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Figure 1. Our single-shot deep inverse face renderer InverseFaceNet obtains a high-quality geometry, reflectance and illumination estimate
from just a single input image. We jointly recover the facial pose, shape, expression, reflectance and incident scene illumination. From left
to right: the input photo, our estimated face model, its geometry, and the pointwise Euclidean geometry error compared to Garrido et al. [19].

Abstract
We introduce InverseFaceNet, a deep convolutional inverse
rendering framework for faces that jointly estimates facial
pose, shape, expression, reflectance and illumination from
a single input image. By estimating all parameters from
just a single image, advanced editing possibilities on a
single face image, such as appearance editing and relighting,
become feasible in real time. Most previous learning-based
face reconstruction approaches do not jointly recover all
dimensions, or are severely limited in terms of visual quality.
In contrast, we propose to recover high-quality facial pose,
shape, expression, reflectance and illumination using a deep
neural network that is trained using a large, synthetically
created training corpus. Our approach builds on a novel loss
function that measures model-space similarity directly in
parameter space and significantly improves reconstruction
accuracy. We further propose a self-supervised bootstrapping
process in the network training loop, which iteratively
updates the synthetic training corpus to better reflect the
distribution of real-world imagery. We demonstrate that
this strategy outperforms completely synthetically trained
networks. Finally, we show high-quality reconstructions and
compare our approach to several state-of-the-art approaches.

1. Introduction
Inverse rendering aims to reconstruct scene properties such as
geometry, reflectance and illumination from image data. This
reconstruction is fundamentally challenging, as it inevitably
requires inverting the complex real-world image formation
process. It is also an ill-posed problem as certain effects, such

as low-frequency reflectance and illumination, can be indis-
tinguishable [45]. Inverse rendering, for example, enables
relighting of faces by modifying the scene illumination and
keeping the face reflectance and geometry fixed.

Recently, optimization-based approaches for inverse face
rendering were introduced with convincing results [2, 19, 28,
34, 60]. One of the key ingredients that enables to disentangle
pose, geometry (both related to shape and facial expression),
reflectance and illumination are specific priors that constrain
parameters to plausible values and distributions. Formulating
such priors accurately for real faces is difficult, as they are
unknown a priori. The priors could be learned by applying
inverse rendering to a large dataset of real face images, but
this is highly challenging without having the priors a priori.

We take a different approach to solve this chicken-and-egg
problem. Instead of formulating explicit priors, we directly
learn inverse face rendering with a deep neural network
that implicitly learns priors based on the training corpus.
As annotated training data is hard to come by, we train
on synthetic face images with known model parameters
(geometry, reflectance and illumination). This is similar
to existing approaches [46, 47, 52], but the used parameter
distribution does not match that of real-world faces and
environments. As a result, the learned implicit priors are
rather weak and do not generalize well to in-the-wild images.

The approach of Li et al. [38] introduces a self-augmented
procedure for training a CNN to regress the spatially varying
surface appearance of planar exemplars. Our self-supervised
bootstrapping approach extends their training strategy to
handle unknown, varying geometry. In addition, we resample
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based on a mean-adaptive Gaussian in each bootstrapping
step, which helps to populate out-of-domain samples,
especially at the domain boundary.

In contrast to many other approaches, InverseFaceNet
also regresses color reflectance and illumination. Our main
technical contribution is the introduction of a self-supervised
bootstrapping step in our training loop, which continuously
updates the training corpus to better reflect the distribution
of real-world face images. The key idea is to apply the latest
version of the inverse face rendering network to real-world
images without ground truth, to estimate the corresponding
face model parameters, and then to create synthetic face
renderings for perturbed, but known, parameter values.
In this way, we are able to bootstrap additional synthetic
training data that better reflects the real-world distribution
of face model parameters, and our network therefore better
generalizes to the real-world setting. Our experiments
demonstrate that our approach greatly improves the quality
of regressed face models for real face images compared to
approaches that are trained exclusively on synthetic data.

The main contribution of our paper is InverseFaceNet –
a real-time, deep, single-shot inverse face rendering network
that estimates pose, shape, expression, color reflectance
and illumination from just a single input image in a single
forward pass, and is multiple orders of magnitude faster than
previous optimization-based methods estimating similar
models. To improve the accuracy of the results, we further
propose a loss function that measures model-space distances
directly in a modified parameter space. We further propose
self-supervised bootstrapping of a synthetic training corpus
based on real images without available ground truth to
produce labeled training data that follows the real-world
parameter distribution. This leads to significantly improved
reconstruction results for in-the-wild face photos.

2. Related Work
Inverse Rendering (of Faces) The goal of inverse render-
ing is to invert the graphics pipeline, i.e., to recover the ge-
ometry, reflectance (albedo) and illumination from images
or videos of a scene – or, in our case, a face. Early work on
inverse rendering made restrictive assumptions like known
scene geometry and calibrated input images [45, 65]. How-
ever, recent work has started to relax these assumptions for
specific classes of objects such as faces. Deep neural networks
have been shown to be able to invert simple graphics pipelines
[32, 42], although these techniques are so far only applicable
to low-resolution grayscale images. In contrast, our approach
reconstructs full-color facial reflectance and illumination, as
well as geometry. Aldrian and Smith [2] use a 3D morphable
model for optimization-based inverse rendering. They sequen-
tially solve for geometry, reflectance and illumination, while
we jointly regress all dimensions at once. Thies et al. [60]
recently proposed a real-time inverse rendering approach for
faces that estimates a person’s identity and expression using a

blendshape model with reflectance texture and colored spher-
ical harmonics illumination. Their approach is designed for
reenactment and is visually convincing, but relies on non-
linear least-squares optimization, which requires good initial-
ization and a face model calibration step from multiple frames,
while our approach estimates a very similar face model in a
single shot, from a single in-the-wild image, in a fraction of
the time. Inverse rendering has also been applied to face image
editing [40, 55], for example to apply makeup [34, 35]. How-
ever, these approaches perform an image-based intrinsic de-
composition without an explicit 3D face model, as in our case.

Face Models The appearance and geometry of faces are
often modeled using 3D morphable models [5] or active
appearance models [14]. These seminal face models are
powerful and expressive, and remain useful for many
applications even though more complex and accurate
appearance models exist [30, 37]. Recently, a large-scale
parametric face model [7] was created from 10,000 facial
scans, Booth et al. [6] extend 3D morphable models to
“in-the-wild” conditions, and deep appearance models [17]
extend active appearance models by capturing geometry
and appearance of faces more accurately under large unseen
variations. We describe the face model we use in Section 4.

3D Face Reconstruction The literature on reconstructing
face geometry, often with appearance, but without any
illumination, is much more extensive compared to inverse
rendering. We focus on single-view techniques and do
not further discuss multi-view or multi-image approaches
[23, 29, 44, 48, 57]. Recent techniques approach monocular
face reconstruction by fitting active appearance models
[1, 17], blendshape models [9, 18, 19, 61], affine face models
[15, 16, 20, 46, 51, 54, 58, 62], mesh geometry [26, 33, 47, 48,
52], or volumetric geometry [24] to input images or videos.
Shading-based surface refinement can extract even fine-scale
geometric surface detail [11, 19, 26, 47, 48, 52]. Many
techniques use facial landmark detectors for more robustness
to changes in the head pose and expression, and we discuss
them in the next section. A range of approaches use RGB-D
input [e.g. 36, 59, 64], and while they achieve impressive
face reconstruction results, they rely on depth data which is
typically not available for in-the-wild images or videos.

Deep neural networks have recently shown promising
results on various face reconstruction tasks. In a paper before
its time, Nair et al. [42] proposed an analysis-by-synthesis
algorithm that iteratively explores the parameter space of
a black-box generative model, such as active appearance
models (AAM) [14], to learn how to invert it, e.g., to convert
a photo of a face into an AAM parameter vector. We are
inspired by their approach and incorporate a self-supervised
bootstrapping approach into our training process (see
Section 7) to make our technique more robust to unseen
inputs, in our case real photographs.



Richardson et al. [46] use iterative error feedback [12] to
optimize the shape parameters of a grayscale morphable
model from a single input image. Richardson et al. [47]
build on this to reconstruct detailed depth maps of faces with
learned shape-from-shading. Sela et al. [52] learn depth and
correspondence maps directly using image-to-image transla-
tion, and follow this with non-rigid template mesh alignment.
Dou et al. [16] regress only the identity and expression com-
ponents of a face. All these approaches are trained entirely
on synthetic data [5]. Tran et al. [62] train using a photo
collection, but their focus lies on estimating morphable model
parameters to achieve robust face recognition. In contrast to
these approaches, ours not only recovers face geometry and
texture, but a more complete inverse rendering model that
also comprises color reflectance and illumination, from just a
single image without the need for iteration. Jackson et al. [24]
directly regress a volumetric face representation from a single
input image, but this requires a large dataset with matching
face images and 3D scans, and does not produce an editable
face model, as in our case. Schönborn et al. [51] optimize
a morphable model using Bayesian inference, which is
robust and accurate, but very slow compared to our approach
(taking minutes rather than milliseconds). Tewari et al. [58]
learn a face regressor in a self-supervised fashion based on
a CNN-based encoder and a differentiable expert-designed
decoder. Our self-supervised bootstrapping approach
combines the advantages of synthetic and real training data,
which leads to similar quality reconstructions without the
need for a hand-crafted differentiable rendering engine.

Face Alignment Many techniques in 3D face reconstruc-
tion, including ours, draw on facial landmark detectors for
robustly identifying the location of landmark keypoints in the
photograph of a face, such as the outline of the eyes, nose and
lips. These landmarks can provide valuable pose-independent
initialization. Chrysos et al. [13] and Jin and Tan [27]
provide two recent surveys on the many landmark detection
approaches that have been proposed in the literature. Perhaps
unsurprisingly, deep learning approaches [4, 68] are again
among the best available techniques. However, none of these
techniques works perfectly [8, 56]: facial hair, glasses and
poor lighting conditions pose the largest problems. In many
cases, these problems can be overcome when looking at
video sequences instead of single images [43], but this is a
different setting to ours.

3. Overview
We first detect a set of 66 2D facial landmarks [50], see
Figure 2. The landmarks are used to segment the face from the
background, and mask out the mouth interior to effectively
remove the parts of the image that cannot be explained by
our model. The masked face is input to our deep inverse face
rendering network (Section 6), which is trained on synthetic
facial imagery (Section 5) using a parametric face and image
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Figure 2. Our single-shot inverse face renderer regresses a dense
reconstruction of the pose, shape, expression, skin reflectance and
incident illumination from a single photograph.

formation model (Section 4). Starting from this low-quality
corpus, we apply our self-supervised bootstrapping approach
that updates the parameter distribution of the training
set (Section 7) to bootstrap a training corpus that better
approximates the real-world distribution. This leads to higher
quality reconstructions (Section 8). Finally, we discuss
limitations (Section 8.4) and conclude (Section 9).

4. The Space of Facial Imagery
We parameterize face images usingm=350 parameters:

θ=
(
R,θ[s],θ[e],θ[r],θ[i]

)
∈Rm. (1)

Here, R specifies the global rotation (3 parameters), θ[s] the
shape (128), θ[e] the expression (64), θ[r] the skin reflectance
(128), and θ[i] the incident illumination (27). Note that we do
not include translation as our network works on consistently
segmented input images (see Figure 2 and Section 3).

4.1. Affine Face Model
We employ an affine face model to parameterize facial
geometry F [g] ∈R3V and reflectance F [r] ∈R3V , where V
is the number of vertices of the underlying manifold template
mesh. The geometry vectorF [g] stacks the V 3D coordinates
that define the mesh’s embedding in space. Similarly, the
reflectance vectorF [r] stacks the RGB per-vertex reflectance
values. The space of facial geometry is modeled by the shape
θ[s]∈RNs and expression θ[e]∈RNe parameters:

F [g](θ[s],θ[e])=a[g]+

Ns∑
i=1

b[s]
i σ

[s]
i θ

[s]
i +

Ne∑
j=1

b[e]
j σ

[e]
j θ

[e]
j . (2)

The spatial embedding is modeled by a linear combination of
orthonormal basis vectors b[s]

i and b[e]
j , which span the shape

and expression space, respectively. a[g]∈R3V is the average
geometry of a neutral expression, the σ[s]

i are the shape
standard deviations and the σ[e]

j are the standard deviations
of the expression dimensions.

Per-vertex reflectance is modeled similarly using a small
number of reflectance parameters θ[r]∈RNr :

F [r](θ[r]) = a[r]+

Nr∑
i=1

b[r]
i σ

[r]
i θ

[r]
i . (3)

Here, b[r]
i are the reflectance basis vectors, a[r] is the average

reflectance and the σ[r]
i are the standard deviations.

The face model is computed from 200 high-quality 3D
scans [5] of Caucasians (100 male and 100 female) using



PCA. We use the Ns =Nr = 128 most significant principal
directions to span our face space. The used expression
basis is a combination of the Digital Emily model [3] and
FaceWarehouse [10] (see Thies et al. [60] for details). We use
PCA to compress the over-complete blendshapes (76 vectors)
to a subspace ofNe = 64 dimensions.

4.2. Image Formation
We assume the face to be Lambertian, illumination to be
distant and smoothly varying, and there is no self-shadowing.
We thus represent the incident illumination on the face using
second-order spherical harmonics (SH) [41, 45]. Therefore,
the irradiance at a surface point with normal n is given by

B
(
n |θ[i])= b2∑

k=1

θ[i]
kHk(n), (4)

where Hk are the b2 = 32 = 9 SH basis functions, and the
θ[i]
k are the corresponding illumination coefficients. Since

we consider colored illumination, the parameters θ[i]
k ∈R3

specify RGB colors, leading to 3·9=27 parameters in total.
We render facial images based on the SH illumination

using a full perspective camera model Π : R3→ R2. We
render the face using a mask (painted once in a preprocessing
step) that ensures that the rendered facial region matches
the crops produced by the 66 detected landmark locations
(see Figure 2). The global rotation of the face is modeled with
three Euler angles using R=Rotxyz(α,β,γ) that successively
rotate around the x-axis (up, α), y-axis (right, β), and z-axis
(front, γ) of the camera-space coordinate system.

5. Initial Synthetic Training Corpus
Training our deep inverse face rendering network requires
ground-truth training data {Ii, θi}Ni=1 in the form of
corresponding pairs of image Ii and model parameters θi.
However, training on real images is challenging, since the
ground-truth parameters cannot easily be obtained for a large
dataset. We therefore train our network based on synthetically
rendered data, where exact ground-truth labels are available.

We sampleN=200,000 parameter vectors θi and use the
model described in Section 4 to generate the corresponding
images Ii. Data generation can be interpreted as sampling
from a probability P (θ) that models the distribution of
real-world imagery. However, sampling from this distribution
is in general difficult and non-trivial. We therefore assume
statistical independence between the components of θ, i.e.,

P (θ)=P (R)P (θ[s])P (θ[e])P (θ[r])P (θ[i]). (5)

This enables us to efficiently generate a parameter vector θ
by independently sampling each subset of parameters.

We uniformly sample the yaw and pitch rotation angles
α,β∼U(−40°,40°) and the roll angle γ∼U(−15°,15°) to re-
flect common head rotations. We sample shape and reflectance
parameters from the Gaussian distributions provided by the
parametric PCA face model [5]. Since we already scale with
the appropriate standard deviations during face generation

(see Equations 2 and 3), we sample both from a standard nor-
mal distribution, i.e., θ[s],θ[r]∼N (0,1). The expression basis
is based on artist-created blendshapes that only approximate
the real-world distribution of the space of human expressions;
this will be addressed by the self-supervised bootstrapping
presented in Section 7. We thus uniformly sample the expres-
sion parameters using θ[e]∼U(−12,12). To prevent closing
the mouth beyond anatomical limits, we apply a bias of 4.8 to
the distribution of the first parameter1. Finally, we sample the
illumination parameters using θ[i]∼U(−0.2,0.2), except for
the constant coefficient θ[i]

1 ∼U(0.6,1.2) to account for the
average image brightness, and set all RGB components to the
same value. The self-supervised bootstrapping step presented
in Section 7 automatically introduces colored illumination.

6. InverseFaceNet
Given the training data {Ii,θi}Ni=1 consisting of N images
Ii and the corresponding ground-truth parameters θi, we
train a deep inverse face rendering network F to invert
image formation. In the following, we provide details on our
network architecture and the employed loss function.

6.1. Network Architecture
We have tested several different networks based on the
popular AlexNet [31] and ResNet [21] architectures, both
pre-trained on ImageNet [49]. In both cases, we resize the
last fully-connected layer to match the dimensionality of our
model (350 outputs), and initialize biases with 0, and weights
∼N (0,0.01). These minimally modified networks provide
the baseline we build on. We propose more substantial
changes to the training procedure by introducing a novel
model-space loss in Section 6.2, which more effectively trains
the same network architecture. The color channels of the input
images are normalized to the range [−0.5,0.5] before feeding
the data to the network. We show a comparison between the
results of AlexNet and ResNet-101 in Section 8.1, and thus
choose AlexNet for our results.

Input Pre-Processing The input to our network is a color
image of a masked face with a resolution of 240×240 pixels
(see Figure 2). We mask the face to remove any background
and the mouth interior, which cannot be explained by our face
model. For this, we use detected landmarks [50] and resize
their bounding box uniformly to fit inside 240×240 pixels,
to approximately achieve scale and translation invariance.

Training We train all our inverse face rendering networks
using the Caffe deep learning framework [25] with stochastic
gradient descent based on AdaDelta [66]. We perform
75K batch iterations with a batch size of 32 for training
our baseline approaches. To prevent overfitting, we use an
`2-regularizer (aka weight decay) of 0.001. We train with a
base learning rate of 0.01.

1The first parameter mainly corresponds to mouth opening and closing.
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Figure 3. Our approach updates the initial training corpus (left) based on real-world images without available ground truth (right) using a
self-supervised bootstrapping approach. The generated new training corpus (middle) better matches the real-world face distribution.

6.2. Model-Space Parameter Loss
We use a weighted norm to define a model-space loss between
the predicted parameters θ and ground-truth θg by taking the
statistics of the face model into account:

L(θ,θg)=
∥∥θ−θg

∥∥2
A

(6)

=(θ−θg)
> A︸︷︷︸

Σ>Σ

(θ−θg). (7)

Here, Σ is a weight matrix that incorporates the standard
deviations σ• of the different parameter dimensions:

Σ=diag(ωR13,ωsσ
[s],ωeσ

[e],ωrσ
[r],ωi127)∈Rm×m. (8)

The coefficients ω• balance the global importance
of the different groups of parameters, and 1k is a k-
dimensional vector of ones. We use the same values
(ωR,ωs,ωe,ωr,ωi) = (400,50,50,100,20) for all our results.
Note that we do not scale the rotation and illumination dimen-
sions individually. Intuitively speaking, our model-space loss
enforces that the first PCA coefficients (higher variation basis
vectors) should match the ground truth more accurately than
the later coefficients (lower-variation basis vectors), since
the former have a larger contribution to the final 3D geometry
and skin reflectance of the reconstructed face in model space
(see Equations 2 and 3). As shown in Section 8, this leads to
more accurate reconstruction results. The difference to Zhu
et al. [68] is the computation of the weights, which leads to
a statistically meaningful metric.

7. Self-Supervised Bootstrapping
The real-world distribution of the model parameters θ is
in general unknown for in-the-wild images Ireal. Until now,
we have sampled from a manually prescribed probability
distribution P (θ), which does not exactly represent the
real-world distribution. The goal of the self-supervised
bootstrapping step is to make the training data distribution
better match the real-world distribution of a corpus R of
in-the-wild face photographs. To this end, we automatically
bootstrap the parameters for the training corpus. Note that this
step is unsupervised and does not require the ground-truth
parameters for images inR to be available.

Algorithm 1 Self-Supervised Bootstrapping
1: F ← train_network_on_synthetic_faces();
2: R← corpus_of_real_images();
3: for (number of bootstrapping stepsNboot) do
4: θr← inverse_rendering(R,F); . (step 1)
5: θ′r← resample_parameters(θr); . (step 2)
6: R′← {generate_images(θ′r), θ′r}; . (step 3)
7: F ← continue_training(F ,R′); . (step 4)
8: end for

7.1. Bootstrapping
Bootstrapping based on uniform resampling with replacement
Ir∼P (I) = 1/N cannot solve the problem of mismatched
distributions. Hence, we propose a domain-adaptive approach
that resamples new proposals from a mean-adaptive Gaussian
distribution based on real images:

P (Ir(θ) |Ireal)∼θ(Ireal)+N (0,σ2), (9)

where Ir(θ) is the deterministic rendering process, we
compute the inverse of the rendering process θ(Ireal) using
InverseFaceNet, andN (·) is a noise distribution. This shifts
the distribution closer to the target distribution of real images
Ireal. Moreover, adding a non-zero variance σ2>0 populates
out-of-domain samples especially at the domain boundary.
Our approach takes the network of the last bootstrapping
iteration as final output, instead of averaging the intermediate
networks. This prevents from being biased to the manually
prescribed sampling distribution of earlier training stages.

7.2. Algorithm
Our self-supervised parameter bootstrapping is a four-step
process (see Algorithm 1). It starts with a deep neural
networkF initially trained on a synthetic training corpus (see
Section 5) for 15K batch iterations. This guarantees a suitable
initialization for all weights in the network. Given a set of im-
ages from the corpus of real-world imagesR, we first obtain
an estimate of the corresponding model parameters θr, i.e.,
θ(Ireal) in Equation 9, using the synthetically trained network
(step 1). These reconstructed parameters are used to seed
the bootstrapping. In step 2, we apply small perturbations to
the reconstructed parameters based on the noise distribution
N (0,σ2). This generates new data around the seed points
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Figure 4. Model-space parameter loss (Equation 7) for the baseline
and bootstrapping approaches on a synthetic test corpus with
higher parameter variation than the used training corpus. While our
domain-adaptive bootstrapping approach, based on a high-variation
training corpus without available ground truth, continuously
decreases in loss, the baseline network fails to generalize.

in model space, and allows the network to slowly adapt to the
real-world parameter distribution. We use the following to re-
sample the pose, shape, expression, reflectance and illumina-
tion parameters, generating two perturbed parameter vectors
for each reconstruction:α,β,γ : U(−5°,5°),θ[s] : N (0,0.05),
θ[r] : N (0,0.2), θ[e] : N (0,0.1), and θ[i] : N (0,0.02). In step
3, we generate new synthetic training images Ir based on
the resampled parameters θ′r, i.e., θ(Ireal)+N (0,σ2). The
result is a new synthetic training set R′ that better reflects
the real-world distribution of model parameters. Finally,
the networkF is fine-tuned forNiter =7.5K batch iterations
on the new training corpus (step 4). In total, we repeat this
process forNboot = 8 self-supervised bootstrapping steps.

Over the iterations, the data distribution of the training
corpus adapts and better reflects the real-world distribution
of the provided in-the-wild facial imagery, as illustrated in
Figure 3. We also evaluate the parameter loss throughout
bootstrapping iterations in Figure 4, and observe a clear
reduction with our self-supervised bootstrapping. This leads
to higher quality results at test time, as shown in Section 8.
The variance σ2 could be adaptively scaled based on the pho-
tometric error of estimates. However, we found empirically
that our framework works well with a fixed variance.

8. Experiments and Results
We evaluate our InverseFaceNet on several publicly available
datasets. We validate our design choices regarding network
architecture, model-space loss, and self-supervised bootstrap-
ping. We then show quantitative and qualitative results and
comparisons on the datasets LFW (Labeled Faces in the Wild)
[22], 300-VW (300 Videos in the Wild) [53], CelebA [39],
FaceWarehouse [10], Volker [63] and Thomas [18]. For more
results, we refer to our supplemental document and video2.

Error Measures We compute the photometric error
using the RMSE of RGB pixel values (within the mask of
the input image) between the input image and a rendering of
the reconstructed face model. An error of 0 is a perfect color
match, and 255 is the difference between black and white (i.e.

2Project page: http://gvv.mpi-inf.mpg.de/projects/InverseFaceNet
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Figure 5. Qualitative comparison of ResNet-101 [21] and AlexNet
[31] applied to inverse face rendering, both with model-space loss
(MSL): ResNet-101 produces lower geometric error (see heatmap)
while AlexNet has lower photometric error (also on average, see
Table 1). AlexNet with MSL and bootstrapping clearly improves the
reconstruction of reflectance and geometry, in all error categories.

lower is better). The geometric error measures the RMSE
in mm between corresponding vertices in our reconstruction
and the ground-truth geometry. We quantify the image-space
overlap of the estimated face model and the input face image
using the intersection over union (IOU) of face masks (e.g.
see ‘contours’ in Figure 5). An IOU of 0% means no overlap,
and 100% means perfect overlap (i.e. higher is better).

8.1. Evaluation of Design Choices
Table 1 evaluates different design choices on a test dataset
of 5,914 images (one shown in Figure 5) from CelebA
[39] using the error measures described earlier (using
our implementation of Garrido et al. [19] as ground-truth
geometry, up to blendshape level).

Network Architecture We first compare the results of the
AlexNet [31] and ResNet-101 [21] architectures, both with
our model-space loss (see Section 6). Reconstructions using
ResNet-101 have smaller geometric errors, but worse photo-
metric error and IOU than AlexNet, which is exemplified by
Figure 5. ResNet-101 is significantly deeper than AlexNet, so
training takes about 10× longer and testing about 5× longer.
We thus use AlexNet for our inverse face rendering network,
which only requires 3.9 ms for the forward pass (on an Nvidia
Titan Xp). Landmark detection takes 4.5 ms and face morph-
ing 1 ms (on the GPU). In total, our approach requires 9.4 ms.

Importance of Model-Space Loss Table 1 shows that
our model-space loss improves on baseline AlexNet [31] in
all error categories, particularly the photometric error and
IOU. As our model-space loss does not modify the network
architecture, the time for the forward pass remains the same
fast 3.9 ms as before.

Importance of Self-supervised Bootstrapping Our
self-supervised bootstrapping (see Section 7) significantly
improves the reconstruction quality and produces the lowest
errors in all categories, as shown in Table 1. This can also

http://gvv.mpi-inf.mpg.de/projects/InverseFaceNet/


Table 1. Quantitative architecture comparison, model-space parameter loss and our bootstrapping step on 5,914 test images from CelebA
[39]. The best values for each column are highlighted in bold. Training time includes all steps except the initial training data generation.
Test times are averaged over 5K images. Training on a GTX Titan and testing on a Titan Xp. Errors show means and standard deviations. ∗For
bootstrapping, we first train 15K iterations on normal synthetic face images (see Section 5), and then bootstrap for 60K iterations (see Section 7).
InverseFaceNet (AlexNet [31] with model-space loss and bootstrapping) produces the best geometric error and intersection over union.

Training
iterations

Training
time [h]

Test time
[ms / image]

Photometric
error [8 bits]

Geometric
error [mm]

Intersection
over union [%]Approach

AlexNet [31] 75K 4.14 3.9 46.26 ± 12.42 2.91 ± 0.99 90.44 ± 3.81
+ model-space loss 75K 4.36 3.9 39.71 ± 9.86 2.77 ± 1.00 92.51 ± 2.59

+ bootstrap (= InverseFaceNet) 75K∗ 29.40 3.9 34.03 ± 7.56 2.11 ± 0.84 93.96 ± 2.08
ResNet-101 [21] + model-space loss 150K 40.99 21.0 41.23 ± 10.58 2.54 ± 0.87 92.07 ± 2.87
MoFA [58] — — 3.9 17.23 ± 4.42 3.94 ± 1.34 84.20 ± 4.23

Table 2. Quantitative evaluation of the geometric accuracy on 180
meshes of the FaceWarehouse [10] dataset.

Our approach Other approaches

Bootstrap Baseline Garrido
et al. [19]

Tewari
et al. [58]

MonoFit
(see text)

Error 2.11 mm 2.33 mm 1.59 mm 2.19 mm 2.71 mm
SD 0.46 mm 0.47 mm 0.30 mm 0.54 mm 0.52 mm

be seen in Figure 5, which shows plausible reconstruction
of appearance and geometry, the lowest geometric errors, and
improved contour overlap for our network with bootstrapping.
Note that the training time for self-supervised bootstrapping
includes all steps (see Algorithm 1), in particular reconstruct-
ing 100K face models (0.25 h), rendering 200K synthetic
faces (2.8 h) and training for 7.5K iterations (0.5 h) for each
of the 8 bootstrapping iterations (on an Nvidia GeForce GTX
Titan). AlexNet with bootstrapping significantly outperforms
ResNet-101 without bootstrapping in reconstruction quality,
training time and test time. Note that our approach is better
than Tewari et al. [58] in terms of geometry and overlap, and
worse in terms of the photometric error on this test set.

8.2. Quantitative Evaluation
We compare the geometric accuracy of our approach to
state-of-the-art monocular reconstruction techniques in
Figure 6. As ground truth, we use the high-quality stereo
reconstructions of Valgaerts et al. [63]. Compared to Thies
et al. [60], our approach obtains similar quality results,
but without the need for explicit optimization. Therefore,
our approach is two orders of magnitude faster (9.4 ms vs
600 ms) than optimization-based approaches. Note that while
Thies et al. [60] run in real time for face tracking, it requires
significantly longer to estimate all model parameters from an
initialization based on the average model. In contrast to the
state-of-the-art learning-based methods by Richardson et al.
[46, 47], Jackson et al. [24] and Tran et al. [62], ours obtains
a reconstruction of all dimensions, including pose, shape,
expression, and colored skin reflectance and illumination.

In addition, we performed a large quantitative ground-truth
comparison on the FaceWarehouse [10] dataset, see Table 2.
We show the mean error (in mm) and standard deviation
(SD) for 180 meshes (9 different identities, each with 20
different expressions). As can be seen, our bootstrapping

approach increases accuracy. Our approach is only slightly
worse than the optimization-based approach of Garrido et al.
[19], while being orders of magnitude faster. Bootstrapping
is on par with the weakly supervised approach of Tewari et al.
[58], which is trained on real images and landmarks. We
also compare to a baseline network ‘MonoFit’ that has been
directly trained on the monocular fits of Garrido et al. [19] on
the CelebA [39] dataset. Our self-supervised bootstrapping
approach obtains higher accuracy results.

8.3. Qualitative Evaluation
We next compare our reconstruction results qualitatively to
current state-of-the-art approaches. Figure 7 compares our
reconstruction to optimization-based approaches that fit a
parametric face model [19] or a person-specific template
mesh [18]. Our learning-based approach is significantly
faster (9.4 ms vs about 2 minutes [19]), and orthogonal
to optimization-based approaches, since it can be used to
provide a good initial solution.

In Figure 8, we also compare to the state-of-the-art
deep-learning-based approaches by Richardson et al. [46, 47],
Sela et al. [52], Jackson et al. [24], Tran et al. [62] and Tewari
et al. [58]. We obtain high-quality results in 9.4 ms. Most
of the other approaches are slower, do not estimate colored
skin reflectance and illumination [24, 46, 47, 52], do not
regress the facial expressions [62], or suffer from geometric
shrinking artifacts [58]. Note, we compare to Richardson
et al.’s ‘CoarseNet’ [47], which corresponds to their earlier
method [46], and estimates pose, shape and expression,
followed by a model-based optimization of monochrome
reflectance and illumination. We also compare to Sela et
al.’s aligned template mesh. We don’t compare to ‘FineNet’
[47] or ‘fine detail reconstruction’ [52] as these estimate a
refined depth map/mesh, and we are interested in comparing
the reconstructed parametric face models.

Figure 9 shows several monocular reconstruction results
obtained with our InverseFaceNet. As can be seen, our
approach obtains good estimates of all model parameters.

8.4. Limitations
We propose a solution to the highly challenging problem
of inverse face rendering from a single image. Similar
to previous learning-based approaches, ours has a few
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Figure 6. Quantitative comparison of geometric accuracy compared to Thies et al. [60], Richardson et al. [47], Jackson et al. [24] and Tran
et al. [62] on Volker [63]. The heat maps visualize the pointwise Hausdorff distance (in mm) between the input and the ground-truth. The
ground-truth has been obtained by the high-quality binocular reconstruction approach of Valgaerts et al. [63].

Input Ours Garrido13 Garrido16

Figure 7. Qualitative comparison to optimization-based approaches
[18, 19] on Thomas [18]. For more, see our supplemental document.

Input Geometry Geometry

Richardson17
Sela17

Jackson17
Tran17

Tew
ari17

Ours State-of-the-arts

Figure 8. Comparison to a wide range of state-of-the-art learning-
based approaches. From top to bottom: Comparison to Richardson
et al. [47], Sela et al. [52], Jackson et al. [24], Tran et al. [62] and
Tewari et al. [58]. We obtain high-quality results in 9.4 ms. Most
other approaches are significantly slower, do not estimate colored
skin reflectance and illumination (empty box), do not regress facial
expressions (yellow arrow), or suffer from geometric shrinking (red
arrow). Images from LFW [22], 300-VW [53], CelebA [39] and Face-
Warehouse [10]. For more results, see our supplemental document.

limitations. Our approach does not perfectly generalize to
inputs that are outside of the training corpus. Profile views of
the head are problematic and hard to reconstruct, even if they
are part of the training corpus. Note that even state-of-the-art
landmark trackers often fail in this scenario. Handling these
cases robustly remains an open research question. Incorrect
landmark localization might produce inconsistent input to

Input Geometry Contours

Figure 9. Qualitative results on LFW [22] and 300-VW [53]. Top
to bottom: input image, our estimated face model and geometry,
and contours (red: input mask, green: ours). Our approach achieves
high-quality reconstructions from just a single input image. For
more results, we refer to the supplemental document.

our network, which harms the quality of the regressed face
model. This could be addressed by more sophisticated face
detection algorithms, or by joint learning of landmarks and
reconstruction. Occlusions of the face, such as hair, beards,
sun glasses or hands, can also be problematic. To handle
these situations robustly, our approach could be trained in an
occlusion-aware manner by augmenting our training corpus
with artificial occlusions, similar to Zhao et al. [67].
9. Conclusion
We have presented InverseFaceNet – a single-shot inverse
face rendering framework. Our key contribution is to
overcome the lack of well-annotated image datasets by self-
supervised bootstrapping of a synthetic training corpus that
captures the real-world distribution. This enables high-quality
face reconstruction from just a single monocular image. Our
evaluation shows that our approach compares favorably to
the state of the art. InverseFaceNet could be used to quickly
and robustly initialize optimization-based reconstruction
approaches close to the global minimum. We hope that our
approach will stimulate future work in this exciting field.
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