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Rotational waves generated by current-topography interaction

By Marcelo V. Flamarion∗, Paul A. Milewski†and André Nachbin‡,

Dedicated to Roger Grimshaw

We study nonlinear free-surface rotational waves generated through the interaction of a vertically
sheared current with a topography. Equivalently, the waves may be generated by a pressure distribution
along the free surface. A forced Korteweg-de Vries equation (fKdV) is deduced incorporating these fea-
tures. The weakly nonlinear, weakly dispersive reduced model is valid for small amplitude topographies.
In order to study the effect of gradually increasing the topography amplitude, the free surface Euler
equations are formulated in the presence of a variable depth and a sheared current of constant vorticity.
Under constant vorticity, the harmonic velocity component is formulated in a simplified canonical do-
main, through the use of a conformal mapping which flattens both the free surface as well as the bottom
topography. Critical, supercritical and subcritical Froude number regimes are considered, while the
bottom amplitude is gradually increased in both the irrotational and rotational wave regimes. Solutions
to the fKdV model are compared to those from the Euler equations. We show that for rotational waves
the critical Froude number is shifted away from 1. New stationary solutions are found and their stability
tested numerically.

1 Introduction

Water waves is a research area in Fluid Dynamics and Partial Differential Equations which is of great
current interest due to the large number of problems it spawns from theory to computations, and with
many practical applications. Reduced modeling is a topic which permits simplifying the problem in a
systematic fashion, enabling theoretical results and more efficient computations. The Korteweg-de Vries
(KdV) equation is an example of such reduced model applicable to long surface waves when the water
is shallow compared to horizontal length scales of motion. Roger Grimshaw has made many scientific
contributions in this field and with admiration we dedicate this work to his 80th birthday.
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1.1 Motivation

In the present article we study nonlinear surface waves generated due to a constant vorticity flow over
a submarine obstacle on the bottom of a channel or due to a localised pressure distribution along the
free surface. Through a choice of the Froude number, we position ourselves in the nearly resonant
regime. We consider solutions of both the forced KdV equation as well as the full Euler equations. The
constant vorticity assumption results in a linear shear flow away from the forcing and when there are
no waves. As soon as the waves or the topography are sufficiently large, the flow ceases to look like a
linear horizontal shear and adjusts accordingly. In other words, while the upstream flow has a linear
profile, this is not the case everywhere, as the presence of a wave and of the topography alters the flow
substantially in order to achieve a constant vorticity velocity field solving the full Euler equations and
boundary conditions.

Nonlinear surface waves with constant vorticity are a problem of interest in applications and in
applied analysis. The paper by Teles and Peregrine [1] conjectured flow features which were later inves-
tigated by both numerical and theoretical researchers. These include numerical studies with traveling
waves, such as that by Vasan and Oliveras [2] as well as by Ribeiro-Jr et al. [3]. Applied analysis re-
searchers recently made efforts in understanding the impact of constant vorticity on nonlinear traveling
wave solutions. A good source of recent articles is found in the theme volume edited by Constantin [4].
Constant vorticity has an impact, for example, on the formation of a critical layer beneath traveling
waves [5]. This critical layer has a Kelvin cat eye structure together with the respective formation of
critical points, as numerically illustrated by the authors in [3].

In the present manuscript we consider a more general setting where rotational waves are sponta-
neously generated by the topography or a pressure distribution, and not imposed by special traveling
wave initial data. The choice of constant vorticity still allows for a decomposition of the flow to be
applied, in which the principal component is harmonic. This decomposition is not possible in more
general settings. While more general vorticity distributions may be more realistic, the respective math-
ematical modeling, as well as theoretical access, are much harder than in the constant vorticity case.
In his introduction, Constantin [4] calls attention that “constant vorticity is representative when the
waves are long compared with the water depth since in this case it is the existence of a non-zero mean
vorticity that is important rather than its specific distribution. In the present study we consider the
long wave (weakly dispersive) regime.

It is important to call attention that our study regards the impact of constant vorticity in the nearly
resonant wave generation regime. Namely, we consider Froude numbers near its critical value which no
longer corresponds to U0/

√
gh0 ≈ 1, as is the case for irrotational currents of strength U0 in a fluid layer

of depth h0.

1.2 Background

The main parameter in the study is therefore the Froude number F = U0/(gh0)1/2, together with the
spatial characteristics of either the bottom topography or the pressure distribution. Their amplitudes
and length-scale play an important role. We denote by U0 the speed of the bottom obstacle or of the
moving pressure distribution in a frame where the velocity induced by the background shear is zero.
We can also consider U0 to be the characteristic speed of the underlying current when these bottom
and pressure disturbances are taken to be stationary. The channel’s reference depth is h0 and the
acceleration due to gravity denoted by g. The water surface is initially taken at rest. Our main goal
is to investigate the dynamical features of nonlinear waves generated by the interaction of the current
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with the topographic or pressure forcing.
From the Applied Mathematics point of view, our investigation considers reduced modeling, where

we first deduce a forced Korteweg-de Vries equation (fKdV) which combines the effects of a sheared
current interacting with a topography, or equivalently a pressure distribution. We also present a more
complete Euler equation formulation using conformal mapping, having in mind that we want to explore
this wave generation problem beyond the fKdV regime. The Euler equations are presented in the
canonical (conformally mapped) domain. The computational domain becomes a uniform flat strip,
more amenable to computations. A similar conformal mapping formulation has been used by Viotti
et al. [25, 26], but their underlying current is irrotational. In Viotti et al. [25] two examples are
considered. First an initial disturbance is provided to study the solitary wave fission over a submerged
step. And finally an example with one supercritical stationary wave generation, due to the presence of a
submerged triangular obstacle. In Viotti and Dias [26] an initial random wave field is given and allowed
to propagate towards a long shallower region, allowing for extreme wave formation. The scope of these
interesting studies is different from ours.

Several aspects of this surface wave-generation problem have been studied by many researchers.
Akylas [27] deduced an fKdV equation for a pressure distribution moving with constant speed along
the free surface. Akylas showed that for F 6= 1 the linearized Euler equations produce solutions given
by a stationary wave, where transients are outgoing as t → ∞. Nevertheless for the critical (resonant)
regime F = 1 the linear model predicts that the wave amplitude grows indefinitely in time. Grimshaw
and Smyth [23] considered this wave generation problem due to the interaction of a uniform (constant)
current with a submerged topography, in the form of a Gaussian mound. They obtained approximate
analytical solutions which were well compared with numerical solutions. Near the critical regime, they
observed waves propagating both downstream as well as upstream. The sign of the forcing was impor-
tant. For a positive forcing a series of solitary waves propagate upstream. Downstream one usually
observes an oscillatory wavetrain for subcritical forcing. This was actually first observed numerically
by Wu and Wu [29]. Wu [28] studied the mechanism for the upstream generation of solitary waves.
Camassa and Wu [20, 21] studied numerically, with the fKdV, the stability of stationary solitary waves.
Chardard et al. [9] studied numerically, with the fKdV, the stability of solitary waves for multiple
submerged obstacles.

More recently Albalwi, Marchant and Smyth [16] deduced a higher-order fKdV model, up to fifth-
order, which they called the (extended) eKdV model. They studied the nearly critical regime for a
constant current interacting with a submerged topography. They compare their model with that of
Grimshaw and Smyth [23]. In particular, they show that the eKdV’s higher order terms capture the
onset of wave breaking, in the form of an undular bore. Before wave breaking, they comment on
the envelope of the downstream oscillatory wavetrain. For the eKdV solution the envelope is shaper,
decaying faster than that of the respective fKdV model. This is also observed in the present work.

With the Euler equations and a boundary integral method, Vanden-Broeck and Tuck [13] studied
stationary subcritical waves generated by a moving pressure distribution and their connection with
ship generated waves. Later Asavanant et al. [11] studied this problem in both the subcritical and
supercritical regimes, also with boundary integrals. They explored different parameter regimes, including
effects of pressure intensity and distribution length. Binder, Vanden-Broeck and Dias [8] used the
boundary integral method to compute stationary supercritical solutions in the presence of two triangles
along the bottom.

Comparing the fKdV model with the Euler equations, is the spirit of the present work and, the
inclusion of shear, has been adressed by some authors. Grimshaw and Maleewong [22] used the fKdV
model to benchmark a boundary integral method for the Euler equations. They considered a transcritical
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regime with a small amplitude pressure forcing. Choi and Camassa [31] used the conformal mapping
technique, introduced by Dyachenko et al. [6], to flatten the free surface elevation in the canonical
complex plane and compare solitary waves produced by both models.

Other studies have considered solitary waves using the Euler equations with a conformal mapping
technique, as for example some mentioned above [25, 26]. Choi [30] studied travelling waves with the
Euler equations in the presence of a sheared current of constant vorticity. The bottom was considered
flat. Milewski et al. [18] also used the (free surface) conformal mapping technique to study collisions of
gravity-capillary solitary waves. Nachbin [7], on the other hand, used conformal mapping to flatten the
bottom topography for weakly nonlinear waves in the absence of a current. Here both ingredients are
combined for rotational waves, namely flattening both the free surface and the bottom topography.

Finally we should mention about related work on internal waves. Internal waves are not within the
scope of our study, but their interaction and generation by isolated topography have similarities with
the study here presented. For the interested reader a partial list of references follow. A comprehensive
review of linear internal wave interaction with topography, can be found in the 1995 book by Baines
[33]. Grimshaw and Yi [34] studied stratified flows forced resonantly by topography and a forced KdV
equation is deduced. Wang and Redekopp [32] studied long internal waves in shear flows in the
regime of topographic resonance. They were interested in the internal wave-bottom interaction, and its
passage-through-resonance enhancing resuspension of nutrients from the boundary layer region. They
considered two layers of different densities and different constant vorticity, and their reduced modeling
led to a forced KdV equation which is solved numerically. As expected, their forced KdV equation for
internal waves emits solitary waves upstream, similar to what is seen here with both the fKdV and Euler
models.

Helfrich and Melville [35] in their 2006 review article report on long nonlinear internal solitary-like
waves, commonly observed in coastal dynamics. An overview is presented primarily from the point of
view of the Korteweg-de Vries equation. Internal wave generation by topography is discussed in section
3.1. The KdV transcritical regime is depicted in figure 6, with wave profiles similar to those depicted in
the present work. Helfrich and Melville [35] call attention that observations often display waves beyond
the weakly nonlinear KdV regime and add that properties of these waves should be explained with fully
nonlinear models.

In a more recent review, Lamb [36] reports on internal wave breaking in the continental shelf. While
theoretical, numerical and laboratory studies mostly focus on simple geometries, Lamb calls for more
detailed modeling since ocean scenarios reveal much more complex geometries and fluid motions.

Soontiens et al. [37] studied trapped internal waves over isolated topography in the presence of a
background shear. Continuous stratification is considered together with the Boussinesq approximation.
This configuration had been used earlier by Stastna and Peltier [38] for the resonant generation of
solitary-like waves. They compared two classes of approximate models, one class being weakly nonlinear
while the other (fully nonlinear) connected to the conjugate flow theory, is based on a simpler ordinary
differential equation (ODE) eigenvalue problem [38, 37]. The (trapped) steady waves studied are in the
supercritical regime. Soontiens et al. [37] do not specify a functional form for the topography nor for the
background current, and therefore derive a general version of the Dubreill-Jacotin-Long equation, which
is a nonlinear elliptic (time independent) equation formulated in terms of the isopycnal displacement.
One of their goals was to compute internal waves with closed streamlines, also called vortex cores.
Without reference to the respective critical points, these are submarine structures similar to the critical
layers for traveling rotational (surface) waves over a flat bottom [3, 5], mentioned above in section 1.1.
A Dubreil-Jacotin equation has been used in the analysis of surface waves with vorticity, based on a
hodograph transformation using the stream-function [5, 39]. However the Dubreil-Jacotin formulation
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is not well suited for capturing the precise location of the critical (stagnation) points, in the particle’s
phase portrait representation, because it has singularities at these critical points. Our alternative for
accurately finding the critical points, of the closed streamlines [3], was a conformal mapping similar to
the one here presented.

This article is organized as follows. In section 2 we deduce the fKdV equation which combines
topographic and pressure forcing with a sheared (constant vorticity) current. In section 3 we formulate
the potential theory equations in the (conformally mapped) canonical domain. In section 4 we have the
numerical methods and numerical results. The conclusions are given in section 5, and a resolution study
for the Euler equations is presented in the appendix.

2 Forced Kortweg-de Vries equation for rotational waves

We consider the two-dimensional incompressible flow of an inviscid fluid of density ρ. In this section
we deduce a long-wave equation for free surface waves generated by the interaction of both a surface
pressure distribution and a topography with an underlying depth-varying current. The deduced forced
Kortweg-de Vries (fKdV) model will account for the generation and propagation of rotational waves.

We begin with the free-surface Euler equations [10]. Let the free surface be denoted by ζ(x, t) and
the bottom topography by h(x). We have that

ut + uux + vuy = −px
ρ
, for h(x) < y < ζ(x, t),

vt + uvx + vvy = −py
ρ
− g, for h(x) < y < ζ(x, t),

ux + vy = 0, for h(x) < y < ζ(x, t),

p = P (x), at y = ζ(x, t),

v = ζt + uζx, at y = ζ(x, t),

v = uhx, at y = h(x).

(1)

We have denoted the fluid velocity by (u, v), the gravity acceleration by g, the surface pressure distri-
bution by P , while the pressure in the fluid bulk by p. We consider all functions (u, v, ζ, h and p) in
equations (1) to be smooth and decaying to zero as |x| → ∞. Consider the following set of dimensionless
variables, where λ is a reference wavelength, a a reference amplitude, h0 a reference depth and λ/

√
gh0

a reference time-scale:

x→ λx, y → h0y, t→ λ√
gh0

t,

u→
√
gh0u, v → h0

√
gh0

λ
v, h→ h0h.

We also have that

p→ ρgh0(h0 − y) + ρgh0p, P → ρgh0P and ζ → h0 + aζ.

Introducing the dispersion parameter µ = h0/λ and the nonlinearity parameter ε = a/h0, the dimen-
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sionless form of equations (1) is given as:

ut + uux + vuy = −px, for h(x) < y < 1 + εζ(x, t),

µ2{vt + ε(uvx + vvy)} = −py, for h(x) < y < 1 + εζ(x, t),

ux + vy = 0, for h(x) < y < 1 + εζ(x, t),

p = P + εζ, at y = 1 + εζ(x, t),

v = ε(ζt + uζx), at y = 1 + εζ(x, t),

v = uhx, at y = h(x).

(2)

In order to accommodate the perturbative effects of both the pressure and the topography, we rescale
in the form:

u→ U(y) + εu, v → εv, p→ εp, P → ε2P e h→ ε2h. (3)

The depth-dependent imposed current U(y) is therefore the dominant horizontal speed component. We
will see below that in this scaling limit U(y) is not arbitrary. Using the typical balance for a KdV model,
µ2 = ε, and substituting (3) in (2) yields

ut + U(y)ux + U ′(y)v + ε(uux + vuy) = −px, for h(x) < y < 1 + εζ(x, t),

ε{vt + U(y)vx + ε(uvx + vvy)} = −py, for h(x) < y < 1 + εζ(x, t),

ux + vy = 0, for h(x) < y < 1 + εζ(x, t),

p = ζ + εP, at y = 1 + εζ,

v = ζt + U(y)ζx + εuζx, at y = 1 + εζ,

v = εhxU(y) + ε2hxu, at y = ε2h.

We introduce a traveling coordinate ξ = x− ct, where c is yet to be determined, and the slowly varying
time τ = εt. In this frame we have that

(U(y)− c)uξ + U ′(y)v + ε(uτ + uuξ + vuy) = −pξ, for h < y < 1 + εζ,

ε{(U(y)− c)vξ + ε(vτ + uvξ + vvy)} = −py, for h < y < 1 + εζ,

uξ + vy = 0, for h < y < 1 + εζ,

p = ζ + εP, at y = 1 + εζ,

v = (U(y)− c)ζξ + ε(ζτ + uζξ), at y = 1 + εζ,

v = εhξU(y) + ε2hξu, at y = ε2h.

(4)

For a weakly nonlinear regime, consider a power series expansion in terms of the small parameter
ε. In the absence of forcing (pressure and topography) Freeman and Johnson [17] studied rotational
solitary waves, with expansions in the form

q(ξ, y, τ ; ε) =

∞∑
n=0

εnqn(ξ, y, τ), ζ(ξ, τ) =

∞∑
n=0

εnζn(ξ, τ), (5)

where q = u, v, p. Substituting (5) in (4) one obtains a family of problems, in an O(εn)-hierarchy. The
O(ε0)-equations are:

(U(y)− c)u0ξ + U ′(y)v0 = −p0ξ, p0y = 0, u0ξ + v0y = 0, for 0 < y < 1,

p0 = ζ0, v0 = (U(y)− c)ζ0ξ, at y = 1 and v0 = 0, at y = 0.
(6)
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By integration one obtains the solution

v0 =

{
(U(y)− c)

∫ y

0

dz

(U(y)− c)2

}
ζ0ξ, (7)

u0 = −
{

1

U(y)− c
+ U ′(y)

∫ y

0

dz

(U(y)− c)2

}
ζ0. (8)

Substituting (7) in the kinematic condition in (6), yields the compatibility condition known as Burns
condition: ∫ 1

0

1

(U(y)− c)2
dy = 1, (9)

from which the speed c can be computed later. Burns condition is discussed in detail in the book by
Johnson [40], pages 255-262. This condition is obtained from the underlying linear problem. For a
uniform current, the linear solution does not exist if U(yc) = c, at some critical depth yc. However this
critical depth condition is not satisfied for a linear shear [40]. The first order approximation ζ0, for the
free surface elevation, will be defined at the next set of equations. At O(ε1) we have that:

(U(y)− c)u1ξ + U ′(y)v1 + u0τ + u0u0ξ + v0u0y = −p1ξ, for 0 < y < 1,

(U(y)− c)v0ξ = −p1y, for 0 < y < 1,

u1ξ + v1y = 0, for 0 < y < 1,

p1y = ζ1 + P, at y = 1,

v1 + ζ0v0y = (U(y)− c)ζ1ξ + U ′(y)ζ0ζ0ξ + ζ0τ + u0ζ0ξ, at y = 1,

v = U(y)hξ, at y = 0.

(10)

The kinematic condition in (4) has been Taylor-expanded about y = 1. From equations (6) and (10)
one arrives at:

p1 = ζ1 + P +

{∫ 1

y

(U(y)− c)2I2(y)dy

}
ζ0ξξ, (11)

(U(y)− c)2

{
v1

U(y)− c

}
y

+

{
1

U(y)− c
+ U ′(y)I2(y)

}
ζ0τ

−
{

1

U(y)− c
+ U ′(y)I2(y)

}2

ζ0ζ0ξ = ζ1ξ + Pξ +

(∫ 1

y

(U(y)− c)2I2(y)dy

)
ζ0ξξξ,

(12)

where

In(y) ≡
∫ y

0

dy

(U(y)− c)n
, for n = 1, 2, 3, 4.

Integrate equation (12) from 0 to y, together with the bottom condition v1 = U(y)hξ, at y = 0. We
have that

v1 = (U(y)− c)
{(

I2(y)

U(y)− c
− 2I3(y)

)
ζ0τ

+

(
I4(y) + 4

∫ y

0

U ′(y)I2(y)

(U(y)− c)3
dy − U ′(y)I2(y)

U(y)− c

)
ζ0ζ0ξ + I2(y)ζ1ξ + I2(y)Pξ

+ ζ0ξξξ

∫ y

0

1

(U(y)− c)2

[ ∫ 1

y

(U(y)− c)2I2(y)dy

]
dy

}
+
U(y)− c
U(0)− c

U(0)hξ.
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Evaluating at y = 1, and imposing the kinematic condition in (10), yields

(U(1)− c)ζ1ξ + U ′(1)ζ0ζ0ξ + ζ0τ − 2

{
1

U(1)− c
+ U ′(1)I2(1)

}
ζ0ζ0ξ

+
U(1)− c
U(0)− c

U(0)hξ = (U(1)− c)
{(

I2(1)

U(1)− c
− 2I3(1)

)
ζ0τ

+

(
I4(1) + 4

∫ 1

0

U ′(y)I2(y)dy

(U(y)− c)3
− U ′(1)I2(1)

U(1)− c

)
ζ0ζ0ξ + I2(1)ζ1ξ + I2(1)Pξ + J1ζ0ξξξ

}
,

(13)

where

J1 =

∫ 1

0

∫ 1

y

∫ y1

0

(U(y1)− c)2

(U(y)− c)2(U(y2)− c)2
dy2dy1dy.

Integrating by parts gives

−2I31ζ0τ + 3I41ζ0ζ0ξ + J1ζ0ξξξ =
U(0)hξ
U(0)− c

+ Pξ, (14)

with In1 = In(1), n = 1, 2, 3, 4. Going back to the fixed-frame x, using the condition that c = εf while
keeping the slow-time τ = εt, we arrive at the new forced Korteweg-de Vries (fKdV) equation

−2I31ζ0τ − 2I31fζ0x + 3I41ζ0ζ0x + J1ζ0xxx = hx(x) + Px(x). (15)

When the current is constant throughout the water column, this equation is consistent with that obtained
by Grimshaw and Smyth [23] for a pressure distribution. In the absence of a pressure and topography
forcing, this fKdV equation is consistent with that obtained by Freedman and Johnson [17] for rotational
waves. Note that mathematically the effects of pressure and topography are the same, in the sense that
for a undisturbed initial free surface no waves are generated when P (x) = −h(x).

We call attention to the fact that when the condition c = εf is imposed, we also restrict the admissible
shearing currents. In particular we are interested in regimes with a constant vorticity ω. Thus we will
consider a shearing current with a linear profile of the form

U(y) = Ωy + β.

The notation is the same as in Freedman and Johnson [17], where Ω = −ω. Imposing Burns condition
for this profile gives

1 =

∫ 1

0

1

(U(y)− c)2
dy =

1

(β − c)(Ω + β − c)
,

which yields the following admissible wave speeds:

c ≡C±(Ω, β) = β +
(Ω±

√
Ω2 + 4)

2
.

Our model requires a wave speed of O(ε). Consider the following ansatz for our current:

U(y) ≡ U(y)− C−(Ω, β) + εf = Ωy − Ω

2
+

√
Ω2 + 4

2
+ εf.
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Substituting in (9) we find that Burns condition is automatically satisfied with C = εf . Hence we can
write that

U(y) = Ωy + γ(Ω) + εf, (16)

where

γ(Ω) = −Ω

2
+

√
Ω2 + 4

2
.

The Froude number is then expressed in the form

F (Ω) = −Ω

2
+

√
Ω2 + 4

2
+ εf. (17)

For the current given by (16), the coefficients of equation (15) are obtained as

I31 =
Ω + 2γ(Ω)

2γ(Ω)2(Ω + γ(Ω))2
, I41 =

1

3

Ω2 + 3Ωγ(Ω) + 3γ(Ω)2

γ(Ω)3(Ω + γ(Ω))3
, J1 =

1

3γ(Ω)3
. (18)

From now on we refer to the vorticity parameter Ω as obtained through (16). This model is our starting
point to study long rotational waves, under the effect of constant vorticity, in particular, in the presence
of topographic forcing. As the topography gradually increases in amplitude we will eventually need to
consider Euler’s equations.

3 Potential theory formulation for Euler Equations

In this section we present the formulation for the harmonic component of the velocity in the presence
of constant vorticity. We consider a sheared current of constant vorticity in the presence of a pressure
distribution and a topography. The problem will be reformulated in terms of the pertubation velocity
potential φ̃. Having this at hand, we can perform a conformal mapping of the irregular flow domain
onto a uniform strip.

Consider the pressure distribution to be travelling with speed U0 along the free surface while the
submarine obstacle also travels with speed U0 along the bottom. The Euler equations are written as:

ut + uux + vuy = −px
ρ
, for − h0 + h(x+ U0t) < y < ζ̃(x, t),

vt + uvx + vvy = −py
ρ
− g, for − h0 + h(x+ U0t) < y < ζ̃(x, t),

ux + vy = 0, for − h0 + h(x+ U0t) < y < ζ̃(x, t),

p = P (x+ U0t), at y = ζ̃(x, t),

v = ζ̃t + uζ̃x, at y = ζ̃(x, t),

v = ht + hxu, at y = −h0 + h(x+ U0t).

(19)

As before, the functions ζ̃, u, v, h and p are smooth and decay to zero as |x| → ∞. Consider the velocity
field in the form

(u, v) = ∇φ̃+ (ay, 0), (20)
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where φ̃ is the harmonic component and −a is the constant vorticity value. Substitute (20) in (19) to
obtain

∆φ̃ = 0, for − h0 + h(x+ U0t) < y < ζ̃(x, t),

ζ̃t + (aζ̃ + φ̃x)ζ̃x − φ̃y = 0, at y = ζ̃(x, t),

φ̃t +
1

2
(φ̃2
x + φ̃2

y) + aζ̃φ̃x + ζ̃ − aψ̃ = −P (x+ U0t)

ρ
, at y = ζ̃(x, t),

(U0 − ah0)hx + ahhx + φ̃xhx = φ̃y, at y = −h0 + h(x+ U0t).

By ψ̃ we denote the harmonic conjugate of φ̃. Now we place ourselves in a moving frame x → x+ U0t
and write

ζ̃(x− U0t, t) = ζ(x, t), φ̃(x− U0t, y, t) = φ(x, y, t),

to obtain

∆φ = 0, for − h0 + h(x) < y < ζ(x, t),

ζt + (U0 + aζ + φx)ζx − φy = 0, at y = ζ(x, t),

φt +
1

2
(φ

2

x + φ
2

y) + (U0 + aζ)φx + ζ − aψ = −P (x)

ρ
, at y = ζ(x, t),

(U0 − ah0)hx + ahhx + φxhx = φy, at y = −h0 + h(x).

(21)

In this framework, we are prescribing the velocity to having constant vorticity, established through
the background flow, while satisfying the Neumann condition around a fixed submarine obstacle. The
pressure distribution and the bottom topography are stationary in this reference frame.

3.1 Conformal mapping

In this section we use a conformal mapping taking a uniform (flat) strip onto the fluid domain, containing
the submarine obstacle and the respective free surface disturbance. We choose as our reference units in
space, speed, time and pressure respectively h0, (gh0)1/2, (h0/g)1/2 and ρgh0. We thus rescale (21) in
the form

∆φ = 0, for − 1 + h(x) < y < ζ(x, t),

(F − Ω)hx + Ωhhx + φxhx = φy, at y = −1 + h(x),

ζt + (F + Ωζ + φx)ζx − φy = 0, at y = ζ(x, t),

φt +
1

2
(φ

2

x + φ
2

y) + (F + Ωζ)φx + ζ − Ωψ = −P (x), at y = ζ(x, t),

(22)

where the Froude number is F = U0/(gh0)1/2 and Ω = ah0/(gh0)1/2. The dimensionless vorticity is
given by −Ω.

Consider the conformal mapping from the canonical w-plane (w = ξ + iη) onto the physical z-plane
(z = x+ iy),

z(ξ, η, t) = x(ξ, η, t) + iy(ξ, η, t),

10



satisfying the boundary conditions

y(ξ, 0, t) = ζ(x(ξ, 0, t), t) and y(ξ,−D, t) = −1 +H(ξ, t),

where H(ξ, t) = h(x(ξ,−D, t)). It is required that the canonical strip’s height D is a function of time t.
D = D(t) depends on the wave profile and will be determined later.

Figure 1: The inverse conformal mapping at a given time t. Both the free surface and the bottom
topography are flattened out.

For this complex-variables formulation drop the bar from the velocity potential φ. In the canonical
domain, the harmonic conjugate of φ = φ(ξ, η, t) is denoted by ψ = ψ(ξ, η, t). We denote by Φ(ξ, t)
and Ψ(ξ, t) their traces along the canonical free surface η = 0. Under the mapping, the image of η = 0
is the physical free surface elevation, parametrized as X(ξ, t) and Y(ξ, t). Using these functions in the
Bernoulli and kinematic conditions from (22), and proceeding as in [30], we obtain

Yt = YξC
[

Θξ

J

]
−Xξ

Θξ

J
,

Φt = −Y − 1

2J
(Φ2

ξ −Ψ2
ξ) + ΦξC

[
Θξ

J

]
− 1

J
(F + ΩY)XξΦξ + ΩΨ− P (X),

(23)

where Θξ(ξ, t) = Ψξ + FYξ + ΩYYξ. The operator C[·] is defined as follows: given a function f(ξ) we
have

C[f(ξ)] = C0[f(ξ)] + lim
k→0

i coth(kD)f̂(k), (24)

where C0[·] = F−1HF [·]. The Fourier transform is denoted by F , with F [f ] = f̂ . The Fourier multiplier
H is defined as

H(k) =

{
i coth(kD), if k 6= 0,

0, if k = 0.

In particular if fξ(ξ) is well defined, we have that

C[f(ξ)] = C0[fξ(ξ)]−
f̂(0)

D
.

Since x(ξ, η) and y(ξ, η) are harmonic conjugates, one obtains that [30]

Xt = XξC
[

Θξ(ξ, t)

J

]
+ Yξ

Θξ(ξ, t)

J
. (25)
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At this stage we have three harmonic problems at hand. First, due to the conformal mapping,

yξξ + yηη = 0, for −D < η < 0,

y = Y(ξ, t), at η = 0,

y = −1 +H(ξ, t), at η = −D,

where the Dirichlet boundary conditions express the top and bottom corrugations in the fluid domain.
In the canonical domain, the harmonic component of the velocity field satisfies

φξξ + φηη = 0, for −D < η < 0,

φ = Φ(ξ, t), at η = 0,

φη = (F − Ω)Hξ + ΩHHξ, at η = −D.

Using the Cauchy-Riemann equations with its harmonic conjugate along the bottom η = −D, we have
that

ψξξ + ψηη = 0, for −D < η < 0,

ψ = Ψ(ξ, t), at η = 0,

ψ = −(F − Ω)H − Ω

2
H2 +Q, at η = −D.

Q is a function that depends only on time t. The three Laplace problems above are linear. Their
solutions are given by Fourier transforms:

y(ξ, η, t) = F−1

[(
Ŷ − Ĥ

cosh(kD)

)
sinh(k(D + η))

sinh(kD)
+

Ĥ

cosh(kD)
cosh(kη)

]
+
η

D
,

φ(ξ, η, t) = F−1

[
cosh(k(D + η))

cosh(kD)
Φ̂ +

i(F − Ω)Ĥ + iΩ
2 Ĥ

2

cosh(kD)
sinh(kη)

]
,

ψ(ξ, η, t) = F−1

[(
Ψ̂ +

(F − Ω)Ĥ + Ω
2 Ĥ

2

cosh(kD)

)
sinh(k(D + η))

sinh(kD)

−
(F − Ω)Ĥ + Ω

2 Ĥ
2

cosh(kD)
cosh(kη)

]
− Q

D
η.

(26)

Using the Cauchy-Riemann relations xξ = yη, φη = −ψξ at η = 0, we have that

Xξ(ξ, t) =
1

D
+ F−1

[
− i coth(kD)

(
Ŷξ(k, t)−

Ĥξ(k, t)

cosh(kD)

)]
,

Φξ(ξ, t) = F−1

[
− i coth(kD)

(
Ψ̂ξ(k, t) +

(F − Ω)Ĥξ(k, t) + Ω
2 ∂̂ξH

2(k, t)

cosh(kD)

)]
.

(27)

Along the bottom η = −D we have that

xξ(ξ,−D, t) =
1

D
− C

[
F−1

(
Ŷξ

cosh(kD)
− Ĥξ

cosh2(kD)

)]
+ T

[
Hξ

]
, (28)
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where
T
[
Hξ

]
= F−1i tanh(kD)F

[
Hξ

]
.

Next we average (27)1 over our interval of interest:〈
Xξ(·, t)

〉
=

1 +
〈
Y(·, t)

〉
−
〈
H(·, t)

〉
D

.

We use this condition to impose that the wavelengths are the same in both the physical and canonical
domains. In the periodic case this is the same as keeping the period unchanged in both domains [3]. The
free surface is changing due to the wave generation and propagation. Since the mapping is conformal
and the horizontal length-scale remains unchanged, the vertical (height) of the canonical strip has to
adjust accordingly. This is expressed by the time variations of D, which needs to satisfy

D = 1 +
〈
Y(·, t)

〉
−
〈
H(·, t)

〉
. (29)

Keeping this in mind, from (23) and (27) we have therefore accomplished the formulation of the Euler
equations in the canonical domain:

Xξ =
1

D
− C

[
Yξ −F−1

(
Ĥξ(k, t)

cosh(kD)

)]
,

Φξ = −C
[
Ψξ(ξ, t) + F−1

(
(F − Ω)Ĥξ(k, t) + Ω

2 ∂̂ξH
2(k, t)

cosh(kD)

)]
,

Yt = YξC
[

Θξ

J

]
−Xξ

Θξ

J
,

Φt = −Y − 1

2J
(Φ2

ξ −Ψ2
ξ) + ΦξC

[
Θξ

J

]
− 1

J
(F + ΩY)XξΦξ + ΩΨ− P (X).

(30)

The topography will appear in the equations as a composition in the form H(ξ, t) = h(Xb(ξ, t)), where
Xb is the bottom trace of X(ξ, η). This composite form of the topography satisfies an implicit relation
which needs to be calculated in an iterative fashion. From (28), and the definition of the operator C,
we have the additional equations

H(ξ, t) = h(Xb(ξ, t)),

Xb(ξ, t) = ξ − C0
[
F−1

(
Ŷ

cosh(kD)
− Ĥ

cosh2(kD)

)]
+ T

[
H
]
.

(31)

In the flat bottom case equations (30)-(31) are compatible with those obtained by Choi [30]. As in
the flat bottom case, to solve the present system of differential equations we need the initial conditions
Y(ξ, 0) and Φ(ξ, 0). Equation (30)4 indicates that we also need the initial value Ψ(ξ, 0). Therefore we
present the steps in obtaining Ψ(ξ, t) from Φ(ξ, t). From equation (30)2, for k 6= 0, we may write

Ψ̂(k, t) = i tanh(kD)Φ̂(k, t)−
(F − Ω)Ĥ(k, t) + Ω

2 Ĥ
2(k, t)

cosh(kD)
.

We also have that

k coth(kD)Ψ̂(k, t) = Φ̂ξ(k, t)−
(F − Ω)Ĥ(k, t) + Ω

2 Ĥ
2(k, t)

cosh(kD)
k coth(kD).
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Letting k → 0 yields

Ψ̂(0, t) = DΦ̂ξ(0, t)− (F − Ω)Ĥ(0, t) +
Ω

2
Ĥ2(0, t).

We have thus obtained Ψ̂(k, t) from Φ̂(k, t).
Another fact of interest from equation (30), is the need to establish the limit

lim
k→0

i coth(kD)F
[Θξ

J

]
(k, t).

One way to proceed is by observing that Θξ(ξ, t) and J are smooth, and that J 6= 0. These infer the
existence of a well defined M(ξ, t), where

Mξ(ξ, t) =
Θξ(ξ, t)

J
.

Uniqueness of M(·, t) is not guaranteed, unless an initial condition is provided. Imposing an average
value

〈
M(·, t)

〉
establishes uniqueness. From equation (25) we can determine a condition for

〈
M(·, t)

〉
.

From the definition of the operator C we have that

Xt = XξC0
[

Θξ(ξ, t)

J

]
+ Yξ

Θξ(ξ, t)

J
−Xξ(·, t)

〈
M(·, t)

〉
D

.

Averaging both sides,

〈
Xt(·, t)

〉
=

〈
XξC0

[
Θξ

J

]
+ Yξ

Θξ

J

〉
(·, t)−

〈
Xξ(·, t)

〉〈M(·, t)
〉

D
,

which results in

〈
M(·, t)

〉
=

D〈
Xξ(·, t)

〉〈XξC0
[

Θξ

J

]
+ Yξ

Θξ

J

〉
(·, t)−D

〈
Xt(·, t)

〉〈
Xξ(·, t)

〉 ,
namely the condition for M(·, t) being unique. Therefore

lim
k→0

i coth(kD)F
[Θξ

J

]
(k, t) = − 1〈

Xξ(·, t)
〉〈XξC0

[
Θξ

J

]
+ Yξ

Θξ

J

〉
(·, t) +

〈
Xt(·, t)

〉〈
Xξ(·, t)

〉 .
From equations (30)1 and (29) it turns out that

X(ξ, t) = ξ − C0
[
Y −F−1

(
Ĥ(k, t)

cosh(kD)

)]
.

This leads to
〈
Xt(·, t)

〉
= 0 and consequently

lim
k→0

i coth(kD)F
[Θξ

J

]
(k, t) = −

〈
XξC0

[
Θξ

J

]
+ Yξ

Θξ

J

〉
(·, t).
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4 Numerical methods and results

In this section we consider simulations of the fKdV model (15) and the Euler system (30)-(31). We will
approximate solutions on the real line with a large periodic domain. We use a Fourier pseudospectral
method to numerically solve the fKdV equation with an integrating factor for the linear part, thus
avoiding numerical problems due to the higher order dispersive term [15, 19]. For the Euler system we
do not use an integrating factor. Fourier transforms are approximated by the Fast Fourier Transform
(FFT) on a uniform grid and all derivatives are performed in Fourier space.

The numerical approximation to the solution of the fKdV equation is found on a computational
domain x ∈ [−LK , LK), with NK uniformly spaced points with grid size ∆xK = 2LK/NK . Fourth
order Runge-Kutta is used for time integration on an interval τ ∈ [0, TK ] using a timestep ∆τK . For the
Euler system in the canonical variables the computational domain is ξ ∈ [−LE , LE), with NE uniformly
spaced points with grid size ∆ξE = 2LE/NK . This corresponds to a nonuniform (and time varying)
grid in physical space. Fourth order Runge-Kutta is used for time integration on an interval tE ∈ [0, TE ]
using a timestep ∆tE .

The derivation of the KdV equation assumes an asymptotic limit ε→ 0. Our comparisons with the
Euler system will be for small but finite values of ε (typically ε = 0.1) and the transformation between
the scaled KdV variables and the unscaled Euler variables needs to be taken into account in order to
compare solutions. For the nearly resonant flows (F = 1 + εf) that we consider in this paper, the
transformations are as follows:

xE = ε−1/2xK , tE = ε−3/2τK , ζE = ε−1ζK , hE = ε2hK .

To compare a KdV solution on [−LK , LK) × [0, TK ], to an Euler system solution, the computational
domain for Euler system must be much larger, requiring LE = ε−1/2LK and TE = ε−3/2TK . In general,
we set ∆ξE = ∆xK which, modulo the domain rescaling, provides the same spectral resolution. The
implementation was carried out with an FFT. As ε increases, the forcing is stronger and the solutions to
the Euler equations become more nonlinear, with a wider wavenumber band, and in some cases leading
to the onset of wave-breaking. In this case the Euler grid size needs to be much smaller than for the
KdV regime. Naturally, the solution to the KdV equation is independent of ε.

For the Euler system, (31) shows that Xb(ξ, t) and H(ξ, t) are coupled in a nontrivial fashion. In
order to advance with the Runge-Kutta timestep we need to know, beforehand, the coefficient H(ξ, tm)
at the given stage in time. The following iterative scheme is used to compute it:

Xl
b(ξ, tm) = ξ − C0

[
F−1

(
Ŷ(k, tm)

cosh(kD)
− Ĥ l(k, tm)

cosh2(kD)

)]
+ T

[
H l(ξ, tm)

]
,

H l+1(ξ, tm) = h(Xl
b(ξ, tm)).

(32)

The initial step is X0
b(ξ, tm) = Xb(ξ, tm−1) and H1(ξ, tm) = H(ξ, tm−1) This scheme is performed at

every time step, with the stopping criteria

max
ξ∈[−L,L]

∣∣H l+1(ξ, tm)−H l(ξ, tm)
∣∣ < δ,

where δ is a given tolerance.
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4.1 Simulations in the fKdV regime

The fKdV model is in a regime where wave generation due to a pressure distribution is analogous to
that by a submarine obstacle. Mathematically, the forcing terms are identical. Grimshaw and Smyth
[22] compared the irrotational solutions of the fKdV model with the Euler equations in the case of a
moving pressure distribution along the free surface. In the present work we explored nearly-resonant
wave forms, generated mostly due to topographic forcing. Our potential theory formulation, for the
Euler equations with vorticity, is solved numerically in the canonical domain. We initially compared
its numerical results with the weakly dispersive, weakly nonlinear fKdV model. In the regime where
solutions are expected to match we observed an excellent numerical agreement. For a proper comparison
a rescaling of numerical solutions is performed. Both models start from zero initial data, namely with
the channel at rest, with a bottom topography described by hK(xK) = (1/π1/2) e−x

2
K in the fKdV model

and by hE(xE) = (ε2/π1/2) e−εx
2
E in the Euler system. All simulations are carried out on a spatial grid

with ∆xK = ∆ξE = 0.1 and N = 214 grid points and ∆τ = ∆t = 0.01. Periodic boundary conditions
are used at the end of the computational domain. In all figures only the part of the computational
domain, containing wave activity, is shown.

We performed numerical simulations in the irrotational regime for Froude numbers in the three
nearly-resonant regimes: critical, supercritical and subcritical. The figures that follow will be useful for
identifying for regimes in the rotational case, where the critical Froude number is no longer equal to 1.
The small amplitude topography is fixed by imposing ε = 0.1. The agreement between the respective
KdV solution and the solution to Euler equations is very good. A snapshot of a well-developed solution
in time, is provided for each regime.

In figure 2 we compare both models in the critical (F = 1 + εf ; f = 0) case. We can see the
downstream oscillatory wave train, the lower free surface level behind the obstacle and the zero free
surface level in the upstream far field. Downstream the fKdV wave crests are progressively ahead from
those of the Euler system solution, due to their different dispersion relations. The wave pattern upstream
is very similar, with a slow periodic pulse emission. Due to the slow pulse emission, in the bottom figure
we display the solution at a later time. The wave profiles are essentially the same, but the different
dispersion relations are manifested through a small phase-lag. In the following supercritical case we will
see a stationary pulse above the topography.

In figure 3 we consider a supercritical simulation with f = 0.75. We observe a dominant wave
stationed exactly above the topography, centered at the origin, while a smaller transient wavetrain
moves downstream. The fKdV wavetrain is slightly ahead of the respective Euler-wavetrain. In figure
4 we consider a subcritical case with f = −0.5, where the onset of a dispersive shock now appears. The
developing downstream shock, as time increases, yields a limiting state of steady periodic lee waves.
These three figures will be useful in identifying regimes in the rotational case, where the critical Froude
number is shifted.

We allowed for a gradual increase of the topography’s amplitude. We tested this for both types
of forcing, namely due to the pressure distribution and the bottom topography. The forcing increased
gradually and drove the two models into different wave profiles. When we used ε = 0.0751/2 ≈ 0.274,
still not a large value, the solutions were not matching as before. In some cases we observed the onset of
wave breaking. Recently, using an extended (fifth-order) fKdV irrotational model, Albalwi, Marchant
and Smyth [16] showed numerical results where they infer the presence of a dispersive shock. They
compared solutions of their eKdV model (e for extended) with those of the fKdV model. We observed
a similar scenario, using the full irrotational Euler model for comparison. As observed with our Euler
equation solutions, Albalwi, Marchant and Smyth [16] point out that the spatial extent of the eKdV’s
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Figure 2: Critical case (F = 1 + εf ; f = 0): the free surface disturbances at times τ = 30 (top) and
τ = 60 (bottom). The perturbation amplitude is ε = 0.1. The topography is centered about x = 0 and
the background flows to the right. In red we display the fKdV solution and in blue (darker line) the
Euler solution.

oscillatory wave train is shorter than that for the fKdV. Eventually undular bores can form. Dispersive
shocks is a theme on its own right and beyond the scope of the present study.

4.2 Rotational-wave generation

We now add the sheared current in the presence of topography, a scenario not explored before. Adopting
the vorticity-dependent Froude number F (ω), given by (17), the agreement between the fKdV and Euler
models only depends on the topography amplitude, as before. Hence the topography amplitude is slightly
increased and we position ourselves beyond the KdV-regime. We recall that in the physical domain
the topography is represented as h(x) = ε2 exp(−0.1x2), namely a Gaussian mound centered at the
origin. Within the fKdV scaling this forcing term given by h(x) = exp((−0.1/ε1/2)x2). The topography
amplitude is now taken as ε2 = 0.075 (where ε = 0.274).

As will be shown, in the critical regime positive vorticity (ω > 0) is adverse while negative vorticity
is favorable, namely by acting against wave breaking. Recall from (17) that the critical regime refers to
f = 0 and not necessarily F = 1.
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Figure 3: Supercritical case (F = 1 + εf = 1.075; ε = 0.1, f=0.75): the free surface disturbances at
times τ = 15 (top) and τ = 30 (bottom). The topography is centered about x = 0 and the background
flows to the right. In red we display the fKdV solution and in blue (darker line) the Euler solution.

In figures 5 and 6 we display different critical regimes, due to the use of different values of the
vorticity ω. We compare fKdV solutions with Euler solutions for both positive and negative vorticities.
The respective critical regime varies according to Fω given by (33) below or earlier at (17). For positive
vorticities, in figure 5, we clearly see that both upstream and downstream Euler waves are steeper than
those for the fKdV. This is also true in the case of negative vorticity. We remark that the (negative
vorticity) Euler solutions displayed in figure 6 are smoother, and have run for a longer time interval,
when compared with the respective (positive vorticity) Euler solutions in figure 5. Hence we call ω < 0 a
favorable vorticity regime. In figure 5 we observe that as ω > 0 decreases, the wave steepness is reduced.
On the other hand for negative vorticity, as its intensity increases the wave steepness decreases. Hence
negative vorticity has a smoothing effect.

The rotational fKdV (15) has its regimes controlled through f , the Froude number’s perturbation
to the resonant regime. While deducing (15) we have established a relationship between the vorticity
and the Froude number, as given in (17). With the Euler equations we may vary these two parameters
independently. In the following Euler equation simulations we fix a Froude number F while allowing for
different vorticity values and therefore, different underlying critical Fω given by (33).

In figure 7 we set F = 1 (the irrotational critical value) and compare three different vorticity values:
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Figure 4: Subcritical case (F = 1 + εf = 0.95; ε = 0.1, f = −0.50): the free surface disturbances at
times τ = 15 (top) and τ = 30 (bottom). The topography is centered about x = 0 and the background
flows to the right. In red we display the fKdV solution and in blue (darker line) the Euler solution.

ω = −0.5, 0,+0.5. These correspond respectively to Fω = 0.7808, 1, 1.2808. The dashed line represents
the irrotational wave profile, which is in the critical regime. Qualitatively the wave profile is similar to
that displayed in figure 2. For the negative vorticity we have Fω = 0.7808 and therefore F = 1 should
be supercritical. This is confirmed, as we compare qualitatively the respective wave profile from figure
7 with that from figure 3. We have a pulse stationed above the topography. Finally for the positive
vorticity we have Fω = 1.2808 and therefore F = 1 should be subcritical. This is corroborated by
comparing qualitatively with figure 4.

Next we consider F = 1.1, which is a supercritical irrotational case. Results are depicted in figure
8 and again vorticity is capable of changing the regime. Remarkably the solution for the negative
vorticity behaves in a subcritical regime, with a transient propagating upstream and an oscillatory
wavetrain propagating downstream, qualitatively similar to figure 4. We also considered the subcritical
F = 0.9 case, having similar profiles which are not here displayed. For a positive vorticity value (ω = 0.5)
we observed a shift in the regime. A stationary pulse is observed over the topography, in an effective
supercritical regime.

For the irrotational case we verified numerically the onset of wave breaking for solutions to Euler’s
equations when F ∈ [0.7, 1.2]. Away from this critical interval, containing the critical Froude number
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Figure 5: Critical rotational regimes: solution evolution for the fKdV equation (left; with f = 0) and
the Euler equations (right; with F = Fω). The topographic forcing has amplitude ε2 = 0.075 and is
centered at the origin x = 0. From top to bottom each row has a different constant vorticity: ω = 0.5, 0.1
with the respective (underlying) critical Froude number given in (17) or (33): Fω = 0.7808, 0.9512. The
Euler solutions are sharper crested than the KdV solutions.

F = 1, waves were not observed to break. In the presence of vorticity we have numerically noticed that
this critical interval is shifted. Denoting the critical rotational Froude number as Fω, from (17) we have
that:

Fω =
ω

2
+

√
ω2 + 4

2
. (33)

Numerical evidence indicates that the critical interval, for rotational wave breaking, is given by

F ∈
[
Fω − 0.3, Fω + 0.2

]
.
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Figure 6: Critical rotational regimes, with negative vorticity: solution evolution for the fKdV equation
(left; with f = 0) and for the Euler equations (right; with F = Fω). The topographic forcing has
amplitude ε2 = 0.075 and is centered at the origin x = 0. From top to bottom each row has a different
constant vorticity: (ω = −0.5,−0.1) with the respective (underlying) critical Froude number given in
(17) or (33): Fω = 1.2808, 1.0512. The Euler solutions are sharper crested than the KdV solutions.

Wave breaking and dispersive shocks is a theme a current interest but beyond the scope of the present
work. Equation (33) provides a curve of critical Froude numbers in the ω × F plane. In figure 9 we
display the Euler dispersion relation curve for three different vorticity values. The uniform background
flow is taken as zero. Note that in the long-wave limit the phase speed coincides with the respective
critical Froude numbers Fω, for respectively ω = −0.5 and ω = 0.5.
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Figure 7: F = 1 case: Euler solutions at t = 60. The (black) dashed line displays the critical (F = 1)
irrotational solution. To its right (in blue) the ω = 0.5 (Fω = 0.7808 < F ) supercritical solution and to
the left (in red) the ω = −0.5 (Fω = 1.2808 > F ) subcritical solution. The critical, supercritical and
subcritical patterns are qualitatively similar to figures 2-4 respectively. The topography is centered at
the origin x = 0, where ε = 0.0751/2 ≈ 0.274.
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Figure 8: F = 1.1 case: Euler solutions at t = 70. The (black) dashed line displays the supercritical
(F = 1.1) irrotational solution. To its right (in blue) the ω = 0.5 (Fω = 0.7808 < F ) supercritical
solution and to the left (in red) the ω = −0.5 (Fω = 1.2808 > F ) subcritical solution. The critical,
supercritical and subcritical patterns are qualitatively similar to figures 2-4 respectively. The topography
is centered at the origin x = 0, where ε = 0.0751/2 ≈ 0.274.

5 Stability of stationary solutions

In this section we look for stationary solutions in both the irrotational and rotational cases. Instead of
starting with the undisturbed free surface, as before, we now set the initial data equal to the stationary
solution found by a Newton-type method. We then verify that the evolution scheme does not alter
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Figure 9: Dispersion relation for the Euler equations at different vorticity values ω. The dashed curve is
the irrotational case. The blue line (above it) refers to ω = 0.5, while the red line (below) to ω = −0.5.

the respective stationary wave. We then perturb the initial (stationary) wave profile and numerically
observe if these solutions are stable.

For the fKdV equation, stationary waves and their related stability properties were studied in [20,
21, 9]. More recently Grimshaw and Maleewong [22] studied the stability of stationary fKdV solutions
in both the subcritical and supercritical regimes. They found their stationary wave from the transient
fKdV solution, whose stability was then analyzed through the Euler equations in the presence of a
moving pressure distribution. In the presence of a constant current and a topography, Vanden-Broeck
[12] used a boundary integral method to compute stationary solutions to the Euler equations. Different
stationary waves were found but their stability was not analyzed numerically.

The stationary waves of our problems are found through Newton’s method, as now described. Con-
sider the stationary set of equations (30)-(31), with ∂t = 0. Following [30] we conclude that Θ = 0
and

Ψξ(ξ) = −FYξ(ξ)− ΩY(ξ)Yξ(ξ).

Therefore equations (30) and (31) are now written as

H(ξ) = h(Xb(ξ)),

Xb(ξ) = ξ − C0
[
F−1

(
Ŷ

cosh(kD)
− Ĥ

cosh2(kD)

)]
+ T

[
H
]
,

Xξ(ξ) =
1

D
− C

[
Yξ −F−1

(
Ĥξ(k)

cosh(kD)

)]
,

Φξ(ξ) = −C
[(

Ψξ(k) + F−1

(
(F − Ω)Ĥξ(k) + Ω

2 ∂̂ξH
2(k)

cosh(kD)

))]
,

Y +
1

2J
(Φ2

ξ −Ψ2
ξ) +

1

J
(F + ΩY)XξΦξ − ΩΨ + P (X) = 0.

(34)

The numerical stationary waves of the Euler equation are found on a domain ξ ∈ [−LE , LE), with NE
uniformily spaced points with grid size ∆ξ = 2LE/NE . On the grid points ξn, n = 1, 2, ...N , the steady
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Bernoulli equation is written as

Gn(Y1,Y2, ...,YN ) := Yn +
1

2J
(Φ2

ξ,n −Ψ2
ξ,n) +

1

J
(F + ΩYn)Xξ,nΦξ,n − ΩΨn + Pn. (35)

We point out that all unknowns in equations (35) can be written in terms of Y , as was done in [3].
Fourier transforms and the operator C are approximated by the FFT on the uniform grid, and all
derivatives are performed in Fourier space. The coefficient Hn is computed with the iterative scheme as
before. The Jacobian for Newton’s method is computed using

∂Gn
∂Yl

=
Gn(Y1,Y2, ...,Yl + ∆Y, ...,YN )−Gn(Y1,Y2, ...,Yl, ...,YN )

∆Y
.

The stopping criteria ∑N
j=1 |Gn(Y1,Y2, ...,YN )|

J
< δ,

was used for a give tolerance δ.
The stationary wave solutions are computed through Newton’s method for topographic forcing only.

The initial guess is Y0(ξ) = 0 and the bottom obstacle is given by h(x) = (0.1/π1/2)e−0.1x2

. The
stationary solution is then used as initial data for the time-dependent Euler solver. The discretization
parameters are ∆ξ = 0.1 and NE = 1024. We will present one stationary irrotational wave and one
stationary rotational wave. We will perturb both and observe their stability numerically.

First consider the irrotational case. For the supercritical regime F ≥ 1.3, we found stationary waves
of elevation, in resonance with the topography. Figure 10 displays the stationary wave for this case.
It remains stationary when used as initial data for the time-dependent Euler solver. This wave agrees
with the one generated from rest, after the transients have propagated away. In the regime 0 < F ≤ 0.5
stationary depression waves were found having oscillations on both sides, upstream and downstream.
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Figure 10: A stationary irrotational wave (in blue), found with Newton’s method in the supercritical
case (F = 1.3). The pulse-shaped wave is positioned above the topography (in brown), centered at the
origin.
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For rotational waves we present a supercritical case (F = 1.25) with constant vorticity ω = −1. In
this case Newton’s method produces a periodic, oscillatory, stationary wave having a depression above
the topography, as shown in figure 11. This profile remains stationary when used as initial data for the
time-dependent Euler solver. Nevertheless it cannot be obtained from the initial state at rest.
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Figure 11: A stationary rotational wave (in blue; with ω = −1.0), found with Newton’s method in the
supercritical case (F = 1.25). The wave is centered above the topography (in brown), located at the
origin.

Denote the stationary wave profile by YS(ξ), which is used as initial condition in the corresponding
Euler’s equation solution Y(ξ, t). With

EA ≡ max
0≤t≤1000

max
ξ
|YS(ξ)−Y(ξ, t)|,

we obtain a relative error of

ER =
EA

max
ξ
|YS(ξ)|

= O(10−10).

The stationary wave solution is indeed well approximated by the time-dependent Euler solver.
We next perturb these two stationary solutions. Denote by Y0

S(ξ) the stationary solution, as above,
which is now used as initial data. We perturb this initial wave profile through its amplitude, in the
form αY0

S(ξ), α > 0. Chardard et al. [9] considered a similar scenario for studying perturbations to
stationary solutions of the irrotational fKdV.

The stationary (irrotational) pulse-shaped wave is stable to perturbations, with both α > 1 and
α < 1, always returning to its original amplitude. Of course there exists a critical value αc such that
wave breaking takes place for α > αc. This is not the main theme of our study, so we exhibit a few
cases. For F = 1.3 and Ω = 0, as above, we found that αc ≈ 2.5. For 1 < α ≤ 2.4 we observed that the
excess mass propagated downstream with the wave returning to its equilibrium position. In figure 12 we
have the initial profile for α = 1.5. At time t = 140 we see that the stationary pulse has returned to its
original stationary configuration, while a smaller pulse (having the excess mass) propagates downstream.

For 0 < α < 1, the stationary solutions were observed to be stable. In figure 13 we consider α = 0.5.
The smaller initial pulse recovers its original amplitude, gains mass and consequently generates a wave
of depression downstream. We have not altered the parameters F = 1.3 and Ω = 0.
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Figure 12: The stationary wave in figure 10 is perturbed by the factor α = 1.5. The perturbed profile
at t = 0 appears in a dashed (blue) line. Square markers (in red) indicate the numerical Euler solution
at time t = 140 returning to the stationary (Newton method) profile given by the solid (black) line.
The excess mass (in red square markers) is seen propagating downstream. The topography (in brown)
is centered at the origin x = 0.
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Figure 13: The stationary wave in figure 10 is reduced by a factor of α = 0.5. The perturbed profile at
t = 0 appears in a dashed (blue) line. Square markers (in red) indicate the numerical Euler solution at
time t = 70 returning to the stationary (Newton method) profile given by the solid (black) line. The
perturbed initial profile gained mass, from the underlying fluid body, and therefore a depression wave
(in red square markers) propagates downstream. The topography (in brown) is centered at the origin
x = 0.

Now we consider perturbing the stationary rotational wave. These are periodic oscillatory waves, as
we saw above. When perturbed, these waves do not return to their original configuration. We increase
its amplitude, the excess mass travels slowly around the periodic domain. As opposed to the pulse
shaped stationary wave, the excess mass is always superimposed with the underlying stationary wave.
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The perturbed wave profile, immediately above the topography, recovers its equilibrium position and it
forces excess mass to propagate out in both directions. Stability in this case does not imply the return
to the original configuration, as above, but a slow oscillatory behavior (in time) near the equilibrium
position. Recall that the rotational regime has F = 1.25 and ω = −1. We observed stability for
0 < α < 1. In figure 14 we display snapshots for the evolution of a perturbed initial profile with α = 0.5.
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Figure 14: Supercritical rotational wave regime, with F = 1.25 and ω = −1. At time t = 0, the
stationary wave elevation is perturbed by a reduction factor of α = 0.5. This is displayed in the top
figure by the dashed-line. The computed Euler solutions are depicted at time t = 80 (red line with
square markers) and at time t = 140 (solid line), and shown to depart from the perturbed stationary
profile. At the bottom figure, the (same) computed Euler solutions (at t = 80, 140) have approached the
unperturbed stationary profile (dashed line). Above the topography centered at x = 0, the stationary
depression is fully recovered. The oscillations downstream also recover their amplitude, since excess
mass, from the initial reduced depression, can more easily flow in this direction.

In figure 15 we present a case with α = 1.5. Having excess mass upstream, away from the topography,
the perturbed solution appears to adjust better than in the previous case. As time evolves, the perturbed
solution slowly oscillates near the stationary profile, both upstream and downstream.

Boyd [41, 42] describes a permanent and steadily translating wave, satisfying requirements of a
solitary wave except that it has an exponentially small oscillatory field along its sides. In analogy
with having very small lateral wings, Boyd defines this wave as a “nanopteron”. It is not clear that
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Figure 15: Supercritical rotational wave regime, with F = 1.25 and ω = −1. At time t = 0, the
stationary wave elevation is perturbed by a dilation factor of α = 1.5. This is displayed in the top
figure by the dashed-line. The computed Euler solutions are depicted at time t = 140 (red line with
square markers) and at time t = 250 (solid line), and shown to depart from the perturbed stationary
profile. At the bottom figure, the (same) computed Euler solutions (at t = 140, 250) have approached
the unperturbed stationary solution (dashed line). The initial depression recedes (from -0.08 to -0.06),
above the topography centered at x = 0, and the lateral oscillations adjust their amplitudes regarding
the stationary solution, depicted by a dashed line in the bottom figure.

our stationary waves are related to “nanopterons”, which in our case are displaying finite amplitude
oscillations. Having in mind the interested reader, we refer to Boyd’s work as well as an article by
Akylas and Grimshaw [43], where asymptotics above all orders is used to obtain an internal solitary
wave with exponentially small oscillatory tails.

6 Conclusion

A forced Korteweg-de Vries equation (fKdV) was deduced incorporating the effect of a sheared-current
(of constant vorticity) while being forced by a bottom topography and a pressure distribution along
the free surface. Rotational waves are spontaneously generated by the forcing and compared to those
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generated by the more complete Euler equations. The numerical model for the Euler equations considers
the harmonic component of the velocity field. Using a conformal mapping it is solved on a flat strip,
which permits Fourier integral representation for all the objects of interest. Numerical solutions for
both models are compared as the amplitude of the topography gradually increases. As the fKdV regime
ceases to be satisfied we observe the onset of wave breaking with the Euler equations.

Of particular interest, we show that vorticity shifts the critical Froude number enabling a change
of regime, say from critical to supercritical, or supercritical to subcritical. A recent theoretical study
by Wheeler [39] shows how the Froude number may be suitably redefined in the presence of vorticity.
Wheeler’s stationary wave analysis considers solitary waves through the Dubreil-Jacotin formulation.

Through Newton’s method, we obtained novel stationary waves. The stationary, rotational wave
cannot be obtained starting from rest, as in the previous cases. Nevertheless it satisfies the evolution
scheme and remains invariant in time. Numerically we test the stability of the stationary waves. They
are stable to amplitude perturbations.
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A Numerical resolution study

In this appendix we present results from a resolution study with the Euler equations. In order to
compute the relative error, we use as our reference solution the wave elevation ζ computed on our finest
grid, with ∆ξ = 0.025 in the canonical domain. The results presented in this article used ∆ξ = 0.1.

Results for the irrotational regime, in the critical Froude number case, are displayed in table 1. The
relative error (in `2) decays as the mesh size is continuously reduced by a factor of 2. In figure 16 we see
that the well developed wave profile is accurately captured by all discretizations. In figure 17 we zoom
into two regions of the wave elevation. A detailed view is presented, one from the wavefront propagating
upstream (near x = −12.8) and another along the oscillatory wave train propagating downstream (near
x = 41).

We present a similar table and wave profile for the rotational regime, in the respective critical
(Fω = 1.28) Froude number case. In table 2 we have the decay of the relative error, as the mesh
size decreases. In figure 18 we see that the well developed wave profile is accurately captured by all
discretisations. In figure 19 we zoom into a region of the wave elevation and a detailed view is presented.
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