

computational cell is occupied by multiple solids. On the other hand, it is required by the

DEM model that the solids contact and overlap with each other in order to generate the

collision forces. In other words, around the contact point the computational cells will be

occupied by multiple solids. As a compromise, we propose using an imaginary boundary for

each solid (see Fig. 2). Here, it is instead the imaginary boundaries overlapping with each

other that gives rise to the contact forces, while ensuring a gap between the real boundaries
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Fig. 2: Sketch showing the contact method in the current DEM model.

of the solids. The gap should be as small as possible when the collision happens. In the

current numerical framework, a minimum length of two grid cell sizes is used for the gaps.

Thus, for the circular solids presented in Fig. 2 for example, the overlap distance δij(t) is

calculated as:

δij(t) =

{
ri + rj + 2∆x− dij(t) if ri + rj + 2∆x > dij(t)

0 if ri + rj + 2∆x ≤ dij(t)
, (19)

where ri and rj are the radii of the circular solids i and j respectively and dij represents

the distance between the centres of the two solids. Note that in case of a solid i contacting

with a wall boundary, δiw(t) is calculated in the same manner, with rj set to zero and dij

representing the distance between the centre of solid i and the boundary of the wall.

While the use of the gap resolves the conflict between the cut cell method and the DEM, it

is unphysical in principle. One can reduce the grid size or use an adaptive grid configuration

to make the numerical gap small, or refer to specific numerical methods targeting on this type

of thin gap problem (see e.g. Qiu et al. (2015)). But it may increase the computational cost

significantly or introduce additional numerical complexities. We propose a simple method to

mitigate this issue based on the understanding that the fluid flow is prevented at the contact

area. The contact area is defined as a narrow band area (in 2D) centred at the contact point

along the tangent direction of the contact force. The idea is to linearly dissipate the fluid
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Fig. 3: Sketch showing the dissipation function C in the contact area.

velocity carried by the particles who are located within the contact area by:

vp = Cijvp,cal if δij(t) > 0 , (20)

where vp,cal represents the calculated particle velocity after the fluid step and C is a dissi-

pation function. Fig. 3 shows the function of C. It is designed that outside the contact area

C is set to 1.0, while within the contact area C is linearly reduced to β at the contact point.

β ∈ [0, 1] is a coefficient that can be tuned according to the test cases under consideration.

The length of the contact area is set at 4∆x empirically in the current simulations. In

Section 3.2, we show that the use of this approach can effectively improve the simulation

results.

2.3. Coupling algorithm of the PIC-DEM model

The major computation of the PIC model for fluid flows is on a fixed Cartesian grid

using both finite difference method and finite volume method. Therefore, the characteristic

time step of the PIC fluid model is expected to be much larger than that of the DEM model

(Zhang et al., 2009). To overcome this difficulty, we employ the idea of using subcycles

following Glowinski et al. (1999).

First, Fig. 4 gives an overall algorithm of the coupled PIC-DEM model. It is worth

mentioning that as depicted in Fig. 4, during the solution of Eq. 5, the contact force due to

solid collisions in Eq. 6 is calculated using the velocities and positions of the solids at the

current step (i.e. time level n) as a prediction, which will be recalculated in the DEM part
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Relax particle velocity in 
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Fig. 4: Schematic showing the coupling algorithm of the PIC-DEM model.

(see below). Note that as this is part of the fluid model, ∆t is used in the contact force

prediction, instead of ∆tDEM (see Eq. 8).

Once the fluid pressure pn+1 is solved for, the velocities and positions of the solids are

updated in a subcycle manner using the following procedure:

(1) Set Un+1
0 = Un +

(
M−1

s F n+1
fluid + g

)
∆t and Xn+1

0 = Xn;

(2) Do k = 1, K

Un+1
a = Un+1

k−1 + ∆tDEMM−1
s Fcollision,a(X

n+1
k−1 ,U

n+1
k−1 ) (21)

Xn+1
a = Xn+1

k−1 +

(
Un + Un+1

a

2

)
∆tDEM (22)

Un+1
k = Un+1

k−1 + ∆tDEMM−1
s

(
Fcollision,a(X

n+1
k−1 ,U

n+1
k−1 ) + Fcollision,b(X

n+1
a ,Un+1

a )

2

)
(23)

Xn+1
k = Xn+1

k−1 +

(
Un + Un+1

k

2

)
∆tDEM (24)
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End Do;

(3) Set Un+1 = Un+1
K and Xn+1 = Xn+1

K .

In the above equations, the subscript k represents the kth subcycle; Ffluid and Fcollision

are the fluid force and the contact force, respectively; X denotes the position of the solid.

The total number of subcycles, K, is calculated as K = INT(∆t/∆tDEM). In doing so, the

DEM time step ∆tDEM is modified as ∆tDEM = ∆t/K. Also, the following condition is

imposed for numerical stability:

∆tDEM = ∆t if ∆tDEM > ∆t . (25)

3. Results and Discussions

In this section, the DEM model implemented in the PIC-DEM model is first validated

against a physical experiment done by Zhang et al. (2009) for the collapse of multiple

solid cylinder layers. Following that, the PIC-DEM model is validated using the physical

experiment presented also in the above paper for the breaking of a water dam involving

multiple solid cylinder layers. Finally, the PIC-DEM model is applied to simulate the fall-

pipe solid dumping tests similar to those presented in Chen (2017).

3.1. Validation of the DEM model

The DEM model is verified using the experiment for the collapse of multiple solid cylinder

layers performed by Zhang et al. (2009), with the aim to determine the appropriate values

for the coefficients mentioned in Section 2.2. Fig. 5 shows a sketch of the setup of the

Tank wall

Vertically Movable
plate

26
 c

m

26 cm

6 cm

Cylinders

x
z

Fig. 5: Schematic showing the setup of the experiment for the collapse of multiple solid cylinder layers.
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Table 1: The DEM parameters used in the simulation.

Parameters Values
Damping coefficient α 0.4

Poisson ratio ψ 0.3
Maximum static friction coefficient µ 0.3

experiment. As seen from Fig. 5, layers of solids with five or six cylinders are alternatively

piled up against the LHS wall of a tank and a movable plate. During the experiment,

the plate was pulled out vertically upwards, causing the cylinder layers to collapse due to

gravity. The tank was 26 cm long, 10 cm wide and 26 cm high. The distance between

the left wall and the plate was 6 cm. The solid cylinders were made of aluminum with

a density of 2.7 × 103 kg/m3. The cylinders were identical and had a diameter of 1.0 cm

and a length of 9.9 cm, which makes this test case a 2D problem in principle. Note that

different numbers of layers of cylinders were tested in the experiment, and for the current

DEM model validation, six layers of cylinders are used as seen from Fig. 5. For full details

of the setup of the experiment, the reader is referred to Zhang et al. (2009).

In terms of the numerical simulation, Table 1 gives a list of all the parameters tuned by

the experiment. Also, in the simulation, despite that no fluid is involved, the background

computational grid size is set to ∆x = ∆z = 0.05 cm, which leads to approximately 20 cells

across the diameter of the cylinder. This number of cells is recommended by our previous grid

convergence study on simulating wave interaction with a fixed cylinder using the PIC model

(Chen et al., 2016). Note that because the PIC-DEM model uses a gap of approximately

2∆x wide (i.e. 0.1 cm in this test case) between the cylinders, the initial overall length of

the cylinder layers (in the x-direction) is larger than 6 cm as in the experiment (see Fig. 5).

Therefore, in the numerical simulation the tank size is enlarged correspondingly by a factor

of 1.1. In addition, the plate is not simulated in the numerical model.

Fig. 6 shows a comparison between the experimental and numerical results. It can be

seen that the numerical model reproduces well the behaviour of the cylinders. Fig. 7 further

compares the transient average location of the mass centres of the cylinders. The average

location of the mass centres is calculated by:

xave =

∑N
i=1 Xi

N
. (26)

Again, it can be seen from Fig. 7 that the numerical predictions agree well with the exper-

imental observations. In short summary, the numerical results provide confidence for the
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Fig. 6: Comparison between the experimental and numerical results for the collapse of six solid cylinder lay-
ers. Left: experimental photography, reprinted from Zhang et al. (2009), Copyright (2009), with permission
from Elsevier; Right: snapshots of the present numerical results.

DEM model, as well as the tuned parameters, to be used in the fluid-solid mixture flow

tests.

3.2. Validation of the fluid-solid PIC-DEM model

The coupled PIC-DEM model is verified by the experiment for the breaking of a water

dam involving multiple solid cylinder layers. In this test case, the cylinders are piled up in

the same manner as that used for validating the DEM model. However, the area between

the left wall of the tank and the movable plate is filled with water (ρ = 1.0 × 103 kg/m3,

ν = 1.0× 10−6 m2s−1). The height of the water dam is fixed at 12 cm, and 6, 8, 10 and 12

layers of solid cylinders are tested.

For the setup of the numerical model, the grid size and the DEM parameters are all
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Fig. 7: Comparisons for the time histories of the location of the average mass centres for the collapse of six
solid cylinder layers. Left: in the horizontal direction; Right: in the vertical direction. L represents the tank
length. The experimental data are digitised from Zhang et al. (2009).

kept the same as those used in the above solids only test. Also, numerical simulations with

and without the solution for the gap problem discussed in Section 2.2.2 are both run for

comparison.

Fig. 8 and Fig. 9 show the breaking of the water dam involving 6 and 12 layers of cylinders

over time, respectively. Comparisons are made amongst the experimental observations,

numerical results with the gap solution (with β = 0.5, see Fig. 3) and numerical results

without the gap solution (i.e. β = 1.0). It can be seen that with the gap solution, the

numerical results match well with the experimental observations, while without the solution

the cylinders are rushed towards the RHS wall of the tank more easily as water can flow past

the gaps more easily. This clearly demonstrates the effectiveness of the solution proposed

in Section 2.2.2 for the gap problem. Furthermore, it can be seen from Fig. 8 and Fig. 9

that the numerical model (with gap solution, β = 0.5) captures both the cylinder motion

and the free-surface deformation reasonably well. It is also interesting to note that in the

12 layers case the dam-break flow appears much less violent than that in the 6 layers case.

Finally, Fig. 10 presents the results of the arrival time of the cylinders, which is defined

as the first instance of a cylinder coming into contact with the RHS wall of the tank.

The numerical results in general agree well with the experimental data, considering the

complexity of this test case and the time scale (within half a second).
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 = 0.5  = 1.0

Fig. 8: Comparison between the experimental and numerical results for the breaking of a water dam involving
six solid cylinder layers. Left: experimental photography, reprinted from Zhang et al. (2009), Copyright
(2009), with permission from Elsevier; Middle: snapshots of the present numerical results with gap solution;
Right: snapshots of the present numerical results without gap solution.

3.3. Application to a fall-pipe solid dumping test

In this section, the coupled PIC-DEM model is applied to a fall-pipe solid dumping test.

Fig. 11 shows a sketch of the setup of the numerical simulation. This test case is an extension

to the validation case of the fluid-solid mixture flow. The tank is now fully filled with water

(in the x-direction) with the same water depth as above. Here, the cylinders are initially piled

in the middle of the tank just above the still water level (S.W.L) and, particularly, inside

a vertical pipe with a funnel on the top (see Fig. 11). During the simulation, the cylinders

fall through the pipe onto the bottom of the tank due to gravity. This test case resembles

the targeted placement of rocks onto the sea bed for the protection of offshore pipelines

and cables and scour protection for windfarm structures (Beemsterboer, 2013). The idea

is to numerically test the productivity of fall-pipe solid dumping and to demonstrate the

capability of the current numerical model on handling such a complex fluid-solid interaction
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 = 0.5  = 1.0

Fig. 9: Comparison between the experimental and numerical results for the breaking of a water dam involving
twelve solid cylinder layers. Left: experimental photography, reprinted from Zhang et al. (2009), Copyright
(2009), with permission from Elsevier; Middle: snapshots of the present numerical results with gap solution;
Right: snapshots of the present numerical results without gap solution.

scenario.

All of the numerical parameters of the PIC-DEM model are kept the same as those used

for the validation case in Section 3.2. The boundary conditions of the vertical fall pipe are

set the same as those of the tank walls. Six layers of cylinders with an alternative five or six

cylinders per layer are simulated (see Fig. 11).

In addition to the continuous pipe as seen in Fig. 11, a perforated pipe, resembling semi-

open fall-pipes (Beemsterboer, 2013), is also simulated for comparison. In particular, the

perforated pipe has a small hole (0.1 cm wide) on the pipe walls every 2 cm from the bottom

to the top. Fig. 12 shows a comparison for the cylinder and water behaviours over time using

the continuous and the perforated pipes, respectively. Focusing on the continuous pipe first

(Fig. 12(A1-A5)), it can be seen that as the cylinders fall through the pipe, a downward

flow is generated, leading to a decrease of the water level inside the pipe while a increase
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Fig. 10: Comparison for the arrival time of the cylinders to the RHS wall of the tank. The experimental
results are digitised from Zhang et al. (2009).
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Fig. 11: Sketch of the setup of the numerical simulation (Unit: cm).
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Fig. 12: Snapshots of the numerical results for the fall-pipe solid dumping tests using the continuous pipe
(A1-A5) and the perforated pipe (B1-B5).
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A4

B3

B4

Fig. 13: The velocity field around the bottoms of the fall pipes. Left: the continuous pipe case, figures
correspond to Fig. 12(A3)-(A4); Right: the perforated pipe case, figures correspond to Fig. 12(B3)-(B4).

of the water level outside the pipe (Fig. 12(A1-A2)). The continuously growing imbalanced

water levels later on cause a reversed flow (i.e. upward) inside the pipe (Fig. 12(A3-A5)),

which slows down and even lifts up the cylinders slightly. This eventually leads to a delay

of the solid dumping. Looking at the perforated pipe case in comparison (Fig. 12(B1-B5)),

the cylinders are quickly dumped out without delay. Although the reversed flows are also

observed here, they are not as continuous as those seen in the continuous pipe, due to an

equalisation of the fluid pressure inside and outside the perforated pipe via flows through
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the holes. Fig. 13 further shows the velocity field around the bottom of the pipe, which

confirms the above discussions.

4. Conclusions

In this study, a coupled PIC-DEM model is developed and validated for numerical simu-

lations of complex fluid-solid mixture flows. Although the test cases of the collapse of solid

cylinder layers are very complicated, the predictions of the numerical model agree well with

the results of physical experiments. The more complex test case of dumping solid cylinders

through fall pipes further demonstrates the capability of the numerical model. These show

that the proposed coupling algorithm for the PIC and the DEM models works well, with

the idea of using subcycles to handle the time step difference. The results also verify the

proposed cheap solution for the unphysical gaps during solid collisions that are due to the

Cartesian cut cell method for fluid-solid interaction. Nevertheless, the coefficient β requires

calibration as other DEM parameters. Furthermore, although the PIC-DEM model is de-

veloped in 2D, it should be straightforward to extend the model to 3D. Also, extension

on the DEM model could be exploited for simulations of fluid interaction with arbitrary

shape solids. Overall, with further innovations and developments, the coupled PIC-DEM

model could become a useful tool for other similar applications in the coastal and offshore

engineering field.
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Maljaars, J. M., Labeur, R. J., Möller, M., 2018. A hybridized discontinuous galerkin framework for high-

order particlemesh operator splitting of the incompressible navierstokes equations. Journal of Computa-

tional Physics 358, 150 – 172.

URL http://www.sciencedirect.com/science/article/pii/S0021999117309300

Patankar, N. A., Singh, P., Joseph, D. D., Glowinski, R., Pan, T.-W., 2000. A new formulation of the

distributed lagrange multiplier/fictitious domain method for particulate flows. International Journal of

22

http://www.sciencedirect.com/science/article/pii/S0010465516000254
http://www.sciencedirect.com/science/article/pii/S0889974616000153
http://www.sciencedirect.com/science/article/pii/S002980181831504X
https://doi.org/10.1680/geot.1979.29.1.47
http://dx.doi.org/10.1002/nme.3356
https://doi.org/10.1146/annurev-fluid-010814-014644
http://www.sciencedirect.com/science/article/pii/S0032591018305424
https://doi.org/10.13182/NSE96-A24205
http://www.sciencedirect.com/science/article/pii/S0021999117309300


Multiphase Flow 26 (9), 1509 – 1524.

URL http://www.sciencedirect.com/science/article/pii/S0301932299001007

Qiu, L., Yu, Y., Fedkiw, R., 2015. On thin gaps between rigid bodies two-way coupled to incompressible

flow. Journal of Computational Physics 292, 1 – 29.

URL http://www.sciencedirect.com/science/article/pii/S0021999115001746

Robinson, M., Ramaioli, M., Luding, S., 2014. Fluid-particle flow simulations using two-way-coupled

mesoscale SPH-DEM and validation. International Journal of Multiphase Flow 59, 121 – 134.

URL http://www.sciencedirect.com/science/article/pii/S0301932213001882

Violeau, D., Rogers, B. D., 2016. Smoothed particle hydrodynamics (SPH) for free-surface flows: past,

present and future. Journal of Hydraulic Research 54 (1), 1–26.

URL https://doi.org/10.1080/00221686.2015.1119209

Zhang, C., Su, P., Ning, D., 2019. Hydrodynamic study of an anti-sloshing technique using floating foams.

Ocean Engineering 175, 62 – 70.

URL http://www.sciencedirect.com/science/article/pii/S0029801819300502

Zhang, S., Kuwabara, S., Suzuki, T., Kawano, Y., Morita, K., Fukuda, K., 2009. Simulation of solid-fluid

mixture flow using moving particle methods. Journal of Computational Physics 228 (7), 2552 – 2565.

URL http://www.sciencedirect.com/science/article/pii/S0021999108006499

23

http://www.sciencedirect.com/science/article/pii/S0301932299001007
http://www.sciencedirect.com/science/article/pii/S0021999115001746
http://www.sciencedirect.com/science/article/pii/S0301932213001882
https://doi.org/10.1080/00221686.2015.1119209
http://www.sciencedirect.com/science/article/pii/S0029801819300502
http://www.sciencedirect.com/science/article/pii/S0021999108006499

	Introduction
	Numerical Model
	The PIC model
	The DEM model for solid-solid contact
	The contact force calculation
	A gap problem and solution

	Coupling algorithm of the PIC-DEM model

	Results and Discussions
	Validation of the DEM model
	Validation of the fluid-solid PIC-DEM model
	Application to a fall-pipe solid dumping test

	Conclusions

