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3Cancer Research UK Cambridge Institute, University of Cambridge

Abstract

All imaging modalities such as computed tomography (CT), emission tomography and magnetic
resonance imaging (MRI) require a reconstruction approach to produce an image. A common
image processing task for applications that utilise those modalities is image segmentation, typ-
ically performed posterior to the reconstruction. We explore a new approach that combines
reconstruction and segmentation in a unified framework. We derive a variational model that
consists of a total variation regularised reconstruction from undersampled measurements and a
Chan-Vese based segmentation. We extend the variational regularisation scheme to a Bregman
iteration framework to improve the reconstruction and therefore the segmentation. We de-
velop a novel alternating minimisation scheme that solves the non-convex optimisation problem
with provable convergence guarantees. Our results for synthetic and real data show that both
reconstruction and segmentation are improved compared to the classical sequential approach.

1 Introduction

Image reconstruction plays a central role in many imaging modalities for medical and non-
medical applications. The majority of imaging techniques deal with incomplete data and noise,
making the inverse problem of reconstruction severely ill-posed. Based on compressed sensing
(CS) it is possible to tackle this problem by exploiting prior knowledge of the signal [1–3]. Nev-
ertheless, reconstructions from very noisy and undersampled data will present some errors that
will be propagated into further analysis, e.g. image segmentation. Segmentation is an image
processing task used to partition the image into meaningful regions. Its goal is to identify objects
of interest, based on contours or similarities in the interior. Typically segmentation is performed
after reconstruction, hence its result strongly depends on the quality of the reconstruction. Re-
cently the idea of combining reconstruction and segmentation has become more popular. The
main motivation is to avoid error propagations that occur in the sequential approach by esti-
mating edges simultaneously from the data, ultimately improving the reconstruction. In this
paper, we propose a new model for joint reconstruction and segmentation from undersampled
MRI data. The underlying idea is to incorporate prior knowledge about the objects that we
want to segment in the reconstruction step, thus introducing additional regularity in our solu-
tion. In this unified framework, we expect that the segmentation will also benefit from sharper
reconstructions. We demonstrate that our joint approach improves the reconstruction quality
and yields better segmentations compared to sequential approaches. In Figure 1, we consider a
brain phantom from which we simulated the undersampled k -space data and added Gaussian
noise. Figure 1b and 1e present reconstructions and segmentations obtained with the sequential
approaches, while Figure 1c and 1f show the results for our joint approach. The reconstruction
using our method shows clearly more details and it is able to detect finer structures that are
not recovered with the classical separate approach. As a consequence, the joint segmentation
is also improved. In the following section we present the mathematical models that we used in
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(a) Groundtruth (b) Sequential reconstruction (c) Joint reconstruction

(d) Sampling matrix (e) Sequential segmentation (f) Joint segmentation

Figure 1: Sequential approach (left) versus unified approach (right). Combining reconstruction and segmentation in
a single unifed approach improves both the reconstructed image and its segmentation. See Figure 2 for more details.

our comparison. We investigated the performance of our model for two different applications:
bubbly flow and cancer imaging. We show that both reconstruction and segmentation benefit
from this method, compared to the traditional sequential approaches, suggesting that error
propagation is reduced.

Our contribution. In our proposed joint method, we obtain an image reconstruction that
preserves its intrinsic structures and edges, possibly enhancing them, thanks to the joint seg-
mentation, and simultaneously we achieve an accurate segmentation. We consider the edge-
preserving total variation regularisation for both the reconstruction and segmentation term
using Bregman distances. In this unified Bregman iteration framework, we have the advantage
of improving the reconstruction by reducing the contrast bias in the TV formulation, which
leads to more accurate segmentation. In addition, the segmentation constitutes another prior
for the reconstruction by enhancing edges of the regions of interest. Furthermore, we propose a
non-convex alternating direction algorithm in a Bregman iteration scheme for which we prove
global convergence.

The paper is organised as follows. In Section 2 we describe the problems of MRI recon-
struction and region-based segmentation. We then introduce our joint reconstruction and seg-
mentation approach in a Bregman iteration framework. This section also contains a detailed
comparison of other joint models in the literature. In Section 3 we study the non-convex op-
timisation problem and present the convergence analysis for this class of problems. Finally in
Section 4 we present numerical results for MRI data for different applications. Here we inves-
tigate the robustness of our model by testing the undersampling rate up to its limit and by
considering different noise levels.
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2 MRI reconstruction and segmentation

In the following section we introduce the mathematical tools to perform image reconstruction
and image segmentation. In this work, we focus on the specific MRI application; however, our
proposed joint method can be applied to other imaging problems in which the measured data
is connected to the image via a linear and bounded forward operator, cf. below. Finally we
present our model that combines the two tasks of reconstruction and segmentation in a unified
framework.

2.1 Reconstruction

In image reconstruction problems, we have the general setting

f = Au+ η, (1)

where A : X → Y is a bounded and linear operator mapping between two vector-spaces. The
measured data f ∈ Y is usually corrupted by some noise η and often only observed partially.
In this formulation we are interested in recovering the image u given the data f .
In this work, we focus on the application of MRI and we refer to the measurements f as the
k -space data. In standard MRI acquisitions, the Fourier coefficients are collected in the k -space
by radio-frequency (RF) coils. Because the k -space data is acquired sequentially, the scanning
time cannot be arbitrarily fast. One of the most common ways to perform fast imaging consists
of undersampling the k -space; this, however, only yields satisfactory results if the dimension
of the parameter space can implicitly be reduced, for example by exploiting sparsity in certain
domains. In the reconstruction, this assumption is incorporated in the regularisation term. Let
Ω := {1, . . . , n1}×{1, . . . , n2} with n1, n2 ∈ N be a discrete image domain. Let f = (fi)

m
i=1 ∈ Cm

with m � n = n1n2 be our given undersampled k -space data, where fi ∈ C are the measured
Fourier coefficients that fulfil the relationship (1) with A = SF . The operator A is now
composed by S : Cn → Cm, which is a sampling operator that selects m measurements from the
Fu data according to the locations provided by a binary sampling matrix (see e.g. Figure 1d),
where F is the discrete Fourier transform. In MRI, the noise η is drawn from a complex-valued
Gaussian distribution with zero mean and standard deviation σ [4].
In problem (1) for MRI, the aim is to recover the image u ∈ Cn. However, in this work we
follow the standard assumption that in many applications we have negligible phase, i.e. we are
working with real valued, non-negative images. Therefore, we are only interested in u ∈ Rn;
hence we consider the MRI forward operator as A : Rn → Cm and its adjoint A∗ : Cm → Rn
as modelled in [5]. Problem (1) is ill-posed due to noise and incomplete measurements. The
easiest approach to approximate (1) is to compute the solution, for which the missing entries
are replaced with zero

uz = A∗f.

However, images reconstructed with this approach will suffer from aliasing artifacts because
undersampling the k -space violates the Nyquist–Shannon sampling theorem. Therefore, we
consider a mathematical model that incorporates prior knowledge by using a variational regu-
larisation approach. A popular model is to find an approximate solution for u as a minimiser
of the Tikhonov-type regularisation approach

u∗ ∈ arg minu
{1

2
‖Au− f‖22 + αJ(u)

}
, (2)

where the first term is the data fidelity that forces the reconstruction to be close to the mea-
surements and the second term is the regularisation, which imposes some regularity on the
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solution. The parameter α > 0 is a regularisation parameter that balances the two terms in
the variational scheme. In this setting, different regularisation functionals J(u) can be chosen
(see [6] for a survey of variational regularisation approaches).
Although problems of the form (2) are very effective, they also lead to a systematic loss of
contrast [7–9]. To overcome this problem, [10] proposed an iterative regularisation method
based on the generalised Bregman distance [11,12]. The Bregman distance with respect to J is
defined as

Dpk

J (u, uk) = J(u)− J(uk)− 〈pk, u− uk〉 (3)

with pk ∈ ∂J(uk), where ∂J(uk) is called sub-differential and it is a generalisation of the classical
differential for convex functions. We replace problem (2) with a sequence of minimisation
problems

uk+1 ∈ arg minu
{1

2
‖Au− f‖22 + αDpk

J (u, uk)
}
. (4)

The update on the subgradient can be conveniently computed by the optimality condition of
(4)

pk+1 = pk − 1

α
A∗(Auk+1 − f). (5)

In this work, we will focus on one particular choice for J , namely the total variation. The
total variation (TV) regularisation is a well-known edge-preserving approach, first introduced
by Rudin, Osher and Fatemi in [13] for image denoising. The TV regularisation, i.e. the
1-norm penalty on a discrete finite difference approximation of the two-dimensional gradient
∇ : Rn → (R2)n, that is ∇u(i, j) = (∇1u(i, j),∇2u(i, j))T , is in the discrete setting

J(u) = TV(u) = ‖∇u‖2,1 =
∑

(i,j)∈Ω

√
|∇1u(i, j)|2 + |∇2u(i, j)|2, (6)

for the isotropic case.
We then consider the Bregman iteration scheme in (4) for J(u) = TV(u). This approach is

usually carried on by initialising the regularisation parameter α with a large value, producing
overregularised initial solutions. At every step k, finer details are added. A suitable criterion to
stop iterations (4) and (5) (see [6]), is the Morozov’s discrepancy principle [14]. The discrepancy
principle suggests to choose the smallest k ∈ N such that uk+1 satisfies

‖f −Auk+1‖2 ≤ σ
√
m (7)

where m is the number of samples and σ is the standard deviation of the noise in the data. Note
that using Bregman iterations, the contrast is improved and in some cases even recovered ex-
actly, compared to the variational regularisation model. In addition, it makes the regularisation
parameter choice less challenging.

2.2 Segmentation

Image segmentation refers to the process of automatically dividing the image into meaningful
regions. Mathematically, one is interested in finding a partition {Ωi}li=1 of the image domain Ω
subject to ∪li=1Ωi = Ω and ∩li=1Ωi = ∅. One way to do this is to use region-based segmentation
models, which identify regions based on similarities of their pixels. The segmentation model
we are considering was originally proposed by Chan and Vese in [15]. Given an image function
f : Ω→ R, the goal is to divide the image domain Ω in two separated regions Ω1 and Ω2 = Ω\Ω1

by minimising the following energy function∫
Ω1

(f(x)− c1)2 dx+

∫
Ω2

(f(x)− c2)2 dx+ β · Length(C)→ min
c1,c2,C

4



where C is the desired contour separating Ω1 and Ω2, and the constants c1 and c2 represents the
average intensity value of f inside C and outside C, respectively. The parameter β penalises
the length of the contour C, controlling the scale of the objects in the segmentation. From this
formulation we can make two observations: first, the regions Ω1 and Ω \Ω1 can be represented
by the characteristic function

v(x) =

{
0, if x ∈ Ω1 ∪ C
1, if x ∈ Ω2,

second, the perimeter of the contour identified by the the characteristic function corresponds
to its total variation, as shown by the Coarea formula [16]. This leads to the new formulation∫

Ω
v(x)(f(x)− c1)2dx+ (1− v(x))(f(x)− c2)2 dx+ β TV(v)→ min

c1,c2,v∈{0,1}
.

Even assuming fixed constants c1,c2 the problem is non-convex due to the binary constraint.
In [17] the authors proposed to relax the constraint, allowing v(x) to assume values in the
interval [0, 1]. They showed that for fixed constants c1,c2, global minimisers can be obtained
by minimising the following energy∫

Ω
v(x)(f(x)− c1)2dx+ (1− v(x))(f(x)− c2)2 dx+ β TV(v)→ min

v∈[0,1]
(8)

followed by thresholding, setting Σ = {x : v(x) ≥ µ} for a.e. µ ∈ [0, 1]. As the problem is
convex but not strictly convex, the global minimiser may not be unique. In practice we obtain
solutions which are almost binary, hence the choice of µ is not crucial.
Setting

s(x) = (f(x)− c1)2 − (f(x)− c2)2

the energy (8) can be written in a more general form as∫
Ω
v(x)s(x) dx+ β TV(v)→ min

v∈[0,1]
.

In this paper, we are interested in the extension of the two-class problem to the multi-class
formulation [18]. Following the simplex-constrained vector function representation for multiple
regions and its convex relaxation proposed in [19], we obtain as a special case a convex relaxation
of the Chan-Vese model for arbitrary number of regions, which reads∫

Ω

∑̀
i=1

vi(x)(ci − u(x))2 dx+ β TV(v)→ min
v∈C

, (9)

where C := {v : Ω→ R` | v(x) ≥ 0,
∑`

i=1 vi(x) = 1} is a convex set which restricts v(x) to lie in
the standard probability simplex. As in the binary case, the constants ci describe the average
intensity value inside region i. In this case we consider the vector-valued formulation of TV

TV(v) =

∫
Ω

√
‖∇v1‖2 + · · ·+ ‖∇v`‖2 dx.

2.3 Joint reconstruction and segmentation

MRI reconstructions from highly undersampled data are subject to errors, even when prior
knowledge about the underlying object is incorporated in the mathematical model. It is often
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required to find a trade-off between filtering out the noise and retrieving the intrinsic structures
while preserving the intensity configuration and small details. As a consequence, segmentations
in the presence of artifacts are likely to fail.

In this paper, we propose to solve the two image processing tasks of reconstruction and
segmentation in a unified framework. The underlying idea is to inform the reconstruction with
prior knowledge of the regions of interest, and simultaneously update this belief according to
the actual measurements. Mathematically, given the under-sampled and noisy k -space data f ,
we want to recover the image u : Ω → R and compute its segmentation v in ` disjoint regions,
by solving the following problem

(u, v) = arg minu, v
1

2
‖Au− f‖22 + αTV(u)︸ ︷︷ ︸

reconstruction

+ δ

n∑
i=1

∑̀
j=1

vij(cj − ui)2 + β TV(v) + ıC(v)︸ ︷︷ ︸
segmentation

.
(10)

where ıC(v) is the characteristic function over C := {v : Rn → R` | vij ≥ 0,
∑`

j=1 vij = 1, ∀i ∈
{1, . . . , n}}. However, instead of solving (10), we consider the iterative regularisation procedure
using Bregman distances. The main motivation is to exploit the contrast enhancement aspect for
the reconstruction thanks to the Bregman iterative scheme. By improving the reconstruction,
the segmentation is in turn refined. Therefore, we replace (10) with the following sequence of
minimisation problems for k = 0, 1, 2, . . .

uk+1 = arg minu
1

2
‖Au− f‖22 + αDpk

TV(u, uk) + δ

n∑
i=1

∑̀
j=1

vij(cj − ui)2 (11a)

pk+1 = pk − 1

α

A∗(Auk+1 − f)− 2δ
∑̀
j=1

vkj (uk+1 − cj)

 (11b)

vk+1 = arg min vδ

n∑
i=1

∑̀
j=1

vij(cj − ui)2dx+ χC(v) + βDqk

TV(v, vk) (11c)

qk+1 = qk − δ

β
(cj − uk+1)2 = −δ(k + 1)

β
(cj − uk+1)2. (11d)

Under suitable assumptions, we are going to show global convergence of the sequences generated
by (11) in Section 3.

This model combines the reconstruction approach described in (4) and the discretised multi-
class segmentation in (9) with a variation in the regularisation term, which is now embedded in
the Bregman iteration scheme. In [20] the authors used Bregman distances for the Chan-Vese
formulation (8), combined with spectral analysis, to produce multiscale segmentations.

As described in the previous subsection, the parameters α and β describe the scale of the
details in u and the scale of the segmented objects in v. By integrating the two regularisations
into the same Bregman iteration framework, we obtain that these scales are now determined
by the iteration k+ 1. At the first Bregman iteration k = 0, when α is very large, we obtain an
over-smoothed u1, and the value of β is not very important. Intuitively, u1 is almost piecewise
constant with small total variation and a broad range of values of β may lead to very similar
segmentations v1. However, at every iteration k+ 1, finer scales are added to the solution with
the update pk+1. Accordingly, the update qk+1, which is independent of vk+1, in fact updates
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the regularisation parameter as β
(k+1) . Therefore, the segmentation keeps up with the scale in

the reconstructed image uk+1.
The novelty of this approach is also represented by the role of the parameter δ > 0. This

parameter weighs the effect of the segmentation in the reconstruction, imposing regularity in
u in terms of sharp edges in the regions of interest. In Section 4 we show how different ranges
of δ affects the reconstruction (see Figure 12). Intuitively, large values of δ force the solution u
to be close to the piecewise constant solution described by the constants ci. This is beneficial
in applications where MRI is a means to extract shapes and sizes of underlying objects, (e.g.
bubbly flow in Subsection 4.1). On the other hand, with very small δ, the segmentation has
little impact and the solutions for u are close to the ones obtained by solving the individual
problem (4). Instead, intermediate values of δ impose sharper boundaries in the reconstruction
while preserving the texture.

Obviously, we need to stop the iteration before the residual brings back noise from the data
f . As we cannot use Morozov discrepancy principle in this case (due to the fact that ‖Auk−f‖2
will rather increase due to the effect of the coupling term controlled by the parameter δ), we
stop when two consecutive iterates in v are smaller than a certain tolerance, ‖vk+1− vk‖ < tol,
following the observation that the rate at which uk+1 changes close to the optimal solution is
low, in contrary to more abrupt changes at the beginning of the Bregman iteration and later
on when it starts to add noise.

Clearly, problem (11) is non-convex in the joint argument (u, v) due to the coupling term.
However, it is convex in each individual variable. We propose to solve the joint problem by
iteratively alternating the minimisation with respect to u and to v (see Section 3 for numerical
optimisation and convergence analysis).

2.4 Comparison to other joint reconstruction and segmentation
approaches

In this section we will provide an overview of some existing simultaneous reconstruction and
segmentation (SRS) approaches with respect to different imaging applications.

CT/SPECT. Ramlau and Ring [21] first proposed a simultaneous reconstruction and seg-
mentation model for CT, that was later extended to SPECT in [22] and to limited data tomog-
raphy [23]. In these work, the authors aim to simultaneously reconstruct and segment the data
acquired from SPECT and CT. CT measures the mass density distribution µ, that represents
the attenuation of x-rays through the material; SPECT measures the activity distribution f as
the concentration of the radio tracer injected in the material. Given the two measurements zδ

and yδ, from CT and SPECT, they consider the following energy functional

E(f, µ,Γf ,Γµ) = ‖A(f, µ)− yδ‖2 + β‖Rµ− zδ‖2 + α(Length(Γf ) + Length(Γµ)).

They propose a joint model based on a Mumford-Shah like functional, in which the reconstruc-
tions of µ and f and the given data are embedded in the data term in a least squares sense.
The operators A and R are the attenuated Radon transform (SPECT operator) and the Radon
transform (CT operator), respectively. The penalty term is considered to be a multiple of the
lengths of the contours of µ, Γµ and the contours of f , Γf . These boundaries are modelled using
level set functions. In these segmented partitions of the domain, µ and f are assumed to be
piecewise constant. The optimisation problem is then solved alternatively with respect to the
functional variables f and µ with fixed geometric variables Γµ and Γf and the other way around.
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In [24] the simultaneous reconstruction and segmentation is applied to dynamic SPECT
imaging, which solves a variational framework consisting of a Kullback-Leibler (KL) data fi-
delity and different regulariser terms to enforce sharp edges and sparsity for the segmentation
and smoothness for the reconstruction. The cost function is

E(u, c) = KL
(
R(u · c), g

)
+ α

K∑
k=1

‖∇uk‖+ β
K∑
k=1

‖uk‖1 +
δ

2

K∑
k=1

‖ ∂
∂t
ck‖22.

Given the data g, they want to retreive the concentration curves ck(t) in time for K disjoint re-
gions and their indication functions uk(x) in space. The optimisation is carried out alternating
the minimisation over u having c fixed and then over c having u fixed.

In [25] they propose a variational approach for reconstruction and segmentation of CT
images, with limited field of view and occluded geometry. The cost function

E(u, c, v) =
1

2
‖Ax− y‖2 + α‖∇u‖+

β

2

(
λ

n∑
i

K∑
k=1

vik(ui − ck)2 +
1

2
‖Dv‖22

)

s.t. a box constraint on the image values x and the simplex constraint on the labelling function
v. The operator A is the undersampled Radon transform modelling the occluded geometry and
y is the given data. The second term is the edge-preserving regularisation term for u, the third
term is the segmentation term which aims at finding regions in u that are close to the value
ck in region k. The operator D is the finite difference approximation of the gradient. The
non-convex problem is solved by alternating minimisation between updates of u, v, c.

PET and Transmission Tomography. In [26], the authors propose a maximum likeli-
hood reconstruction and doubly stochastic segmentation for emission and transmission tomog-
raphy. In their model they use a Hidden Markov Measure Field Model (HMMFM) to estimate
the different classes of objects from the given data r. They want to maximise the following cost
function

E(u, p, θ) = logP (r|u) + logP (u|p, θ) + logP (p).

The first term is the data likelihood which will be modelled differently for emission and trans-
mission tomography. The second term is the conditional probability or class fitting term, for
which they use HMMFM. The third term is the regularisation on the HMMFM. The optimisa-
tion is carried out in three steps, where first they solve for u (image update) fixing p, θ, then
for p, holding u, θ (measure field update) and finally for θ (parameter update) having u, p fixed.

A variant of this method has been presented in [27], in which they incorporate prior in-
formation about the segmentation classes through a HMMFM. Here, the reconstruction is the
minimisation over a constrained Bayesian formulation that involves a data fidelity term as a
classical least squares fitting term, a class fitting term as a Gaussian mixture for each pixel given
K classes and dependent of the class probabilities defined by the HMMFM, and a regulariser
also dependent of the class probabilities. The model to minimise is

E(u, δ) =λnoise‖Au− b‖22 −
N∑
j=1

log

(
K∑
k=1

δjk√
2πσk

exp

(
−(uj − µk)2

2σ2
k

))
+ λclass

K∑
k=1

R(δk)

s.t.
K∑
k=1

δjk = 1, δjk ≥ 0, j = 1, . . . , N, k = 1, . . . ,K.
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The operator A will be modelled as the Radon transform in case of CT and b represents the
measured data; N is the number of pixel in the image; λnoise and λclass are the regularisation
parameters; µk, σk are the class parameters. The cost function is non convex and they solve
the problem in an alternating scheme where they either update the pixel values or the class
probabilities for each pixel.

Storath and others [28] model the joint reconstruction and segmentation using the Potts
Model with application to PET imaging and CT. They consider the variational formulation of
the Potts model for the reconstruction. Since the solution is piecewise constant, this directly in-
duces a partition of the image domain, thus a segmentation. Given the data f , and an operator
A (e.g. Radon transform), the energy functional is in the following form

E(u) = λ‖∇u‖0 + ‖Au− f‖22

where the first term is the jump penalty enforcing piecewise constant solutions and the second
term is the data fidelity. As the Potts model is NP hard, they propose a discretisation scheme
that allows to split the Potts problem into subproblems that can be solved efficiently.

MRI. In [29], the authors proposed a joint model with application to MRI. Their reconstruction-
segmentation model consists of a fitting term and a patch-based dictionary to sparsely represent
the image, and a term that models the segmentation as a mixture of Gaussian distributions
with mean, standard deviation and mixture weights µ, σ, π. Their model is

E(u,Γ, µ, σ, π) = ‖Au− y‖2 + λ

N∑
n=1

‖Rnu−Dγn‖2 − βlnP (u|µ, σ, π) s.t. ‖γn‖0 ≤ T ∀n

where A is the undersampled Fourier transform, y is the given data, Rn is a patch extraction
operator, λ is a weighting parameter, T is the sparsity threshold, and γn is the sparse represen-
tation of patch Rnu organised as column n of the matrix Γ. The problem is highly non-convex
and it is solved iteratively using conjugate gradient (CG) on u, orthogonal matching pursuit on
Γ and Expectation-Maximisation (EM) algorithm on (µ, σ, π).

Summary. Recently, the idea to solve the problems of reconstruction and segmentation
simultaneously has become more popular. The majority of these joint methods have been
proposed for CT, SPECT and PET data. Mainly they differ in the way they encode prior
information in terms of regularisers and how they link the reconstruction and segmentation
in the coupling term. Some imposes smoothness in the reconstruction [24], others sparsity in
the gradient [21, 25, 28], other consider a patch-dictionary sparsifying approach [29]. In [28]
they do not explicitly obtain a segmentation, but they force the reconstruction to be piecewise
constant. Depending on the application, the coupling term is the data fitting term itself (e.g.
SPECT), or the segmentation term. In [26, 27, 29] the authors model the segmentation as a
mixture of Gaussian distribution, while [25] has a a region-based segmentation approach simi-
lar to what we propose. However, [25] penalises the squared 2-norm of segmentation, imposing
spatial smoothness.
In our proposed joint approach, we perform reconstruction and segmentation in a unified Breg-
man iteration scheme, exploiting the advantage of improving the reconstruction, which results
in a more accurate segmentation. Furthermore, the segmentation constitutes another prior im-
posing regularity in the reconstruction in terms of sharp edges in the regions of interest. We
propose a novel numerical optimisation problem in a non-convex Bregman iteration framework
for which we present a rigorous convergence result in the following section.
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3 Optimisation

The cost function (11) is non-convex in the joint argument (u, v), but it is convex in each
individual variable. To solve this problem we derive a splitting approach where we solve the
two minimisation problems in an alternating fashion with respect to u and v. We present the
general algorithm and its convergence analysis in the next subsection. First, we describe the
solution of each subproblem.

Problem in u. The problem in u reads

uk+1 = arg minu
1

2
‖Au− f‖22 + α(TV(u)− 〈pk, u〉)

+ δ
n∑
i=1

∑̀
j=1

vkij(cj − ui)2.

We solve the optimisation for u, fixing v, using the primal-dual algorithm proposed in [30–33].
We write F (u) = ‖u‖1, K(u) = ∇u and G(u) = 1

2‖Au−f‖
2
2−α〈pk, u〉+δ

∑n
i=1

∑`
j=1 v

k
ij(cj−ui)2

and obtain the following iterates for θ = 1 and step sizes σ = τ = 0.99/‖∇‖

yn+1 =
yn + σ∇ūn

max(1, ‖ yn + σ∇ūn‖ )

un+1 =
un + τ∇ · yn+1 + 2τδ

∑`
j=1 v

k
j cj + ταpk + τA∗f

1 + 2τδ + τA∗A

ūn+1 = 2un+1 − un.

After sufficiently many iterations we set uk+1 = un+1 and compute the update pk+1 from the
optimality condition of (3) as (11b).

Problem in v. The problem in v reads

vk+1 = arg min v ∈ C〈v, δg − βqk〉+ β TV(v)

with g =
(
(c1−uk+1)2, . . . , (c`−uk+1)2

)T
. We now solve a variant of the primal-dual method [30]

as suggested in [33, 34]. They consider the general problem including pointwise linear terms of
the form

min
x∈C

max
y∈A
〈Kx, y〉+ 〈g, x〉 − 〈h, y〉

where C ⊆ X, A ⊆ Y are closed, convex sets.
Setting K = ∇ and h = 0, θ = 1 and step sizes σ = τ = 0.99/‖∇‖, the updates are

wn+1 = ΠA

(
wn + σ(∇v̄n − h)

)
vn+1 = ΠC

(
vn + τ∇ · (vn+1 − δg + βqk)

)
v̄n+1 = 2vn+1 − vn.

At the end, we set vk+1 = vn+1 and obtain the update qk+1 as (11d).

3.1 Convergence analysis

The proposed joint approach (11) is an optimisation problem of the form

min
u,v

E(u, v) +Dpk

J1
(u, uk) +Dqk

J2
(v, vk) (12)

10



Algorithm 1 Alternating splitting method with Bregman iterations for two blocks.

Initialization: k = 0, (u0, v0), p0 ∈ ∂J1(u
0), q0 ∈ ∂J2(v

0), N ∈ N
while k < N do
uk+1 = argminu

{
E(u, vk) +Dpk

J1
(u, uk)

}
pk+1 = pk −∇uE(uk+1, vk)

vk+1 = argmin v
{
E(uk+1, v) +Dqk

J2
(v, vk)

}
qk+1 = qk −∇vE(uk+1, vk+1)
k = k + 1

end while

in the general Bregman distance framework for (nonconvex) functions E : Rn×Rm → R∪{∞},
for k ∈ {0, . . . , N} and some positive parameters α and β. The functions J1 : Rn → R ∪ {∞}
and J2 : Rm → R ∪ {∞} impose some regularity in the solution. In this work we consider a
finite dimensional setting and we refer to the next section for the required definitons. To prove
global convergence of (12) we make the following assumptions.

Assumption 1

1. E is a C1 function

2. E > −∞
3. E is a KL function (see Definition 5)

4. J : Rn → R is proper, lower semi-continuous (l.s.c.) and strongly convex

5. J is a KL function

6. for any fixed v, the function u→ E(u, v) is convex. Likewise for any fixed u, the function
v → E(u, v) is convex.

7. for any fixed v, the function u → E(u, v) is C1
L1(v), hence the partial gradient is L1(v)-

Lipschitz continuous

‖∇uE(u1, v)−∇uE(u2, v)‖ ≤ L1(v)‖u1 − u2‖ ∀u1, u2 ∈ Rn.

Likewise for any fixed u, the function v → E(u, v) is C1
L2(u).

We want to study the convergence properties of the alternating scheme

uk+1 = arg minu
{
E(u, vk) +Dpk

J1
(u, uk)

}
(A.1)

pk+1 = pk −∇uE(uk+1, vk) (A.2)

vk+1 = arg min v
{
E(uk+1, v) +Dqk

J2
(v, vk)

}
(A.3)

qk+1 = qk −∇vE(uk+1, vk+1) (A.4)

for initial values (u0, v0), p0 ∈ ∂J1(u0) and q0 ∈ ∂J2(v0).
We want to show that the whole sequence generated by (13) converges to a critical point of E.

In order for the updates (A.1) and (A.3) to exist, we want J to be of the form J = R + G
(e.g. R = ‖∇u‖1 and G = ‖u‖22, see [35]) where R and G fulfil the following assumptions.

11



Assumption 2

1. The functions G1 : Rn → R and G2 : Rm → R are strongly convex with constants γ1 and
γ2, respectively. They have Lipschitz continuous gradient ∇G1 and ∇G2 with Lipschitz
constant δ1 and δ2, respectively.

2. The functions R1 : Rn → R and R2 : Rm → R are proper, l.s.c. and convex.

For Ji = αiRi + εiGi, i ∈ {1, 2}, we can write (13) as

uk+1 = arg minu
{
E(u, vk) + α1D

pk

R1
(u, uk) + ε1DG1(u, uk)

}
(14a)

pk+1 = pk − 1

α1

(
∇uE(uk+1, vk) + ε1

(
∇G1(uk+1)−∇G1(uk)

))
(14b)

vk+1 = arg min v
{
E(uk+1, v) + α2D

qk

R2
(v, vk) + ε2DG2(v, vk)

}
(14c)

qk+1 = qk − 1

α2

(
∇vE(uk+1, vk+1) + ε2

(
∇G2(vk+1)−∇G2(vk)

))
. (14d)

Theorem 1 (Global convergence). Suppose E(z) is a KL function for any zk = (uk, vk) ∈
Rn × Rm and rk = (pk, qk) with pk ∈ ∂R1(uk), qk ∈ ∂R2(vk). Assume Assumptions 1 and
2 hold. Let {zk}k∈N and {rk}k∈N be sequences generated by (14), which are assumed to be
bounded. Then

1. The sequence {zk}k∈N has finite length, that is

∞∑
k=0

‖zk+1 − zk‖ ≤ ∞. (15)

2. The sequence {zk}k∈N converges to a critical point z̄ of E.

3.2 Proof of Theorem 1

In the following we are going to show global convergence of this algorithm. The first step in
our convergence analysis is to show a sufficient decrease property of a surrogate of the energy
function (12) and a subgradient bound of the norm of the iterates gap. We first define the
surrogate functions.

Definition 1 (Surrogate objective). Let E,Ri, Gi, i ∈ {1, 2} satisfy Assumption 1 and As-
sumption 2, respectively. For any (uk, vk) ∈ Rn × Rm and subgradients pk ∈ ∂R1(uk) and

qk ∈ ∂R2(vk), we define the following surrogate objectives Ep
k,qk , Ep

k
and Eq

k

Ep
k,qk(uk+1, vk+1, uk, vk) = E(uk+1, vk+1) + α1D

pk

R1
(uk+1, uk) + α2D

qk

R2
(vk+1, vk), (16)

Ep
k
(uk+1, uk) = E(uk+1, vk+1) + α1D

pk

R1
(uk+1, uk), (17)

Eq
k
(vk+1, vk) = E(uk+1, vk+1) + α2D

qk

R2
(vk+1, vk). (18)

For convenience we will use the following notations

zk :=(uk, vk) ∀k ≥ 0

rk :=(pk, qk) pk ∈ ∂R1(uk), qk ∈ ∂R2(vk).

12



The surrogate function Ep
k,qk will then read

Er
k
(zk+1, zk) = Ep

k,qk(uk+1, vk+1, uk, vk).

For brevity, we will also use this notation Ek(zk+1) := Er
k
(zk+1, zk). For the rest of the proof

we also recall the following definitions.

Definition 2 (Strong convexity). Let G be a proper, l.s.c. and convex function. Then G is
said to be γ-strongly convex if there exists a constant γ such that

Dp
G(u, v) ≥ γ

2
‖u− v‖2

holds true for all u, v ∈ dom(G) and q ∈ ∂G(v).

Definition 3 (Symmetric Bregman distance). Let G be a proper, l.s.c. and convex function.
Then the symmetric generalised Bregman distance Dsymm

G (u, v) is defined as

Dsymm
G (u, v) := Dp

G(u, v) +Dq
G(v, u) = 〈p− q, u− v〉

for u, v ∈ dom(G) with p ∈ ∂G(u) and q ∈ ∂G(v). We also observe that in case G is γ-strongly
convex we have

Dsymm
G (u, v) ≥ γ‖u− v‖2.

Definition 4 (Lipschitz continuity). A function G : Rn → R is (globally) Lipschitz-continuous
if there exists a constant L > 0 such that

‖G(u)−G(v)‖ ≤ L‖u− v‖

is satisfied for all u, v ∈ Rn.
We can now show the sufficient decrease property of (16) for subsequent iterates.

Lemma 1 (Sufficient decrease property). The iterates generated by (14) satisfy the descent
estimate

Ek(zk+1) + ρ2‖zk+1 − zk‖2 ≤ Ek−1(zk). (19)

In addition we observe

lim
k→∞

Dsymm
R1

(uk+1, uk) = 0 lim
k→∞

Dsymm
R2

(vk+1, vk) = 0

lim
k→∞

Dsymm
G1

(uk+1, uk) = 0 lim
k→∞

Dsymm
G2

(vk+1, vk) = 0.

Proof. From (12) we consider the following step for J1 = α1R1 + ε1G1

uk+1 = arg minu
{
E(u, vk) + α1D

pk

R1
(u, uk) + ε1DG1(u, uk)

}
= arg minu

{
E(u, vk) + α1R(u) + ε1G(u)− 〈α1p

k + ε1∇G(uk), u− uk〉
}
.

Computing the optimality condition we obtain

α1(pk+1 − pk) +∇uE(uk+1, vk) + ε1(∇G(uk+1)−∇G(uk)) = 0

Taking the dual product with uk+1 − uk yields

α1 〈pk+1 − pk, uk+1 − uk〉︸ ︷︷ ︸
= Dsymm

R1
(uk+1, uk)

+ 〈∇uE(uk+1, vk), uk+1 − uk〉︸ ︷︷ ︸
≥ E(uk+1, vk)− E(uk, vk)

+ε1 〈∇G1(uk+1)−∇G1(uk), uk+1 − uk〉︸ ︷︷ ︸
= Dsymm

G1
(uk+1, uk)

= 0.
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Using the convexity estimate E(uk+1, vk)−E(uk, vk) ≤ −〈∇uE(uk+1, vk), uk+1−uk〉 we obtain
the inequality

α1D
symm
R1

(uk+1, uk) + ε1D
symm
G1

(uk+1, uk) + E(uk+1, vk)− E(uk, vk) ≤ 0

α1

(
Dpk

R1
(uk+1, uk) +Dpk+1

R1
(uk, uk+1)

)
+ ε1D

symm
G1

(uk+1, uk) + E(uk+1, vk)

≤ E(uk, vk).

Adding α1D
pk−1

R1
(uk, uk−1) to both sides, using the strong convexity of G1 and the surrogate

function notation, we get

Ep
k
(uk+1, uk) + α1

(
Dpk+1

R1
(uk, uk+1) +Dpk−1

R1
(uk, uk−1)

)
+ ε1γ1‖uk+1 − uk‖2 ≤ Epk−1

(uk, uk−1).

Using the trivial estimate for the Bregman distances, we get the decrease property

Ep
k
(uk+1, uk) + ε1γ1‖uk+1 − uk‖2 ≤ Epk−1

(uk, uk−1).

Similarly for v, we obtain

Eq
k
(vk+1, vk) + ε2γ2‖vk+1 − vk‖2 ≤ Eqk−1

(vk, vk−1).

Summing up these estimates, we verify the sufficient decrease property (19), with positive
ρ2 = max{ε1γ1, ε2γ2}. We also observe

0 ≤ ∆k ≤ E(zk)− E(zk+1).

with

∆k := α1D
symm
R1

(uk+1, uk) + α2D
symm
R2

(vk+1, vk) + ε1D
symm
G1

(uk+1, uk) + ε2D
symm
G2

(vk+1, vk).

Summing over k = 0, . . . , N

N∑
k=0

∆k ≤
N∑
k=0

E(zk)− E(zk+1) = E(z0)− E(zN+1) ≤ E(z0)− inf
z
E(z) <∞.

Taking the limit N →∞ implies
∞∑
k=0

∆k <∞

thus limk→∞D
symm
R1

(uk+1, uk) = 0 , limk→∞D
symm
G1

= 0, limk→∞D
symm
R2

(vk+1, vk) = 0,

limk→∞D
symm
G2

(vk+1, vk) = 0, due to α1, α2, ε1, ε2 > 0.
In order to show that the sequences generated by (14) approach the set of critical point we

first estimate a bound for the subgradients of the surrogate functions and verify some properties
of the limit point set.

Lemma 2 (A subgradient lower bound for the iterates gap). Suppose Assumptions 1 and 2
hold. Then the iterates (14) satisfy

‖wk+1‖ ≤ ρ1‖zk+1 − zk‖ (20)

with wk+1 := (wk+1
u , wk+1

v ) ∈ ∂Ek(zk+1) and ρ1 = max{ε1δ1, ε2δ2 + L2}.
Proof. From the optimality conditon of (14b), we compute
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‖α1(pk+1 − pk) +∇uE(uk+1, vk+1)︸ ︷︷ ︸
= wk+1

u ∈ ∂uEk(zk+1)

‖

≤ ε1 ‖(∇G1(uk+1)−∇G1(uk))‖︸ ︷︷ ︸
≤ δ1‖uk+1 − uk‖

+ ‖∇uE(uk+1, vk+1)−∇uE(uk+1, vk)‖︸ ︷︷ ︸
≤ L2‖vk+1 − vk‖

≤ (ε1δ1)‖uk+1 − uk‖+ L2‖vk+1 − vk‖.

And similarly from (14d), we get

‖α2(qk+1 − qk) + ∂vE(uk+1, vk+1)︸ ︷︷ ︸
= wk+1

v ∈ ∂vEk(zk+1)

‖ ≤ ε2 ‖(∇G2(vk+1)−∇G2(vk))‖︸ ︷︷ ︸
≤ δ2‖vk+1 − vk‖

≤ (ε2δ2)‖vk+1 − vk‖.

Summing up the above inequalities, we obtain

‖(wk+1
u , wk+1

v )‖
≤ ‖∂uEk(zk+1)‖+ ‖∂vEk(zk+1)‖
≤ (ε1δ1)‖uk+1 − uk‖+ (ε2δ2 + L2)‖vk+1 − vk‖
≤ ρ1‖zk+1 − zk‖

with ρ1 = max{ε1δ1, ε2δ2 + L2}. Here we used the Lipschitz-continuity of ∇Gi and ∇E.
Following [35,36], we verify some properties of the limit point set. Let {zk}k∈N and {rk}k∈N

be sequences generated by (14). The set of limit points is defined as

w(z0) :=
{
z̄ ∈ Rn × Rm : ∃ an increasing sequence of integers {kj}j∈N

such that lim
j→∞

zkj = z̄
}
.

Lemma 3 Suppose Assumptions 1 and 2 hold. Let {zk}k∈N be a sequence generated by (14)
which is assumed to be bounded. Let z̄ ∈ w(z0). Then the following assertion holds

lim
k→∞

Ek−1(zk) = E(z̄). (21)

Proof. Since z̄ is a limit point of {zk}k∈N, there exists a subsequence {zkj}j∈N such that
limj→∞ z

kj = z̄. We immediately obtain

lim
j→∞

Ekj−1(zkj ) = lim
j→∞

{
E(zkj ) + α1D

pkj−1

R1
(ukj , ukj−1) + α2D

qkj−1

R2
(vkj , vkj−1)

}
= E(z̄)

due to the continuity of E and limj→∞D
pkj−1

R1
(ukj , ukj−1) = 0 and limj→∞D

qkj−1

R2
(vkj , vkj−1) =

0. From the sufficient decrease property we conclude (21).

Lemma 4 (Properties of limit point set). The limit point set w(z0) is a non empty, compact
and connected set, the objective function E is constant on w(z0) and we have limk→∞ dist(zk, w(z0)) =
0. Proof. This follows steps as in [36, Lemma 5].

To finally prove global convergence of (14), we will use the following Kurdyka- Lojasiewicz
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property defined and the result from [36]. Before recalling the definition, we introduce the
notion of distance between any subset S ⊂ Rd and any point x ∈ Rd defined as

dist(x, S) :=

{
inf{‖y − x‖ : y ∈ S} S 6= ∅
∞ S = ∅

,

where ‖ · ‖ denotes the Euclidean norm.

Definition 5 (Kurdyka- Lojasiewicz (KL) property). Lef F : Rd → R be a proper and lower
semicontinuous functional. We assume there exists η ∈ (0,∞] sucht that ϕ : [0, η) → R>0 is a
function that satisfies ϕ(0) = 0, ϕ ∈ C1(]0, η[), is continuous at 0, and satisfies ϕ′(s) > 0 for all
s ∈]0, η[.

• Then the functional F is said to have the KL property at ū ∈ dom(∂F ) := {u ∈ Rd|∂F 6=
∅} if there exists a neighbourhood N of ū such that for all u ∈ N∩{u ∈ Rd|F (ū) < F (u) <
F (ū) + η} the inequality

ϕ′(F (u)− F (ū))dist(0, ∂F (u)) ≥ 1 (KL)

holds.

• If F satisfies the KL property at each point of dom(∂F ), F is called a KL function.

Lemma 5 (Uniformised KL property). Let Ω be a compact set and let E : Rn×Rm → R∪{∞}
be a proper and l.s.c. function. Assume that E is constant on Ω and satisfy the KL property
at each point in Ω. Then there exists ε > 0, η > 0 and ϕ ∈ C1((0, η)) that satisfies the same
conditions as in Definition KL, such that for all ū ∈ Ω and all u in

{u ∈ Rn | dist(u,Ω) < ε} ∩ {u ∈ Rn |E(z̄) < E(z) < E(z) + η} (22)

condition KL is satisfied. Proof. Follows from [36].

With these results we can now show global convergence of (14).
Proof of Theorem 1. By the boundedness assumption on {zk}, there exists a converging
subsequence {zkj}j∈N such that limj→∞ z

kj = z̄. We know from Lemma 3 that (21) is satisfied.

1. KL property holds for E and therefore for Ek and we write

ϕ′
(
Ek−1(zk)− E(z̄)

)
dist

(
0, ∂Ek−1(zk)

)
≥ 1.

From Lemma 2 we obtain

ϕ′
(
Ek−1(zk)− E(z̄)

)
≥ ρ−1

1 ‖z
k − zk−1‖−1,

and from the concavity of ϕ we know that

ϕ
(
Ek−1(zk)− E(z̄)

)
− ϕ

(
(Ek(zk+1)− E(z̄)

)
≥ ϕ′

(
Ek−1(zk)− E(z̄)

)(
Ek−1(zk)− Ek(zk+1)

)
.

Thus, we obtain

ϕ
(
Ek−1(zk)− E(z̄)

)
− ϕ

(
Ek(zk+1)− E(z̄)

)
Ek−1(zk)− Ek(zk+1)

≥ ρ−1
1 ‖z

k − zk−1‖−1.

From (19) with Lemma 1 and using the abbreviation

ϕk := ϕ(Ek−1(zk)− E(z̄)),
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it follows
‖zk+1 − zk‖2

‖zk − zk−1‖
≤ ρ1

ρ2
(ϕk − ϕk+1).

Multiplying by ‖zk − zk−1‖ and using Young’s inequality (2
√
ab ≤ a+ b )

2‖zk+1 − zk‖ ≤ ρ1

ρ2
(ϕk − ϕk+1) + ‖zk − zk−1‖.

Summing up from k = 1, . . . , N we get

N∑
k=1

‖zk+1 − zk‖ ≤ ρ1

ρ2
(ϕ1 − ϕN+1) + ‖z1 − z0‖+ ‖zN+1 − zN‖

≤ ρ1

ρ2
ϕ1 + ‖z1 − z0‖ <∞.

In addition we observe that the finite length property implies that the sequence {zk}k∈N is
a Cauchy sequence and hence is a convergent sequence. For each zr and zs with s > r > l
we have

‖zr − zs‖ = ‖
s−1∑
k=r

zk+1 − zk‖ ≤
s−1∑
k=r

‖zk+1 − zk‖.

2. The proof follows in a similar fashion as in [35, Lemma 5.9]

Remark 2 (Extension to d blocks). The analysis described above holds for the general setting
of d blocks

min
{u1,...,ud}

E(u1, . . . , ud) +
n∑
i=1

αkiD
pki
Ji

(ui, u
k
i ). (23)

The update for each of the d blocks then reads

uk+1
i = arg minui

{
E(uk+1

1 , uk+1
2 , . . . , uk+1

i−1 , u
k
i , u

k
i+1, . . . , u

k
d) + αiD

pki
Ji

(ui, u
k
i )
}

pk+1
i = pki −

1

αi

(
∇uiE(uk+1

1 , uk+1
2 , . . . , uk+1

i−1 , u
k+1
i , uki+1, . . . , u

k
d)
)
.

4 Numerical results

In this section we present numerical results for our joint reconstruction and segmentation model
described in (11). We demonstrate its advantages and limitations, as well as a discussion on
the parameter choice. In the first part, we focus on bubbly flow segmentation for simulated
data. In the second part, we show results for real data acquired at the Cancer Research UK,
Cambridge Institute, for tumour segmentation.

Quality measures To assess the performance of the reconstruction we will compare our
solutions u with respect to the groundtruth ugt. As quality measures we use the relative
reconstuction error (RRE) and the peak signal to noise ratio (PSNR) defined as

• RRE(u, ugt) = ‖ugt − u‖2/‖ugt‖2

• PSNR(u, ugt) = 10 log10

(
max(u)

‖ugt−u‖2/N

)
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(a) Groundtruth (b) TV reconstruction, α = 0.2,
RRE=0.046, PSNR=24.87

(c) Bregman reconstruction,
α = 1, RRE=0.044,
PSNR=24.98

(d) Joint reconstruction,
α = 0.8, RRE=0.036,
PSNR=26.04

(e) Sampling matrix, 15% (f) Segmentation, β = 0.001
RSE=0.061

(g) Bregman segmentation,
β = 0.001, RSE=0.065

(h) Joint segmentation,
β = 0.001, δ = 0.01
RSE=0.057

Figure 2: We consider 15% of the simulated k -space for the brain phantom, where Gaussian noise (σ = 0.25)
was added. We compare results for the total variation reconstruction and total variation based Bregman iterative
reconstruction and their segmentation in a sequential approach with our joint model. We show that both reconstruction
and segmentation are improved.

For the segmentation quality, we will use the relative segmentation error (RSE) to compare our
segmentations v with respect to the true segmentations vgt

• RSE(v, vgt) = 1
N

∑N
i=1 δvgti ,vi

where N is the number of pixels in the image, δ is the Kronecker delta function that will count
the number of mis-classified pixels.

Before we present our two applications, we show a more detailed result of the phantom brain
in Figure 1. In this example, we show the TV reconstruction 2b, where the parameter α has been
optimised with respect to PSNR and its sequential segmentation 2f with optimal β with respect
to RSE. In 2c and 2g we present Bregman reconstruction and sequential segmentation where the
Bregman iteration has been stopped according to the discrepancy principle Equation 7 and β
has been optimised with respect to RSE. These parameter choices for the sequential approaches
will be used in the whole paper.
In this first result, we clearly see that the joint approach performs much better compared to the
separate steps in Figures 2b, 2f and 2c, 2g. Both reconstruction and segmentation are improved
and more details are recovered. We refer to Appendix A for more simulated examples.

4.1 Bubbly flow

The first application considered is the characterisation of bubbly flows using MRI. Bubbly flows
are two-phase flow systems of liquid and gas trapped in bubbles, which are common in indus-
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(a) Groundtruth (b) TV reconstruction, α = 0.1,
RRE=0.081, PSNR=18.42

(c) Bregman reconstruction,
α = 2, RRE=0.069,
PSNR=18.83

(d) Joint reconstruction,
α = 0.8,RRE=, PSNR=20.7105

(e) Sampling matrix, 8% (f) Segmentation,
β = 0.001, RSE=0.0093

(g) Bregman segmentation, β =
0.001, RSE=0.017

(h) Joint segmentation,
β = 0.001, δ = 1, RSE=0.0102

Figure 3: Results of the TV reconstruction and Bregman iterative reconstruction and their segmentation in the
sequential approach are compared with our joint model. Both MSE and SSIM are improved in the joint approach.
The data was corrupted with Gaussian noise with σ = 0.35.

trial applications such as bioreactors [37] and hydrocarbon processing units [38]. MRI has been
successfully used to characterise the bubble size distribution [39,40] and the liquid velocity field
of bubbly flows [41,42]; these properties govern the heat and mass transfer between the bubbles
and the liquid which ultimately determine the efficiency of these industrial systems. However,
when studying fast flowing systems, the acquisition time for fully sample k -space is too long to
resolve the temporal changes; the most common method of breaking the temporal resolution
barrier is through under-sampling. It is therefore critical to develop reconstruction techniques
for highly under-sampled k -space data for the accurate reconstruction of the MRI images which
would be subsequently used in calculating the bubble size distribution or in studying the hy-
drodynamics of the system.

Our joint approach for reconstruction and segmentation produces interesting results for this
application. In Figure 3 we present some results for synthetic data, where Figure 3a represents
the groundtruth magnitude image, from which we simulate its k -space following the forward
model described in (1). From the full k -space we collect 8% of the samples using the sampling
matrix in Figure 3e and we corrupt the data with Gaussian noise of standard deviation σ = 0.35.
In Figure 3b and 3f we show the results for the total variation regularised reconstruction and
its segmentation performed sequentially. In the same sequential way, we show the results for
the Bregman iterative regularization in Figure 3c and 3g. In the last column in Figure 3d and
3h, we finally show the results for our joint approach. Although the TV and the Bregman
approaches are already quite good, we can see that both RRE and PSNR are improved using
our model in the reconstruction and the segmentation. Smaller details, such as the top right
bubble contour, are better detected when solving the joint problem. As the goal of the bubbly
flow application is to detect bubble size distribution, this improvement is really advantageous.
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(a) SNR=10.56, σ=0.70 (b) SNR=12.69, σ=0.56 (c) SNR=16.68, σ=0.35 (d) SNR=32.83, σ=0.06

Figure 4: Top row: reconstructions obtained by the joint model with different SNR. Bottom row: corresponding
segmentations.

We tested the robustness of our approach by corrupting the data with different signal to
noise ratio (SNR) and by considering different amount of sampling. In Figure 5 we show in the
top row the reconstructions obtained with the joint model for different SNR (which corresponds
to different standard deviation σ) and in the bottom row the corresponding segmentation ob-
tained by the joint approach. To complement this information, we show in Figure 6 how the
PSNR, RRE and RSE are affected, for the joint approach (blue lines) and for the separate
approaches, TV (red dotted lines) and Bregman TV (green dotted lines). As expected, with
the SNR increasing the error decreases. We can see that the joint approach performs better
than the sequential approach for any SNR. The improvement is even more significant for very
noisy data. As in practice we often observe high levels of noise, the joint approach is able to
takle this problem better than the traditional sequential approaches.

It is also interesting to investigate how the joint approach performs with very low un-
dersampling rates. In Figure 3e we show joint reconstructions (top row) and corresponding
segmentations (bottom row) for decreasing sampling rates. We can see that up to 5% results
are still very good. Using 3 and 2% of the samples the results are less clean but it is possible
to identify the main structures. In contrast, 1% sampling is not enough to retrieve a good
image reconstruction and consequently its segmentation. In Figure 7, the blue lines represent
the error for our joint approach, while the red and green dotted lines are for the sequential
TV and sequential Bregman TV approaches. Wee plot PSNR (7a), RRE (7b) and RSE (7c)
for different sampling rates. We can see that up to 5% sampling the error measures do not
change significantly. However, for lower rates, the improvement is more significant. This is
highly beneficial for the bubbly flow application as increasing the temporal resolution is really
important to keep track of the gas flowing in the pipe.
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(a) 25% (b) 12.5% (c) 8% (d) 5% (e) 3% (f) 2% (g) 1%

Figure 5: Top row: reconstructions obtained by the joint model with different sampling rates. Bottom row: corre-
sponding segmentations. The joint reconstruction and segmentation is able to detect the main structures down to 5%
of the samples. Up to 2% the results are less clean but still acceptable. Using only 1% of the data is not enough to
produce the image and segmentation.

(a) PSNR (b) RRE (c) RSE

Figure 6: Error plots for different SNR. From left to right, we show the PSNR, RRE and RSE, respectively, for
different levels of noise in the measurements. The blue lines represent the error for our joint approach, while the red
and green dotted lines are for the sequential TV and sequential Bregman TV approaches. For each SNR, the joint
model performs better than the separate methods. This improvement is even more significant for noisier data, which
is highly advantageous as in practice we often observe lower SNR.

4.2 Cancer imaging

In this subsection, we illustrate the performance of the joint model for real cancer data. At
the Cancer Research UK, Cambridge Institute, researchers acquire every day a huge amount of
MRI scans to assess tumour progression and response to therapy [43]. For this reason, it is very
convenient to have fast sampling through compressed sensing, and automatic segmentation
methods. Furthermore, reconstructions with enhanced edges are advantageous to facilitate
clinical analysis.

Here we show our results for MRI data of a rat bearing a glioblastoma. The MR image
represents the rat head where the brain is the gray area in the top half of the image. Inside
this gray region, a tumour is clearly visible appearing as a brighter area. For this experiment,
we acquired the full k -space and present the zero-filling reconstruction in Figure 8a and the
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(a) PSNR (b) RRE (c) RSE

Figure 7: Error plots varying sampling rate. From left to right, we show the PSNR, RRE and RSE, respectively,
for different levels of noise in the measurements. The blue lines represent the error for our joint approach, while the
red and green dotted lines are for the sequential TV and sequential Bregman TV approaches. The joint appraoch
performs better than the sequential cases. The gain is not very significant for higher sampling rates, but it becomes
more important for lower rates, starting from 3%.

sequential segmentation in Figure 8e. As discussed already in the previous section, the zero-filled
reconstruction presents noise and artefact which may complicate the segmentation. We want to
show that the compressed sensing approach and in particular the joint model can improve this
reconstruction. Given the full k -space, we select 15% of the samples using a spiral mask. In
Figure 8b, 8f and Figure 8c, 8g we show the results for the sequential approaches. In Figure 8d
and 8h we show the joint reconstruction and the joint segmentation obtained for the same data.
The regularised approaches perform better that the zero-filled reconstruction, producing less
noisy results. However, our joint model is able to produce a cleaner reconstruction where the
edges that defines the tumour and the brain are very well detected. In Figure 9, we show a
zoomed section where it is easy to assess that the joint model tackle the noise and detect the
region of interest. We can see that we are able to improve the reconstruction and automatically
identify the tumour in the brain. The degree of enhancement of the edges in the reconstruction
is controllable by the parameter δ in the model (11). In the next subsection we present a
discussion on how to tune this parameter.

4.3 Parameter choice rule

In the model proposed in (11), the parameters that we need to choose are α, β and δ. In this
section we discuss a rule to choose them depending on the desired results. Some examples will
clarify these empirical choices.

• α balances the total variation regularization term in the reconstruction for the magnitude.
The higher the α, the more piecewise constant the reconstruction will be. See Figure 10.

• β defines the scale of the objects that will be detected in the segmentation. Smaller values
of β will allow for smaller objects. See Figure 11.

• δ is the parameter linking the reconstruction and the segmentation. To better illustrate
its role, let us consider a zero-filling like reconstruction and segmentation:

ıSF·=f (u) + δ
∑
i

∈ Ω
∑̀
j=1

vij(cj − ui)2dx+ β‖∇v‖ → min
u,v

(24)

where ı(u) =

{
+∞, if SFu 6= f

0, if SFu = f
. This problem is solving the zero-filled reconstruction

and segmentation jointly. For δ = 0, the reconstruction is the zero-filling solution. In
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(a) Zero-filled reconstruction (b) TV reconstruction
α = 0.01

(c) Bregman reconstruction
α = 1

(d) Joint reconstruction
α = 0.5

(e) Segmentation (f) Segmentation
β = 0.07

(g) Bregman segmentation
β = 0.07

(h) Joint segmentation
β = 0.01, δ = 0.01

Figure 8: Reconstructions and segmentation for real MRI data. The image show a rat brain bearing a tumour (brighter
region). The zero-filled reconstruction 8a and the TV regularised reconstruction 8b are shown together with their
sequential segmentation 8e and 8f respectively. In the last column 8d and 8h we show the results for our model. The
parameter α for the TV reconstruction and for the joint reconstruction has been chosen such that it achieves visually
optimal in the sense that it resolve all the details (e.g. the darker line cutting the tumour transversally).

(a) Zero-filled reconstruc-
tion

(b) TV reconstruction (c) Bregman reconstruction (d) Joint reconstruction

(e) Segmentation (f) Segmentation (g) Bregman segmentation (h) Joint segmentation

Figure 9: Zoomed section on the tumor for the different approaches.

Figure 12 we can see the impact of the segmentation term on the reconstruction for
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(a) α = 0.001 (b) α = 0.01 (c) α = 0.1

Figure 10: The parameter α balances the data fidelity term and the total variation regularisation for the reconstruction.
Smaller values of α produce a reconstruction closer to the data fitting term, hence less smooth as in 10a. As α increases
in 10b the solution gets smoother and less noisy. Finally for large values it tends to become more piecewise constant
as in 10c.

(a) β = 0.1 (b) β = 1 (c) β = 3

Figure 11: The parameter β determines the scale of the objects that we are segmenting. Smaller values of β can detect
smaller objects 11a, which are lost for intermediate values 11b. Finally very large values only detect main structures
11c.

increasing values of δ. We can see that for very smallδ the result is close to the zero-filling
solution. For δ = 1 the noise from the model is present as expected but in addition the
boundaries are enhanced. For large δ the boundaries are still very pronounced and the
noise is also amplified.

5 Conclusion

In this paper, we have investigated a novel mathametical approach to perform simultaneously
reconstruction and segmentation from undersampled MRI data. Our motivation was to include
in the reconstruction prior knowledge of the objects we are interested in. By interconnecting
the reconstruction and the segmentation terms, we can achieve sharper reconstructions and
more accurate segmentations. We derived a variational model based on Bregman iteration and
we have verified its convergence properties. With our approach we show that by solving the
more complicated joint model, we are able to improve both reconstruction and segmentation
compared to the traditional sequential approach. This suggests that with the joint model it is
possible to reduce error propagations that occur in sequential analysis, when the segmentation
is separate and posterior to the reconstruction.

We have tested our method for two different application, which are bubbly flow and cancer
imaging. In both cases, the reconstructions are sharper and finer structures are detected. Addi-
tionally, the segmentations also benefit from the improvement in the reconstructions. We have
found that the joint model outperforms the sequential approach by exploiting prior information
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(a) δ = 0 (b) δ = 0.1 (c) δ = 1 (d) δ = 2.5

Figure 12: We show the reconstructions obtained solving (24) for different values of δ. For δ = 0 we get the zero-filling
solution. For small δ we expect the solution to be similar to the zero-filling reconstruction. For δ = 1 we see the effect
of the joint term on the reconstruction. The solution presents the same noise artefacts but having in addition very
sharp boundaries. Finally, for very large δ we still have enhanced boundaries but we also amplify the noise.

on the objects that we want to segment. We also presented a discussion on the parameter choice
rule that offer some insight on how to tune the parameters according to the desired result. It
is interesting to notice that, with our model, we are able to control the segmentation effect
on the reconstruction. Furthermore, when the final analysis of the MR image is indeed the
segmentation, it is possible to bias the reconstruction towards the piecewise constant solution,
yet preserving finer details in the structure.

In our set-up, we have specified the intensity constants characteristic of the region of inter-
ests, which were known a priori for our applications. However, it is possible to also include the
optimisation with respect to cj in our joint model, where the same convergence guarantees hold
(see Remark 2). Nevertheless, one limitation of the model is the need to specify the number of
regions to be segmented.

In our future research, we would like to study the extension of this model for the bubbly
flow to the reconstruction of the magnitude image as well as the phase image. The goal is not
only to extract the structure of the bubble, but also to estimate velocity information, which
is encoded in the phase image. As the problem is non-convex in the joint argument but also
non-convex with respect to the phase, we need to derive a different convergence analysis.
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A Numerical results on phantoms

(a) Groundtruth (b) TV reconstruction, α = 0.15
RRE=0.0305, PSNR=27.44

(c) Bregman reconstruction,
α = 1.1, RRE=0.0427,
PSNR=27.21

(d) Joint reconstruction, α =
0.8, RRE=0.0262, PSNR=28.27

(e) Sampling matrix, 15% (f) Segmentation, β = 0.001
RSE=0.0219

(g) Bregman segmentation, β =
0.001 RSE=0.0399

(h) Joint segmentation, β =
0.001, δ = 2, RSE=0.0219

Figure 13: This example shows clearly the effect of the parameter δ in the joint model. The segmentation is easy to
achieve and we do not see a significant improvement in joint segmentation compared to the TV sequential segmentation,
but there is a small gain compared to the sequential Bregman segmantation. However, the joint reconstruction results
improved thanks to the parameter δ which biases the reconstruction to be closer to the segmentation.
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(a) Groundtruth (b) TV reconstruction, α = 0.3,
RRE=0.0578, PSNR=21.43

(c) Bregman reconstruction,
α = 1.5, RRE= 0.1307,
PSNR=21.49

(d) Joint reconstruction, α =
1.5 RRE=0.0713, PSNR=21.87

(e) Sampling matrix, 15% (f) Segmentation, β = 0.001,
RSE=0.096

(g) Bregman segmentation, β =
0.001, RSE=0.121

(h) Joint segmentation, β =
0.001, δ = 0.1, RSE=0.091

Figure 14: In this example, we can see that the reconstructions are quite similar. However in the joint reconstruction,
the outer yellow circle, which is completely ignored by the sequential reconstructions, is partially detected. This is
also the case for the joint segmenation.
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(a) Groundtruth (b) TV reconstruction, α =
0.15, RRE=0.074, PSNR=17.15

(c) Bregman reconstruc-
tion, α = 2, RRE=0.071,
PSNR=17.65

(d) Joint reconstruction, α =
0.8, RRE=0.047, PSNR=19.015

(e) Sampling matrix, 8% (f) Segmentation, β = 0.01,
RSE=0.016

(g) Bregman segmentation, β =
0.01, RSE=0.022

(h) Joint segmentation, β =
0.01, δ = 1, RSE=0.014

Figure 15: In this example for the bubbly flow, we can see clearly an improvement for both joint reconstruction and
joint segmentation. The contrast in the joint reconstruction is better recovered and the segmentation is more accurate,
especially for the bubbles close to the edge of the pipe. The joint method results particularly useful for the bubbly
flow application.
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