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Abstract—DC winding induced voltage pulsation in 
wound field switched flux (WFSF) machines causes DC 
winding current ripple and field excitation fluctuation, 
challenges the DC power source and deteriorates the 
control performance. Hence, reducing this pulsation is 
important in the design of a WFSF machine. In this paper, 
based on the analytical models, rotor skewing and rotor 
iron piece pairing are proposed and comparatively 
investigated by the finite element (FE) method to reduce 
the on-load DC winding induced voltage in WFSF machines 
having partitioned stators and concentrated AC windings. 
FE results show that peak to peak value of the on-load DC 
winding induced voltage in the analysed 12/10-pole 
partitioned stator WFSF (PS-WFSF) machines can be 
reduced by 78.42% or 77.16% by using rotor skewing or 
rotor pairing, respectively, whilst the torque density can be 
maintained by >90%. As for the 12/11-, 12/13- and 
12/14-pole PS-WFSF machines, by using rotor iron piece 
inner arc pairing, the on-load DC winding induced voltage 
can be reduced by 64.11%, 52.12% and 76.49%, 
respectively, whilst the torque density can also be 
maintained by more than 90%. Prototypes are built and 
tested to verify the analytical and FE results. 

 
Index Terms—AC winding, DC winding, DC winding 

induced voltage, field winding, on-load DC winding 
induced voltage, rotor iron piece pairing, skewing, vernier 
reluctance machine. 

 

I. INTRODUCTION 

OUND field synchronous machines (WFSMs) are 

cheaper than rare-earth permanent magnet (PM) 

synchronous machines due to the high price of rare-earth PM 

material, and hence become a hot research topic recently [1]. 
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WFSMs can be divided into two categories according to the 

position of the DC field winding, i.e. the wound-rotor 

synchronous machines (WRSMs) having DC winding in the 

rotor and the vernier reluctance machines (VRMs) with both 

DC and AC windings placed in the stator, which has been 

proposed for more than 50 years [2], [3]. Compared with the 

conventional WRSMs, the VRMs [2]-[8] perform without slips 

and brushes, and hence higher stability and reliability. 

Compared with switched reluctance machines (SRMs) [9], 

VRMs can exhibit smaller torque ripple and noise due to the 

nearly sinusoidal AC winding back-electromotive forces 

(back-EMFs) [10], but the simplicity and robustness of the 

SRMs can be retained in the VRMs. 

Several machine topologies are proposed and analyzed by 

finite element (FE) method for VRMs [11]-[16], including both 

single phase [11], [12] and 3-phase counterparts [13]-[16]. 

Besides the well-established FE analysis, analytical solutions 

have been widely used to fast predict the air-gap field 

distribution and design the VRMs, including both subdomain 

method [17]-[19] and magnemotive force-permeance method 

[6]. Efforts are also made to realize the industrial applications 

of VRMs, as studied in [12] for the low-cost single phase 

counterpart with a simple and compact controller, and in [8], 

[20]-[22] for potentially applying the 3-phase counterparts in 

traction applications. In [23], for further enhancing the torque 

density, a new type of VRM, the so-called partitioned stator (PS) 

wound field switched flux (WFSF) (PS-WFSF) machine in 

which the AC armature and DC field windings are separately 

accommodated in two stators is proposed, as shown in Fig. 1 

for the 12/10-pole counterpart. Compared with the 

conventional single stator WFSF machine [13], the PS-WFSF 

machine can offer a higher torque density due to a higher total 

slot area and a better utilization of space. As shown in TABLE I 

of which details can be referred in Appendix A, compared with 

ferrite surface-mounted PM (SPM) machine, the PS-WFSF 

machine exhibits 46.91% higher torque per unit volume, 

however, the efficiency is only 13.39% larger due to DC 

winding copper loss. Although the rated torque of the 

PS-WFSF machine is smaller than that of the conventional 

WRSM, their efficiencies are similar, i.e. 87.78% and 90.60%, 

respectively, since the conventional WRSM having 

overlapping AC windings suffers from a longer end winding 

and hence a higher copper loss. In [8], it is recommended that 
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the torque density of the VRMs can be improved by using 

high-temperature winding insulation, whilst the efficiency can 

be enhanced by applying thinner laminations to minimize the 

iron losses. Moreover, since both DC and AC windings of the 

PS-WFSF machines are located in the stator, the generated heat 

due to copper loss can be easily mitigated [10], oppositely, 

advanced rotor cooling is required for mitigate the rotor heat in 

the WRSMs. It is also worth noting that compared with 

WRSMs, a much more reliable rotor structure without winding 

or PM can be achieved in the VRMs. 

 
Fig. 1.  Cross-section of a 12/10-stator/rotor-pole PS-WFSF machine. 

In [25], it is found that due to the variation of air-gap 

permeance, the PS-WFSF machines suffer from open-circuit 

DC winding induced voltage, which will cause DC winding 

current ripple [26], [27], challenge the DC power source and 

deteriorate the control performance. The raised DC winding 

current ripple will cause a fluctuated field excitation and hence 

additional harmonic components in the AC winding induced 

voltages, with average torque and torque ripple being impacted 

[26]. Rotor skewing is applied to reduce the open-circuit DC 

winding induced voltage in [25]. Both the analytical and finite 

element (FE) methods show that the open-circuit DC winding 

induced voltage can be effectively reduced by skewing, 

although the AC armature winding phase fundamental 

back-EMF and hence the torque density will be slightly 

smaller. 
TABLE I 

COMPARISON OF PS-WFSF MACHINE, WRSM AND SPM MACHINE HAVING 

SAME SPACE ENVELOP AS TOYOTA PRIUS 2010 IPM MACHINE [24] 

Item Unit PS-WFSF WRSM SPM 

Winding current density, Js [24] A/mm2 26.8 26.8 26.8 

Rated rotor speed, Ωr [24] r/min 2795 2795 2795 

Rated torque, Tr Nm 391.19 736.81 224.16 

Rated power, Pr kW 114.50 215.66 65.61 

AC windings stack copper loss, pcuas kW 3.17 3.78 5.71 

AC windings end copper loss, pcuae kW 5.01 8.81 12.90 

DC winding stack copper loss, pcufs kW 2.48 3.42 N/A 

DC winding end copper loss, pcufe kW 3.31 5.35 N/A 

Total copper loss, pcu kW 13.97 21.37 18.61 

Iron loss, piron kW 1.73 0.92 0.41 

Efficiency, η % 87.78 90.60 77.41 

Axial length, ls mm 50 50 50 

Singe side AC windings height, hea mm 28.69 41.66 40.39 

Singe side DC windings height, hef mm 24.15 27.84 N/A 

Axial length with end winding, la mm 107.38 133.32 90.39 

Machine volume, V L 5.88 7.30 4.95 

Rated torque per unit volume, TPV Nm/L 66.55 100.96 45.30 

Rated power per unit volume, PPV kW/L 19.48 29.55 13.26 

Besides skewing, pairing is another common method to 

reduce harmonics in electric machines, of which the 

mechanism is to cancel harmonics by a pair of machine 

components, such as PM width pairing [28], teeth width pairing 

[29], pole width pairing [30]. In the rotor-PM machines in 

which PMs are accommodated in the rotor, PM width pairing 

and teeth width pairing are applied in [25] and [29] to reduce 

the harmonics and hence the torque ripple, respectively. In 

stator-PM machines with stator accommodation of PMs, rotor 

pole width pairing is applied in [30] to reduce the cogging 

torque, as there is neither winding nor PM in the rotor. 

In this paper, the analysis of the open-circuit DC winding 

induced voltage in [25] will be extended to on-load condition, 

by taking the impact of armature reaction into consideration. 

Skewing and pairing will be comparatively investigated to 

reduce the on-load DC winding induced voltage. This paper is 

organized as follows. In section II, on-load DC winding 

induced voltage in the PS-WFSF machines is analytically 

modeled and the harmonic orders are analytically given and 

verified by FE results. In section III, applying rotor skewing in 

PS-WFSF machines to reduce the on-load DC winding induced 

voltage is investigated, whilst rotor pairing is applied to reduce 

it in section IV, followed by comparison of reduction 

effectiveness of various methods in section V. In section VI, 

prototypes are built and tested to validate the analytical and FE 

results, followed by conclusions in section VII. 

II. ON-LOAD DC WINDING INDUCED VOLTAGE 

In [25], it is found that the open-circuit DC winding induced 

voltage in PS-WFSF machines is caused by the variation of the 

air-gap permeance, exhibiting as DC winding self-inductance 

harmonics, 

𝜓𝑓𝑓(𝜃𝑒) = 𝐿𝑓𝑓(𝜃𝑒) × 𝐼𝑓(𝜃𝑒) (1) 

where ψff is the open-circuit DC winding flux-linkage which is 

due to DC field winding current. Lff is the DC winding 

self-inductance. θe is the rotor electric position. 

When the saturation in the lamination steel is neglected, the 

on-load DC winding flux-linkage ψf can be divided into two 

parts due to DC field winding current and AC armature winding 

current, respectively, 

𝜓𝑓(𝜃𝑒) = 𝜓𝑓𝑓(𝜃𝑒) + 𝜓𝑓𝑎(𝜃𝑒) (2) 

where ψfa is the on-load DC winding flux-linkage caused by AC 

armature windings, which can be divided into three parts 

caused by A-, B-, and C-phase currents, respectively, as, 

𝜓𝑓𝑎(𝜃𝑒) = 𝜓𝑓𝐴(𝜃𝑒) + 𝜓𝑓𝐵(𝜃𝑒) + 𝜓𝑓𝐶(𝜃𝑒) (3) 

where ψfA, ψfB, and ψfC are the on-load DC winding flux-linkage 

due to A-, B-, and C-phase currents, respectively. They can be 

given by, 

{

𝜓𝑓𝐴(𝜃𝑒) = 𝑀𝑓𝐴(𝜃𝑒) × 𝐼𝐴(𝜃𝑒)

𝜓𝑓𝐵(𝜃𝑒) = 𝑀𝑓𝐵(𝜃𝑒) × 𝐼𝐵(𝜃𝑒)

𝜓𝑓𝐶(𝜃𝑒) = 𝑀𝑓𝐶(𝜃𝑒) × 𝐼𝐶(𝜃𝑒)

 (4) 

where MfA, MfB, and MfC are the mutual inductances between the 

A-, B- and C-phase windings and the DC winding, respectively. 

It is worth noting that there is no DC component for MfA, MfB, 

and MfC, as the open-circuit AC winding flux-linkages due to 

the DC winding current and these mutual inductances have no 

DC component in the PS-WFSF machines [23]. IA, IB, and IC are 

AC armature winding 

Outer stator 

Rotor iron piece 

Inner stator 

DC field winding 
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the A-, B-, C-phase currents, respectively. 

In (4), MfA, MfB, and MfC can be given by, 

{
 
 
 
 

 
 
 
 𝑀𝑓𝐴(𝜃𝑒) = 𝑀𝐴𝑓(𝜃𝑒) = ∑ 𝑘𝑤𝑖𝑀𝑖cos(𝑖𝜃𝑒 + 𝜃𝑖)

∞

𝑖=1,2,3,…

𝑀𝑓𝐵(𝜃𝑒) = 𝑀𝐵𝑓(𝜃𝑒) = ∑ 𝑘𝑤𝑖𝑀𝑖cos [𝑖 (𝜃𝑒 −
2

3
𝜋) + 𝜃𝑖]

∞

𝑖=1,2,3,…

𝑀𝑓𝐶(𝜃𝑒) = 𝑀𝐶𝑓(𝜃𝑒) = ∑ 𝑘𝑤𝑖𝑀𝑖cos [𝑖 (𝜃𝑒 +
2

3
𝜋) + 𝜃𝑖]

∞

𝑖=1,2,3,…

 (5) 

where MAf, MBf, and MCf are the mutual inductances between the 

DC winding and the A-, B- and C-phase windings, respectively. 

θi is the initial phase of the ith mutual inductance harmonic. 

kwiMi is the amplitude of the ith mutual inductance harmonic, in 

which kwi is the ith harmonic winding factor, 

𝑘𝑤𝑖 = 𝑘𝑝𝑖 × 𝑘𝑑𝑖  (6) 

where kpi and kdi are the ith harmonic pitch and distribution 

factors, respectively. They can be calculated based on the 

analysis in [23]. 

In (4), when 3-phase sinusoidal currents are injected in AC 

winding, 3-phase currents IA, IB, and IC can be given by, 

{
 
 

 
 
𝐼𝐴 = 𝐼𝑎cos(𝜃𝑒 + 𝜃𝐴)

𝐼𝐵 = 𝐼𝑎cos(𝜃𝑒 + 𝜃𝐴 −
2

3
𝜋)

𝐼𝐶 = 𝐼𝑎cos(𝜃𝑒 + 𝜃𝐴 +
2

3
𝜋)

 (7) 

where Ia is the AC armature winding current amplitude. θA is 

the A-phase current phase angle. 

Submitting (4)-(7) to (3), (3) can be simplified as,  

𝜓𝑓𝑎(𝜃𝑒) =∑
3

2
𝑘𝑝𝑖𝑘𝑑𝑖𝑀𝑖𝐼𝑎

×

{
 

 
cos(𝜃𝑖 − 𝜃𝐴), 𝑓𝑜𝑟𝑖 = 1

cos[(𝑖 − 1)𝜃𝑒 + 𝜃𝑖 − 𝜃𝐴], 𝑓𝑜𝑟𝑖 = 3𝑗 + 1

cos[(𝑖 + 1)𝜃𝑒 + 𝜃𝑖 + 𝜃𝐴] , 𝑓𝑜𝑟𝑖 = 3𝑗 − 1

0, 𝑓𝑜𝑟𝑖 = 3𝑗

 

(8) 

where j=1,2,3,… 

 
(a) Waveforms 

 
(b) Spectra 

Fig. 2.  On-load DC winding induced voltages at 400r/min. 

As shown in (8), the cycles per electric period of the on-load 

DC winding flux-linkage and hence the induced-voltage Npe 

caused by AC winding currents ψfa is 3j (j=1,2,3,…). In the 

analyzed 12-stator-pole PS-WFSF machines having 10-, 11-, 

13- and 14-rotor-pole rotors, kwi=kpikdi=0 for even harmonics, as 

analyzed in [23]. Therefore, for the DC winding induced 

voltage due to armature reaction, Npe=6 in all these 4 machines, 

as summarized in TABLE II. This can be evidenced by Fig. 2. 

As shown in TABLE II, the resulted Npe=6 for the on-load DC 

winding flux-linkage for all the analyzed machines, although 

the Npe for open-circuit condition for these machines varies, as 

analyzed in [25]. 
TABLE II 

ANALYTICAL PREDICTION OF PERIODS PER ELECTRIC CYCLE Npe 

Item 12-stator-pole PS-WFSF machines 

Nr 10 11 13 14 

Open-circuit 6 12 12 6 

Armature reaction 6 6 6 6 

On-load 6 6 6 6 

As shown in Fig. 2 and TABLE III, the 12/14- and 

12/10-pole PS-WFSF machines suffer from higher on-load 

peak to peak value of DC winding induced voltage Epp than the 

12/13- and 12/11-pole counterparts. This is similar to that of the 

open-circuit DC winding induced voltage, as analyzed in [25]. 

In TABLE III, Tavg is the average rated on-load torque. 
TABLE III 

CHARACTERISTICS IN PS-WFSF MACHINES 

Item Unit 12-stator-pole PS-WFSF machines 

Nr - 10 11 13 14 

Open-circuit Epp V 2.10 0.63 0.36 4.86 

On-load Epp V 9.06  4.32  4.58  7.46  

Tavg Nm 2.97  3.07  3.21  3.34  

As shown in (8), all the armature reaction DC winding 

flux-linkage harmonic amplitudes are proportional to both the 

AC armature current amplitude Ia shown in (7) and the 

harmonic amplitudes of the mutual inductances MfA, MfB, and 

MfC shown in (5), i.e. kpikdiMi. Since the mutual inductance 

harmonics shown in (5) are caused by the rotation of the salient 

rotor iron pieces, it can be concluded that it is the interaction 

between the AC armature currents shown in (7) and the mutual 

inductances MfA, MfB, and MfC shown in (5) that produce the 

armature reaction DC winding flux-linkage harmonics and 

hence the induced voltage pulsation, and hence contribute to 

those for the on-load operation condition. 

III. REDUCTION OF ON-LOAD DC WINDING INDUCED 

VOLTAGE BY ROTOR SKEWING 

In [25] rotor skewing is proposed to reduce the open-circuit 

DC winding induced voltage. The results show that the 

open-circuit DC winding induced voltage can be effectively 

reduced, although the AC winding phase fundamental 

back-EMF will be slightly smaller. In this section, skewing is 

applied to reduce the on-load DC winding induced voltage, as 

shown as follows. 

A.   Conventional Optimal Skewing Angle 

The on-load DC winding flux-linkage ψf can be divided into 

two parts from DC field winding current and AC armature 

winding current, respectively. Similar to the analysis of DC 

winding self-inductance Lff in [25], when the rotor is 

continuously skewed with a skewing angle θsk, MfA, MfB, and 
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MfC in (5) and ψfa in (8) can be modified as, 

{
 
 
 
 

 
 
 
 𝑀𝑓𝐴(𝜃𝑒) = ∑

2𝑘𝑤𝑖𝑀𝑖

𝑖𝜃𝑠𝑘
cos(𝑖𝜃𝑒 + 𝜃𝑖)

∞

𝑖=1,2,3,…

sin(
𝑖𝜃𝑠𝑘

2
)

𝑀𝑓𝐵(𝜃𝑒) = ∑
2𝑘𝑤𝑖𝑀𝑖

𝑖𝜃𝑠𝑘
cos [𝑖 (𝜃𝑒 −

2

3
𝜋) + 𝜃𝑖] sin(

𝑖𝜃𝑠𝑘
2
)

∞

𝑖=1,2,3,…

𝑀𝑓𝐶(𝜃𝑒) = ∑
2𝑘𝑤𝑖𝑀𝑖

𝑖𝜃𝑠𝑘
cos [𝑖 (𝜃𝑒 +

2

3
𝜋) + 𝜃𝑖]

∞

𝑖=1,2,3,…

sin(
𝑖𝜃𝑠𝑘

2
)

 (9) 

and 

𝜓𝑓𝑎(𝜃𝑒) = ∑
3𝑘𝑝𝑖𝑘𝑑𝑖𝑀𝑖𝐼𝑎

𝑖𝜃𝑠𝑘

×

{
  
 

  
 cos(𝜃𝑖 − 𝜃𝐴) sin(

𝑖𝜃𝑠𝑘

2
) , 𝑓𝑜𝑟𝑖 = 1

cos[(𝑖 − 1)𝜃𝑒 + 𝜃𝑖 − 𝜃𝐴] sin (
𝑖𝜃𝑠𝑘

2
) , 𝑓𝑜𝑟𝑖 = 3𝑗 + 1

cos[(𝑖 + 1)𝜃𝑒 + 𝜃𝑖 + 𝜃𝐴] sin (
𝑖𝜃𝑠𝑘

2
) , 𝑓𝑜𝑟𝑖 = 3𝑗 − 1

0, 𝑓𝑜𝑟𝑖 = 3𝑗

 

(10) 

, respectively. 

As shown in (8) and (10), for the (i-1)th on-load DC winding 

flux-linkage and hence induced voltage harmonic when i=3j+1, 

or (i+1)th on-load DC winding flux-linkage and hence induced 

voltage harmonic when i=3j-1, the ratio of its amplitude with 

skewing angle θsk to that without skewing, kski, can be given as, 

𝑘𝑠𝑘𝑖 =
2

𝑖𝜃𝑠𝑘
sin

𝑖𝜃𝑠𝑘

2
 (11) 

For the 6th on-load DC winding induced voltage harmonic 

caused by the 5th and 7th mutual inductances between the DC 

field winding and AC armature winding harmonics, they can be 

effectively suppressed by 80.90% and 86.36%, respectively, 

when θsk=60°, as shown in Fig. 3. It can be concluded from (11) 

that to effectively reduce the nth on-load DC winding 

flux-linkage and hence induced voltage harmonic, meanwhile 

maintaining the open-circuit AC winding phase fundamental 

back-EMF and hence torque density, the optimal skewing angle 

θsko should be, 

𝜃𝑠𝑘𝑜 =
2𝜋

𝑁𝑝𝑒
 (12) 

As shown in TABLE II and (12), the optimal skewing angle 

θsko to reduce the on-load DC winding induced voltage should 

be 60° for all the analysed 12-stator-pole PS-WFSF machines 

having 10-, 11-, 13- and 14-rotor-pole rotors, as shown in 

TABLE IV. 

  
Fig. 3.  Influence of skewing 
angle on on-load DC winding 
induced voltages harmonics. 

Fig. 4.  Influence of step-skewing 
number on torque ripple 
(θsk=θsko=60°). 

 

 
TABLE IV 

ANALYTICAL PREDICTION OF θsko FOR PS-WFSF MACHINES 

Item Unit 12-stator-pole PS-WFSF machines 

Nr - 10 11 13 14 

Open-circuit ° 60 30 30 60 

Armature reaction ° 60 60 60 60 

On-load ° 60 60 60 60 

 

  
Fig. 5.  Influence of step-skewing 
number Nsk on average 
electromagnetic torque 
(θsk=θsko=60°). 

Fig. 6.  Influence of step-skewing 
number on peak to peak value of 
the on-load DC winding induced 
voltages at 400r/min 
(θsk=θsko=60°). 

As shown in Fig. 4 and Fig. 5, skewing is indeed an effective 

way to reduce torque ripple but the average torque can be 

maintained. However, as shown in Fig. 6, when the 

step-skewing step number is Nsk=6 and θsk=θsko=60°, on-load 

Epp can be effectively reduced by 59.06% in the 12/10-pole 

PS-WFSF machine, but only 20.54% and 8.91% respectively in 

the 12/14- and 12/11-pole machines, even 1.04% higher in the 

12/13-pole machine. This is due to the influence of current 

angle on MfA, MfB, and MfC, which is neglected in (9) and (10). 

When the current angle is changed, the steel element 

permeability varies, resulting in a different MfA, MfB, and MfC, as 

well as Lff. As shown in Fig. 7, on-load Epp varies with current 

angle in all the analyzed 4 machines. This is specifically 

explained for 12/13-pole PS-WFSF machine with θsk=θsko=60° 

and Nsk=6 as follows. 

 
Fig. 7.  Influence of current angle on peak to peak value of the on-load 
DC winding induced voltages at 400r/min. 

As well known, compared with the open-circuit original ψf1 

without skewing, ψf1 with a skew angle θs should lag θs. Based 

on this, the open-circuit Epp can be effectively reduced to 0 by 

rotor continuously skewing [25]. This is also applicable for the 

on-load ψf1, if the influence of current angle on the steel 

element permeability is neglected. However, as shown in Fig. 

8(a), ψf1 with a skew angle θs not only lag the original one θs, 

but also distorted due to the impact of current angle on the 

on-load ψf1, resulting in that the total ψf1 is even similar to the 

original one. This also similar to ψf2 shown in Fig. 8(b). 

Consequently, as shown in Fig. 9, the total on-load Epp with 

θsk=60° is even 1.04% higher than the original one without 
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skewing. 

 
(a) DC field coil 1, ψf1 

 
(b) DC field coil 2, ψf2 

Fig. 8.  DC field coil on-load flux-linkage waveforms in the 12/13-pole 
PS-WFSF machine with different θs for θsk=60° and Nsk=6 at 400r/min. 

 
Fig. 9.  On-load DC winding induced voltage in the 12/13-pole PS-WFSF 
machine with different θs for θsk=60° and Nsk=6 at 400r/min. 

TABLE V 

CHARACTERISTICS OF 12-POLE PS-WFSF MACHINES WITHOUT AND WITH 

MODIFIED SKEWING 

Item Unit 12-stator-pole PS-WFSF machines 

Nr - 10 11 13 14 

Original on-load Epp V 9.06  4.32  4.58  7.46  

Modified skew on-load Epp V 1.96  3.40  4.27  4.98  

On-load Epp reduction % 78.42  21.25  6.96  33.34  

Original Tavg Nm 2.97 3.07 3.21 3.34 

Modified skew Tavg Nm 2.69  2.81  3.19  3.04  

Tavg reduction % 9.54  8.40  0.60  9.01  

Original open-circuit Epp V 2.10 0.63 0.36 4.86 

Modified skew open-circuit Epp V 0.36 0.10 0.08 1.15 

Open-circuit Epp reduction % 82.72 84.10 77.86 76.23 

 

  
Fig. 10.  Influence of skewing 
angle θsk on the on-load Epp in 
12-stator-pole PS-WFSF 
machines when Nsk=6 at 
400r/min. 

Fig. 11.  Influence of skewing 
angle θsk on the Tavg in 
12-stator-pole PS-WFSF 
machines when Nsk=6. 

B.   Modified Optimal Skewing Angle 

As shown in Fig. 10, by modifying the skew angle θsk, the 

on-load Epp can be further reduced, compared with the θsko=60°. 

However, as shown in Fig. 11, the average torque Tavg will be 

smaller if θsk goes higher. To maintain more than 90% torque 

capability in the skewed machine, the highest reduction of the 

on-load Epp can be reached as 78.42%, 21.25%, 6.96%, and 

33.34% in the 12/10-, 12/11-, 12/13- and 12/14-pole PS-WFSF 

machines, when θsk=84°, 84°, 24°, and 84°, respectively, as 

shown in TABLE V. 

As shown in TABLE V, by modifying the skewing angle θsk, 

the on-load Epp in the 12/10-pole machine can be effectively 

reduced from 59.06% to 78.42%, whilst the average torque Tavg 

is 9.54% smaller than the original machine without skewing. 

However, after modifying the skewing angle θsk, the on-load 

Epp in other 3 machines are still higher, which indicates that 

other methods need to be applied to reduce the on-load DC 

winding induced voltage. 

As analysed in [25], the open-circuit Epp can be theoretically 

reduced to zero by continuous rotor skewing with θsk=60°, 30°, 

30°, and 60° for the 12/10-, 12/11-, 12/13- and 12/14-pole 

PS-WFSF machines, respectively. When the step skewing is 

applied, the open-circuit Epp can be reduced by 98.59%, 

95.20%, 94.13%, and 98.46% [25], respectively. When the 

skewing angle is for on-load condition, i.e. θsk=84°, 84°, 24°, 

and 84° for the 12/10-, 12/11-, 12/13- and 12/14-pole 

PS-WFSF machines, respectively, the open-circuit Epp can be 

reduced 82.72%, 84.10%, 77.86% and 76.23%, respectively, as 

shown in Fig. 12 and TABLE V. This means the suppression of 

the open-circuit DC winding induced voltage will be slightly 

deteriorated, if the skewing angle is for on-load operation 

condition. 

 
(a) Waveforms 

 
(b) Spectra 

Fig. 12.  Open-circuit DC winding induced voltages of 12-stator-pole 
PS-WFSF machines without and with modified optimal skewing (Nsk=6). 

IV. REDUCTION OF ON-LOAD DC WINDING INDUCED 

VOLTAGE BY ROTOR PAIRING 

In this section, paring of rotor iron piece to reduce the 

on-load DC winding induced voltage is investigated as follows. 
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As shown in Fig. 2(b), the main harmonics of the on-load DC 

winding induced voltages in the 12-stator-pole PS-WFSF 

machines are the 6th and 12th harmonics. As shown in Fig. 

13(a), both the rotor iron piece outer arc θro and the rotor iron 

piece inner arc θri have an influence on the 6th and 12th 

harmonics amplitudes. However, when θro varies, the initial 

phase of the 6th harmonics is always positive, as shown in Fig. 

13(b). This means that the 6th harmonic cannot be smaller than 

both of those of the pairs by the rotor iron piece outer arc 

pairing, although the 12th harmonic can be reduced due to the 

bipolar initial phase waveform. However, when θri varies, the 

initial phase waveforms of both the 6th and 12th harmonics are 

bipolar, as shown in Fig. 13(b). This indicates that the 6th and 

12th harmonics of the on-load DC winding induced voltage can 

be reduced by rotor iron piece inner arc pairing. Indeed, since 

θro mainly influence the outer air-gap permeance whilst θri 

changes the inner one, θri has a higher impact on the on-load 

DC winding induced voltage which is related to the inner 

air-gap permeance. 

  
(a) Amplitudes (b) Initial phases 

Fig. 13.  Influence of rotor iron piece outer/inner arc on amplitudes and 
initial phases of the 6th and 12th on-load DC winding induced voltage 
harmonics in 12/10-pole PS-WFSF machine at 400r/min. 

  
(a) 12/10-pole (b) 12/11-pole 

  
(c) 12/13-pole (d) 12/14-pole 

Fig. 14.  Influence of paired rotor iron piece inner arcs on on-load Epp. 

As shown in Fig. 14, by designing two different rotor iron 

piece inner arcs axially, a smaller on-load Epp can be achieved 

in all the analyzed 4 machines. However, the average 

electromagnetic torque will be smaller, as shown in Fig. 15. 

Here, it should be mentioned that the dimensional parameters 

of these 4 original machines are globally optimized for the 

largest average electromagnetic torque, as mentioned in [25]. 

The optimal combination of two rotor iron piece inner arcs θri1 

and θri2 is selected by two steps: 

Step 1: If the average torque Tavg of a combination of θri1 and 

θri2 is smaller than 90% of the original Tavg, i.e. the highest Tavg, 

this combination is abandoned. 

Step 2: Among the rest combinations of θri1 and θri2 of which 

the average torque is higher than 90% of the original Tavg, find 

out the optimal combination of θri1 and θri2 which has the 

highest on-load Epp reduction. 

  
(a) 12/10-pole (b) 12/11-pole 

  
(c) 12/13-pole (d) 12/14-pole 

Fig. 15.  Influence of paired rotor iron piece inner arcs on Tavg. 

  
(a) Waveforms (b) Spectra 

Fig. 16.  On-load DC winding induced voltages after pairing at 400r/min. 
TABLE VI 

CHARACTERISTICS OF PS-WFSF MACHINES WITHOUT AND WITH PAIRING 

Item Unit 12-stator-pole PS-WFSF machines 

Nr - 10 11 13 14 

Original on-load Epp V 9.06  4.32  4.58  7.46  

Paired on-load Epp V 2.07  1.55  2.20  1.75  

On-load Epp reduction % 77.16  64.11  52.12  76.49  

Original Tavg Nm 2.97  3.07  3.21  3.34  

Paired Tavg Nm 2.68  2.77  2.97  3.02  

Tavg reduction % 9.90  9.89  7.67  9.55  

Based on these two steps, the optimal combinations of θri1 

and θri2 are (19.5°, 35°), (15°, 31°), (21.5°, 27°), and (14.5°, 

24°) for the 12/10-, 12/11-, 12/13- and 12/14-pole PS-WFSF 

machines, respectively. The on-load Epp and Tavg of these 4 

analyzed machines with optimal pairing are compared with the 

original counterparts without pairing in TABLE VI and Fig. 16. 

As shown in TABLE VI, by rotor iron piece inner arc pairing, 

the on-load Epp in the 12/10-pole and 12/14-pole PS-WFSF 

machines can be effectively reduced by 77.16% and 76.49%, 

respectively. However, in the 12/11- and 12/13-pole machines, 

it can only be reduced by 64.11% and 52.12%, respectively. 

However, it should be noted that these results listed in TABLE 
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VI are based on keeping the 90% average torque. As shown in 

Fig. 14(b) and Fig. 14(c), in the 12/11- and 12/13-pole 

PS-WFSF machines the on-load Epp can be reduced to further 

smaller, however the average torque Tavg after pairing will be 

smaller than 90% of the original Tavg. 

V. COMPARISON OF DIFFERENT REDUCTION METHODS 

The on-load Epp and Tavg under two methods analyzed in the 

above sections are synthesized in TABLE VII and TABLE 

VIII, respectively. By using rotor skewing with θsk=60°, 

on-load Epp in the 12/10-, 12/11-and 12/14-pole PS-WFSF 

machines can be reduced by 59.06%, 8.91% and 20.54%, 

respectively, whilst it is even 1.04% higher in the 12/13-pole 

counterpart as foregoing analysed. 
TABLE VII 

ON-LOAD Epp IN 12-STATOR-POLE PS-WFSF MACHINES 

Item Unit 12-stator-pole PS-WFSF machines 

Nr - 10 11 13 14 

Original on-load Epp V 9.06  4.32  4.58  7.46  

Skewed on-load Epp, θsk=60°  V 3.71 3.95 4.63 5.94 

Epp reduction, θsk=60° % 59.06  8.91  -1.04  20.54 

Modified skew on-load Epp V 1.96  3.40  4.27  4.98  

Epp reduction % 78.42  21.30  6.98  33.36  

Paired on-load Epp V 2.07  1.55  2.20  1.75  

Epp reduction % 77.16  64.12 52.13 76.49 

However, by modifying the skew angle θsk and maintaining 

90% torque density of the original counterpart, on-load Epp can 

be reduced by 78.42% for the 12/10-pole machine, whilst those 

for the 12/11-, 12/13- and 12/14-pole machines are still lower, 

i.e. 21.30%, 6.98% and 33.36%, respectively. By using rotor 

iron piece inner arc pairing, the on-load Epp in the 12/10-, 

12/11-, 12/13- and 12/14-pole machines can be reduced by 

77.16%, 64.12%, 52.13%, and 76.49%, respectively, whilst the 

torque density can be maintained by as high as >90%. It is 

worth noting that in this paper the criteria to justify the 

effectiveness of the reduction method is a more than 50% 

reduction of on-load DC winding induced voltage and >90% 

torque being maintained. 
TABLE VIII 

ON-LOAD Tavg IN 12-STATOR-POLE PS-WFSF MACHINES 

Item Unit 12-stator-pole PS-WFSF machines 

Nr - 10 11 13 14 

Original on-load Tavg Nm 2.97 3.07 3.21 3.34 

Skewed on-load Tavg, θsk=60°  Nm 2.81 2.94 3.07 3.18 

Tavg reduction, θsk=60° % 5.39  4.23  4.36  4.79  

Modified skew on-load Tavg Nm 2.69  2.81  3.19  3.04  

Tavg reduction % 9.43  8.47  0.62  8.98  

Paired on-load Tavg Nm 2.68  2.77  2.97  3.02  

Tavg reduction % 9.76  9.77  7.48  9.58  

As deduced in Appendix B, the DC winding current ripple 

raised by the DC winding induced voltage will cause a 

fluctuated field excitation and hence additional harmonic 

components in the AC winding induced voltages, with average 

torque and torque ripple being impacted [26], despite of 

three-phase symmetric sinusoidal AC currents being 

implemented by current control. For example, according to (B. 

2), the interaction between the 6th DC winding current 

harmonic and the 5th mutual inductance between the DC 

winding and the A-phase winding will cause additional 

components to the fundamental (6-5=1) and 11th (6+5=11) 

harmonics of the A-phase winding induced voltage. Hence, 

both the average torque and the torque ripple will be changed 

due to the on-load DC winding induced voltage, considering 

the similar effect in B- and C-phase winding induced voltages. 

However, by modifying the skew angle θsk in the 12/10-pole 

PS-WFSF machine or using rotor iron piece inner arc pairing in 

all the four analysed PS-WFSF machines, most of the main 

on-load DC winding induced voltage harmonics can be 

effectively reduced, as shown in Fig. 17. In addition, according 

to (5), it can be concluded that the reduction of DC winding 

induced voltage harmonics shown in Fig. 17 is due to the 

suppression of the mutual inductance harmonics between the 

A-, B- and C-phase windings and the DC winding. Hence, the 

amplitudes of both the raised DC winding current harmonics Ifj 

and the mutual inductance harmonics Mi shown in (B. 2) will be 

suppressed by modifying the skew angle θsk in the 12/10-pole 

PS-WFSF machine or using rotor iron piece inner arc pairing in 

all the four analysed PS-WFSF machines, resulting less 

influence of on-load DC winding induced voltage on the AC 

winding induced voltages. 

 
Fig. 17.  Comparison of on-load DC winding induced voltage harmonics 
at 400r/min. 

  
(a) Outer stator (b) Inner stator 

  
(c) Non-skewed rotor (d) Skewed rotor with θsk=84° 

Fig. 18.  Photos of the 12/10-pole PS-WFSF prototypes with 

non-skewed rotor and skewed rotor with θsk=84°. 

VI. EXPERIMENTAL VALIDATION 

To validate the foregoing analytical and FE analysis, the 

12/10-stator/rotor-pole PS-WFSF machine with non-skewed 

rotor and skewed rotor with θsk=84° are prototyped and tested 
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in this section. Fig. 18 shows the photos of differrent 

components of the prototypes with (a) outer stator, (b) inner 

stator, (c) non-skewed rotor and (d) skewed rotor with θsk=84°. 

It should be noted that a 0.5mm thick iron flux-bridge is 

introduced adjacent to the inner air-gap to connect the rotor iron 

pieces both rotors shown in Fig. 18(c)-Fig. 18(d). 

  
(a) Non-skewed rotor (b) Skewed rotor with θsk=84° 

Fig. 19.  Measured 3-phase open-circuit AC windings back-EMFs and 
DC winding current at 400r/min. 

  
(a) Non-skewed rotor (b) Skewed rotor with θsk=84° 

Fig. 20.  Measured rotor electric position (CH1), phase A winding current 
(CH2), on-load DC coil 2 induced voltage (CH3) and phase A voltage 
(CH4) at 400r/min. 

A.   Constant Current Source for DC Winding 

Since a constant DC winding current is the ideal aim of the 

closed-loop DC winding current control, both the previous 

analytical and FE analysis are based on a constant DC winding 

current. Hence, in this sub-section a constant current source for 

supplying the DC winding current is applied to validate the 

analytical and FE predicted results. 

  
(a) Non-skewed rotor (b) Skewed rotor with θsk=84° 

Fig. 21.  Comparison of measured and FE predicted DC coil 2 induced 
voltage and phase A back-EMF waveforms at 400r/min. 

  
(a) DC coil 2 induced voltage (b) Phase A back-EMF 

Fig. 22.  Comparison of measured and FE predicted DC coil 2 induced 
voltage and phase A back-EMF harmonics at 400r/min. 

The measured phase back-EMF waveforms of both 

prototypes at 400r/min are shown in Fig. 19. Similar to [25], to 

avoid the influence of the DC current supply, not the on-load 

DC winding induced voltage but that of the DC coil 2 is 

measured to validate the analytical and FE analyses. When the 

PS-WFSF prototypes operate as generators with resistance 

load, the measured on-load DC coil 2 induced voltage 

waveforms at 400r/min are shown in Fig. 20, together with the 

rotor position, phase current and phase voltage. As shown in 

Fig. 21, both the measured on-load DC coil 2 induced voltage 

and the measured phase A back-EMF waveforms at 400r/min 

agree well with the 3D FE predicted results in both prototypes, 

although they are slightly smaller than the 2D FE values due to 

end effect. However, due to imperfect manufacturing, both the 

measured on-load DC coil 2 induced voltage and the measured 

phase A back-EMF harmonics at 400r/min are slightly different 

from the FE predicted harmonics, as shown in Fig. 22. As 

shown in Fig. 22(b), the measured phase A fundamental 

back-EMF in the prototype with skewing is 8.21% smaller than 

its counterpart without skewing, i.e. 2.41V and 2.63V, 

respectively. 

Similar to the analysis in [25], based on the measured 

on-load DC coil 2 induced voltage waveforms shown in Fig. 20, 

those of the DC winding can be calculated as Fig. 23. As shown 

in Fig. 23, again due to imperfect manufacturing, in both 

prototypes the measured on-load DC winding induced voltage 

harmonics at 400r/min are distorted from their FE counterparts. 

However, the dominant measured on-load DC winding induced 

voltage 6th, 12th and 18th harmonics can be effectively reduced 

by 69.90%, 66.07% and 71.97%, respectively by rotor skewing. 

As shown in Fig. 24, the measured static torques agree well 

with the 3D FE predicted results in both prototypes, although 

they are slightly lower than the 2D FE values due to end effect. 

 
Fig. 23.  Comparison of calculated on-load DC winding induced voltages 
harmonics based on the measured on-load DC coil 2 induced voltages 
at 400r/min. 

  
(a) Non-skewed rotor (b) Skewed rotor with θsk=84° 

Fig. 24.  Comparison of measured and FE predicted static torque 
waveforms (Ia=-2Ib=-2Ic). 
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(a) Mechanical components 

 
(b) Electrical components 

Fig. 25.  Test platform of the PS-WFSF prototypes. 

  
(a) Measured torques (b) Comparison between 

measured and 2-D FE predicted 

torques 

Fig. 26.  Measured torques and the comparison with 2-D FE predicted 
values at 400r/min (If=3.6A, BLAC, id=0, iq=8A). 

B.   H-Bridge for DC Winding 

In this sub-section, the machine controller based test 

platform shown in Fig. 25 is used to measure the on-load shaft 

torque and the DC winding induced voltage, in which the DC 

winding voltage is supplied by a voltage source DC bus 

connected H-bridge with a closed-loop current control. 

As shown in Fig. 26, compared with the prototype without 

skewing, the measured average shaft torque is reduced by 8.12% 

in the prototype with skewing, i.e. 0.79Nm and 0.72Nm, 

respectively. This is due to the reduction of AC windings phase 

fundamental back-EMF in Fig. 22(b) caused by rotor skewing. 

It is worth noting that the high shaft torque pulsations with 

fundamental mechanical frequency is due to the axial 

malalignment among mechanical components in Fig. 25(a). 

As shown in Fig. 27, on-load DC winding current pulsation 

is larger than its open-circuit counterpart in both prototypes, 

since the armature reaction DC winding induced voltage is 

considerably larger than the open-circuit DC winding induced 

voltage. Although the measured on-load DC winding voltage 

waveforms of two prototypes shown in Fig. 27(c) and Fig. 27(d) 

contain PWM harmonics, the dominant measured on-load DC 

winding induced voltage 6th harmonic can be effectively 

reduced by utilizing rotor skewing, as shown in Fig. 28. 

  
(a) Open-circuit, non-skewed rotor (b) On-load, non-skewed rotor 

  
(c) Open-circuit, skewed rotor (d) On-load, skewed rotor 

Fig. 27.  Open-circuit and on-load DC winding current (top first, cyan), 

AC winding phase A back-EMF (top second, green), rotor position (top 

third, blue) and DC winding voltage (top fourth, bronze) at 400r/min 

when the DC winding is supplied by a H-bridge (If=3.6A). 

 
Fig. 28.  Comparison of the on-load DC winding voltage harmonics at 
400r/min when the DC winding is supplied by an H-bridge (If=3.6A). 

VII. CONCLUSIONS 

In this paper, on-load DC winding induced voltage in 

PS-WFSF machines is analyzed and two methods including 

skewing and pairing are proposed and comparatively analyzed 

to reduce the on-load DC winding induced voltages in the 

12-stator-pole PS-WFSF machines having 10-, 11-, 13- and 

14-rotor-pole rotors. The results show that the on-load DC 

winding induced voltage in the 12/10-pole PS-WFSF machine 

can be effectively reduced by modified rotor skewing or rotor 

pairing by 78.42% or 77.16%, respectively, whilst the torque 

density can both be maintained by more than 90%. As for the 

12/11-, 12/13- and 12/14-pole PS-WFSF machines, the on-load 

DC winding induced voltage 64.12%, 52.13%, and 76.49%, 

respectively, whilst the torque density can also be maintained 

by >90%. Prototypes are built and tested to validate the 

analytical and FE results. Future works can be carried out to 

utilize these two methods together, i.e. skewing and pairing, to 

further reduce the on-load DC winding induced voltage, with 

better performance being possibly obtained. 

APPENDIX A 

Details of the three machines shown in TABLE I are given as 

follows. 
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(a) WRSM (b) Ferrite SPM machine 

Fig. 29. 24-slot/8-pole WRSM and ferrite SPM machine. 
TABLE IX 

PARAMETERS OF 24-SLOT/8-POLE WRSM AND FERRITE SPM MACHINE 

Item Unit WRSM SPM machine 

Stator yoke radius, Rsy mm 40.75 42.58 

Stator inner radius, Rsi mm 32.29 29.62 

Stator tooth width, Wst mm 4.02 2.23 

Rotor pole width, Wrp mm 8.77 N/A 

Stator slot opening, Oss mm 1.70 1.83 

Rotor slot opening, Ors mm 9.08 N/A 

PM thickness, TPM mm N/A 6.88 

PM arc, θPM ° N/A 45 

PM remanence, Br T N/A 0.41 

PM coercive force, Hc kAm N/A -250 

TABLE X 

PARAMETERS OF 12/10-POLE PS-WFSF MACHINE 

Item Rosy Rosi Rri Risy θost θot θro θri θist θit 

Unit mm mm mm mm ° ° ° ° ° ° 

Value 121.5 100.2 87.14 51.81 8.43 4.88 17.88 20.93 10.7 1.4 

Since the AC winding pole-pair number of the 12/10-pole 

PS-WFSF machine is 4, the integer-slot 24-slot/8-pole 

conventional WRSM and the low-cost ferrite SPM machine 

having the slot number per pole per phase q=1 are taken for a 

comparison. All three machines have the same slot filling factor 

kpf=0.5 and the same space envelop as the Toyota Prius 2010 

IPM machine [24], i.e. stator outer radius Rso=132mm, stack 

length ls=50mm, rotor inner radius Rri=25.5mm, and air-gap 

width g=0.87mm. The main dimensional parameters of the 

WRSM and ferrite SPM machine shown in TABLE IX and 

those for the 12/10-pole PS-WFSF machine shown in TABLE 

X are optimized for the largest torque with a fixed winding 

current density Js=26.8A/mm2, the same as that of the Toyota 

Prius 2010 IPM machine [24]. The definitions of parameters 

shown in TABLE X can be referred in [25]. 

APPENDIX B 

Influence of the on-load DC winding induced voltage on the 

AC armature windings is deduced as follows. 

Considering the jth DC winding current harmonic caused by 

the jth on-load DC winding induced voltage, the DC winding 

current can be given by, 

𝐼𝑓(𝜃𝑒) = 𝐼𝑓0 + ∑ 𝐼𝑓𝑗cos(𝑗𝜃𝑒 + 𝜃𝑓𝑗)

∞

𝑗=6,12,18,…

 (B.1) 

where If0 is the DC component. Ifj and θfj are the amplitude and 

initial phase of the jth DC winding harmonic current, 

respectively. 

Combining equations (5) and (B. 1), the A-phase winding 

flux-linkage due to DC winding current can be expressed as, 

𝜓𝐴𝑓(𝜃𝑒) = 𝐼𝑓(𝜃𝑒)𝑀𝑓𝐴(𝜃𝑒)

= 𝐼𝑓0 ∑ 𝑘𝑤𝑖𝑀𝑖cos(𝑖𝜃𝑒 + 𝜃𝑖)

∞

𝑖=1,2,3,…

+
1

2
∑ ∑ 𝑘𝑤𝑖𝑀𝑖𝐼𝑓𝑗{cos[(𝑖

∞

𝑗=6,12,18,…

∞

𝑖=1,2,3,…

+ 𝑗)𝜃𝑒 + 𝜃𝑖 + 𝜃𝑓𝑗]

+ cos[(𝑖 − 𝑗)𝜃𝑒 + 𝜃𝑖 − 𝜃𝑓𝑗]} 

(B.2) 

As shown in (B. 2), due to the interaction of the jth DC 

winding current harmonic caused by the jth on-load DC winding 

induced voltage and the ith mutual inductance between the DC 

winding and the A-phase winding, i.e. Mfa shown in (5), 

additional components will be caused to the i+j and |i-j| 

harmonics of the A-phase winding induced voltage. 
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