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    Abstract- Single-phase power converters with the active 

pulsating-power-buffering (PPB) function are essentially highly 

coupled and nonlinear systems. Advanced control techniques are 

needed for this emerging class of converters to achieve fast 

transient response and large-signal stability. Existing control 

solutions are based on either i) linear control techniques that are 

operating-point specific or ii) nonlinear control techniques that 

are generally topology-dependent. The proposed work is an 

evolved generalized feedback-linearization (FBL) control 

approach that incorporates the direct Lyapunov control method. 

The proposed control provides good stabilization of the internal 

dynamics of the system (which is unviable with FBL control) 

while still retaining all the best features of FBL control. A kind of 

single-phase power conversion system with active PPB is 

described. It is shown that FBL control naturally destabilizes the 

system and that the proposed control can globally stabilize the 

system under various operating conditions whilst yielding fast 

dynamics.1 

 

I.  INTRODUCTION 

 

SINGLE-PHASE power converters with the active 

pulsating-power-buffering (PPB) function are promising 

candidates for achieving high power density, high energy 

efficiency, and high reliability (H3) [1]−[4]. The H3 features 

are particularly attractive for a wide range of applications, 

such as consumer electronics (laptop adapters and LED 

drivers), telecom (the power supply unit for data centers and 

servers) and renewable energy, where power density, 

efficiency, and reliability are of the uttermost figure-of-merits. 

The basic operating principles of single-phase power 

conversion with active PPB can be explained using Fig. 1. As 

introduced in [5], this new derivative of single -phase 

converters incorporates a third ripple port (see Cb in Fig. 1). 

By allowing a large voltage ripple Δvb across Cb through 

active PPB control, the required Cb can be significantly 

reduced for buffering the double-line-frequency imbalanced 

power, which is inherent in any single-phase converters [6]. 

The reduction of the required energy storage enables the 
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Fig. 1.  Power conversion architecture of a single-phase PFC rectifier with 

active PPB. 
 

elimination of conventional bulk dc-link capacitors (typically 

electrolytic capacitors, or E-caps) and allows more compact 

and reliable non-E-caps (e.g. film or ceramic capacitors) to be 

used in the system, thereby achieving high compactness and 

long service lifetime. 

There is a myriad of circuit configurations reported for 

single-phase power conversion with active PPB, showcasing 

superior power density (up to 200 W/in3) and efficiency (up to 

98%) [7]−[11]. Subsequently, advancement in the controller 

design is indispensable for attaining improved system-level 

performance. As reported in [5], H3 converters are essentially 

highly nonlinear and coupled, and inherently involve a large-

signal operation. Most of the existing control solutions, 

however, are linear control techniques that are valid only 

around specific operating points and do not take the 

nonlinearity and coupling effect into consideration. They are 

primarily targeted at narrow-load-range steady-state 

operations and are inapplicable to operations when fast 

response and large-signal stability are mandated [12]−[14]. In 

[4], a patent-pending nonlinear feedforward controller that 

provides excellent large-signal dynamic performance is 

proposed. However, the controller is topology-specific and the 

system’s dynamic performance is not theoretically verified. In 

[5], a nonlinear control approach based on input-output 

feedback linearization and an automatic-power-decoupling 

control strategy, namely FBL-APD control, was developed. 

The effectiveness of the controller was demonstrated with the 

system’s bandwidth and large-signal stability systematically 

derived and validated. The FBL-APD control is also applied to 

other recently proposed circuit configurations [15]−[19], 
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demonstrating its versatility. Despite its effectiveness, FBL-

APD control, as with other FBL controllers, possess a major 

limitation of being incapable of ensuring the stability of the 

system’s internal dynamics, which are unobservable system 

states [20]. Therefore, the stability of a system with FBL-APD 

control is essentially determined by the stability of the internal 

dynamics and is system-dependent. 

This work aims to complement the previously proposed 

FBL-APD controller by tackling the internal dynamics 

instability challenges. In particular, a Lyapunov-based APD 

(LP-APD) controller that can, and for the first time, actively 

stabilize the internal dynamics of the system whilst retaining 

all the advantages of FBL-APD control, such as fast dynamics 

and large-signal stability, is proposed. The proposed controller 

will be important in applications where the system’s internal 

dynamics are unstable with an FBL-APD controller. 

 

II. MATHEMATICAL MODELING AND STEADY-STATE 

ANALYSIS OF AN H3 SINGLE-PHASE CONVERTER 

 

The H3 single-phase power converter topology investigated 

in this work is shown in Fig. 2. It comprises i) a full-bridge 

active front end converter for ac/dc conversion and ii) a buck-

type PPB bridge leg for removing the double-line-frequency 

voltage ripple from the dc-link [4], [5], [21]. Here, the PPB 

bridge leg operates in the continuous conduction mode (CCM) 

of operation and functions as a bidirectional buck/boost 

converter. Compared to the discontinuous conduction mode 

(DCM) of operation, a CCM PPB structure can achieve zero 

voltage switching by operating in the transition current mode 

(TCM) [22], thereby enabling a higher-efficiency and higher-

power-density design.  

 

A. Mathematical Model of the H3 Single-Phase Converter 

The state-space-averaged model of the H3 single-phase 

converter can be expressed as 

 ( ) ( )  x f x g x u , (1) 

where 
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Most of the variables in (2) are marked in Fig. 2. u1 = m is the 

modulation index of the full-bridge converter and u2 = dC is 

the duty cycle of the PPB bridge leg. Both u1 and u2 are 

subject to the constraints 

 1 21 1, 0 1u u     . (3) 

Clearly, the mathematical model of the system described by 

(1) indicates that the system is highly nonlinear (due to the 
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Fig. 2.  Topology of the H3 single-phase power converter with a buck-type 
PPB bridge leg. 
 

multiplication of u and x) and highly coupled (between u and 

x). 

 

B. Steady-State Operation of the H3 Single-Phase Converter 

At steady state, the state-space model in (1) can be 

expressed as 

 ( ) ( )  S S S S
x f x g x u , (4) 

where the variables with a superscript S represent their steady-

state values. 

Given that vac
S = VAC sin(ωt), iac

S = IAC sin(ωt), vdc
S = Vod, 

and that iload
S is a constant, the input power injected into the 

full-bridge converter is thus 

 

 

   21 1
1 cos 2 sin 2

2 2

S S S S

in ac ac ac ac

AC AC ac AC

P v L i i

V I t L I t  

 

    

. (5) 

The corresponding output power is 

 
S S S S

out dc load od loadP v i V i  . (6) 

Provided that inductance Lb is sufficiently small such that 

the energy stored in Lb is negligible, then the energy stored in 

the PPB circuit is 

  
21

2

S S

b b bE C v . (7) 

Applying the principle of energy conservation to the 

converter, one has 

 
   21 1
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2 2

S S S

b in out

AC AC ac AC

E P P

V I t L I t  
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  
. (8) 

vb
S can now be solved by combining (7) and (8), as 
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where Eb0 is the initial energy of the PPB. 

Substitution of (9) into (4) yields 
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The expressions of iac
S, ib

S, and vb
S indicate a large-signal 

operation with a small Cb even at the steady state. 

uS is directly solved from (4) as 

 1

2

S S

S ac ac ac

S

v L i
u

x


 , 

1

2

S S S S S

S ac load b b b

S S

b dc

u i i v L i
u

i v

 
  . (11) 

The complete time-domain expressions of u1
S and u2

S can 

finally be obtained by substituting xS into (11). 

 

III. INTERNAL DYNAMICS INSTABILITY WITH FEEDBACK-

LINEARIZATION-BASED APD CONTROL 

 

In [5], a nonlinear controller based on feedback-

linearization and an automatic-power-decoupling control 

strategy (FBL-APD) is proposed for the same H3 converter in 

Fig. 2, except that the PPB operates in DCM. The controller 

successfully tackles the coupling and the nonlinearity issues of 

the system and achieves satisfactory steady-state and dynamic 

performances. However, as will be explained in the following, 

the same FBL-APD control is inapplicable when the PPB 

operates in CCM. 

 

A. Review of FBL-APD Control 

According to the APD control strategy, iac and vdc are 

selected to form the control output vector y, i.e., 
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2

ac ac

dc dc

L iy

C vy

  
    
   

y . (12) 

By following the FBL-APD control design procedure in [5], 

the decoupling control law can be derived as 

 
1 1 2

1 2,ac ac load

dc b

v v u i v i
u u

v i

  
  . (13) 

such that 

 
1 1

2 2

y v

y v

   
    

   
v . (14) 

v is a new set of control inputs, with which the original system 

model in (1) is decoupled and linearized. 

If the feedback control law is designed as 

    1 1 1 2 2 2,R R R

ac ac ac ac dc dcv L i L i y v C v y       (15) 

with iac
R (= iac

S) and vdc
R (= vdc

S) being the references of iac and 

vdc, respectively, the error dynamics of the closed-loop system 

will be obtained from (14) and (15) as 

 1 1 1 0e e  , (16) 

 2 2 2 0e e  , (17) 

where e1 = iac
R – iac, e2 = vdc

R – vdc, and αi are design choices. 

Equations (16) and (17) suggest that i) iac and vdc have the 

simple first-order error dynamics in reference tracking, with 

bandwidths of fBW1 = α1/2π and fBW2 = α2/2π, respectively, and 

ii) iac and vdc are globally and exponentially stable, provided 

that α1 > 0 and α2 > 0. 

 

B. Stability Analysis of the Internal Dynamics 

With FBL-APD control, the dynamics of ib and vb are not 

directly controlled. The dynamics of the uncontrolled system 

states, also known as the internal dynamics, thus can easily 

affect the stability of the overall system. In the following 

analysis, it will be shown that the internal dynamics are 

actually unstable with the control law (13) and (15) despite 

that iac and vdc have been stabilized.  

The internal dynamics of the system are rewritten from (1) 

as 

 2

1b

b dc

b b

v
i v u

L L
   , (18) 

 
1

b b

b

v i
C

 . (19) 

By substituting (13) into (18), the dynamics of ib can be 

derived as 

 
b b

b

b b b

v p
i

L L i
   , or equivalently 

b

b b b

b

p
L i v

i
   . (20) 

where pb = (vac – v1)iac – v2vdc – iloadvdc. 

According to (14), v1 is the voltage drop across Lac and v2 is 

the current through Cdc. Therefore, the physical meaning of pb 

is precisely the instantaneous power absorbed by the PPB 

circuit. Equation (20) is the expected result as it is simply a 

Kirchhoff's Voltage Law (KVL) equation obtained with the 

PPB circuit, i.e. pb/ib is the average voltage at the node C (see 

Fig. 2), and 
b bL i  and vb are the voltages across Lb and Cb, 

respectively. Comparison of (18) and (20) shows that u2 can 

also be expressed in terms of pb as 

 2

b

dc b

p
u

v i
 . (21) 

To simplify the analysis, zero dynamics are considered (i.e., 

when e1 = e2 = 0). Equation (20) is rewritten as 

 

Z Z

Z b b

b Z

b b b

v p
i

L L i
    (22) 

with 

  Z R R R

b ac ac ac ac load dcp v L i i i v   , (23) 

where the variables with a superscript Z represent their zero 

dynamics. 

On the other hand, by solving (3) and (18), the viable range 

of Z

bi  can be determined as 

 

Z R Z

Zb dc b

b

b b

v v v
i

L L


   . (24) 

With (22) and (24), the phase plane of ib
Z can be drawn. To 

simplify the analysis, it is assumed that iac
R, vb

Z, vac and iload 

are constant. This is justified by the fact that the dynamics of 

ib is significantly faster than the dynamics of iac
R, vb

Z, vac and 

iload due to a small Lb. Furthermore, (23) indicates that pb
Z can 

also be regarded as a constant. The phase plane of ib is now 

drawn in Fig. 3 by considering the following two scenarios: 

•Scenario 1: When pb
Z > 0, the PPB circuit is absorbing 

energy from the dc bus. By equating Z

bi  to zero in (22), the 

equilibrium point of ib
Z is calculated as ib

E = pb
Z/vb

Z, which is 

positive. Fig. 3(a) shows that ib
Z will converge to ib

E if ib
Z(0) > 

0 (ib
Z(0) is the initial value of ib

Z), but will decrease 

unboundedly if ib
Z(0) < 0, i.e. ibZ is merely locally stable. 
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Fig. 3.  Phase plane of x3 when (a) pb

Z > 0, and (b) pb
Z < 0. 

 

bL

5S

6S

bV

bi

odV

Z

bp

+
  

+
  

Z

bp

odV



bi

2u
PWM

 
Fig. 4.  Schematic diagram of the PPB circuit with the controller in the 
simulation. 

 

•Scenario 2: When pb
Z < 0, the PPB circuit is injecting 

energy to the dc bus and ib
E is negative. Fig. 3(b) indicates that 

ib
Z will converge to zero if ib

Z(0) > ib
E, but will decrease 

unboundedly if ib
Z(0) < ib

E, i.e. ib
Z is globally unstable. 

The time-domain responses of ib
Z given different ib

Z(0) are 

further simulated and the results are shown in Fig. 5. The 

simulation is conducted on the PPB circuit solely where Cb 

and Cdc are replaced by two voltage sources Vb and Vod, 

respectively. The schematic diagram of the simulated PPB 

circuit (controlled according to (21)) is shown in Fig. 4, where 

Vod = 400 V, Vb = 250 V, and pb
Z is set as 1 kW and −1 kW for 

Scenario 1 and 2, respectively. From Fig. 5, the following 

observations can be made: 

•In Scenario 1, ib
E = 4 A. Fig. 5(a) depicts that all the five 

curves with ib
Z(0) > 0 converge to 4 A while the other two 

with ib
Z(0) < 0 decrease unboundedly. 

•In Scenario 2, ib
E = −4 A. Fig. 5(b) depicts that all the five 

curves with ib
Z(0) > −4 A converge to zero while the other 

three with ib
Z(0) < −4 A decrease unboundedly.  

The simulation results are a good match with the above 

discussion. 

The simulation waveforms of the overall system with FBL-

APD control (according to (13) and (15)) are shown in Fig. 6. 

It is clearly noted that: 

(a) the system’s internal dynamics, i.e., vb and ib, are 

fluctuating significantly around their respective set points and 

are unstable; 

(b) the system’s direct control outputs, i.e., iac and vdc, are 

0

5

5

10
Time: [200µs/div]

Converge to

Diverge

(0) 8AZ

bi 

(0) 6AZ

bi 

(0) 4AZ

bi 

(0) 2AZ

bi 

(0) 0.1AZ

bi 

(0) 0.1AZ

bi  

(0) 2AZ

bi  

E

bi

4AE

bi 

 
(a) 

0

5

5

10

Time: [200µs/div]

4AE

bi  

Converge to 0

Diverge(0) 6AZ

bi  

(0) 8AZ

bi  

(0) 4.1AZ

bi  

(0) 3.9AZ

bi  

(0) 2AZ

bi  

(0) 0AZ

bi 

(0) 2AZ

bi 

(0) 4AZ

bi 

 
(b) 

Fig. 5.  Simulated time-domain responses of x3
Z with (a) pb

Z = 1 kW, and (b) 
pb

Z = −1 kW. 
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Fig. 6.  Simulation waveforms of the system with FBL-APD control. 

 

also highly unstable as the instability of the internal dynamics 

severely distorts the reference for iac and turns the system into 

abnormal operation.  

These simulated waveforms clearly demonstrate the 

incapability of the conventional FBL-APD control techniques 

when applied to control the target power converter. 
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IV. PROPOSED NONLINEAR APD CONTROL WITH 

LYAPUNOV DIRECT METHOD 

Equation (18) shows that the internal dynamics of ib is 

determined by u2 only. To stabilize ib, a different u2 from that 

in (21) is needed. Modification of u2 will not affect the 

dynamics of iac but will alter the dynamics of vdc according to 

(1), meaning that the stability of vdc is no longer guaranteed. It 

is therefore desirable to develop a new control law of u2 that 

can ensure the stability of vdc and ib simultaneously while still 

retaining a simple first-order and decoupled dynamics of vdc as 

that described in (17). This problem is to be addressed by the 

proposed Lyapunov-based APD (LP-APD) control described 

as follows. 

 

A. Stabilization of vdc and ib 

The LP-APD control uses a two-step approach to stabilize 

vdc and ib. Firstly, the Lyapunov direct method is used to 

ensure that vdc converges to vdc
R and ib to ib

R (signified by vdc 

→ vdc
R and ib → ib

R). ib
R is a virtual signal in a reference 

system, which we shall define shortly. Secondly, as vdc
R = vdc

S, 

vdc → vdc
S is obtained, verifying the stability of vdc. We then 

merely need to verify that ib
R → ib

S such that ib → ib
S and the 

stability of ib is ensured. 

 

1) Step 1 

According to the Lyapunov stability theory [23]−[25], to 

ensure vdc → vdc
R and ib → ib

R (or e2 → 0 and e3 → 0), a 

Lyapunov function candidate V(e2, e3) should be found. 

Analogous to (18), we define a reference system as 

 2

1R Rb

b dc

b b

v
i v u

L L
   , (25) 

where u2
R is the duty ratio of the PPB bridge leg in the 

reference system. 

Assuming that R

b bL i  is sufficiently small, u2
R is solved from 

(25) as 
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R
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L i v v
u

v v


  . (26) 

The error dynamics of ib is obtained by subtracting (18) 

from (25) as 

 3 2

1
dc u

b

e v e
L

  (27) 

with 

 2 2 2

R

ue u u  . (28) 

The functions of e2 and e3 are designed as V(e2, e3) = V1(e2) 

+ V2(e3) with V1(e2) = 0.5Cdce2
2, V2(e3) = 0.5Lbe3

2. 

According to the Lyapunov’s direct method, (e2, e3) = (0, 0) 

is a globally stable operating point if V(e2, e3) is a Lyapunov 

function candidate, i.e., 

 2 3 1 2 2 3( , ) ( ) ( ) 0V e e V e V e   , (29) 

where 
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A sufficient condition for (29) is to achieve V̇1(e2) ≤ 0 and 

V̇2(e3) ≤ 0 simultaneously. It can be seen that if 

 1 3

2u

dc

e
e

v


   (32) 

with β1 > 0, then V̇2(e3) will become 

 
2

2 3 1 3( ) 0V e e   . (33) 

Combination of (28) and (32) leads to 

 
 11 3

2 2 2

R

b b bR b

u

dc dc

v i iv e
u u e

v v

  
    . (34) 

By substituting u2 into (30), V̇1(e2) is further obtained as 

 
 1 1 3

1 2 2 2( )
dc load ac ac b

dc dc b

dc dc

v i v v i v e
V e C e v e i

v v

    
     

   
. 

(35) 

Provided that the dynamics of ib is significantly faster than 

that of vdc (referred to as Condition A hereafter), ib = ib
R (or e3 

= 0) can be assumed in the calculation of V̇1(e2). Equation (35) 

then becomes 

  2
1 2 1( ) R

dc load ac ac b b

dc

e
V e v i v v i v i

v
      . (36) 

If 

 
 1 2 2ac ac load dc dcR

b

b

v v i i v v e
i

v

  
  (37) 

with β2 > 0, V̇1(e2) will become 

 
2

1 2 2 2( ) 0V e e   . (38) 

Therefore, (29) is fulfilled, ensuring that vdc → vdc
R and ib → 

ib
R. 

 

2) Step 2 

As we have proved above that iac → iac
S, vdc → vdc

S and ib → 

ib
R, (37) becomes 

 
 S S S S S

ac ac ac ac dc loadR

b

b

v L i i v i
i

v

 
  (39) 

at steady state. ib
R can then be solved from (19) and (39) as 

 
   

   

2

2

0

cos 2 sin 2

2
2 sin 2 cos 2

2 2

AC AC ac ACR S

b b

b AC AC ac AC

b b b

V I t L I t
i i

E V I L I
t t

C C C

  

 


 
 

 

. 

(40) 

which is bounded. Therefore, together with the results in Step 

1, we have proved that vdc and ib are stable and converge to 

their steady-state values, respectively, with the control laws of 

(34) and (37). 

 

B. Dynamics Analysis of the Overall System  

According to (1), the error dynamics of iac is only related to 

u1. As u1 needs no modification, the dynamics of iac is the 

same as (16), i.e., 

 1 1 1 0e e  , (41) 
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which is stable with a bandwidth of fBW1 = α1/2π. 

The error dynamics of vdc is obtained by substituting (34) 

and (37) into (1) as 

 2
2 2 0

dc

e e
C


    (42) 

with 

 2 2 1

1
1b b b

load ac

dc b dc

i v i
e i u i

C v v




  
       

  
. (43) 

The error dynamics in (42) differs from that in (17) with an 

additional nonlinear term Δ, confirming that the dynamics of 

vdc is altered with the LP-APD control. 

However, notice that Δ ≈ 0 on Condition A. Thus by setting 

β2 = Cdcα2, (42) becomes 

 2 2 2 0e e  , (44) 

which is the same as (17). This result is highly favorable 

because it indicates that the first-order and decoupled 

dynamics of vdc can still be approximately retained with the 

LP-APD control on Condition A. 

The error dynamics of ib is derived by substituting (32) into 

(27) as 

 1

3 3 0
b

e e
L


  , (45) 

which again describes a first-order response with a bandwidth 

of fBW3 = β1/2πLb. 

Condition A can, therefore, be achieved by selecting 

appropriate α2 and β1 such that 

 2 1

2 2 bL

 

 
  or 1 2 bL  , (46) 

Finally, according to (19), the error dynamics of vb is 

 4 3

1

b

e e
C

 . (47) 

As iac → iac
S, vdc → vdc

S, ib → ib
S at steady state, we can 

conclude that vb →  vb
S according to the principle of 

conservation of energy, and that vb is stable. 

The complete control law of the proposed LP-APD control 

is summarized as 

 
1

1

ac

dc

v v
u

v


 , (48a) 

 
 1 1 21 3 1

2

ac loadb b b

dc b dc

u i v iv e v i
u

v v v

   
   . (48b) 

with v1 and v2 given in (15). Fig. 7 depicts the overall control 

schematic diagram with the unity power factor control 

included. 

 

C. Design Considerations 

To present a more comprehensive evaluation of the 

proposed controller in a practical setting, the impacts of 

component tolerances on the controller performance are 

analyzed. For simplicity, the above representations, i.e. Lac, 

Cdc, Lb, Cb, are reused to denote the exact values of these 

parameters, while their respective measurements are signified 

as ˆ
acL , ˆ

dcC , ˆ
bL , ˆ

bC  with 

 ˆˆ ,ac ac ac dc dc dcL L L C C C      , 

  

1u
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Plant

Lyapunov-Method-Based Control

Eq. 

(48a)
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Fig. 7.  Overall schematic diagram of the proposed LP-APD control including 

unity power factor control. 
 

 ˆˆ ,b b b b b bL L L C C C      . (49) 

Then the proposed control law alters from (48) to 

 
1 1

1

ˆ ˆR

ac ac ac ac

dc

v L i L e
u

v

 
 , 

 
 1 1 2 2

1

2

ˆ
ac dc load

b b

b dc

u i C e i v i
u

v v

    
  . (50) 

Substituting (50) into (1) gives the system’s actual 

dynamics 

 1 1 2 2

ˆˆ ˆ
,Rac ac dc

ac ac dc

ac ac dc

L L C
i i e v e

L L C
    , 

 3

1
,b b b

b b

i e v i
L C


  . (51) 

e1 is solved from (51) as 

 

1

ˆ

1 1

1

2 2

1

(0)

ˆ
sin( arctan( ))

ˆ( ) ( )

ac

ac

L
t

L

ac ac AC ac

ac ac
ac ac

e e e

L L I L
t

L LL L



 


 

 

 


 



. (52) 

Equation (52) shows that e1 comprises two parts, one 

related to the initial error e1(0) and the other one caused by 

inaccurate knowledge of Lac. The latter part is generally very 

small in magnitude owing to small ΔLac/Lac and large α1/ω, 

while the former part will dissipate exponentially with a 

bandwidth of 

 1

1 1

ˆ ˆ
ˆ

2

ac ac

BW BW

ac ac

L L
f f

L L




    , (53) 

where 
1

ˆ
BWf  represents the designed bandwidth of the iac 

control loop. 

Similarly, the impacts of the uncertainties of Cdc, Lb, Cb can 

also be analyzed quantitatively. The results are summarized in 

Table I. 

 

V. SIMULATIONS AND EXPERIMENTAL RESULTS 
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To examine the performance of the proposed LP-APD 

control, a 2-kW model of the H3 single-phase converter was 

first simulated in PSIM and a downsized 300-W prototype was 

also constructed. The system’s specifications in both the  
 

TABLE I 
IMPACTS OF PARAMETER UNCERTAINTIES ON CONTROLLER PERFORMANCE 

 

Parameter Impacts of Component Tolerances 

Lac 1. Bandwidth of x1 control loop: 1 1

ˆ
ˆac

BW BW

ac

L
f f

L
  . 

 2. Steady-state error of x1. 

Cdc Bandwidth of x2 control loop: 2 2

ˆ
ˆdc

BW BW

dc

C
f f

C
  . 

Lb Bandwidth of x3 control loop: 3 3

ˆ
ˆb

BW BW

b

L
f f

L
  . 

Cb No impact. 

 
TABLE II 

SPECIFICATIONS OF THE SYSTEM IN SIMULATION AND EXPERIMENTS 
 

Parameter Simulation Experiment 

Rated power 2 kW 300 W 

Switching frequency 25 kHz 25 kHz 

Ac port vac 220 V (RMS) / 50 Hz 220 V (RMS) / 50 Hz 

Lac 1 mH 7 mH 

Dc port Vdc 400 V 400 V 

Cdc 20 μF 20 μF 
Ripple port Cb 200 μF 50 μF 

Lb 0.3 mH 1.87 mH 
Controller 

Coefficients 

fBW1 2.5 kHz 2.5 kHz 

fBW2 400 Hz 400 Hz 

fBW3 2 kHz 2 kHz 

 

simulation and the experiments are listed in Table II. In 

particular, the bandwidths of the controller in both cases are 

designed identical as fBW1 = 2.5 kHz, fBW2 = 400 Hz, fBW3 = 2 

kHz. 

 

A. Simulation Verification 

1) Steady-State Performance 

The steady-state waveforms of the proposed LP-APD 

controller are illustrated in Fig. 8. At the input port, the 

waveform of iac has a low total harmonic distortion (THD) of 

0.6% and almost no phase displacement with respect to vac, 

testifying a good regulation of iac and a unity power factor. At 

the output port, vdc is regulated at 400 V with a peak-to-peak 

ripple of about 9 V (2.3%). The instantaneous power 

difference between the input and the output is buffered by the 

PPB, leading to a large-signal voltage variation of vb in Fig. 8. 

Finally, the waveform of ib confirms CCM operation of the 

PPB. 

 

2) Transient Performance 

Firstly, step-up/down changes of iac
R, vdc

R and ib
R (i.e. x1

R, 

x2
R and x3

R) are conducted to verify the control bandwidth 

design analysis in Section IV-B. The results are displayed in 

Fig. 8(a)−(f). First-order responses of iac, vdc and ib can be 

clearly observed from Fig. 9 for both reference step-up and 

step-down. The respective settling times of iac, vdc and ib are 

measured in Fig. 9 to be around 300 μs, 1 ms and 300 μs, 

which are very close to their theoretical values of 318 μs, 2.0 

ms and 398 μs. Note that the slight differences between the 

estimated and the theoretical settling time are mainly due to i) 

the large switching ripple of ib, ii) the double-line-frequency 
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Fig. 8.  Steady-state waveforms of the system with the proposed LP-APD 
control. 
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Fig. 9.  Transient waveforms with the proposed LP-APD control in the tests of 

(a) step-up change of iac
R, (b) step-down change of iac

R, (c) step-up change of 

vdc
R, (d) step-down change of vdc

R, (e) step-up change of ib
R, (f) step-down 

change of ib
R. 

 

ripple of vdc, iii) the time-varying nature of iac
R and ib

R. These 

disturbances make precise estimation of the settling time 

difficult. 

Secondly, load step change tests are carried out, and the 

waveforms are displayed in Fig. 10. In Fig. 10(a), a negative 

spike of 23 V appears in vdc as the load steps up from 0 to 2 

kW. With the proposed LP-APD controller, vdc quickly 
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recovers and settles back to its reference 400 V within 1 ms. In 

Fig. 10(b), a positive spike of 21 V in vdc is observed due to 

sudden load removal and the fast response of vdc is also 

demonstrated. 
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(b) 

Fig. 10.  Transient waveforms of the system in the processes of (a) load step 

up and (b) load step down. 
 

B. Experimental Results 

1) Steady-State Performance 

Fig. 11 shows the steady-state operating waveforms of the 

power converter at the input port, the output port and the 

ripple port with the proposed LP-APD control at full load (300 

W). All the waveforms in Fig. 11 match well with the 

simulation results in Fig. 8. The THD of iac is measured at 

2.21% and the peak-to-peak ripple voltage of vdc is measured 

at 8 V (2% of the average vdc), demonstrating good regulations 

of the line current and the output voltage. The stability of the 

internal dynamics, i.e., ib, is also confirmed. 

 

2) Transient Performance 

Fig. 12 depicts the dynamic responses of the system as the 

load is step changed between 0 W and 300 W. Fig. 12(a) 

illustrates that vdc is almost immune to the step-up load change 

and remains its tight regulation at 400 V. As a sudden increase 

of the output power leads to a sudden power imbalance 

between the input and output, the buffer energy in the PPB 

circuit is released to the dc bus immediately to compensate the 

power imbalance (see vb in Fig. 12(a)) in an automatic fashion, 

similar to the result in [5]. The fast responses and robustness 

of the proposed control are also validated by Fig. 12(b) as the 

load is suddenly cut off. 

Fig. 13 further illustrates the transient waveforms of the 

converter as the output voltage reference is changed between 

380 V and 420 V. vdc is shown to have a fast response and 

follow a typical first-order response. The settling time of vdc is 
Time: [10ms/div]

vac: [200V/div]

iac: [2A/div]
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(b) 

Fig. 11.  Steady-state waveforms of the system with the proposed LP-APD 
control at 300-W output power at (a) the ac- and the dc-port, and (b) the 

ripple-port. 

 

around 2 ms, which is a good match to both the theoretical 

value (2 ms) and the simulation result (1 ms) in Fig. 9. 

Additionally, the fast response of iac and the PPB function are 

also demonstrated in Fig. 13. 

 

VI. CONCLUSIONS 

 

In this study, the control of single-phase power converters 

that possess the active pulsating-power-buffering (PPB) 

function is investigated. A prior-art generalized nonlinear 

controller that combines the feedback linearization (FBL)  

theory and the automatic-power-decoupling (APD) control 

strategy, or an FBL-APD controller, is applied to a type of 
single-phase converters with active PPB. The internal 

dynamics instability phenomenon is demonstrated both 

mathematically and using simulations. To solve the instability 

problem, an evolved FBL-APD controller that incorporates the 

direct Lyapunov control method, or an LP-APD controller, is 

proposed, where the system’s internal dynamics are utilized to 

formulate the Lyapunov energy function V(x). Theoretical 

analysis is presented to show that the proposed LP-APD 

control can well stabilize the internal dynamics while still 

retaining the best features of the FBL-APD control. 
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Simulation and experimental waveforms successfully confirm 

the feasibility of this new control approach. The proposed 

control technique, as a complement of the generalized FBL-

APD control, can be very useful for controlling emerging 

single-phase converters with active PPB whilst enriching the 

existing FBL control theory. 
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Fig. 12.  Transient waveforms of the system with the proposed LP-APD control as the output power changes (a) from 0 W to 300 W, and (b) from 300 W to 0 W. 
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Fig. 13.  Transient waveforms of the system with the proposed LP-APD control as the output voltage reference changes (a) from 380 V to 420 V, and (b) from 420 
V to 380 V. 
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