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Abstract 

In the manufacture of the out-of-plane joints of composite stiffened panels, such as the 

connection between skin and T, I, omega shaped stiffeners, a filler material is needed to fill the 

void between the flanges, web and skin. The most common filler is a rolled unidirectional 

prepreg tape (“noodle”), which is not only expensive to manufacture, but also has low strength 

that can lead to premature failure of the loaded joint. In this work, eight novel filler concepts 

are introduced and experimentally validated against the baseline noodle via T-joint tensile 

tests. Polyamide nonwoven interleaved joints increase the damage tolerance of the structure 

and nonwoven nanofibres increase the failure initiation load. 3D printed fillers have lower 

strength but demonstrate the possibility of thermoplastic-thermoset hybrid structures. Fillers 

made of chopped prepreg match the strength of the baseline noodle and can serve as a low 

cost replacement. Another low cost, resin infused braided concept has lower strength, but its 

counterpart using multiple individual braids has the same strength as the unidirectional 

noodle. Moreover, the latter concept shows that different resin systems can be cured together 
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without causing a knockdown in strength, and can serve as a basis for a range of novel 

applications. 
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1. Introduction 

Laminated composite materials possess great weight saving potential in many applications due 

to their high relative strength and stiffness. However, thin shell structures are prone to 

buckling and have low out-of-plane strength. As a reinforcement, stiffeners with various 

profiles can be attached to the laminate to form a stiffened panel requiring a transition of the 

in-plane loads to the weaker, out-of-plane direction. The most common sections used in 

aerospace structures are T, I, Z, L and hat (omega) stiffeners. The geometry and layup of these 

greatly define the buckling and post-buckling behaviour of the stiffened panel [1–3] and its 

tendency to avoid premature skin-stiffener debonding failure [4–8]. 

Out-of-plane joints are often co-cured with the skin during manufacturing to improve the 

integrity of the product and remove the assembly cost and added weight of fasteners. 

Moreover, composite materials are restrained by manufacturing constraints such as the 

minimum radius a ply can form. Subsequently, a deltoid shaped void is generated in the 

junction region of the skin, web and flanges. Such a feature is undesirable in a load-bearing 

structure and is usually filled with a filler material to eliminate the stress concentrations and 

ensure the geometrical stability of the joint. 
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The most commonly used filler is a bundle of unidirectional (UD) fibre, also known as a 

“noodle” when manufactured from a manually rolled ply. However, it is not only labour 

intensive to manufacture a noodle, but due to its orientation, weak transverse tensile strength 

and the loading conditions of out-of-plane joints, fillers can be the weakest link in the 

structural integrity of stiffened panels [9]. 

Search for stronger and more cost-effective fillers has been an important topic in the literature 

over recent years [10]. Braided and 3D woven fillers can be used to increase the strength of 

the joint and eliminate the need for rolling during manufacturing. In one example, the initial 

failure load of T-joints with braided fillers subjected to pull-off loading was increased by 36% 

compared to the conventional rolled specimens [11]. The main drawbacks of this solution are 

the restrictions of resin infusion processes and possible insufficient compaction of the filler 

during cure. Thermoplastic and foam fillers can be injection moulded, but this procedure 

needs the additional step of CNC machining of the filler to its final geometry [12,13]. However, 

the filler can be over-moulded on the laminate in a butt-joint configuration if the laminate is 

also made of thermoplastic matrix. Baran et al. developed an FEA model to analyse the 

cracking and debonding of a short fibre reinforced polyetheretherketone (PEKK) filler [14]. 

Through-the-thickness reinforcements such as stitching and pinning can greatly enhance the 

strength and damage tolerance of the joint, but the manufacturing time and cost are increased 

significantly [15,16]. Interleaving the joint with nonwoven veils can also increase its mechanical 

performance. Wang and Soutis [17] reported a 44% increase in ultimate tensile strength of a T-

joint interleaved with polyester (PE) veils compared to a pristine one, but this method is also 

limited to resin infusion. A cost-effective manufacturing process is pultrusion, but this requires 

the in-situ curing of the whole stiffener section and therefore it cannot be used for 

manufacturing individual fillers for later assembly in a prepreg structure [18]. 
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In this paper, the following eight novel concepts are introduced aimed at increasing the 

strength of fillers and out-of-plane joints or reducing their manufacturing time and cost: 

 Filler surface interleaved with polyamide (PA) nonwoven mat (Fig. 1a) 

 Filler surface interleaved with vertically aligned nanotubes (Fig. 1b) 

 Filler surface and laminate interleaved with nonwoven nanofibre interleaves (Fig. 1c) 

 3D printed thermoplastic filler (Fig. 1d) 

 Filler made of UD chips (Fig. 1e) 

 Filler made of woven chips (Fig. 1f) 

 Resin infused single braided filler (Fig. 1g) 

 Resin infused multiple braided filler (Fig. 1h). 

The new concepts are implemented in a T-joint and tested under tensile loading. The results 

are compared with a T-joint containing a manually rolled UD noodle (referred to as “baseline” 

in this paper). 

 



5 
 

Fig. 1. Schematic representation of the proposed concepts: a) PA nonwoven interleaved b) 

Vertical nanotube interleaved c) Nonwoven nanofibre interleaved d) 3D printed e) Chopped 

UD f) Chopped woven g) Single braided h) Multiple braided 

2. Manufacture of baseline joint and experimental setup 

The manufacturing of the 6 baseline specimens is introduced in detail in [19] and is only 

described briefly in this work. The manufacturing of the 3 specimens used for each of the novel 

concepts are based on the same procedure and their distinct features are outlined in Section 3.  

The geometry and the boundary conditions of the tensile test are shown in Fig. 2. Hexcel 

HexPly® AS4/8552 unidirectional prepreg [20] was used with a nominal cured ply thickness 

(CPT) of 0.196 mm. The stacking sequence of the overlaminate and skin were [90/45/0/-45]2s 

and [90/45/0/-45]3s, respectively, where 0° is aligned in the Z direction. The plies are referred 

to as Ply 1 to Ply 16 in the overlaminate, with Ply 1 being adjacent to the filler (0°). 

 

Fig. 2. Specimen geometry and test setup 

The baseline filler was manufactured by manually rolling a ply having the same cured cross-

sectional area as the theoretical deltoid shape. Then, it was placed in a noodle forming tool 
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(Fig. 3a), and the final geometry was achieved by a two-step procedure. First, heat was applied 

to increase formability while the filler was preformed with a caul plate and manual pressure, 

then the tool was closed and vacuum bagged to undergo debulking. 

The steel tool used for curing consisted of two overlaminate tools, a caul plate for the skin and 

resin dams for sealing (Fig. 3b). The sublaminates were debulked after laying up every 4 plies. 

To ensure the consistent temperature distribution during curing, the lowest allowable heat up 

and cool down rates were chosen according to the manufacturer’s datasheet [20]: heat at 1 

°C/min up to 110 °C, hold for 1 hour, heat at 1 °C/min up to 180 °C, hold for 2 hours, cool at 2 

°C/min to room temperature. 

After curing, the individual samples were cut and surfaces were ground to P2500 quality. 

 

Fig. 3. a) Noodle forming tool b) T-joint tool 
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The specimens were heated to 120 °C for 2 hours before testing to eliminate the moisture 

content accumulated after manufacturing. The tests were carried out at 2 mm/min crosshead 

displacement rate and at room temperature with an Instron 3369 machine. Deformation in the 

vicinity of the fillers was recorded with Phantom VEO 410L high-speed cameras and 

displacement was taken as the crosshead displacement of the Instron machine. 

3. Manufacture of the alternative concepts 

3.1. Interleaved joints 

Delamination of the interface between the filler and the adjacent ply, or within the laminate in 

an out-of-plane joint is one of the most common failure mechanisms of stiffeners [10]. A 

common method to increase the delamination strength is to interleave the plies with a 

toughening material such as nonwoven mats, particulates, thermoplastic films or adhesive 

films [21]. In this work, three concepts are investigated: use of a polyamide (PA) nonwoven 

mat, a layer of vertical nanotubes, and a nonwoven nanofibre mat combined with a 

conventional rolled noodle. 

Due to their easy handling, nonwoven mats are often used with non-crimped fabric (NCF) 

laminates and resin infusion. However, they are not intended to be used with prepregs due to 

the fixed resin content of the latter. To evaluate their behaviour embedded in a prepreg 

laminate, double cantilever beam (DCB) and end notched flexure (ENF) tests [22,23] were 

carried out on several nonwoven mats to characterise their mode I and II fracture toughnesses 

[24]. The results indicated the most significant fracture toughness improvement of the Cerex 

PBN‐II® 30100 PA mat (Cerex Advanced Fabrics Inc., referred to as “PA” in this paper) with 0.2 

mm dry thickness and 34 gsm weight [25], which was chosen for this study accordingly. 

Compared to pristine AS4/8552 specimens, the PA mat provided over 250% improvement in 

mode I, and over 80% improvement in mode II fracture toughness, respectively. As these 
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values refer to the energy release rate at crack initiation, this can indicate the improved 

interfacial strength of a PA interleaved laminate.  

The first concept was produced by placing one layer of the PA nonwoven mat between the 

filler and Ply 1 in the radius, in the midplane of the web and flanges and under the filler (Fig. 

4a) during the assembly of the T-joint. 

The second concept was based on the N12 NanoStitch® layer. This can reinforce the interface 

between two adjacent plies with a vertical nanotube forest and increase the toughness and 

damage tolerance of the laminate [26]. The 0° plies in the midplanes of the T-joint (Ply 1 in the 

overlaminate and top ply of the skin) were treated with N12 NanoStitch® nanotubes and the 

joint was manufactured as mentioned above (Fig. 4a). 

The third concept involved the interleaving of all interfaces within the laminate in the vicinity 

of the radius and skin around the filler with a 4.5 gsm Xantu.Layr® (Revolution Fibres Ltd., [27]) 

nonwoven nanofibre mat (Fig. 4b). Unlike the PA mat, this interleaf has virtually zero thickness 

and is developed to be used with prepreg materials, and therefore did not produce a 

noticeable change in the radius thickness of laminate around the filler.  
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Fig. 4. Location of interleaves in the T-joint: a) PA and NanoStitch® b) Xantu.Layr® 

3.2. 3D printed thermoplastic filler 

Due to the recent development of high-performance substances and manufacturing processes, 

thermoplastic composites are becoming a viable choice of material for primary aerospace 

structures. However, they are generally manufactured as individual components, and not co-

cured with a thermoset laminate. The concept presented in this work is a 3D printed 

thermoplastic filler, co-cured with the epoxy matrix based laminate of the T-joint. This concept 

combines the high production rate using prepreg materials, the low labour requirement of 

additive manufacturing, and the comparable or marginally higher strength of thermoplastic 

materials compared to the transverse tensile strength of thermoset resin based composites. 

In order to co-cure a thermoplastic filler with the thermoset laminate and implement it in an 

out-of-plane joint, the material needs to meet three requirements. First, it must have higher 

melting temperature than the cure temperature of the thermoset resin in the laminate (which 
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is 180 °C for Hexcel 8552 used in this work), otherwise the geometry could not be retained 

during the curing of the joint.  

Second, the thermoplastic material must be compatible with the thermoset resin. To 

quantitatively measure this, bimaterial fracture toughness tests should be carried out with the 

used thermoset resin and representatively manufactured thermoplastic materials. However, 

such experimental characterisation was out-of-scope for this work. 

Third, the thermoplastic material should have comparable or higher yield strength than the 

transverse tensile strength of the thermoset composite material, as the latter is the driving 

factor for influencing the strength of a conventional UD composite noodle [10]. Note that the 

strength of a 3D printed structure differs from the strength of a component which has been 

injection moulded from the same material [28]. 

There are many high temperature, high strength thermoplastic materials used in aerospace 

applications. However, to the authors’ best knowledge, only polyetherimide (PEI) has been 

demonstrated in the literature to meet the second criterion, i.e. to be compatible with epoxy 

thermoset resins [12,29]. Therefore, ULTEM™ 1010 polyetherimide was chosen as filler 

material in this work. According to the manufacturer’s datasheet [30], the longitudinal tensile 

strength is 56 MPa. This and the transverse tensile strength were evaluated by the authors 

with 5 repeats of dog bone tensile tests based on [31]. The 3D printed coupons were printed in 

longitudinal and transverse directions with patterns printed according to [28].  Nominal voxel 

size was 0.1 mm and they were manufactured with an in-house built fused deposition 

modelling (FDM) printer. Extruder temperature (385 °C), bed temperature (140 °C) and print 

speed (20 mm/s) were set up according to the manufacturer’s recommendations [30]. Then, 

the specimens were annealed to eliminate the thermal stresses accumulated during printing 

(kept at 150 °C for 1 hour, kept at 205 °C for 1 hour, kept at 150 °C for 30 minutes, cooled 
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down to room temperature). The measured longitudinal and transverse tensile strength values 

were found to be 64 MPa and 55 MPa, respectively. 

The 3D printed filler had the same dimensions as described in Section 2 and was printed with 

the same parameters as the tensile test specimens. The printing direction was chosen along 

axis Y. This eliminated the need for any support structure and the filler radius could be 

sufficiently reproduced with the 0.1 mm voxel size. After fabrication and annealing, the 3D 

printed filler was deburred, assembled and cured within the T-joint assembly according, to 

Section 2.1. 

3.3. Chopped fillers 

One way to reduce the manufacturing cost of fillers is to use wastage material left behind from 

ply cutting and replace the manual noodle forming step with an automated process. The 

following solution is a filler made of randomly oriented UD and woven prepreg chips and 

injected into a forming tool. However, as this is a proof of concept, the latter step was 

replaced by manual cutting and assembly in this work. 

Hexcel HexPly® AS4/8552 material was used for the UD chips, whereas Hexcel HexForce™ 

AGP280-5H [32] was used for the woven chips. The latter consists of the same AS4 fibres [33] 

and 8552 resin [20] but has a 5 harness satin woven structure and nominal ply thickness of 

0.29 mm. In theory, the chip size should be as small as possible so that the mechanical 

behaviour of the filler approaches isotropic; but large enough so that the fibre length is larger 

than the critical fibre length, which is 0.18 mm (calculated using fibre diameter from [33]) for 

AS4/8552 with 3K tow size. Based on preliminary trials, a 5x5 mm chip size was chosen for 

both concepts, as smaller pieces of UD prepreg fell apart during handling. However, the 

authors note that the woven prepreg can be cut into smaller pieces due to its more stable 

woven structure. After cutting the same volume of prepreg material as used in the rolled 
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noodle, the chips were placed into the noodle forming tool (Fig. 3a), debulked, and finally 

assembled within the T-joint (Fig. 5). After curing and cutting, the specimens were scanned 

with a Nikon XT H 225 ST CT scanner (Perkin Elmer 1620 16-bit flat panel detector, voltage: 157 

kV, current: 157 μA, exposure time: 500 ms, average number of projections: 2930, voxel size: 

0.02 mm) and scans examined with Avizo 9 software to measure the porosity. 

 

 

Fig. 5. Underside view of the chopped UD filler before the assembly of the overlaminates and 

the skin 

3.4. Braided fillers 

Due to their freedom in achievable geometry and increased out-of-plane strength, utilisation 

of braided components is one of the most advantageous features of structures manufactured 

with resin infusion. The proposed concept combines commercially available braided fillers with 

the pre-impregnated laminate of the T-joint. Unlike conventional prepreg noodles, which 

require labour intensive in-situ rolling and forming during the manufacturing of the stiffeners, 

the dry braids can be infused and stored in a freezer, independently from the assembly, greatly 

reducing the manufacturing time of the structure. 
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Two different fillers were manufactured from Eurocarbon’s commercially available product 

line [34]: one made of a single braid having 28.3 mm2 cross-sectional area (referred to as 

“single braided” in this paper) and one made of eight smaller braids each having 3.6 mm2 

cross-sectional area (28.8 mm2 in total; referred to as “multiple braided” in this paper). These 

correlate with the theoretical 27.5 mm2 cured cross-sectional area of the rolled noodle. The 

latter method was implemented to reduce the resin rich zones and poor compaction of the 

single braid noodle reported in the literature [35]. Hexcel HexFlow® RTM 6 thermoset resin 

[36] was used for the infusion, which has the same 180 °C cure temperature as 8552. After 

removal from the noodle forming tool, the fillers were assembled (Fig. 6) and cured within the 

joint according to Section 2. Porosity measurement with CT scanning was carried out as 

described in the previous section. 

 

Fig. 6. Underside view of the braided fillers before the assembly of the overlaminates and the 

skin: a) single braided b) multiple braided 

4. Results and discussion 

4.1. Manufactured specimens 

Micrographs of the typical cross-sections of the manufactured baseline and proposed fillers 

can be seen in Fig. 7-8. In the baseline joint (Fig. 7), the skin is flat under the filler and its 

geometry is virtually identical to the theoretical one. The measured 0.181 mm ply thickness of 
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the radius is 8% lower than the nominal 0.196 mm of AS4/8552. For detailed discussion on the 

quality of the baseline filler, the authors refer to [19]. 

 

Fig. 7. Micrograph of the manufactured baseline filler 
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Fig. 8. Micrographs of the manufactured fillers: a) PA nonwoven interleaved b) NanoStitch® 

vertical nanotube interleaved c) Xantu.Layr® nonwoven nanofibre interleaved d) 3D printed e) 

chopped UD f) chopped woven g) single braided h) multiple braided 

The PA nonwoven interleaved, NanoStitch® vertical nanotube interleaved and Xantu.Layr® 

nonwoven nanofibre interleaved specimens can be seen in Fig. 8a-c. The PA veil significantly 
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increased the thickness of the interface between the filler and Ply 1, but its thickness is 

inconsistent in some locations due to its nonwoven nature, consisting of randomly oriented 

fibres. At a higher magnification, the inconsistency of the fibre volume ratio can also be seen. 

The NanoStitch® vertical nanotubes are not visible even at 50x magnification with the optical 

microscope. The Xantu.Layr® veils resulted in only 3 μm thickening of the interface based on 

measurements from micrographs, but this value might fall within the variability of the prepreg 

CPT in the radius [19]. The outline of the veils is visible in the right edge of the filler highlighted 

in Fig. 8c. 

Only after cutting the specimens with 3D printed filler (Fig. 8d) was it revealed that in certain 

cross-sections along the length of the filler, the printer incorrectly reproduced the layers and 

gaps appeared inside the middle of the deltoid (bright areas in Fig. 8d as a result of different 

light reflection). It is assumed to be in connection with the code generated for printing, the 

capabilities of the 3D printer used and the printing parameters set up. Achieving higher quality 

should be possible with an industrial grade printer and fine-tuning of the printing parameters. 

Nevertheless, the geometry of the filler surface is satisfactory as the thermoset resin filled the 

uneven surface caused by the discrete steps of the printed layers, ensuring a smooth transition 

of Ply 1 of the overlaminate from the skin to the web. 

The chopped UD and woven fillers can be seen in Fig. 8e-f. The average width of the fillers 

(15.7 mm and 15.6 mm for UD and woven, respectively) were 17% higher compared to the 

baseline case (13.4 mm) and varied across the cut specimens, which is caused by the random 

orientation and location of chips across the length of the filler (Fig. 5). The width was 

measured based on micrographs (e.g. Fig. 8) and is defined as the distance between the 

bottom edges of the filler. The width variability can be reduced with smaller chip size and an 

automated procedure using a closed noodle forming tool. Subsequently to the wider and 
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higher filler, as the filler volume was fixed, the ply thickness was increased in the radius and 

the skin under the filler became non-flat. During manufacturing, the filler forming tool was 

filled up with chips being generally parallel to the skin or rotated along the Z-axis. This resulted 

in a marginally increased resin-rich zone near the top edge of the filler, and lack of chips being 

parallel to the X-Y-plane. The CT scan revealed <0.1% porosity content in both fillers, but this is 

within the boundaries of the maximum of 2.5% allowable void content in aircraft components 

[37]. The largest void had 0.17 mm and it is shown in Fig. 9. Note that the black areas in the 

fillers in Fig. 8g-h) are resin rich pockets and not porous zones. 

 

Fig. 9. CT scan image of a chopped filler with the largest void shown 

The single and multiple braided fillers are shown in Fig. 8g-h. Similarly to the chopped 

concepts, the width of the multiple braided fillers increased (15.7 mm, 17% increase compared 

to baseline), as well as the ply thickness in the radius. Contrarily, the single braided filler had 

superior compaction and retained its geometry (same width as the baseline) with significantly 

less resin-rich areas within it. The reason for this is that the multiple braided fillers contain 8 

individual braids which are less resistant to the applied pressure and resin movement in the 

joint during curing, whereas the single braided fillers have higher integrity and can withstand 
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the acting forces on them more sufficiently. Based on the CT scan analysis, the braided fillers 

did not contain any voids. 

4.2. Test results and failure mechanisms  

Due to the large number of specimens, only one typical load-displacement curve of each 

concept is presented (Fig. 10), and the complete list of initial failure loads can be found in 

Table 1. Micrographs of the failed specimens can be seen in Fig. 11-12. 

 

Fig. 10. Typical load-displacement curves of the experimental tests 

Table 1. Test results. Load-displacement curves of the specimens in bold are shown in Fig. 10. 

Concept ID 
Initial 

failure load 
Avg. 
(SD) 

Diff. 

  [N] [N] [%] 

Baseline 

A1 3907 

4366 
(330) 

- 

A2 4818 

A3 4147 

A4 4235 

A5 4560 

A6 4527 

PA 

IA1 3257 
3257 
(440) 

-25% IA2 2809 

IA3 3687 

NanoStitch® 
N1 4208 4384 

(223) 
0% 

N2 4308 
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N3 4635 

Xantu.Layr® 

X1 4601 
4627 
(136) 

+6% X2 4506 

X3 4775 

3D printed 

P1 2603 
2510 
(278) 

-43% P2 2197 

P3 2730 

Chopped 
UD 

CU1 4507 
4589 
(106) 

+5% CU2 4709 

CU3 4552 

Chopped 
woven 

CW1 4107 
4112 
(343) 

-6% CW2 4457 

CW3 3771 

Single 
braided 

VS1 3924 
3401 

(1118) 
-22% VS2 2052 

VS3 4226 

Multiple 
braided 

VM1 4723 
2510 
(422) 

+2% VM2 3984 

VM3 4705 
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Fig. 11. Micrograph of the failed baseline filler. For interpretation of the load-displacement 

curve see Fig. 10 
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Fig. 12. Micrographs of the failed fillers: a) PA nonwoven interleaved b) NanoStitch® vertical 

nanotube interleaved c) Xantu.Layr® nonwoven nanofibre interleaved d) 3D printed e) 

chopped UD f) chopped woven g) single braided h) multiple braided. For interpretation of the 

load-displacement curves see Fig. 10 



22 
 

Baseline specimens A1-A4 and A6 had similar failure initiation. After the linear load-up stage a 

crack initiated in the radius, causing the first drop in the load-displacement curve (Fig. 11 point 

A). This was followed by either one or more further cracks in the laminate or the crack of the 

filler (Fig. 11 point B). The filler crack propagated from the surface of the filler down to the skin 

and triggered delamination along the surface of the filler and under the filler. The laminate of 

specimen A5 remained intact and its filler cracked first.  

The polyamide interleaved joints all had a filler crack as the first failure event (Fig. 12a, point A) 

at average of 25% lower load than the baseline joints. The reason for this knockdown is 

probably the insufficient infusion of the dry mat by the resin during curing and the subsequent 

porosity near groups of entangled PA fibres. With consistent fibre distribution in the mat and 

lower interface thickness to reduce the amount of resin needed from the prepreg plies to wet 

the dry veil, it is possible that the drop in interface strength could be mitigated. Similarly to the 

baseline joints, the crack propagated down to the skin and caused delamination on the filler 

surface up to the web, but could not trigger delamination immediately under the filler and the 

joint withstood further loading. Finally, the skin gave in (Fig. 12a, point B) and started 

delaminating. However, the improved damage tolerance can be seen in Fig. 10, as the joint 

carried about 2000 N load during skin delamination and absorbed a relatively higher amount of 

energy, whereas most other joints could only take about 500 N following initial failure. There 

were no independent displacement measurements utilised other than the cross-head 

displacement of the Instron machine, which suffers from compliance error. Thus, the absorbed 

energy should not be quantified and the comparison is merely based on visual observation of 

the curves in Fig. 10. 

The NanoStitch® interleaved joints behaved similar to the baseline joints both in terms of 

failure mechanisms (Fig. 12b, point A and B referring to radius laminate and filler crack, 
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respectively) and average initial failure load (<1% difference). Specimens N2 and N3 did not 

achieve a second peak after initial failure. Because the initial failure did not occur in the filler-

laminate surface, the NanoStitch® layer could not alter the failure behaviour here. However, 

the nanotube forest under the filler and across the skin-overlaminate interface did not alter 

the failure mechanism during the delamination of the skin either. To balance the more 

complex manufacturing procedure, a significant improvement would be needed in 

performance to consider this concept as a viable solution. It is also possible that NanoStitch® 

nanotubes work better with toughened resin (such as TC350-1 in [26]), but are not able to 

improve the properties of the 8552 resin used in this work. 

The Xantu.Layr® interleaved specimens reached the highest average initial failure load of all 

proposed concepts (6% higher than baseline, which is significant, based on one-sided T-test 

analysis). The failure mechanisms were similar to the ones occurring in the baseline joints as 

the overlaminate cracked first in case of X1 and X2 specimens (Fig. 12c, point A). However, 

further cracks occurred in the laminate (Fig. 12c, point B), followed by the final filler crack (Fig. 

12c, point C) and sudden drop in load. The X3 specimen failed with the filler crack as the first 

sign of damage initiation. The increased interlaminar strength of the laminate is reflected in 

the increased overall joint strength. Therefore, this solution can be applied in highly loaded 

regions of components where the strength improvement outweighs the marginal increase in 

manufacturing complexity. 

As mentioned in the previous section, the 3D printed fillers suffered from manufacturing 

defects. This was reflected in the results as all three joints failed initially with cracking of the 

filler (Fig. 12d, point A) at 57% lower average initial failure load compared to the baseline case. 

In specimen P1, the laminate remained intact, whereas in P2 and P3 specimens it was 

immediately followed delaminations in the overlaminate. However, because of the high 
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fracture toughness of PEI material, the filler crack could not propagate and reach the skin 

immediately and the joint absorbed more energy before the filler-skin interface failed (Fig. 

12d, point B). Despite the lower strength of the joints, the interface of the 3D printed filler and 

Ply 1 of the overlaminate did not fail in any cases. This proves that the cohesion between the 

thermoplastic PEI and the thermoset 8552 materials is sufficient for structural applications. 

Chopped UD and woven joints initially failed with radius delaminations at 4589 N and 4112 N 

average loads, respectively (Fig. 12e-f, points A). These values correspond to +5% and -6% 

difference compared to the baseline configuration. However, the failure of the chopped fillers 

(Fig. 12e-f, points B) differed from the failure of the rolled noodles. In the latter case, the 

noodle fails because its low transverse tensile strength cannot withstand the loads acting on it 

from the opening mechanism of the radius. The crack then propagates without any significant 

resistance down to the skin. In the case of the chopped fillers, most of the inside surfaces (filler 

side) of Ply 1 in the overlaminate are covered with chips following the curvature of the ply. 

This provides protection from the opening mechanism of the radius, unless the fibre 

orientation of the chip is the same as of a noodle, which is unlikely. Therefore, the crack can 

only initiate at the end of a chip (“chip drop”) where the resin is accumulated such as the one 

highlighted in Fig. 12f. Then the crack propagates along the surfaces of the chips until reaching 

the other side of the filler and delaminating the skin from the flanges. In this manner, the 

orientation and location of the chips define the crack initiation location and the way how the 

crack propagates within the filler. This could be used to change the failure behaviour of the 

filler, but the level of control over the chip orientation and location is limited in practice. 

Subject to the achievable level of automated manufacturing procedure, chopped fillers are 

feasible solutions to replace the currently utilised rolled UD noodles. 
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In all six cases of the single and multiple braided specimens, the joints failed in the filler (Fig. 

12g-h, points A) and the overlaminate remained undamaged. The average initial failure loads 

were 3401 N and 4471 N respectively, resulting in -22% and +2% difference compared to the 

baseline joints. It is notable that VS2 specimen failed at 2052 N, which is the lowest initial 

failure load of the 30 specimens tested, and VM2 failed at 3984 N, which also significantly 

differs from the average value. These can be accounted for the variability of cross section 

across the length of the noodle, leading to alteration of fibre-rich and resin-rich zones on the 

filler surface in different cross sections. Due to the non-0° orientation of the braided fibres, the 

crack could not propagate downwards directly and had to change its direction several times 

while developing several smaller cracks. In some cases, the skin delamination was delayed by 

almost horizontal cracking of the bottom of the filler (Fig. 12g, until point B). The main 

difference between the single and multiple braided specimens was the location of the crack 

initiation in the filler. In the first case, it started higher and closer to the top edge of the 

deltoid, and in the latter case, it started at a similar location as in the case of the rolled noodle. 

Most probably, this is because the multiple braided fillers have fibres oriented closer to 0° than 

the fibres in the single braided filler. As the interface of the filler and Ply 1 did not fail, it is 

demonstrated that curing together an infusion resin (RTM6) and prepreg resin (8552) can 

provide sufficient strength in the structure. With the reduced cost of the proposed 

manufacturing procedure, resin infused braided fillers are a highly favourable choice to replace 

conventional rolled noodles. 

5. Conclusions 

Eight novel filler concepts were introduced to increase the strength of composite out-of-plane 

joints or decrease the manufacturing cost and time of their filler. The new solutions were 
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manufactured as part of a T-joint, tested under tensile (pull-off) loading and compared with 

the conventional rolled UD filler (“baseline”) material. 

The results demonstrated that polyamide nonwoven interleafs can increase the damage 

tolerance of the structure even if manufactured as part of a prepreg laminate, but they reduce 

the strength of the interface at the same time. NanoStitch® vertical nanotubes did not alter 

the behaviour of the joint in this specific application. Xantu.Layr® nonwoven nanofibre veils 

increased the initial failure load of the joints by 6% and can be used as a viable solution in 

highly loaded components. 

3D printed fillers suffered from manufacturing defects and subsequent drop in strength, but 

showed that the cohesion between the thermoplastic and thermoset resins is sufficiently 

strong and the weakest link in hybrid components is not the bimaterial interface. With the 

application of high strength, high temperature and epoxy compatible thermoplastic resins, 3D 

printed fillers with improved manufacturing quality and extruded or injection moulded fillers 

can replace the labour intensive rolled noodles.  

Fillers manufactured from chopped unidirectional and woven chips yielded essentially the 

same strength as the baseline filler (+5% and -6% in comparison). With further development in 

the manufacturing procedure, such as using waste prepreg material and automated cutting 

and injection moulding of the chips, this concept can become a high production rate 

alternative of currently used methods. 

Finally, braided fillers consisting of resin infused single and multiple braids cured together with 

the prepreg laminate of the T-joint were manufactured and tested. While the single braided 

concept failed at 22% lower load than the baseline, the multiple braided filler was 2% stronger. 

Moreover, all specimens failed without delaminating the interface of the filler and the 

laminate, which demonstrates that the different infusion and prepreg resins formed a strong 
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bond. This means that resin infused fillers can not only match the strength of the 

unidirectional rolled fillers, but also significantly reduce the manufacturing cost and time of 

out-of-plane joints. 

The new solutions demonstrated in this paper can be used to increase the strength, reduce the 

cost and reduce the manufacturing time of composite out-of-plane joints. In addition, the 

radical concept of hybridising thermoplastic and thermoset resins, and different type of 

thermoset resins within the same structure and in the same cure cycle opens up a wide range 

of new applications involving the combination of thermoplastic, infused braided, 3D woven 

and thermoset prepreg materials. 
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