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Some transpose-free CG-like solvers for
nonsymmetric ill-posed problems

Silvia Gazzola and Paolo Novati

Abstract. This paper introduces and analyzes an original class of Krylov subspace meth-
ods that provide an efficient alternative to many well-known conjugate-gradient-like (CG-
like) Krylov solvers for square nonsymmetric linear systems arising from discretizations
of inverse ill-posed problems. The main idea underlying the new methods is to consider
some rank-deficient approximations of the transpose of the system matrix, obtained by
running the (transpose-free) Arnoldi algorithm, and then apply some Krylov solvers to a
formally right-preconditioned system of equations. Theoretical insight is given, and many
numerical tests show that the new solvers outperform classical Arnoldi-based or CG-like
methods in a variety of situations.

Keywords. Krylov subspaces, iterative regularization methods, transpose-free, CGLS,
GMRES.
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1 Introduction

Let us consider a linear system of the form

Ax = b , where A ∈ RN×N , (1)

coming from a suitable discretization of an inverse ill-posed problem. In this set-
ting, the matrix A typically has ill-determined rank, i.e., when considering the sin-
gular value decomposition (SVD) of A, given by A = UΣV T , with
Σ = diag(σ1, . . . ,σN), the singular values σi ≥ σi+1 > 0, i = 1, . . . ,N−1, quickly
decay and cluster at zero with no evident gap between two consecutive ones to in-
dicate numerical rank. In particular, A is ill-conditioned. Moreover, the right-hand
side vector in (1) is typically affected by some unknown noise e, i.e., b = bex + e,
where bex is the unknown exact version of b. Our goal is to compute a mean-
ingful approximation of the solution xex of the unknown noise-free linear system
Axex = bex and, because of the ill-conditioning of A and the presence of the noise
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member of the INdAM research group GNCS.
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e, some kind of regularization should be applied to the available system (1) (see
[14] for an overview). The truncated SVD (TSVD) is a well-established regu-
larization method, which consists in replacing (1) by the least square problem
minx∈RN ‖Amx−b‖, where ‖ · ‖ denotes the vectorial 2-norm (or, in the following,
the induced matrix 2-norm) and

Am =UA
mΣ

A
m(V

A
m )

T , UA
m ∈ RN×m, Σ

A
m ∈ Rm×m, V A

m ∈ RN×m, (2)

is the best rank-m approximation of A in the matrix 2-norm. Here UA
m and V A

m are
obtained by taking the first m left and right singular vectors of A, respectively (i.e.,
the first m columns of U and V , respectively), and ΣA

m is the diagonal matrix of
the first m singular values of A. Since the (T)SVD is computationally expensive,
it is not suitable to regularize large-scale and unstructured problems. Therefore, in
this paper, we are particularly interested in iterative regularization methods, which
compute an approximation of xex by leveraging the so-called “semi-convergence”
phenomenon, so that regularization is achieved by an early termination of the itera-
tions. Iterative regularization methods typically require one matrix-vector product
with A and/or AT at each iteration, and therefore they can also be employed when
the coefficient matrix A and/or AT is not explicitly available. Many Krylov sub-
space methods are efficient iterative regularization methods, as they typically show
good accuracy together with a fast initial convergence (see [8] and the references
therein).

While the theoretical regularizing properties and the performances of some CG-
like solvers, such as CG, CGLS, and CGNE, are well-understood (see, for instance,
[11, 12, 14, 16]), the same is not true for the methods based on the Arnoldi algo-
rithm. The authors of [3] prove that, under some assumptions on bex, GMRES
equipped with a stopping rule based on the discrepancy principle (i.e, the resid-
ual) is a regularization method in a classical sense, meaning that xm tends to xex

as the noise e tends to 0. However, well-established arguments (see [16] and the
references therein) suggests that GMRES (or even its range-restricted variant [2])
might fail if the problem is highly non-normal because the dominant right singu-
lar vectors of A, i.e., the first columns of V , are severely mixed in the GMRES
approximate solutions; moreover, the approximation subspace generated by GM-
RES may fail to reproduce some relevant components of the solution xex (which
may not be expressed as linear combination of the dominant left singular vectors
of A). These situations arise, for instance, when considering image deblurring
problems characterized by a highly non-symmetric blur.

We should stress that, among all the Krylov methods mentioned so far, GM-
RES is the only one that can handle a nonsymmetric linear system (1) when AT

is unavailable, or when its action is impractical to compute. For this reason, it is
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important to investigate ways of overcoming the shortcomings of GMRES, e.g., by
defining a more appropriate approximation subspace for GMRES. A common way
of achieving this is to incorporate some sort of “preconditioning”. For instance, the
authors of [15] propose to incorporate into GMRES a “smoothing-norm precondi-
tioner”, which can enforce some additional regularity into the solution (achieving
an effect similar to Tikhonov regularization in general form). The authors of [5]
propose to incorporate into GMRES a “reblurring preconditioner” A′, which ap-
proximates AT and is tailored for particular image deblurring problems: by doing
so, the original system (1) is replaced by an equivalent one, whose coefficient ma-
trix AA′ (or A′A) well approximates AAT (or AT A, respectively), so that the prob-
lem is somewhat symmetrized. A similar approach is considered in [9], where
several right preconditioners are devised and tested for a variety of applications.
The use of an approximate AT has also recently been considered in [6] for alge-
braic iterative reconstruction methods with applications to computed tomography.
We emphasize that, here and in the following, the term “preconditioner” is not
used in a classical sense: indeed, these “preconditioners” do not accelerate the
“convergence” of GMRES, but rather enforce some desirable properties into the
solution subspace.

Following one of the strategies employed in [9], this paper studies an efficient
and reliable strategy to symmetrize the coefficient matrix of system (1). More
precisely, after the Krylov subspace

Km(A,b) = span{b, Ab, . . . ,Am−1b}

is generated by performing m iterations of the Arnoldi algorithm applied to (1),
which only involves m matrix-vector products with the matrix A and an orthonor-
malization procedure, a rank-m matrix A′m ∈ RN×N is formed by exploiting the
quantities computed by the Arnoldi algorithm, in such a way that AA′m is symmet-
ric semi-positive definite. The original system (1) is then replaced by the follow-
ing “preconditioned”, symmetric, rank-deficient problem, to be solved in the least
squares sense

ym∈arg min
y∈RN
‖AA′my−b‖ , with xm = A′mym . (3)

Since in many situations A′m is a good approximation of AT
m, where Am is defined

as in (2), one can regard the system (3) as a rank-deficient symmetric version of
(1), which is also a good approximation of the normal equations AAT y = b asso-
ciated to (1), with x = AT y. Furthermore, one can easily see that taking A′m = AT

m
and solving problem (3) is equivalent to computing a TSVD solution. Therefore,
problem (3) can also be regarded to as a regularized version of (1). The least
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squares problem (3) can then be solved directly (by TSVD, as proposed in [9]) or
iteratively (by a variety of Krylov subspace methods, as proposed in the present
paper). With particular choices of the iterative solver for (3), transpose-free CGLS-
like and transpose-free CGNE-like methods can be defined, whose accuracy will
depend on the choice of m. We stress that the choice of A′m considered in this
paper is not designed for a specific application. We also remark that, as we shall
see, once the Arnoldi algorithm is run to compute A′m, the methods derived here
to solve (3) have a negligible computational cost, as the remaining operations can
be arranged in such a way that only matrices of order m are involved: therefore,
the overall cost of the new methods is essentially the cost of performing m iter-
ations of the Arnoldi algorithm. Moreover, provided that m is sufficiently small,
the memory requirements of the new methods are not demanding. Many numeri-
cal experiments show that the new methods can achieve accuracies comparable to
CGLS and CGNE, without employing AT .

This paper is organized as follows: Section 2 surveys some known properties
of the Arnoldi algorithm, introduces the matrix A′m appearing in (3), and derives
some insightful theoretical results. Section 3 describes different algorithmic ap-
proaches for the solution of (3): some computational details are unfolded, and
connections with CGLS and CGNE are explored. Section 4 displays the results of
many numerical experiments, which compare the performances of the new class
of solvers for (3) with traditional Krylov methods for (1). Finally, Section 5 draws
some concluding remarks.

2 A transpose-free “symmetrization” of the Arnoldi algorithm

The Arnoldi algorithm [23, §6.3] is a process for building an orthonormal basis
of the Krylov subspace Km(A,b): m steps of the Arnoldi algorithm lead to the
following matrix decomposition

AWm =Wm+1Hm , (4)

where Wm = [w1, . . . ,wm] ∈ RN×m has orthonormal columns that span Km(A,b),
and Hm ∈ R(m+1)×m is an upper Hessenberg matrix. Moreover,

w1 =
b
‖b‖

, and Wm+1 = [Wm, wm+1] ∈ RN×(m+1) . (5)

Througthout the paper we assume m to be sufficiently small, so that Km(A,b) is
of dimension m and decomposition (4) exists.

GMRES is arguably the most popular Krylov method based on the Arnoldi
algorithm. By initially setting x0 = 0, at the mth step of GMRES (see [23, §6.5]),
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one updates the decomposition (4), and an approximation xGMR
m of the solution of

the original linear system is obtained by taking

xGMR
m =WmsGMR

m , where sGMR
m = arg min

s∈Rm
‖Hms−‖b‖e1‖ , (6)

where e1 is the first canonical basis vector of Rm+1. Thanks to (4), xGMR
m enjoys

the optimality property

xGMR
m = arg min

xm∈Km(A,b)
‖Axm−b‖ . (7)

Let us now assume that m steps of the Arnoldi algorithm are performed, and
let us consider the right-preconditioned system (3), where A′m is the rank-m matrix
defined as

A′m =WmHT
mW T

m+1 = PmAT ∈ RN×N , where Pm =WmW T
m (8)

is the orthogonal projector onto Km(A,b); see also [9]. Exploiting once again
relation (4), one realizes that

AA′m= APmAT = AWmHT
mW T

m+1 =Wm+1HmHT
mW T

m+1 =CmCT
m , (9)

where Cm = Wm+1Hm ∈ RN×m. Therefore, the least squares problem (3) can be
reformulated as

ym∈arg min
y∈RN

∥∥AA′my−b
∥∥=arg min

y∈RN

∥∥CmCT
my−b

∥∥ , with xm = A′mym. (10)

Directly from definition (8), and recalling that range(Wm) = Km(A,b), one can
immediately see that xm ∈Km(A,b), as computed in (10). Therefore, by (7), one
has ∥∥AxGMR

m −b
∥∥≤ ‖Axm−b‖ . (11)

The following proposition sheds light on the links between the solutions of prob-
lems (1) and (10).

Proposition 2.1. Let ym ∈RN be a solution of CmCT
my = b. Then xm =Wmsm ∈RN

solves Ax = b, where sm = HT
mW T

m+1ym ∈ Rm. Conversely, let xm = Wmsm be the
solution of (1), where sm ∈ Rm. Then the system

HmHT
m t = ‖b‖e1 (12)

has a solution tm ∈ Rm+1, and ym =Wm+1tm ∈ RN is the minimal norm solution of
CmCT

my = b.



6 S. Gazzola and P. Novati

Proof. The first part obviously follows from (9), as

b =CmCT
mym = AA′mym = AWmHT

mW T
m+1ym = AWmsm = Axm .

To prove the second part, one should first consider the Arnoldi decomposition (4),
so that

b = Axm = AWmsm =Wm+1Hmsm ,

and, thanks to the first equality in (5),

Hmsm = ‖b‖e1 . (13)

Now, consider the economy-size SVD of Hm, given by

Hm =UmΣmV T
m , where Um ∈ R(m+1)×m, Σm ∈ Rm×m, Vm ∈ Rm×m, (14)

and the associated full-size SVD, given by Hm =U f
mΣ

f
mV T

m , where

U f
m = [Um, um+1] ∈ R(m+1)×(m+1), Σ

f
m =

[
Σm

0

]
∈ R(m+1)×m.

Note that (13) holds if and only if U f
mΣ

f
mV T

m sm =U f
m(U

f
m)T (‖b‖e1), which is equiv-

alent to asking the last component of (U f
m)T e1 (i.e., uT

m+1e1) to be zero. Then there
exists a solution tm ∈ Rm+1 of (12), as

U f
mΣ

f
m(Σ

f
m)

T (U f
m)

T t︸ ︷︷ ︸
t̂∈Rm+1

= ‖b‖e1 implies

[
Σ2

m

0

]
t̂ =

[
UT

m (‖b‖e1)

0

]
.

At this point, each y such that W T
m+1y = tm satisfies

HmHT
mW T

m+1y = ‖b‖e1 .

By multiplying both terms by Wm+1 from the left, and by exploiting the first equal-
ity in (5), one obtains Wm+1HmHT

mW T
m+1y = b, which, thanks to (9), can be rewrit-

ten as
CmCT

my = b . (15)

Therefore, the minimum norm solution ym of (15) satisfies W T
m+1y = tm, and is ob-

tained by computing t̃m ∈ Rm+1 such that W T
m+1Wm+1t̃m = tm and taking

ym =Wm+1t̃m. Since W T
m+1Wm+1 = I, t̃m = tm, and ym =Wm+1tm.
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Proposition 2.1 essentially states that solving (1) by an Arnoldi-based method is
equivalent to solving (10). More specifically, whenever the solution of (1) can be
computed by performing m steps of a solver based on the Arnoldi algorithm (such
as GMRES), a minimal norm solution of (10) can be recovered by solving the
projected symmetric semi-positive definite system (12). However, as explained
in Section 1, when dealing with ill-posed systems one is not interested in fully
solving (1) and (10), and an iterative solver should be stopped reasonably early.
Because of this, in the next section we will derive a variety of approaches for reg-
ularizing problem (10). We also remark that, as emphasized in [16] and recalled in
Section 1, the performance of GMRES as a regularization method can sometimes
be unsatisfactory because the approximation subspace for the solution is unsuit-
able. Since the approximation subspaces for GMRES and for any method applied
to (10) coincide because, in any case, xm ∈Km(A,b), one may suspect the approx-
imate solutions of (10) to be affected by the same issue. As we shall see in the next
section, the SVD mixing is somewhat damped in (10), depending on the chosen
solver.

In the remaining part of this section we provide some motivations underlying
the choice of (8), which are connected to the regularizing properties of the Arnoldi
algorithm. Define

Ûm =Wm+1Um = [û1, . . . , ûm]∈RN×m, V̂m =WmVm = [v̂1, . . . , v̂m]∈RN×m , (16)

where Um and Vm are the matrices of the left and right singular vectors of Hm (14),
respectively, and define

Âm =Wm+1HmW T
m = ÛmΣmV̂ T

m (note that Âm = (A′m)
T ). (17)

One can easily show that the (T)SVD of Âm is given by ÛmΣmV̂ T
m , and that the

Moore-Penrose pseudo-inverse Â†
m of Âm is the regularized inverse (as defined

in [14, §4.4]) associated to the mth iteration of GMRES. Indeed, by exploiting
relation (6), the first equality in (5), and the TSVD (17), one can write

xGMR
m =WmsGMR

m =WmH†
m(‖b‖e1) =WmH†

mW T
m+1b = V̂mΣ

−1
m ÛT

m b = Â†
mb .

In order for a (generic) regularization method to be successful, the regularized ma-
trix should contain information about the dominant singular values of the original
matrix A, and filter out the influence of the small ones. If Âm is a good regularized
approximation of A, then using ÂT

m = A′m to approximate AT is meaningful.
If A is severely ill-conditioned, the authors of [8, 20] numerically show that Âm

quickly inherits the spectral properties of A. In particular, the following relations
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hold for k = 1, . . . ,m

Av̂k−σ
(m)
k ûk = 0 , (18)

W T
m (AT ûk−σ

(m)
k v̂k) = 0 ,

where σ
(m)
k , k ≤ m, is the kth singular value of Hm. Moreover, working in a con-

tinuous setting and under the hypothesis that A is a Hilbert-Schmidt operator of
infinite rank whose singular values form an `2 sequence (see [22, Chapter 2] for a
background), in [19] it has been shown that∥∥∥AT ûk−σ

(m)
k v̂k

∥∥∥→ 0 as m→ ∞, (19)

where the convergence rate is closely connected to the decay rate of the singular
values of A. This property is inherited by the discrete case whenever A is a suit-
able discretization of a Hilbert-Schmidt operator. Note that this class of operators
includes Fredholm intergral operators of the first kind with L2 kernels. As a conse-
quence of (18) and (19), in many relevant situations the dominant singular values
of A are well approximated by the singular values of Hm (see [8] for many numer-
ical examples). Therefore, Âm as defined in (17) may represent a good regularized
approximation of A for a variety of problems.

3 Solving the “preconditioned” problems

This section proposes two different iterative techniques to solve the rank-deficient
symmetric least squares problem (10), and therefore to compute a regularized so-
lution of (1). Thanks to the definition of Cm, decomposition (4), and Proposition
2.1, one can rewrite (10) as

ym∈arg min
y∈RN

∥∥AA′my−b
∥∥=Wm+1 arg min

t∈Rm+1

∥∥HmHT
m t−‖b‖e1

∥∥ . (20)

By using the above reformulation, it is clear that solving system (10) does not re-
quire a significant computational overload with respect to solving system (1) by
any standard Arnoldi-based method (such as GMRES). Indeed, once m iterations
of the Arnoldi algorithm have been performed, with m�N, all the additional com-
putations for solving (20) are executed in dimension m, so that the computational
cost of any algorithm for (20) is dominated by the cost of the Arnoldi algorithm.
Moreover, the rank-m preconditioner A′m (8) can be stored in factored form, in or-
der to recover xm (10). Denoting by tm any solution of the projected least-squares
problem at the right-hand side of (20), and letting ym =Wm+1tm be as in (10), the
residual associated to (1) can be conveniently monitored in reduced dimension as

‖b−Axm‖= ‖b−AA′mym‖= ‖b−CmCT
mym‖= ‖‖b‖e1−HmHT

m tm‖.
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Since the starting vector b of Krylov subspaces generated by the Arnoldi algorithm
(4), (5) is affected by some noise, noisy components are retained in Hm and Wm,
so that the vector tm in (20) should be computed by applying some regularization
to the (noisy) projected problem

min
t∈Rm+1

∥∥HmHT
m t−‖b‖e1

∥∥ . (21)

The noise propagation may be somehow damped by working with a range-restricted
approach that consists in using Ab instead of b as starting vector for the Arnoldi
process [2], and the theory developed in the present paper can be easily rearranged
to work in this setting.

Direct methods such as Tikhonov regularization or TSVD can be easily applied
to (21), the latter being particularly meaningful, as suggested in [9], because HmHT

m
is rank-deficient. However, in this paper, we are interested in using an iterative
approach for solving (10) or (21), once the dimension m has been fixed.

3.1 A transpose-free CGLS-like method

Consider computing an approximation ym,k of ym in (10) by applying k iterations
of the MINRES method, with starting vector x0 = 0. This is equivalent to requiring

ym,k ∈Kk(AA′m,b) , b−AA′mym,k ⊥ (AA′m)Kk(AA′m,b) , k ≤ m . (22)

The first condition in (22), together with (4) and the above relation, implies

xm,k =WmHT
mW T

m+1ym,k =WmW T
m AT ym,k = PmAT ym,k , (23)

so that
xm,k ∈ PmAT Kk(APmAT ,b) = Kk(PmAT A,PmAT b) .

Similarly, the second condition in (22) implies

b−APmAT ym,k ⊥ APmAT Kk(APmAT ,b) ,

and, thanks to (23), it can be equivalently rewritten as

b−Axm,k ⊥ APmAT Kk(APmAT ,b) = AKk(PmAT A,PmAT b) .

We can summarize the above arguments in the following

Proposition 3.1. For any given m≥ 1 the sequence {xm,k}k≤m obtained by apply-
ing k steps of the MINRES method to problem (10) is the result of a Krylov method
defined by

xm,k ∈Kk(PmAT A,PmAT b) and b−Axm,k ⊥ AKk(PmAT A,PmAT b) . (24)
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The above proposition has two important consequences. Firstly, thanks to a
well-known characterization of projection methods (see [23, §5.2]), the resid-
ual b−Axm,k in (24) has minimal norm among all the residuals b−Ax̂m,k, with
x̂m,k ∈Kk(PmAT A,PmAT b). Secondly, recall that, through an implicit construction
of the Krylov subspaces Kk(AT A,AT b), CGLS generates a sequence of approxi-
mate solutions

{
xCGLS

k

}
k≥1 of (1) such that

xCGLS
k ∈Kk(AT A,AT b) and b−AxCGLS

k ⊥ AKk(AT A,AT b) . (25)

Instead of the approximation subspace Km(AT A,AT b) considered in (25), the
method (24) implicitly builds a Krylov subspace where the action of AT is re-
placed by its projection PmAT onto Km(A,b). Therefore, if Pm = I, conditions (24)
and (25) are equivalent. In this sense, the new method (24) can be regarded as a
transpose-free variant of a CGLS-like method, and from now on it will be simply
referred to as TF-CGLS; correspondingly, the vector xm,k in (24) will be denoted
as xLS

m,k.

Remark 3.2. The clear advantage of TF-CGLS over CGLS is that AT is not re-
quired, since only the action of A is needed to initially generate Wm+1 and Hm.
The additional k MINRES iterations required by TF-CGLS to compute the solu-
tion of (20) can be performed on the projected problem (21) of order m+1. Each
approximate solution {xm,k}k≤m belongs to Km(A,b) (directly by (24) and by the
definition of Pm in (8)). If Km(A,b) well captures the features of the solution that
we wish to recover, then multiplication by Pm does not spoil the approximation
subspace. Provided that a meaningful regularized solution can be recovered by
TSVD (i.e., the columns of V A

m are a good basis for a regularized solution), this is
eventually equivalent to requiring that Âm in (17) inherits the spectral properties of
A (see relations (18) and (19)).

Remark 3.3. Hybrid regularization methods [21] consider additional direct regu-
larization (such as TSVD) within each iteration of a regularizing iterative method.
We claim that TF-CGLS can be somewhat regarded as a hybrid regularization
method. Indeed, considering the first relation in (22), one can straightforwardly
rewrite

ym,k ∈Kk(AA′m,b) =Wm+1Kk(HmHT
m ,‖b‖e1) ,

so that

xm,k ∈ (WmHT
mW T

m+1)Wm+1Kk(HmHT
m ,‖b‖e1) =WmKk(HT

m Hm,HT
m‖b‖e1) ,

or, equivalently,

xm,k =Wmtk , where tk ∈Kk(HT
m Hm,HT

m‖b‖e1) . (26)
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Analogously, considering the second relation in (22) and exploiting (4), one gets

b−AA′mym,k ⊥ (AA′m)Kk(AA′m,b) =Wm+1HmKk(HT
m Hm,HT

m‖b‖e1) ,

so that
‖b‖e1−HmHT

mW T
m+1ym,k ⊥ Kk(HmHT

m ,HmHT
m‖b‖e1) .

Recalling that W T
m xm,k = HT

mW T
m+1ym,k (directly from (10)) and the definition of tk

in (26), one gets

‖b‖e1−Hmtk ⊥ Kk(HmHT
m ,HmHT

m‖b‖e1) .

Therefore, the vector tk is obtained by applying k steps of the CGLS method to
the projected LS problem (6) associated to the GMRES method (see the charac-
terization (25)). In other words, after performing m steps of the Arnoldi algorithm
to build Wm (exactly as GMRES does), the CGLS method is employed to solve
the projected LS problem in (6), with m fixed. Therefore, in a sequential way, one
applies another iterative regularization method (i.e., additional iterative regulariza-
tion) within a fixed iteration of an iterative regularization method.

Remark 3.4. As briefly mentioned in Sections 1 and 2, regularization methods
based on the Arnoldi algorithm (4) may sometimes be ineffective because the
components of the right singular vectors of A are mixed in the approximation sub-
space Km(A,b). Since an approximate solution xm ∈Km(A,b) is such that V T xm ∈
Km(V TUΣ,V T b), the mixing is caused by the presence of the non-diagonal matrix
V TUΣ; see [16] for more details. Quantitatively, this phenomenon (and therefore
the regularization properties of the considered methods) can be characterized by
computing the distance of two relevant subspaces, namely:

dist(span(V A
k ),span(Ŵk)) = ‖Ŵ T

k (V A
k )
⊥‖ ; (27)

see [10, Chapter 2]. Here and in the following we consider the subspaces spanned
by the columns of V A

k (i.e., the first k right singular vectors of A; see (2)) and Ŵk
(i.e., k orthonormal vectors selected after linearly transforming the columns of Wm;
see below). Here we display a numerical example clearly showing that, while se-
vere SVD mixing affects the basis vectors of the GMRES solution, the SVD com-
ponents are somewhat unmixed in the TF-CGLS basis vectors, whose behavior is
comparable to the CGLS ones. The same holds for the hybrid GMRES-TSVD ba-
sis vectors (where the projected problem (6) is regularized through TSVD). Anal-
ogously to [16], we consider the test problem i_laplace(100) from [13], and we
add Gaussian white noise e to the data vector b, in such a way that the noise level
ε̂ = ‖e‖/‖bex‖ is 5 ·10−4. We consider, as an example, approximation subspaces
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Figure 1. Components of the first, third, and fifth columns of Ŵ5 with respect to the
right singular vector basis for the GMRES, TF-CGLS, and CGLS methods applied
to the i_laplace(100) test problem. Lower rightmost frame: filter factors for the
TF-CGLS (5 CGLS iterations) and GMRES-TSVD (5 components) methods.

of dimension 5, spanned by the orthonormal columns of a matrix Ŵ5 ∈ R100×5,
associated to the GMRES, TF-CGLS, GMRES-TSVD, and CGLS methods. More
specifically:

• for GMRES: we first run 5 steps of the Arnoldi algorithm to generate
W GMR

5 ∈ R100×5 and H5 ∈ R6×5 as in (4), and we then compute the SVD
of H5 (14), whose right singular vector matrix is denoted by V H5

5 ∈R5×5. We
take Ŵ5 =W GMR

5 V H5
5 . For this example we have dist(span(V A

k ),span(Ŵ5)) =
9.9933 ·10−1.

• for TF-CGLS and for GMRES-TSVD: we first run 40 steps of the Arnoldi
algorithm to generate W GMR

40 ∈ R100×40 and H40 ∈ R41×40 as in (4); we then
compute the SVD of H40 (14), and we consider truncation after 5 compo-
nents. We denote the truncated right singular vector matrix by V H40

5 ∈R40×5.
We take Ŵ5 = W GMR

40 V H40
5 . This corresponds to taking only the first 5 basis
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vectors in the TF-CGLS approximate solution. For this example we have
dist(span(V A

k ),span(Ŵ5)) = 2.1357 ·10−5.

• for CGLS: we first run 5 steps of the Arnoldi algorithm applied to AT A, with
starting vector AT b (though, in practice, this procedure is unadvisable and
one should employ the Golub-Kahan bidiagonalization algorithm; see [23,
§8.3]). In this way we generate W CG

5 ∈ R100×5 with orthonormal columns,
and T5 ∈ R6×5 tridiagonal. We then compute the SVD of T5, whose right
singular vector matrix is denoted by V T5

5 ∈R5×5. We take Ŵ5 =W CG
5 V T5

5 . For
this example we have dist(span(V A

k ),span(Ŵ5)) = 7.4933 ·10−2.

Figure 1 shows the absolute value of the first, third, and fifth column of Ŵ5 ex-
pressed in terms of the right singular values of A, i.e., V TŴ5, for the GMRES,
TF-CGLS, and CGLS methods.
It can be easily seen that, while the GMRES basis vectors have significant com-
ponents along all the right singular vectors (i.e., severe “SVD mixing” happens),
the same is not true for TF-CGLS. Though the components of the normalized
TF-CGLS basis vectors are often larger than the normalized CGLS ones, the com-
ponents corresponding to the first singular values of A are clearly dominant (more-
over: the component of ith basis vector along the ith right singular vector vi seems
to be the leading one). This phenomenon happens because the TF-CGLS (and
GMRES-TSVD) approximate solution belong to the Krylov subspace K40(A,b),
which is much larger than the Krylov subspace K5(A,b) used in standard GMRES:
therefore K40(A,b) contains much more spectral information on A than K5(A,b),
which is then appropriately filtered. Indeed, as explained in Remark 3.3, once 40
Arnoldi steps have been performed, both TF-CGLS and GMRES-TSVD apply ad-
ditional regularization (or filtering) on the projected least squares problem (6), so
that

x40,5 =W GMR
40 V H40

40 Φ
H40(ΣH40

40 )−1(UH40
40 )T (‖b‖e1) ,

where UH40
40 , Σ

H40
40 , and V H40

40 are the matrices appearing in the economy-size SVD
of H40, and ΦH40 is a diagonal filtering matrix, whose elements are:

Φ
H40
i,i = p5(σ

(40)
i ) , Φ

H40
i,i =

{
1 if i = 1, . . . ,5
0 otherwise

,

for TF-CGLS for GMRES-TSVD

where p5 is the polynomial of degree at most 4 associated to 5 CGLS iterations
for the projected LS problem in (6). These filter factors are displayed in the lower
rightmost frame of Figure 1. Starting from an extended Krylov subspace, and be-
ing able to filter out the dominant singular components of the projected quantities
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in (6), both TF-CGLS and GMRES-TSVD build a solution subspace where the
original SVD components of A are not as mixed as in the standard GMRES one.

3.2 A transpose-free CGNE-like method

Now consider computing an approximation ym,k of ym in (10) by applying k itera-
tions of the CG method, with starting vector x0 = 0. This means that

ym,k ∈Kk(AA′m,b) , and b−AA′mym,k ⊥ Kk(AA′m,b) , k ≤ m . (28)

As done in (23), we can write xm,k = PmAT ym,k, so that the first condition in (28)
can be rewritten as

xm,k ∈ PmAT Kk(APmAT ,b) .

Moreover, the second condition in (28) leads to

Ax−APmAT ym,k ⊥ Kk(APmAT ,b),

x−PmAT ym,k ⊥ AT Kk(APmAT ,b),

x− xm,k ⊥ AT Kk(APmAT ,b) .

We can summarize the above arguments in the following

Proposition 3.5. For any given m≥ 1 the sequence {xm,k}k≤m obtained by apply-
ing k steps of the CG method to problem (10) is the result of a Krylov method
defined by

xm,k ∈ PmAT Kk(APmAT ,b) and x− xm,k ⊥ AT Kk(APmAT ,b) . (29)

The above proposition allows us to see how this approach relates to the well-
known CGNE method, whose approximate solutions satisfy

xCGNE
k ∈ AT Kk(AAT ,b) and x− xCGNE

k ⊥ AT Kk(AAT ,b) ,

and are computed through an implicit construction of the Krylov subspaces
AT Kk(AAT ,b) = Kk(AT A,AT b). Using similar arguments to the ones in Section
3.1, the new method (29) can be regarded as a transpose-free variant of a CGNE-
like method, and from now on it will be simply referred to as TF-CGNE; corre-
spondingly, the vector xm,k in (29) will be denoted as xNE

m,k. Statements analogous
to the ones explained in Remark 3.2 also hold for the TF-CGNE case.

We conclude this section by mentioning that, although CGNE is an iterative
regularization method, in practice it may perform very badly. Indeed, if system
(1) is inconsistent, CGNE does not even converge to A−1b (see [11, Chapter 4]).
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This means that, if the unperturbed system Axex = bex is consistent, only small
perturbations e of bex are allowed, in such a way that b still belongs to the range
of A. The same behavior is experimentally observed when performing the TF-
CGNE method (see the numerical experiments in Section 4). Therefore, even if
TF-CGNE is a potential alternative to TF-CGLS, the latter is to be preferred when
dealing with ill-posed problems.

3.3 Setting the regularization parameters

The transpose-free CG-like methods described in Sections 3.1 and 3.2 (here briefly
denoted by TF-CG) are, indeed, multi-parameter iterative methods, whose success
depends on an accurate tuning of both the scalars m and k. It should be also
remarked that the parameters m and k act sequentially, i.e., the former is used to
compute A′m in (8) and has to be set in advance of the TF-CG iterations; the latter is
the number of TF-CG iterations; this is the main difference between some hybrid
methods and the TF-CG-like methods. One way to fix m is to stop the preliminary
iterations when

hm+1,m < τ, (30)

where τ > 0 is a specified threshold. In this way, one stops when the Krylov
subspace Km(A,b) is not significantly expanded; see [8,9,20] for full motivations.

In principle, another natural approach to set m can be devised by monitoring the
values of the quantity

ζm = ‖AT A−PmAT A‖ . (31)

The smaller ζm, the nearer AT A to PmAT A, i.e., the more accurate the transpose-free
approximation of AT A. Since the approximate solutions xm computed by the TF-
CG methods belong to the subspace Km(PmAT A,PmAT b) (see the first relation in
(24) and (29)), a small ζm also implies that the generated approximation subspaces
are close to Km(AT A,AT b). However, since one of the main motivations behind
TF-CG methods is the lack of knowledge of AT for some large-scale problems, the
quantities ζm in (31) cannot be computed in practice. Therefore, after some simple
derivations one can provide the following upper bound:

ζm = ‖(I−Pm)AT A‖ ≤ ‖A‖ · ‖(I−Pm)AT‖= σ1‖A(I−Pm)‖ .

Though the above bound does not explicitly involve AT , AT is required by algo-
rithms for computing σ1. Moreover, when dealing with large-scale problems, both
σ1 and ‖A(I−Pm)‖ can be expensive to compute. Therefore, one should look for
yet other alternative bounds. One can take σ

(m)
1 , i.e., the largest singular value of

Hm, as an approximation of σ1: indeed, thanks to the interlacing property of the
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singular values (see, for instance, [4, 7]), one can prove that σ1 ≥ σ
(`+1)
1 ≥ σ

(`)
1 .

Many numerical experiments available in the literature show that σ
(m)
1 quickly ap-

proaches σ1 (see also [19]), so that

ζm ≤ σ1‖A(I−Pm)‖= (σ
(m)
1 + εm)‖A−Wm+1HmW T

m ‖ , (32)

where εm → 0 as m increases. Replacing σ1 with σ
(m)
1 may not be meaningful

when m is very small, but this is not the case when performing the first cycle of
iterations of the Arnoldi algorithm for the TF-CG methods. Note that, to rewrite
the second factor of the last equality in the above equation, we have also exploited
(4). While some numerical experiments available in the literature (see [8]) suggest
that the quantity ‖A−Wm+1HmW T

m ‖ decays similarly to the singular values of A,
no theoretical results have been established, yet. Similarly to what happens in the
TSVD case, one can consider ‖A−Wm+1HmW T

m ‖ ' σ
(m+1)
m+1 . Even if the above

estimate can be quite optimistic (see [9] for a discussion), experimentally it seems
reliable to stop the first set of Arnoldi iterations when σ

(m)
1 σ

(m+1)
m+1 is sufficiently

small, i.e., one should stop as soon as

σ
(m)
1 σ

(m+1)
m+1 < τ

′ , (33)

where τ ′ > 0 is a specified threshold.

Algorithm 1 TF-CG methods

input A, b, τ or τ ′, solver, η , ε̂

for m = 1,2, . . . ,until the stopping criterion (30) or (33) is satisfied do
update the Arnoldi decomposition: AWm =Wm+1Hm

end for
for k = 1,2, . . . ,until (34) is satisfied do

if solver is TF-CGLS then
apply MINRES to the system HmHT

m t = ‖b‖e1, to get tk (see Section 3.1)
else if solver is TF-CGNE then

apply CG to the system HmHT
m t = ‖b‖e1, to get tk (see Section 3.2)

end if
end for
take xm,k =WmHT

m tk

To choose the number k of additional iterations for the TF-CG methods, some
standard parameter choice strategies can be used. For instance, if one has a good
estimate of the noise level ε̂ , the discrepancy principle can be applied, i.e., the
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iterations can be stopped as soon as

‖b−Axm,k‖= ‖b−CmCT
mym,k‖=

∥∥‖b‖e1−HmHT
m z
∥∥< ηε̂‖b‖ , (34)

where η > 1 is a safety factor. If ε̂ is not known, one can resort to other classical
parameter choice methods such as GCV and the L-curve (see [14, Chapter 7]).
The TF-CG methods are summarized in Algorithm 1.

4 Numerical experiments

This section shows the performances of the methods summarized in Algorithm 1
on a variety of test problems: comparisons with GMRES and, whenever possible,
CGLS and CGNE, will be displayed. The quality of the computed solution is
measured by the relative error ‖x−xex‖/‖xex‖. A first set of experiments considers
moderate-scale problems from [13], while a second set of experiments considers
realistic large-scale problems arising in the framework of 2D image deblurring.
Unless otherwise stated, the TF-CG-like methods are implemented using modified
Gram-Schmidt orthogonalization. All the tests are performed running MATLAB
R2016b.

First set of experiments. We consider problems with a nonsymmetric coeffi-
cient matrix whose right-hand-side vector is affected by Gaussian white noise of
level ε̂ = 10−2. Since AT , as well as the SVD of A, are easily available for these
problems, the use of the TF-CG-like methods may appear meaningless in this set-
ting: these experiments are nonetheless included to compare the behavior of the
TF-CG-like, the CGLS, and the CGNE methods, and to test some theoretical es-
timates (such as (31) – (33)). For all the tests, the maximum allowed number of
Arnoldi iterations (in the first cycle of iterations in Algorithm 1) is mmax = 40,
and η = 1.01. The values τ = 10−10 and τ ′ = 10−15 are chosen for the stopping
criteria in (30) and (33), respectively.

(i) i_laplace. Let us consider the severely ill-posed inverse Laplace transform
of the function f (t) = t2 exp(−t/2), discretized using the codes in [13] with
N = 128, so that ‖A−AT‖/‖A‖ = 0.6922. Figure 2 compares the GMRES,
CGLS, CGNE, TF-CGLS, and TF-CGNE methods (for different choices of
the stopping criterion for the first set of iterations). The stopping criteria (30)
and (33) are satisfied after 14 and 13 Arnoldi iterations, respectively, and the
TF-CG-like solutions are not affected by the different stopping criteria. En-
larged markers are used to highlight the iterations satisfying the discrepancy
principle (34) for all the methods (so that, in the GMRES, CGLS and CGNE
cases, the quantities ‖b−Axm‖ are monitored); we note that both CGNE and
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Figure 2. Test problem i_laplace, with f (t) = t2 exp(−t/2), N = 128, and
ε̂ = 10−2. (A) Relative errors versus number of iterations for GMRES, CGLS, and
TF-CGLS (here and in the remaining frames, two different stopping criteria are con-
sidered). (B) Relative errors versus number of iterations for GMRES, CGNE, and
TF-CGNE. (C) Relative residuals versus number of iterations for GMRES, CGLS,
and TF-CGLS. Bigger black markers highlight the iterations satisfying the discrep-
ancy principle.

TF-CGNE do not satisfy the discrepancy principle within the chosen range
of iterations. The TF-CGLS method delivers a huge improvement over the
standard GMRES method for this problem, and its behavior is very similar
to the CGLS one (see frame (A) of Figure 2, where relative errors versus
number of iterations are plotted). TF-CGLS seems also very robust with
respect to “semi-converegence”. Frame (B) of Figure 2 shows the relative
errors versus number of iterations for the GMRES, the CGNE, and the TF-
CGNE methods. Although all the methods tested in both frames (A) and
(B) perform quite poorly, the performances of “minimal error” methods are
clearly much worse than the performances of “minimal residual” methods
(this agrees with the analysis performed in [11, Chapter 4]). Despite this, the
TF-CGNE method is able to reproduce quite faithfully the behavior of CGNE
(in terms of relative errors). Further tests with CGNE and TF-CGNE will not



Transpose-free CG-like solvers for ill-posed problems 19

(A) (B)

20 40 60 80 100 120

0

1

2

3

4
GMRES

CGLS

TF-CGLS, 

TF-CGLS, '

exact

Figure 3. Test problem i_laplace, with f (t) = t2 exp(−t/2), N = 128, and
ε̂ = 10−2. (A) Values of the quantities (31), (32), and (33) versus the number of
Arnoldi iterations m. (B) Best approximations of f (t) achieved by the GMRES,
CGLS, and TF-CGLS methods.

be performed in the following experiments. Frame (C) of Figure 2 displays
relative residuals versus number of iterations for the GMRES, the CGLS,
and the TF-CGLS methods. We can see that inequality (11) surely applies
to the TF-CGLS case, i.e., when xm = xm,k ∈Km(A,b) (recall (23)): more
precisely, once m has been set, ‖AxGMR

m −b‖ is smaller than any ‖Axm,k−b‖,
for k ≤ m (but this does not imply any other relation between ‖AxGMR

` −b‖,
` < m, and ‖Axm,k−b‖). Moreover, regarding the stopping criteria, a word of
caution is mandatory: although looking at Figure 2 it may seem that all the
methods stop after 6 or 7 iterations, we should recall that the TF-CGLS itera-
tion count refers to the second cycle in Algorithm 1 (after at most 14 Arnoldi
iterations have been performed). Therefore, for this test problem, the com-
putational cost of GMRES is dominated by 6 matrix-vector products with a
matrix of size N×N, while CGLS and TF-CGLS require 14 matrix-vector
products with a matrix of size N×N. We think that the additional (but still
small) number of matrix-vector products required by TF-CGLS with respect
to GMRES is tolerable if we consider the improved quality of the solution.
Frame (A) of Figure 3 displays the behavior of the quantities (31) – (33)
versus the number of Arnoldi iterations m. One can clearly see that (32) is
a tight bound for the potentially unknown quantity (31). One also realizes
that estimate (33) is indeed very optimistic, as anticipated in Section 3.3. We
also emphasize that the behavior of the sequence (ζm)m≥1 is not monotonic
because loss of orthogonality happens in the columns of the matrix Wm in (4)
when modified Gram-Schmidt is employed. For this experiment, the TF-CG-
like approximations are not very affected by the loss of orthogonality (as the
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stopping criteria for the first cycle of Arnoldi iterations prescribe to stop after
13 or 14 iterations, i.e., before a severe loss of orthogonality sets in). How-
ever, when a larger number of Arnoldi iterations is expected during the first
cycle of Algorithm 1, one may consider the more numerically accurate (and
more expensive) Householder-Arnoldi implementation, in order to reduce the
effect of the loss of orthogonality (see [23, §6.3] for details). Frame (B) of
Figure 3 displays the solutions achieved by GMRES, CGLS, and TF-CGLS
when the discrepancy principle is satisfied. While the CGLS and TF-CGLS
solutions resemble the exact one, this is not the case for the GMRES solution,
which is heavily unregularized (the values above 4 are truncated in the plot).

(ii) heat. We consider a discretization of the inverse heat equation formulated
as a Volterra integral equation of the first kind, as provided in [13], with the
default settings. We choose N = 256, so that ‖A−AT‖/‖A‖ = 1.1249; this
problem can be regarded as numerically rank-deficient, with numerical rank
equal to 250. Frame (A) of Figure 4 shows the history of the relative errors
for GMRES, CGLS, and TF-CGLS (with both the MGS and HH implemen-
tations). While CGLS delivers the best approximations, the quality of the
TF-CGLS solutions is much better than the GMRES ones (which do not con-
verge to A†b). Moreover, the TF-CGLS solutions obtained by the MGC and
the HH implementations are comparable. Frame (B) of Figure 4 displays
the most accurate approximations obtained by each method: in the GMRES
case, this is the zero solution (i.e., the initial guess); the TF-CGLS solution
has slightly more oscillations than the CGLS one, and this shortcoming might
be partially remedied by including additional (standard form) Tikhonov reg-
ularization within the TF-CGLS iteration (in an hybrid-like fashion, see [9]).
Finally, frames (C) and (D) of Figure 4 display relative errors versus num-
ber of iterations for the TF-CGLS and the GMRES-TSVD methods. We also
consider another variant of hybrid GMRES (denoted by GMRES-TSVD∗)
that expands the GMRES approximation subspace at each iteration and per-
forms TSVD on (6) using the discrepancy principle. Frame (C) of Figure 4
considers 40 Arnoldi iterations. Frame (D) of Figure 4 potentially allows the
full 256 Arnoldi iterations, and stopping criterion (33) is satisfied after 74
iterations. These plots clearly show that, in some situations, it may be con-
venient to adopt TF-CGLS rather than the more traditional hybrid GMRES
methods, both in terms of accuracy and efficiency (in particular, the cost of
computing the TF-CGLS solution is dominated by 40 matrix-vector products
with A, while more than 100 matrix-vector products with A are required by
GMRES-TSVD∗ to achieve a solution of similar quality).

Average values of relative errors and number of iterations are reported in Table 1,
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Figure 4. Test problem heat, with N = 256, and ε̂ = 10−2. (A) Relative error
history for GMRES, CGLS, TF-CGLS with modified Gram-Schmidt implemen-
tation (MGS-TF-CGLS), and TF-CGLS with Householder implementation (HH-
TF-CGLS). (B) Best approximations achieved by GMRES, CGS, and MGS-TF-
CGLS. (C) Relative error history for GMRES-TSVD∗, GMRES-TSVD, and MGS-
TF-CGLS (with 40 Arnoldi iterations). (D) Relative error history for GMRES-
TSVD∗ (with 256 Arnoldi iterations), GMRES-TSVD, and MGS-TF-CGLS (with
74 Arnoldi iterations).

where the severely ill-conditioned test problem baart from [13] is also considered
(in this case, ‖A−AT‖/‖A‖= 0.6035). The average is computed over 20 runs of
each test problem, with different realizations of the random noise vector in the
data. We can see that, except for baart, the values computed by the stopping
criteria (31) and (33) mainly agree. Moreover, when the discrepancy principle
is employed as an overall stopping criterion, the new TF-CGLS solver always
delivers much better approximation than the GMRES and the GMRES-TSVD∗

method (though the latter often has a lower optimal relative error).

Second set of experiments. We consider 2D image restoration moderately ill-
posed problems, where the available images are affected by a spatially invariant
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blur and Gaussian white noise. In this setting, given a point-spread function (PSF)
that describes how a single pixel is deformed, a blurring process is modeled as a 2D
convolution of the PSF and an exact discrete finite image Xex ∈Rn×n. Here and in
the following, a PSF is represented as a 2D image P∈Rq×q, with q� n, typically.
One can immediately see that, if Pi, j 6= 0, i, j = 1, . . . ,q, the deblurring problem
is underdetermined since, when convolving P with Xex, additional (and unavail-
able) information about the exact image outside Xex should be incorporated. A
popular approach to overcome this phenomenon is to impose boundary conditions
within the blurring process, i.e., to prescribe the behavior of the exact image out-
side Xex (see [1] and the references therein). A 2D image restoration problem can

Table 1. Average results over 20 runs of some moderate-scale test problems with
nonsymmetric coefficient matrix from [13], with noise level ε̂ = 10−2. The TF-
CGLS relative error is the one attained when stopping criterion (33) is satisfied. The
minimum attainable relative errors (opt) and the ones attained when the discrepancy
principle is satisfied (DP) are reported for all the methods, together with the corre-
sponding average number of iterations. The average number of iterations required
by TF-CGLS to satisfy the stopping criteria (31) and (33) is also reported.

Rel.Error (DP) it (DP) Rel.Error (opt) it (opt) (31) (33)

i_laplace(128, 1)

GMRES 5.9919 ·10−1 4.3 4.8728 ·10−1 4.2 - -
CGLS 4.1821 ·10−2 3.8 3.2919 ·10−2 4.5 - -
TF-CGLS 4.1778 ·10−2 3.8 3.2827 ·10−2 4.5 14.5 13.0
GMRES-TSVD∗ 5.9919 ·10−1 4.3 3.8461 ·10−2 11.6 - -

i_laplace(128, 3)

GMRES 5.1047 ·100 5.9 8.2388 ·10−1 3.0 - -
CGLS 5.3116 ·10−1 7.1 4.7355 ·10−1 8.3 - -
TF-CGLS 5.2570 ·10−1 7.2 4.3790 ·10−1 11.2 14.5 13.1
GMRES-TSVD∗ 5.1047 ·100 5.9 3.0080 ·10−1 10.8 - -

baart(256)

GMRES 5.6437 ·10−1 3.0 3.1134 ·10−1 4.0 - -
CGLS 1.6634 ·10−1 3.0 1.5284 ·10−1 3.4 - -
TF-CGLS 1.6650 ·10−1 3.0 1.5302 ·10−1 3.7 8.7 19.8
GMRES-TSVD∗ 5.6437 ·10−1 3.0 4.1127 ·10−2 5.0 - -

heat(256)

GMRES 4.4102 ·107 39.3 1.0000 ·100 1.0 - -
CGLS 1.0535 ·10−1 11.1 9.2036 ·10−2 13.1 - -
TF-CGLS 4.3834 ·100 32.9 6.2625 ·10−1 4.1 40.0 40.0
GMRES-TSVD∗ 4.4700 ·107 39.5 9.0833 ·10−1 7.0 - -
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be rewritten as a linear system (1), where the 1D array b is obtained by stacking
the columns of the 2D blurred and noisy image (so that N = n2), and the square
matrix A incorporates the convolution process together with the boundary condi-
tions. Although popular choices such as zero or periodic boundary conditions are
particularly simple to implement, they often give rise to unwanted artifacts during
the restoration process. The use of reflective or anti-reflective boundary conditions
usually gives better results, as a sort of continuity of the image outside Xex is im-
posed. Antireflective boundary conditions (ARBC) were originally introduced in
[24], and further analyzed in several papers (see [5] and the references therein).
When dealing with a nonsymmetric PSF and ARBC, matrix-vector products with
A can be implemented by fast algorithms (see [24]), but the same is not true for
matrix-vector products with AT (as, to the best of our knowledge, there is no known
algorithm that can efficiently exploit the structure of AT ). Therefore, in practice,
AT is often approximated by a matrix A′ defined by first rotating of 180° the PSF
P used to build A (so to obtain the PSF P′) and then modeling the 2D convolu-
tion process with P′ and ARBC. In other words, image deblurring problems with
a nonsymmetric PSF and ARBC can be only handled by transpose-free solvers.
As addressed in Section 1, the authors of [5] propose to solve the equivalent, and
somewhat symmetrized, linear system AA′y = b (with x = A′y) by GMRES: in
the following, this method is referred to as RP-GMRES. Our experiments are cre-
ated by considering two different grayscale test images of size 256× 256 pixels,
together with two different PSFs, and antireflective or reflective boundary condi-
tions; the sharp images are artificially blurred, and noise of variable levels is added.
Matrix-vector products are computed efficiently by using the routines in Restore

exact PSF corrupted

Figure 5. From left to right: exact image, where the cropped portion is highlighted;
blow-up (600%) of the anisotropic Gaussian PSF; blurred and noisy available image,
with ε̂ = 2 ·10−2.
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GMRES TF-CGLS RP-GMRES

Figure 6. The lower row displays blow-ups (200%) of the restored images in the
upper row. From left to right: standard GMRES method (0.1483, m = 4); TF-CGLS
method (0.1344, m = 14, k = 12); right-preconditioned GMRES (0.1354, m = 19).

Tools [18]1. In the first experiment the blurred image is cropped in order to re-
duce the effect of the chosen boundary conditions. The maximum number mmax of
Arnoldi iterations for Algorithm 1 is set to 50, and only the stopping criterion (33)
is considered with τ ′ = 10−15.

(i) Anisotropic Gaussian blur. For this experiment, the elements Pi, j of the PSF
P are analytically given by the following expression

pi, j = exp
(
− 1

2(s2
1s2

2−ρ4)

(
s2

2(i− k)2−2ρ
2(i− k)( j− `)+ s2

1( j− `)2)) ,

where i, j = 1, . . . ,d, and [k, `] is the center of the PSF. The values s1 = 4,
s2 = 1.3, ρ = 2, and d = 21 are considered, and the noise level is ε̂ = 2 ·
10−2. ARBC are imposed. The test data are displayed in Figure 5. Figure 6
shows the best restorations achieved by each method; relative errors and the
corresponding number of iterations are displayed in the caption. The GMRES

1 An extension to handle ARBC within Restore Tools is available at:
http://scienze-como.uninsubria.it/mdonatelli/Software/software.html.

http://scienze-como.uninsubria.it/mdonatelli/Software/software.html
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exact PSF corrupted

Figure 7. From left to right: exact image; blow-up (200%) of the anisotropic Gaus-
sian PSF; blurred and noisy available image, with ε̂ = 5 ·10−2.

restored image still appears pretty noisy and blurred and, though the relative
error for the RP-GMRES restoration is slightly larger than the TF-CGLS one,
the two images are visually very similar and the latter greatly improves the
standard GMRES one. It should also be emphasized that the cost of each RP-
GMRES iteration is dominated by two matrix-vector products (one with A,
and one with A′). Therefore, the cost of computing the GMRES, TF-CGLS,
and RP-GMRES restorations is dominated by 4, 14, and 38 matrix-vector
products, respectively. Therefore, for this experiment, TF-CGLS can deliver
a solution whose quality is almost identical to the RP-GMRES one, with
great computational savings.

(ii) Atmospheric blur. The test data for this experiment are displayed in Fig-
ure 7. The PSF, of size 256× 256 pixels and available within [18], models
a realistic atmospheric blur. Reflective boundary conditions are imposed,
so that multiplications with AT can be easily computed. The noise level is
ε̂ = 5 · 10−2. Figure 8 shows the best restorations achieved by the GMRES,
the TF-CGLS, and the CGLS methods; relative errors and the corresponding
number of iterations are displayed in the caption. Also for this test prob-
lem, the TF-CGLS method delivers much better solutions than the GMRES
methods; also, TF-CGLS proves to be much more efficient than CGLS, as its
computational cost is dominated by 18 matrix-vector products with A (versus
the 80 matrix-vector products required by CGLS).
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GMRES TF-CGLS CGLS

Figure 8. The lower row displays blow-ups (200%) of the restored images in the
upper row. From left to right: standard GMRES method (4.0018 · 10−1, m = 4);
TF-CGLS method (2.7855 · 10−1, m = 18, k = 5); CGLS method (2.7619 · 10−1,
m = 40).

5 Conclusions

This paper presented a new class of transpose-free CG-like methods, which appear
to be competitive with their standard counterparts. These methods are particularly
meaningful when the transpose of the coefficient matrix is not easily available, and
they represent a very valid alternative to the standard GMRES method, as they can
successfully handle situations where the latter performs badly (e.g., when the SVD
components of the original matrix A are heavily mixed in the GMRES approxima-
tion subspace).
When compared with CGLS, the new transpose-free CG-like methods have sim-
ilar performances, and they can be employed also to solve well-posed problems,
provided that some insight into the SVD behavior of the projected problems is
available.
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