

Citation for published version: Aubert, S, Barnes, JD, Aguilar-Farias, N, Cardon, G, Chang, CK, Delisle Nyström, C, Demetriou, Y, Edwards, L, Emeljanovas, A, Gába, A, Huang, WY, Ibrahim, IAE, Jürimäe, J, Katzmarzyk, PT, Korcz, A, Kim, YS, Lee, EY, Löf, M, Loney, T, Morrison, SA, Mota, J, Reilly, JJ, Roman-Viñas, B, Schranz, N, Scriven, J, Seghers, J, Skovgaard, T, Smith, M, Standage, M, Starc, G, Stratton, G, Takken, T, Tammelin, T, Tanaka, C, Thivel, D, Tyler, R, Williams, A, Wong, SHS, Zembura, P & Tremblay, MS 2018, 'Report Card Grades on the Physical Activity of Children and Youth Comparing 30 Very High Human Development Index Countries', *Journal of Physical Activity & Health*, vol. 15, no. S2, pp. S298-S314. https://doi.org/10.1123/jpah.2018-0431

```
DOI:
10.1123/jpah.2018-0431
```

Publication date: 2018

Document Version Peer reviewed version

Link to publication

This is the authors' accepted manuscript of an article published in final form in Journal of Physical Activity and Health, Volume 15, issue S2. The Version of Record is available via: https://doi.org/10.1123/jpah.2018-0431. Copyright (C) 2018 Human Kinetics.

University of Bath

Alternative formats

If you require this document in an alternative format, please contact: openaccess@bath.ac.uk

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

1	Report Card Grades on the Physical Activity of Children and Youth Comparing 30 Very High
2	Human Development Index Countries
3	Original Research
4	Key words
5	Children physical activity, sedentary behavior, international comparison, Report Card, Global Matrix
6	Abstract word count: 198 words
7	Manuscript word count: 8,320 words
8	Date of manuscript submission: August 3rd, 2018
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	

25 Abstract

26 Background

- 27 To better understand the childhood physical inactivity crisis, Report Cards on physical activity of children
- and youth were prepared concurrently in 30 very high HDI countries. The aim of this article was to
- 29 present, describe, and compare the findings from these Report Cards.

30 Methods

31 The Report Cards were developed using a harmonized process for data gathering, assessing, and assigning

- 32 grades to ten common physical activity indicators. Descriptive statistics were calculated after converting
- 33 letter grades to interval variables, and correlational analyses between the ten common indicators were
- 34 performed using Spearman's rank correlation coefficients.

35 Results

36 A matrix of 300 grades was obtained with substantial variations within and between countries. Low

37 grades were observed for behavioral indicators, and higher grades were observed for sources of influence

38 indicators, indicating a disconnect between supports and desired behaviors.

39 Conclusion

40 This analysis summarizes the level and context of the physical activity of children and youth among very

41 high HDI countries, and provides additional evidence that the situation regarding physical activity in

42 children and youth is very concerning. Unless a major shift to a more active lifestyle happens soon, a high

- 43 rate of non-communicable diseases can be anticipated when this generation of children reaches adulthood.
- 44

45

- 46
- 47
- 48

- 50 List of authors
- 51 Salomé Aubert, Healthy Active Living and Obesity Research Group, CHEO Research Institute, Ottawa,
- 52 Ontario, Canada; saubert@cheo.on.ca
- 53 Joel D. Barnes, Healthy Active Living and Obesity Research Group, CHEO Research Institute, Ottawa,
- 54 Ontario, Canada; jbarnes@cheo.on.ca
- 55 Nicolas Aguilar-Farias, Department of Physical Education, Sports and Recreation, Universidad de La
- 56 Frontera, Chile; UFRO Activate Research Group. Chile; nicolas.aguilar@ufrontera.cl
- 57 Greet Cardon, Ghent University, Department of Movement and Sports Sciences, Ghent, Belgium;
- 58 greet.cardon@ugent.be
- 59 Chen-Kang Chang, Department of Sport Performance, National Taiwan University of Sport, Taichung,
- 60 Taiwan; <u>wspahn@seed.net.tw</u>
- 61 Christine Delisle Nyström, Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge,
- 62 Sweden; christine.delisle.nystrom@ki.se
- 63 Yolanda Demetriou, Department of Sport and Health Sciences, Technical University of Munich, Munich,
- 64 Germany; <u>volanda.demetriou@tum.de</u>
- 65 Lowri Edwards, Applied Sport Technology Exercise and Medicine Research Centre, Swansea University,
- 66 Swansea, Wales, UK; L.C.Edwards@swansea.ac.uk
- 67 Arunas Emeljanovas, Lithuanian Sports University, Kaunas, Lithuania; arunas.emeljanovas@lsu.lt
- 68 Aleš Gába, Faculty of Physical Culture, Palacký University Olomouc, Olomouc, Czech Republic;
- 69 <u>ales.gaba@upol.cz</u>
- 70 Wendy Y. Huang, Department of Sport and Physical Education, Hong Kong Baptist University, Hong
- 71 Kong, China; wendyhuang@hkbu.edu.hk

- 72 Izzeldin A. E. Ibrahim, Aspetar Orthopedic and Sport Medicine Hospital, Doha, Qatar;
- 73 <u>Izzeldin.Ibrahim@aspetar.com</u>
- 74 Jaak Jürimäe, Institute of Sport Sciences and Physiotherapy, Faculty of Medicine, University of, Tartu,
- 75 Tartu, Estonia; jaak.jurimae@ut.ee
- Peter T. Katzmarzyk, Pennington Biomedical Research Center, Baton Rouge, Louisiana, U.S;
 peter.katzmarzyk@pbrc.edu
- 78 Agata Korcz, Department of Didactics of Physical Activity, Poznań University of Physical Education,
- 79 Poznań, Poland; korcz@awf.poznan.pl
- 80 Yeon Soo Kim, Department of Physical Education, Seoul National University; Seoul National University
- 81 Institute of Sports Science; Seoul, Republic of Korea; <u>kys0101@snu.ac.kr</u>
- 82 Eun-Young Lee, School of Kinesiology and Health Studies, Queen's University, Kingston, Ontario,
- 83 Canada; eunyoung.lee@queensu.ca
- 84 Marie Löf, Department of Biosciences and Nutrition, Karolinska Institutet, Group MLÖ, Sweden;
- 85 Department of Medicine and Health, Linköping University, Sweden; Marie.Lof@ki.se
- 86 Tom Loney, College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences,
- 87 Dubai, United Arab Emirates; tom.loney@mbru.ac.ae
- 88 Shawnda A. Morrison, Faculty of Health Sciences, University of Primorska, Izola, Slovenia;
 89 <u>shawnda.morrison@fvz.upr.si</u>
- 90 Jorge Mota, Centro de Investigação em Atividade Física Saúde e Lazer (CIAFEL-FADEUP), University
- 91 of Porto, Porto, Portugal; jmota@fade.up.pt
- 92 John J. Reilly, University of Strathclyde, Physical Activity for Health Group, Glasgow, Scotland;
- 93 john.j.reilly@strath.ac.uk

- 94 Blanca Roman-Viñas, Nutrition Research Foundation, Barcelona, Spain; School of Health and Sport
- 95 Sciences (EUSES), Universitat de Girona, Salt, Spain; CIBER Physiopathology of Obesity and Nutrition
- 96 (CIBEROBN), Instituto de Salud Carlos III, Madrid, Spain; <u>dietmed@fin.pcb.ub.es</u>
- 97 Natasha Schranz, Alliance for Research in Exercise, Nutrition and Activity, School of Health Sciences,
- 98 University of South Australia, Australia; natasha.schranz@mymail.unisa.edu.au
- 99 John Scriven, Jersey Sport Foundation, Jersey, Channel Islands, Great Britain;
 100 john.scriven@jerseysportfoundation.org.je
- 101 Jan Seghers, KU Leuven, Department of Movement Sciences, Leuven, Belgium;
 102 jan.seghers@kuleuven.be
- 103 Thomas Skovgaard, Research and Innovation Centre for Human Movement and Learning and Research
- 104 Unit for Active Living, Department of Sports Science and Clinical Biomechanics, University of Southern
- 105 Denmark, Odense, Funen, Denmark; tskovgaard@health.sdu.dk
- Melody Smith, School of Nursing, The University of Auckland, Auckland, New Zealand;
 melody.smith@auckland.ac.nz
- 108 Martyn Standage, Centre for Motivation and Health Behaviour Change, Department for Health,
- 109 University of Bath, Bath, United Kingdom; <u>m.standage@bath.ac.uk</u>
- 110 Gregor Stare, Faculty of Sport, University of Ljubljana, Ljubljana, Slovenia; gregor.stare@fsp.uni-lj.si
- 111 Gareth Stratton, Applied Sport Technology Exercise and Medicine Research Centre, Swansea University,
- 112 Swansea, Wales, UK; <u>g.stratton@swansea.ac.uk</u>
- 113 Tim Takken, Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht, The
- 114 Netherlands; <u>t.takken@umcutrecht.nl</u>

- 115 Tuija Tammelin, LIKES Research Centre for Physical Activity and Health, Jyväskylä, Finland;
- 116 tuija.tammelin@likes.fi
- 117 Chiaki Tanaka, Division of Integrated Sciences, J. F. Oberlin University; c-tanaka@obirin.ac.jp
- 118 David Thivel, Laboratory of metabolic adaptations to exercise under physiological and pathological
- 119 conditions (AME2P), Clermont Auvergne University, research center for human nutrition (CRNH
- 120 Auvergne); thiveldavid@hotmail.com
- 121 Richard Tyler, Applied Sport Technology Exercise and Medicine Research Centre, Swansea University,
- 122 Swansea, Wales, UK; <u>R.P.O.Tyler.837039@swansea.ac.uk</u>
- 123 Alun Williams, Lifelong Learning Manager, Guernsey Education Services, Sir Charles Froissard House,
- 124 St Peter Port Guernsey; <u>alun.williams@gov.gg</u>
- 125 Stephen H.S. Wong, Department of Sport and Physical Education, The Chinese University of Hong
- 126 Kong, Hong Kong, China; <u>hsswong@cuhk.edu.hk</u>
- 127 Paweł Zembura, Robert B. Zajonc Institute of Social Science, Social Challenges Unit, University of
- 128 Warsaw, Warsaw, Poland; p.zembura@uw.edu.pl
- 129 Mark S. Tremblay, Healthy Active Living and Obesity Research Group, CHEO Research Institute,
- 130 Ottawa, Ontario, Canada; <u>mtremblay@cheo.on.ca</u>
- 131 Corresponding author: Mark S. Tremblay, Healthy Active Living and Obesity Research Group, CHEO
- 132 Research Institute, 401 Smyth Rd, Ottawa, Ontario, K1H 8L1, Canada; mtremblay@cheo.on.ca
- 133
- 134
- 135
- 136

137 Introduction

A compelling body of empirical work shows moderate to high levels of physical activity to be associated with a lower risk of cardiovascular disease and all-cause mortality among adults.¹ Conversely, physical inactivity has been recognized by some as "the biggest public health problem of the 21st century".^{2,3} Among school-aged children and adolescents, meeting physical activity guidelines is associated with positive physical, psychological, social, and cognitive health indicators^{4,5} while physical inactivity, defined as not meeting physical activity guidelines, is associated with adverse physical, mental, social and cognitive health outcomes.⁴⁻⁷

145

146 The Human Development Index (HDI) is a composite index, ranging from zero to one, calculated using 147 education, life expectancy, and per capita income.⁸ This index was created by the United Nations 148 Development Programme to rank countries on a scale of human development conceptualized in terms of 149 capabilities of humans within the countries to function.⁹ To be classified as very high HDI, the score of a country must be equal or superior to 0.80. Among children living in countries categorized as being very 150 151 high by the HDI, moderate-to-vigorous intensity physical activity (MVPA) was positively related to 152 markers of cardiovascular health10-13 and self-reported health-related quality of life.14 Physical inactivity 153 has been estimated to be responsible for at least 10% and 9% of all-cause mortality in North-American and in European countries, respectively.¹⁵ Furthermore, very high-income countries bear the largest 154 proportion of economic burden of physical inactivity worldwide (81% of health-care costs and 60% of 155 indirect costs).16 However, the majority of children17-21 and youth19-25 do not meet the current 156 recommendations of 60 minutes of MVPA per day26 in very high HDI European and North American 157 158 countries and regions. Similar findings were observed among children and/or adolescents from other very high HDI countries or regions such as Australia,²⁷ Chile,²⁸ Chinese Taipei (Taiwan),²⁹ Hong Kong, ³⁰ 159 160 Japan,³¹ South Korea,³² Qatar,³³ and United Arab Emirates.^{33–35} Very high HDI countries share similar characteristics in terms of education, life expectancy and income; however, differences also exist 161

162	geographically, politically, culturally, religiously, and environmentally that may influence physical
163	activity behavior differently across the very high HDI countries. Cooper et al.36 found that there was
164	substantial between-country variation in objectively measured MVPA in the International Children's
165	Accelerometry Database, even between apparently similar countries, and concluded that further research
166	is needed to explore environmental and sociocultural explanations for these differences.

167

168 To develop a better understanding of childhood physical activity and inactivity across countries, the first 169 Global Matrix (Global Matrix 1.0) of Report Card grades on physical activity was launched in 2014.³⁷ Report Cards, based on the Canadian Report Card model,³⁸ were developed by research teams from 15 170 171 countries (including eight very high HDI countries) using a harmonized process for data gathering, assessing, and assigning grades.³⁷ For each participating country, grades were assigned to nine common 172 173 physical activity indicators: Overall Physical Activity, Organized Sport Participation, Active Play, Active 174 Transportation, Sedentary Behaviors, Family and Peers, School, Community and the Built Environment, 175 and Government Strategies and Investments. Global Matrix 1.0 grades provided new information upon 176 which researchers, advocates, practitioners, and policy-makers could reflect and derive inspiration for children's physical activity research projects and promotion activities around the world.37 177

178

Building on the Global Matrix 1.0, investigators from each participating country committed to repeat and further develop the Global Matrix initiative along with teams of researchers from 23 new countries. The Global Matrix 2.0, which was released in 2016 in Bangkok, presented a comprehensive summary of the physical activity behaviors and sources of influence indicators from 38 countries (including 24 very high HDI countries).³⁹ Findings suggested the presence of a complex variety of strengths and limitations across the participating countries, with some universal patterns emerging when comparing countries by continent, HDI, or income inequality. For example, a strong positive correlation was found between the

186	source of influence grades (combining the grades from Family and Peers, School, Community and the
187	Built Environment, and Government Strategies and Investments) and HDI.39

188

189 In 2017, the Active Healthy Kids Global Alliance⁴⁰ (AHKGA) called for more countries to participate in 190 the Global Matrix 3.0. Forty-nine countries registered and followed the harmonized steps to develop their country's Report Card. Out of the 49 participating countries, 30 (61%)were very high HDI countries, 191 192 from five different continents: Asia (n = 6), Europe (n = 19), North America (n = 2), Oceania (n = 2) and 193 South America (n = 1). The aim of this article is to present, describe, and compare the Report Card grades from the very high HDI countries and regions participating in the Global Matrix 3.0: Australia, Belgium 194 195 (Flanders), Canada, Chile, Chinese Taipei (Taiwan), Czech Republic, Denmark, England, Estonia, 196 Finland, France, Germany, Guernsey, Hong Kong, Japan, Jersey, Lithuania, Netherlands, New Zealand, 197 Poland, Portugal, Qatar, Scotland, Slovenia, South Korea, Spain, Sweden, United Arab Emirates, United States, and Wales. Companion papers published in this issue of the Journal of Physical Activity and 198 199 Health present the collective results from the low and medium HDI countries, and the high HDI countries.

200

201 Methods

202 The AHKGA distributed an open call through established networks for interested countries and opened 203 registration for the Global Matrix 3.0 in April, 2017. As a result, 49 countries from five different 204 continents fully participated in the Global Matrix 3.0. Workgroups consisting of experts and stakeholders 205 were established in each country to gather the highest quality and most recently published and 206 unpublished evidence. The workgroups critically appraised the available evidence and reported on 10 207 common indicators (Overall Physical Activity, Organized Sport and Physical Activity, Active Play, Active Transportation, Sedentary Behaviors, Physical Fitness, Family and Peers, School, Community and 208 209 the Built Environment, and Government) for school-aged children and youth (~5-17 years-old). Through

a harmonized and transparent Report Card development process, each country's workgroup compiled the available evidence from local, national or international studies, national surveys and official reports, and then synthesized findings and reached consensus for the grading of each indicator. Full details of the Report Card development process based on the Canadian Report Card model³⁸ have been previously described and the detailed methods for the Global Matrix 3.0 are described in a companion paper published in this issue of the *Journal of Physical Activity and Health*.⁴¹

216 For each of the 49 registered countries, up to three joint Report Card leaders were charged with forming a 217 multidisciplinary research workgroup (including physical activity experts, stakeholder groups, and 218 communication specialists) to manage the Report Card project, and to ensure the effective communication 219 between AHKGA and the Report Card team. The workgroups identified and finalized the list of indicators 220 to be graded (i.e., the ten common indicators and potential additional ones that would be included in their 221 national Report Card but not in the Global Matrix 3.0), and compiled potentially relevant datasets and 222 documents that would be used to inform the grades. Countries were advised to consider and synthesize 223 the best available evidence from approximately the past five years for each indicator. Common benchmarks, presented in Table 1, and a common grading scheme, shown in Table 2, were provided by 224 225 the AHKGA to the 49 Report Card workgroups. Experts in each country evaluated the compiled evidence 226 and reached consensus on the grade assigned for each indicator. Draft country Report Card grades were 227 submitted along with their rationale and were audited by the members of the AHKGA Executive 228 Committee to ensure that the grades were consistent with the harmonized benchmarks and grading scheme. The Report Card leaders were also asked to report details concerning the datasets used to inform 229 their overall physical activity grade (i.e., subjective or objective measures, representativeness, instrument 230 231 used, age range, and sample size).

For analysis purposes, the 49 participating countries and regions were divided into three categories using the United Nations' HDI groupings (low or medium, high, and very high). The results and analyses presented in this article are on the 30 very high HDI participating countries.

235 Descriptive statistics (average grade and standard deviation) were calculated after converting categorical 236 variables (letter grades) to interval variables (see corresponding numbers in Table 2), and the incomplete 237 grades (INC) converted into "No Grade" which was treated as a missing value. Averages were calculated 238 from the interval values and the floor (for a given value, the greatest integer less than or equal to the 239 average value) was converted back to a letter grade. Three scores were computed for analysis: 1) Overall 240 score, 2) Behavioral score (Overall Physical Activity, Organized Sport and Physical Activity 241 Participation, Active Play, Active Transportation, and Sedentary Behaviors), and 3) Sources of influence 242 score (Family and Peers, School, Community and the Built Environment, and Government). Scores for 243 each group of indicators were calculated by summing the relevant interval data. INC grades were removed and the scores were re-weighted accordingly. Categorical variables (letter grades) were grouped 244 into one of four levels ("A-B", "C", "D-F", and "No grade") based on the overall score. These categories 245 246 were then used to rank countries by letter grade/score and category level in scatter plot data 247 visualizations. Correlational analyses between the ten common indicators were performed using 248 Spearman's rank correlation coefficients. Pairwise deletion was used to treat missing data (incomplete grades) instead of other techniques (e.g., list-wise deletion) in order to minimize the number of cases 249 excluded from the analysis. All statistical analyses were performed using R version 3.4.1 (The R 250 251 Foundation for Statistical Computing, Vienna, Austria). Several packages were loaded to extend base R including corrplot,⁴² ggplot2,⁴³ UpSetR,⁴⁴ and VIM.⁴⁵ In addition, descriptive statistics of the qualitative 252 253 information regarding the measurement of overall physical activity were performed.

254

255 Results

256 The sociodemographic characteristics of the 30 very high HDI countries are presented in Table 3. The

HDI scores ranged from 0.840 for United Arab Emirates to 0.939 for Australia. Chile was the country

258 with the lowest Gross National Income per capita, the highest Gini Index (highest income inequality), and

the highest child poverty rate (0.225). Qatar had the highest Gross National Income per capita, the lowest

Commented [AS1]: Should be Jersey

260 relative public health expenditure and the highest Gender Inequality Index. Slovenia had the lowest Gini 261 Index (least income inequality) and the lowest percentage of urban population (49.8%). The life 262 expectancy at birth was above 80 years for most of the countries (23 countries, 77%), with a maximum of 263 84.2 years for Hong Kong. Lithuania had a notably lower life expectancy of 73.5 years compared to other 264 countries. The mean years of schooling ranged from 8.9 years in Portugal to 13.3 years in the United 265 Kingdom nations (England, Scotland, and Wales). Finally, population density ranged from 3.2 266 people/km² of land area for Australia, to 6987.2 people/km² of land area for Hong Kong. In summary, 267 despite all 30 countries being within the very high HDI category, countries varied substantially in other 268 characteristics.

The 30 country grades for the 10 core Report Card indicators (300 grades or INC in total) and the average 269 grades for each country are shown in Table 4, and the corresponding descriptive information are 270 271 presented in Table 5. In total, 233 letter grades and 67 INC grades were assigned (Table 4). The country 272 with the highest average grade was Slovenia with "B", and the countries with the lowest average grade were Chile and the United States with "D". All 30 countries assigned a grade to Sedentary Behaviors, 29 273 274 countries (97%) to Overall Physical Activity, and 28 countries (93%) to Organized Sport and Physical 275 Activity and to Active Transportation. Active Play was the indicator with the largest number of INC 276 grades (n = 20), followed by Physical Fitness (n = 13), and Family and Peers (n = 13). The indicator with 277 the highest average grade was Community and the Built Environment with "B-", while the indicator with 278 the lowest average grade was Overall Physical Activity with "D-". An average grade of "D+" was obtained for the behavioral indicators combined, "C+" for the source of influence indicators combined, 279 280 and "C-" was the overall average for the 233 grades. Qatar's Report Card workgroup decided not to evaluate Active Transportation and considered it "not applicable (N/A)" because of unsafe road 281 conditions and the hot climate during most times of the year.⁴⁶ Correlation analyses showed that there 282 were no relationships between the Overall Physical Activity grade and any of the other nine core indicator 283 284 grade (results not shown). Frequency plots illustrating the distribution of the overall 233 grades as well as

12

the behavioral and the sources of influence indicators are presented in Figure 1A and Figure 1B, respectively. A normal distribution of the letter grades is evident in both Figures 1A and 1B, with the mode being "C" for the 233 letter grades overall, "D" for the behavioral indicators, and "B" for the sources of influence indicators.

289 A plot for the overall score for each country estimated from the 10 indicators is presented in Figure 2, and 290 the behavioral and the source of influence scores in Figure 3 and Figure 4, respectively. For the overall score, Slovenia ranked first while Chile ranked 30th (see more rankings in Figure 2). In terms of the 291 292 grading completion, the United Arab Emirates had only four graded indicators that were included in the 293 calculation of this score while four other countries (Slovenia, Finland, Czech Republic and Canada) had 294 all 10 indicators graded. For the behavioral score, Japan ranked first while Estonia ranked 30th (see more rankings in Figure 3). The United Arab Emirates had only two out of five indicators, and Japan and Qatar 295 296 only had three graded indicators that were included in the calculation of the behavioral score. Similar to 297 the overall score, Slovenia also ranked first for the sources of influence score while Guernsey, with only one out of four graded indicators available, ranked 30th (see more rankings in Figure 4). 298

299 Finally, the description of the data sources used to inform the Overall Physical Activity grade for each 300 country (except for Japan that had an INC) are presented in Supplemental File 1. In total, 87 surveys or studies informed the grades of the very high HDI countries, representing a total sample size of 1,005,989 301 302 children and youth. A total of 21 surveys/studies used an objective measurement of physical activity while 66 used a subjective method, mostly via self-administered questionnaires. Out of 21 surveys/studies 303 304 that measured physical activity objectively, 20 used accelerometry and one study used pedometry. A minimum wear time for accelerometer ranged between 3 to 7 consecutive days, and nine different 305 306 accelerometer cut-points were applied for analysis across 20 surveys/studies with the most commonly used cut-points (n = 8) from Evenson et al.⁴⁷ Regarding the subjective measurement of physical activity, 307 308 survey-specific questionnaires were used in a significant number of surveys (n = 35), followed by original 309 or adapted versions of the Health Behaviour in School-Aged Children questionnaire (n = 14), uniquely in

310 European countries), the Global School-based Student Health Survey questionnaire (n = 5), the Youth 311 Risk Behavior Surveillance System questionnaire (n = 4), the International Physical Activity 312 Questionnaire (n=3), and others (n=5).

313

314 Discussion

315 The objective of this paper was to present, describe, and compare the Report Card grades from the 30 316 very high HDI countries and nations participating in the Global Matrix 3.0. A wide range of grades was observed for most indicators across countries. These 30 countries are geographically distributed across 317 Asia, Europe, North America, Oceania, and South America and have very different climatic, geographic, 318 319 demographic, and cultural characteristics. Despite these contextual differences, most of these countries 320 shared concerning low grades for Overall Physical Activity and Sedentary Behaviors. No country was 321 consistently leading nor falling behind the others across the 10 common indicators, however some 322 countries showed greater or less success than others. The characteristics of the most and the least successful countries are discussed below, followed by a discussion of the findings for each indicator, and 323 324 an integrated discussion of the findings including the strengths and limitations of this study.

325

326 Most successful countries

Slovenia had sufficient data to inform the 10 indicators and obtained the best grades for Overall Physical Activity ("A-"), Family and Peers ("B+"), and Government ("A"), as well as on average ("B"); and shared the best grades for Sedentary Behaviors with Spain ("B+"), and for School ("A") with Finland and Portugal. A notable feature of Slovenia is the importance of sport for the culture of this almost 30-year old country as "Slovenes tend to view sports as an effective tool in fostering national identity among citizens and making successful global identity claims".⁴⁸ Every April since 1987, a national school-based surveillance system of physical fitness (named *Slofit*) takes place, targeting the majority of Slovenian

school children and youth aged 6 to 19 years.⁴⁹ Negative trends in motor skills and physical fitness were observed for over two decades in Slovenia, but since 2011, these trends has been reversed after the implementation of a health-oriented physical activity intervention program, which offers children two (optional) additional hours of physical activity per week.⁵⁰ The estimated proportion of Slovenian children and youth meeting the recommended levels of daily physical activity is now high (over 80%), and this encouraging outcome seems to be the result of the collective support for childhood physical activity from the government, the educational system, and the parents themselves.⁵¹

341 The next two most successful countries were Denmark and Japan with an average grade of "B-". The 342 positive result for these two countries should be interpreted with caution as both had "INC" grades for some indicators. Active Play, Physical Fitness, and Family and Peers for Denmark, and Overall Physical 343 Activity and Active Play for Japan were not graded due to the lack of data. Nonetheless, Denmark was the 344 345 country with the best grade for Organized Sport and Physical Activity ("A-"), and also obtained a grade of "A-" for both School and Government indicators. Sport is an important part of the Danish culture, and 346 347 considered important not only for individual and population health, but also in relation to issues such as social inclusion and community cohesion.⁵² Despite Denmark performing rather well on the strategic and 348 349 political levels, low grades were attributed to Overall Physical Activity ("D-") and Sedentary Behaviors ("D+"), indicating an implementation gap between the governmental and individual levels.53 350

351 Japan had the best grades for Active Transportation ("A-") and Physical Fitness ("A"), and had no grades lower than "C-". In fact, Japan has a highly established "walking to school practice" that has been 352 353 implemented since the School Education Act enforcement order, enacted in 1953, stating that public elementary schools should be sited within no more than 4 kilometers, and for public junior high schools 354 355 no more than 6 kilometers from the student's home. This policy is still successful today at promoting active transportation among Japanese children and youth.54 The Physical Fitness grade was assigned 356 357 based on the performance of Japanese children and youth on the 20-meter shuttle run test. On average, Japanese children were in the 90th percentile,55 based on age- and sex-specific international normative 358

359	data.56 The Organized Sport and Physical Activity participation (graded "B-") and the favorable School
360	environment (graded "B+") may explain this high level of physical fitness; however, this is speculative
361	and more research is necessary. It was observed that only a minority of time in physical education classes
362	was spent in MVPA (27.3%/45 min/class) in Japanese primary school students.57

363 *Least successful countries*

364 Chile and the United States were the two countries with the lowest average grade: "D". They were 365 followed by Guernsey, Jersey, Scotland, South Korea, United Arab Emirates, and Wales, who obtained an 366 average grade of "D+". Chile had the lowest grades for Active Transportation ("F"), Family and Peers ("F"), and shared the lowest grades for Organized Sport and Physical Activity with Taiwan ("D-"), and 367 for Physical Fitness with Canada, Hong Kong and Jersey ("D"). In Chile's first Report Card (2016), all 368 369 indicators had low grades, and data from different surveys indicated that there were consistent disparities 370 across genders, socioeconomic status, and school types.⁵⁸ In 2018, Chile's grades remained low in 371 comparison with the first Report Card in 2016 but progress was made on environmental and policy 372 aspects,⁵⁹ raising hope that these improvements will positively affect behavioral indicators in the future.

373 The low average grade of the United States should be interpreted carefully because three indicators were 374 assigned an "INC" grade: Active Play, Family and Peers, and Government. The United States shared the 375 lowest grades with the United Arab Emirates for School ("D-"), and the Community and the Built 376 Environment ("C") with England, Jersey, Lithuania, and Poland. Overall, none of the indicators were graded above "C" in the United States. This is the third Report Card for the United States, and the grade 377 378 for Overall Physical Activity ("D-") remained consistent with the 2014 and 2016 Report Card.^{60,61} 379 Similarly to Chile, major disparities in physical activity participation across gender, race/ethnicity, age, 380 and socioeconomic status were observed.62

381

382 Overall Physical Activity

383 Among the 30 very high HDI countries, only Japan assigned an "INC" grade for Overall Physical 384 Activity. The grades ranged from "F" to "A-" for this indicator; however Slovenia was the only country with a "good" grade ("A-"), and all the other countrys' grades fell between "F" and "C". Five countries 385 received an "F" (Flanders, Scotland, South Korea, Taiwan, and the United Arab Emirates), four countries 386 387 assigned "C" grades (England, Hong Kong, Lithuania, and Netherlands), and all the remaining countries 388 had a "D-", "D", or "D+". The comparison and interpretation of the Overall Physical Activity grades 389 should be conducted carefully given the important variation in the methods used to measure Overall 390 Physical Activity between the countries, as seen in Supplemental File 1. In fact, objective data were used 391 in 13 of 29 countries with an Overall Physical Activity letter grade, and subjective data in 27 countries (11 countries combined subjective and objective data to inform their Overall Physical Activity indicator). 392 In addition, even among the subjective or the objective data, the methods differed largely in terms of 393 394 instruments, analysis, age range, sample size, and representativeness of samples.

395 The correlational analyses showed that there was no relationship between Overall Physical Activity, and 396 the physical activity related indicators (Organized Sport and Physical Activity, Active Play, and Active Transportation). For example, only 56% of children and 33% of adolescents met the international physical 397 398 activity recommendations in the Netherlands despite a high level of Organized Sport and Physical Activity, Active Play, and Active Transportation (graded "B", "B", and "B-", respectively).63 A similar 399 400 pattern was observed in Belgium (Flanders), Denmark, Scotland, South Korea and Spain where Overall Physical Activity was graded "F" or "D/D-" despite the fact that grades between "A" and "C" were 401 assigned to Organized Sport and Physical Activity, Active Play, and Active Transportation (note: an 402 403 "INC" grade was assigned to Active Play for Flanders, Denmark, Scotland, and South Korea).^{53,64-67} The opposite situation was observed in Slovenia where Overall Physical Activity was graded "A-", while 404 Organized Sport and Physical Activity, Active Play and Active Transportation were graded "C+", "D", 405 and "C", respectively. 406

407 The absence of a relationship between Overall Physical Activity and other behavioral indicators can 408 potentially be explained by the aforementioned differences in methods used to measure these indicators 409 and the diversity of benchmarks between countries. The recommended benchmark for physical activity 410 was "% of children and youth [...] who accumulate at least 60 minutes MVPA per day on average, or % 411 of children and youth meeting the guidelines on at least four days a week (when an average cannot be 412 estimated)" (Table 1). The available data in each country did not necessarily allow them to use either of 413 these benchmarks strictly when estimating the prevalence of physically active children and youth in their 414 sample. For example, in France, a "high level of physical activity" corresponded to engage in physical 415 activity five or more days a week, and the regular use of active transportation, for 6-10 year olds (reported by the parents); and practicing a MVPA at least five days a week for 11-17 year olds (self-reported).⁶⁸ 416 While in England's 2018 Report Card, the percentage of children and youth accumulating at least one 417 hour of MVPA seven days a week was evaluated.⁶⁹ In addition, among the countries where objective 418 419 methods were used to measure physical activity, the estimated number of children meeting the physical 420 activity guidelines could also have been significantly affected by the cut-off point that defines the count per minute threshold for MVPA.70 Although the majority of studies included in Global Matrix 3.0 used 421 the Evenson cut-off point,47 several studies used different ones. For example, the Freedson cut-off point71 422 423 was used in Hong-Kong, while the Puyau cut-off point⁷² was used in Canada (Supplemental File 1).

424 Notwithstanding the presented methodological issues across countries, 29 out of 30 very high HDI countries assigned a letter grade to the Overall Physical Activity indicator, and for 28 of them, this grade 425 was between "C" and "F", with an average of "D-". These results are consistent with the current 426 literature. A systematic review of physical activity in European children and adolescents found that 5%-427 428 47% of children and adolescents when measured subjectively, or 0%-60% of children and adolescents when measured objectively, achieved the recommended levels of physical activity.⁷³ In another study 429 describing objectively-measured physical activity and sedentary time patterns in children and youth in 10 430 431 countries (nine very high HDI countries and Brazil), only 9% of boys and 2% of girls accumulated ≥60

minutes of MVPA on all measured days.³⁶ The present study provides additional evidence that the situation regarding the physical activity of children and youth is very concerning in very high HDI countries, and public investment to implement effective interventions for increasing physical activity opportunities are needed urgently. Unless a major shift to a more active lifestyle happens soon, a high rate of premature non-communicable diseases can be anticipated when this generation of children will reach adulthood.

438

439 Organized Sport and Physical Activity

Most of the countries assigned a letter grade to Organized Sport and Physical Activity, excepting Jersey 440 441 and the United Arab Emirates. With an average grade of "C+", Organized Sport and Physical Activity 442 was the most successful behavioral indicator in the very high HDI countries. Only three countries had a low grade for this indicator: Chile ("D-"), Taiwan ("D-"), and France ("C-"); while 12 countries had 443 relatively higher grades ("B+", "B", "B-") behind the lead of Denmark ("A-"). In Canada, Organized 444 445 Sport and Physical Activity was the only behavioural indicator with a high grade ("B+"),⁷⁴ in which the high participation rate (77%) has been relatively stable since 2005.75 Similarly, Organized Sport and 446 447 Physical Activity was also the highest graded indicator in Sweden.⁷⁶ In relation to its geographical and 448 population size, Sweden is considered as one of the world's most sporting nations: out of the seven 449 million inhabitants between the ages of 7 and 70, more than three million were active members of sport clubs and more than two million were competing regularly in 2012.⁷⁷ However, as presented before, these 450 high rates of sport participation were not associated with a sufficient level of physical activity in the 451 452 population.

Given that the benchmark for Organized Sport and Physical Activity ("% of children and youth who participate in organized sport and/or physical activity programs") does not specify intensity, duration, or frequency, we are missing important contextual information of this indicator. These characteristics should

456 be evaluated to estimate the dose of physical activity associated with sport participation among children 457 and youth. However, the popularity of sport among children and youth from very high HDI countries 458 suggests that increasing organized sport opportunities and accessibility could be a strategic solution to 459 address the prevalence of childhood physical inactivity in these countries. Further research focusing on 460 this indicator is needed to evaluate if the available organized physical activity opportunities are indeed 461 saturated. Moreover, are all countries providing free or affordable and appealing physical activity and 462 sport participation opportunities for the entire youth population including different age, gender, 463 socioeconomic, ethnic, and special population groups (e.g., children with learning and/or physical 464 disabilities)?

465

466 Active Play

467 The main finding concerning Active Play was the amount of missing data: 20 out of the 30 very high HDI 468 countries assigned an "INC" grade to this indicator. Among the 10 countries with a letter grade, the Netherlands attained the highest grade ("B"); Estonia the lowest grade ("F"); and the eight remaining 469 countries had "C"s or "D"s. The average grade of "D+" for this indicator suggests that there is a low level 470 471 of engagement in this behavior, and/or that researchers were not able to detect it with the measurement 472 instruments they used. Indeed, valid and reliable tools to assess active play is largely limited.⁷⁸ In the Czech Republic, Active Play was measured using self-reports of unstructured/unorganized active play for 473 at least two hours per day;⁷⁹ while in New Zealand, surveys asked parents/guardians or youth report to 474 475 indicate if the children or youth had been active while playing (on their own or with others) in the last 476 seven days, if they had been active while playing for at least seven hours in the last seven days, and if 477 they were allowed to go out on their own in the neighborhood.⁸⁰ The development of standardized tools 478 for the measurement of Active Play is challenged by the need for consensus on a definition. In a recent 479 systematic review synthesizing the literature to identify key concepts used to define and describe active play among young children, Truelove et al.78 proposed the following definition: "a form of gross motor or 480

481	total body movement in which young children exert energy in a freely chosen, fun, and unstructured
482	manner". But a consensus definition needs to be officially internationally agreed upon and acknowledged
483	to advance the development and acceptance of standardised measurement tools.

484

485 Active Transportation

486 For Active Transportation, the grades ranged from "A-" (Japan) to "F" (Chile), with an average of "C-". 487 Qatar and the United Arab Emirates were the only two countries that did not assign a letter grade to this indicator. Interestingly, three of the four countries from Eastern Asia are leading this indicator: Japan 488 ("A-"), Hong Kong ("B+"), and South Korea ("B+"). The successful school policy that has been 489 490 identified underlying this high prevalence of active transportation among children and youth in Japan was 491 discussed previously in this paper. In Hong Kong, a high proportion of children using active transportation can be explained by the very high population density of the city: most districts are highly 492 self-contained so children usually attend schools close to their home.⁸¹ Similarly, because most students 493 494 live within 10-minute walking distance to/from school, national data showed that active commuting is 495 prevalent in South Korea: 79.4% of children and youth reported that they take active modes of transport 496 to/from places.⁶⁶ Previous research has shown that active transportation is associated with increased physical activity;82 however, the Active Transportation indicator was not correlated with Overall Physical 497 Activity among children in very high HDI countries in this study. Similar to Organized Sport and 498 Physical Activity and Active Play, the benchmark for this indicator does not indicate duration or intensity 499 of activity. Therefore, it is not possible to evaluate the extent to which this indicator is contributing to the 500 501 Overall Physical Activity of children and youth.

502

503 Sedentary Behaviors

504 Sedentary behavior corresponds to any waking behavior characterized by an energy expenditure <1.5 505 metabolic equivalents (METs), while in a sitting, reclining, or lying posture.⁸³ For example, in children 506 and youth, it includes to the use of electronic devices while sitting, reclining or lying, as well as reading, writing, or drawing while sitting.⁸³ While reading is associated with positive outcomes such as higher 507 508 academic achievement, screen time, often used as a proxy for sedentary behavior in research, has been shown to be associated with a variety of negative health outcomes among children and youth.⁸⁴ For this 509 510 reason, guidelines focusing specifically on screen time were developed for the first time in Canada in 511 2011, recommending limiting screen time to two hours daily for the 5-17 year-olds.⁸⁵ Consistent with the 512 current guidelines, the benchmark for Sedentary Behaviors was solely based on screen time: "% of children and youth who meet the Canadian Sedentary Behaviour Guidelines (5- to 17-year-olds: no more 513 514 than 2 hours of recreational screen time per day)".

515 Sedentary Behaviors was the only indicator without any "INC" grades. Estonia, Scotland, and Wales were the three countries with the lowest grade for this indicator ("F"), while Slovenia and Spain had the highest 516 517 grade ("B+"). The remaining countries all had "C"s or "D"s, and the average for this indicator was "D+". In total, only five out of the 30 very high HDI countries had a grade of "C" or higher. A small 518 519 methodological difference was observed between the very high HDI as few countries such as Estonia, 520 France, and Sweden reported the percentage of children and youth who had less than two hours (<2 521 hour/day) of daily screen time, while most of the countries reported those spending two hours or less (≤ 2 522 hour/day) in front of a screen. Another potential source of bias was not taking into account the potential multi-tasking use of screens (e.g., using a phone while watching a movie) as it was the case for France, 523 which could have led to an overestimation of screen time.⁶⁸ Despite these potential methodological issues, 524 525 the grades observed for this indicator are extremely concerning among the very high HDI countries. In 526 Estonia, the prevalence of children meeting the screen time recommendation was estimated as low as 7%.⁸⁶ The development of more effective interventions targeting the reduction of screen time among 527 children and youth in very high HDI countries should be a public health priority. 528

529

530 Physical Fitness

531 This is the first time that Physical Fitness has been evaluated in the Global Matrix. Physical fitness 532 corresponds to a state characterized by an ability to perform daily activities with vigor, and a demonstration of traits and capacities that are associated with a lower risk of the premature development 533 of diseases associated with physical inactivity.87 The health-related components of physical fitness are 534 535 cardiorespiratory endurance, muscular endurance, muscular strength, body composition, and flexibility.88 536 A recent systematic review of the relationship between the 20-meter shuttle run performance and health indicators among children and youth found that performance on this test was associated with favourable 537 indicators of adiposity, and some indicators of cardiometabolic, cognitive, and psychosocial health in 538 539 boys and girls, and concluded that physical fitness can be used as a holistic indicator of population health 540 in children and youth.89

541 The benchmark for this indicator was the average percentile achieved on certain health-related physical 542 fitness component-based on the normative values published by Tomkinson et al.⁵⁶ On average, Physical 543 Fitness was graded "C-". The highest grade was obtained by Japan ("A"), closely followed by Slovenia 544 ("A-"); and four other countries (Canada, Chile, Hong Kong, and Jersey) shared the lowest grade ("D"). 545 An "INC" grade was assigned to Physical Fitness in 13 countries. Various health-related physical fitness 546 components and different normative values were used to calculate the percentile achieved by their sample 547 of children and youth and inform this indicator from one country to another. For example, in Hong Kong this indicator was graded based on peak oxygen consumption, estimated with the performance on the 20-548 meter shuttle run performance among 9-17 year olds;⁹⁰ Jersey had data on cardiorespiratory fitness, 549 550 muscular strength, muscular endurance, flexibility, and motor fundamental movement skills development 551 for school-aged children.⁹¹ Lithuania had data on endurance, lower body muscular power, upper body 552 muscular endurance, and lower body muscular endurance for 11-18 year olds. Given these significant variations, the comparison of the Physical Fitness indicator between very high HDI countries is 553

554 compromised and this highlights the need for developing international standardized measurements of 555 health-related physical fitness components.

556

557 Family and Peers

Similarly to Physical Fitness, 13 countries assigned an "INC" grade to the Family and Peers indicator. On 558 559 average, this indicator was graded "C-", with Slovenia having the highest grade ("B+") and Chile having 560 the lowest grade ("F"). Parental support and significant others support has been identified as two of the 16 correlates that are consistently associated with physical activity of children and/or adolescents in a 561 systematic review of reviews.⁹² Because of the complexity of this indicator, several benchmarks were 562 563 proposed for its evaluation (Table 1), and measurement variations were observed. In Poland, the grade was based on self-report of their parents' (material, emotional) support to their physical activity 564 participation, on self-report of their parents' regular participation in physical activity, and on the 565 566 prevalence of youth who declared being regularly physically active with their father, their mother, and their siblings.⁹³ In Germany, the prevalence of parents regularly participating in physical activity and the 567 568 prevalence of children feeling that they receive positive support from their parents and friends to be 569 physically active informed the Family and Peers indicator.94 These findings show that there is still a need 570 for an established definition of Family and Peer Influence, and then standardised and validated methods 571 of measurement for the Family and Peers indicator.

572

573 School

The School indicator had an average of "C+", and only three countries had an "INC" grade for this indicator: Guernsey, Scotland, and Wales. The United Arab Emirates and the United States had the lowest grade ("D"), and Finland and Portugal shared the best grade for School ("A"). A variation in data was used to inform this indicator within the countries. In Finland, 87% of the schools participated in the

578 national Finnish Schools on the Move programme. This programme aims at achieving more pleasant and 579 active schooldays for children and encourages schools to increase physical activity during the school day as well as commuting.95 In Portugal, physical education classes are mandatory for all students from pre-580 581 school to 12th grade. The time allocated to physical education classes ranges from 90 to 150 min/week 582 over two or three sessions/week, and these classes are taught by a certified physical education teacher. In 583 addition, 85% of Portuguese schools offer school clubs under the supervision of a physical education 584 teacher, including competitions within and between schools.96 The correlational analyses did not find an 585 association between the School and the Overall Physical Activity indicators, but similarly to other 586 indicators, the heterogeneity of data used to inform the School indicator are potentially affecting this 587 relationship.

A review of the relationship between academic performance and participation in school-based physical 588 589 activities, including physical education, free school-based physical activity, and school sports, found that 590 adding time to academic or curricular subjects by taking time from physical education programmes does 591 not enhance grades in the corresponding academic subjects, and could be detrimental to health.⁹⁷ On the contrary, the authors also suggested that more time can be allocated to physical activity from other 592 593 subjects without the risk of hindering students' academic achievement.⁹⁷ These findings suggest that the 594 school environment, policy, and curriculum have the potential to increase physical activity among 595 children and youth, and more specific interventions targeting the creation of daily physical opportunities at school need to be developed in very high HDI countries. 596

597

598 Community and the Built Environment

With an average of "B-", Community and the Built Environment was the highest graded indicator of the
10 core indicators among the 30 very high HDI countries. The lowest grade for this indicator was "C",
shared by five countries (England, Jersey, Lithuania, Poland, and the United States), and the highest

grade, "A", was assigned by Sweden. Eight countries assigned an "INC" grade for this indicator. With an 602 603 "A-", Australia was the second most successful country for this indicator. In the Australia's 2018 Report 604 Card, parent-report data showed that most of youth were not faced with problematic traffic in their home 605 or school neighborhood, had access to good roads and footpaths and to public transport in their neighborhood, had a park or playground near their home, and lived in a safe neighborhood.⁹⁸ In Taiwan, 606 607 where this indicator was graded "B+", 81% of 13- to 17-year-olds felt that there were sufficient exercise 608 facilities in their neighbourhood, and they reported spending an average of 9.7 min to reach their primary exercise facilities.99 The lack of correlation between this indicator and the Overall Physical Activity is 609 aligned with some of the research available on access to facilities.⁹² Community and the Built 610 Environment. In accordance with previous Global Matrices,^{37,39} the available evidence from this indicator 611 may suggest that the characteristics of the built environment potentially influencing the physical activity 612 613 of children are already meeting the criteria to be considered favorable in the very high HDI countries. 614 This indicates that having favorable environmental infrastructure alone is not sufficient to promote 615 physical activity in very high HDI countries. Social factors such as family, home, school, and community 616 are also important to promote physical activity among children and youth.

617

618 Government

619 The average grade for the Government indicator was "C+", and the grades ranged from "A" (Slovenia) to "D" (Australia, Guernsey, Jersey, and South Korea). Five countries assigned an "INC" grade to this 620 indicator. With the exception of the four countries with a "D", all the other very high HDI countries 621 obtained a favorable grade ("C" or higher) for the Government indicator. Despite the recommended 622 623 benchmark for this indicator, Government grades were informed by different types of data in different 624 countries. For example, in Wales, 21 policy documents assessed across different sectors including Health, 625 Sport, Education, Environment, Transport, and Urban Design/Planning were evaluated using the Health-Enhancing Physical Activity Policy Audit Tool, obtaining a final score of 54% that was converted to a 626

627	letter grade of "C+". ¹⁰⁰ In some other countries that did not have relevant quantitative data, a letter grade
628	was graded primarily based on expert opinion. Although most countries reported government physical
629	activity strategies and policies, the absence of a relationship between the Government grades and the
630	Overall Physical Activity grades and the mostly low behavioral grades suggest that these actions are not
631	singularly effective at increasing the prevalence of MVPA among children and youth.

632

633 Integrated Discussion

Generally, higher grades were reported for the source of influence indicators in comparison with the behavioral indicators among the 30 very high HDI countries integrated in this study. The average grade for the behavioral indicators was "D+" (ranging from "B-" to "D-") while the average grade for the sources of influence indicators was "C+" (ranging from "A" to "D"). This finding is consistent with previous Global Matrices,^{37,39} and may be partially explained by the fact that more than half of the countries that participated in the Global Matrix 1.0 and 2.0 belonged to the very high HDI category.

640 Japan, the Netherlands, and Slovenia had the highest behavioral score, while Estonia, Chile and the 641 United Arab Emirates had the lowest score (Figure 3). This score was calculated based on the grades for 642 five indicators, and most of the countries had four to five letter grades to inform the score, with the exception of the United Arab Emirates with only two letter grades, and Qatar, Jersey, and Japan with only 643 three letter grades. The amount of "INC" grades for these four countries questions the accuracy of their 644 ranking, in particular for Japan, in the leading position. For the sources of influence score, Slovenia, 645 646 Denmark, and Finland led the ranking, while the United States, South Korea, and Guernsey ranked at the 647 bottom (Figure 4). While the calculation of the source of influence score was based on the letter grades for four indicators, eight countries had only two letter grades to inform this score, and Guernsey, the 648 Netherlands and Spain had only one. The amount of "INC" grades challenges the correctness of this 649 classification, in particular for the three countries with only one source of influence indicator graded. The 650

651 comparison of these groups of indicators suggests that the adequate to good grades observed for the 652 source of influence indicators are not translated in good behavioral grades for the very high HDI 653 countries.

In total, 24 countries had three or less "INC" grades, but six countries were missing data to grade four to 654 655 six indicators. Including countries with a significantly large number of "INC" grades in the Global Matrix 656 3.0 is a limitation to this study as it limits the comparisons. For example, the United Arab Emirates had six "INC" grades, 101 Guernsey had five "INC" grades, 102 and Qatar had four "INC" grades, and a "not 657 658 applicable" for Active Transportation.⁴⁶Another major limitation of this study is the diversity of the data 659 that were used to inform the 10 core indicators, challenging the comparativeness of the grades within the 660 same indicator. Two identical grades for the same indicator can potentially reflect very different situations 661 from one country to another. An alternative approach would have been to exclude the countries with 662 insufficient data from the Global Matrix 3.0, and to have assigned "INC" grades to all the countries with 663 data that were not fitting exactly with the benchmarks for each indicator. Yet, this strategy would have 664 considerably reduced the number of countries and indicators included in the analyses of this study and decrease the relevance of conducting international comparisons within an HDI category. Finally, a loss of 665 666 information potentially occurs when translating original data to a letter grade, as letter grades provide less 667 information than continuous variables.

668 The main strength of this study is the large number of participating countries who adopted the harmonized 669 data gathering, assessing, and grading process and the quantity of data that are informing the international 670 physical activity comparisons. This was possible as a result of the inclusive strategy adopted by AHKGA. 671 This project offers the opportunity to paint a picture of the characteristics of childhood physical activity in 672 each country, as determined and explained by a diverse group of experts within each country. In addition, despite the presented methodological issues, this study allows the identification of major trends 673 674 concerning the characteristics of the physical activity of children and youth among very high HDI 675 countries. The need for the development and the international adoption of standardized methods to

conceptualise and measure the ten indicators was also highlighted in this paper. An "INC" grade can be 676 677 useful for advocacy in individual countries in future cards, and the Global Matrix project has the potential 678 to influence the physical activity national surveillance systems in the short to long term. Finally, as 679 demonstrated in the study presenting the international impact of the Report Cards and Global Matrices published in this special issue, 103 the development of a national Report Card of physical activity for 680 681 children and youth, and the participation in the Global Matrix initiative, contributes to raising awareness 682 on the childhood physical inactivity issue nationally and internationally, building capacity within 683 participating countries, and potentially influencing the creation of physical activity opportunities in the 684 future.

685

686 Conclusion

This analysis and comparison of the Global Matrix 3.0 grades provide a comprehensive summary of the 687 688 level and context of the physical activity of children and youth among the participating very high HDI 689 countries. While methodological limitations and research gaps were identified, this work allowed the 690 portrayal of major trends across the 10 physical activity indicators. The majority of very high HDI 691 countries had better grades on the sources of influence levels, but this was not translated in positive 692 outcomes concerning childhood physical activity and sedentary behavior, indicating an implementation gap between the policy/governmental and individual level. This paper provides additional evidence that 693 the situation regarding physical activity in children and youth living in very high HDI countries is 694 695 extremely concerning. Strategic public investments to implement effective interventions within families, 696 communities, and schools to increase physical activity opportunities are needed. Unless a major shift to a 697 more active lifestyle happens soon, a high rate of non-communicable diseases can be anticipated when this generation of children will reach adulthood. 698

699

700 Acknowledgements

- 701 The authors would like to acknowledge the then Active Healthy Kids Canada (now ParticipACTION) for
- 702 developing the Report Card methodology, and the AHKGA for modifying and standardizing the
- 703 benchmarks and grading rubric. The authors are indebted to each country Report Card leaders, Research
- 704 Work Group, and all other members of their Report Card Committees.

705

706 References

707	1.	Nocon M, Hiemann T, Müller-Riemenschneider F, Thalau F, Roll S, Willich SN. Association of
708		physical activity with all-cause and cardiovascular mortality: a systematic review and meta-

709 analysis. Eur J Cardiovasc Prev Rehabil. 2008;15(3):239-246.

710 doi:10.1097/HJR.0b013e3282f55e09

- 711 2. Trost SG, Blair SN, Khan KM. Physical inactivity remains the greatest public health problem of
- 712 the 21st century: evidence, improved methods and solutions using the "7 investments that work"

713 as a framework. Br J Sports Med. 2014;48(3):169-170. doi:10.1136/bjsports-2013-093372

- 714 3. Blair SN. Physical inactivity: the biggest public health problem of the 21st century. Br J Sports
- 715 *Med.* 2009;43(1):1-2. http://www.ncbi.nlm.nih.gov/pubmed/19136507. Accessed April 4, 2018.
- 716 4. Poitras VJ, Gray CE, Borghese MM, et al. Systematic review of the relationships between
- 717 objectively measured physical activity and health indicators in school-aged children and youth.
- 718 Appl Physiol Nutr Metab. 2016;41(6 (Suppl. 3)):S197-S239. doi:10.1139/apnm-2015-0663
- Janssen I, LeBlanc AG. Systematic review of the health benefits of physical activity and fitness in
 school-aged children and youth. *Int J Behav Nutr Phys Act.* 2010;7(1):40. doi:10.1186/1479-58687-40
- 722 6. Kremer P, Elshaug C, Leslie E, Toumbourou JW, Patton GC, Williams J. Physical activity,
- leisure-time screen use and depression among children and young adolescents. *J Sci Med Sport*.
 2014;17(2):183-187. doi:10.1016/J.JSAMS.2013.03.012
- 725 7. McMahon EM, Corcoran P, O'Regan G, et al. Physical activity in European adolescents and
- associations with anxiety, depression and well-being. *Eur Child Adolesc Psychiatry*.
- 727 2017;26(1):111-122. doi:10.1007/s00787-016-0875-9
- 728 8. United Nations Development Programme. Human Development Index (HDI) | Human

729		Development Reports. http://hdr.undp.org/en/content/human-development-index-hdi. Accessed
730		April 7, 2018.
731	9.	Land KC. The Human Development Index: Objective Approaches (2). In: Global Handbook of
732		Quality of Life. Dordrecht: Springer Netherlands; 2015:133-157. doi:10.1007/978-94-017-9178-
733		6_7
734	10.	Fasting MH, Nilsen T IL, Holmen TL, Vik T. Life style related to blood pressure and body weight
735		in adolescence: Cross sectional data from the Young-HUNT study, Norway. BMC Public Health.
736		2008;8(1):111. doi:10.1186/1471-2458-8-111
737	11.	Ekelund U, Luan J, Sherar LB, et al. Moderate to Vigorous Physical Activity and Sedentary Time
738		and Cardiometabolic Risk Factors in Children and Adolescents. JAMA. 2012;307(7):704.
739		doi:10.1001/jama.2012.156
740	12.	Andersen LB, Harro M, Sardinha LB, et al. Physical activity and clustered cardiovascular risk in
741		children: a cross-sectional study (The European Youth Heart Study). Lancet. 2006;368(9532):299-
742		304. doi:10.1016/S0140-6736(06)69075-2
743	13.	Ekelund U, Anderssen SA, Froberg K, et al. Independent associations of physical activity and
744		cardiorespiratory fitness with metabolic risk factors in children: the European youth heart study.
745		Diabetologia. 2007;50(9):1832-1840. doi:10.1007/s00125-007-0762-5
746	14.	Dumuid D, Maher C, Lewis LK, et al. Human development index, children's health-related quality
747		of life and movement behaviors: a compositional data analysis. Qual Life Res. 2018;27(6):1473-
748		1482. doi:10.1007/s11136-018-1791-x
749	15.	Lee I-M, Shiroma EJ, Lobelo F, Puska P, Blair SN, Katzmarzyk PT. Effect of physical inactivity
750		on major non-communicable diseases worldwide: an analysis of burden of disease and life
751		expectancy. Lancet. 2012;380(9838):219-229. doi:10.1016/S0140-6736(12)61031-9

32

752	16.	Ding Ding M, Lawson KD, Kolbe-Alexander TL, et al. The economic burden of physical
753		inactivity: a global analysis of major non-communicable diseases. Lancet. 2016;388(10051):1311-
754		1324. doi:10.1016/S0140-6736(16)30383-X
755	17.	Konstabel K, Veidebaum T, Verbestel V, et al. Objectively measured physical activity in
756		European children: the IDEFICS study. Int J Obes. 2014;38(S2):S135-S143.
757		doi:10.1038/ijo.2014.144
758	18.	Sheldrick M, Tyler R, Mackintosh K, Stratton G. Relationship between Sedentary Time, Physical
759		Activity and Multiple Lifestyle Factors in Children. J Funct Morphol Kinesiol. 2018;3(1):15.
760		doi:10.3390/jfmk3010015
761	19.	BAPTISTA F, SANTOS DA, SILVA AM, et al. Prevalence of the Portuguese Population
762		Attaining Sufficient Physical Activity. Med Sci Sport Exerc. 2012;44(3):466-473.
763		doi:10.1249/MSS.0b013e318230e441
764	20.	Mielgo-Ayuso J, Aparicio-Ugarriza R, Castillo A, et al. Physical Activity Patterns of the Spanish
765		Population Are Mostly Determined by Sex and Age: Findings in the ANIBES Study. Carpenter
766		DO, ed. PLoS One. 2016;11(2):e0149969. doi:10.1371/journal.pone.0149969
767	21.	Kokko S, Mehtälä A. The Physical Activity Behaviours of Children and Adolescents in Finland.
768		Results of the LIITU Study, 2016.; 2016.
769	22.	Kalman M, Inchley J, Sigmundova D, et al. Secular trends in moderate-to-vigorous physical
770		activity in 32 countries from 2002 to 2010: a cross-national perspective. Eur J Public Health.
771		2015;25(suppl 2):37-40. doi:10.1093/eurpub/ckv024
772	23.	Tabak I, Mazur J, Nałęcz H. Family and individual predictors and mediators of adolescent
773		physical activity. Heal Psychol Rep. 2017;4(4):333-344. doi:10.5114/hpr.2017.67522

774 24. Sigmund E, Sigmundová D, Badura P, Kalman M, Hamrik Z, Pavelka J. Temporal Trends in

775		Overweight and Obesity, Physical Activity and Screen Time among Czech Adolescents from 2002
776		to 2014: A National Health Behaviour in School-Aged Children Study. Int J Environ Res Public
777		Health. 2015;12(9):11848-11868. doi:10.3390/ijerph120911848
778	25.	Jodkowska M, Mazur J, Oblacińska A. Perceived barriers to physical activity among Polish
779		adolescents. Przegl Epidemiol. 2015;69(1):73-78.
780		http://www.przeglepidemiol.pzh.gov.pl/perceived-barriers-to-physical-activity-among-polish-physical-activity-among-physical-act
781		adolescents?lang=pl. Accessed May 30, 2018.
782	26.	World Health Organization, WHO. Global recommendation on physical activity for health.
783		http://www.who.int/dietphysicalactivity/factsheet_recommendations/en/. Published 2010.
784		Accessed January 11, 2018.
785	27.	Kremer P, Elshaug C, Leslie E, Toumbourou JW, Patton GC, Williams J. Physical activity,
786		leisure-time screen use and depression among children and young adolescents. J Sci Med Sport.
787		2014;17(2):183-187. doi:10.1016/J.JSAMS.2013.03.012
788	28.	Aguilar-Farias N, Martino-Fuentealba P, Carcamo-Oyarzun J, et al. A regional vision of physical
789		activity, sedentary behaviour and physical education in adolescents from Latin America and the
790		Caribbean: results from 26 countries. Int J Epidemiol. March 2018. doi:10.1093/ije/dyy033
791	29.	Chiang P-H, Huang L-Y, Lee M-S, Tsou H-C, Wahlqvist ML. Fitness and food environments
792		around junior high schools in Taiwan and their association with body composition: Gender
793		differences for recreational, reading, food and beverage exposures. Kaser S, ed. PLoS One.
794		2017;12(8):e0182517. doi:10.1371/journal.pone.0182517
795	30.	Wong SH-S, Huang WY, He G. Longitudinal changes in objectively measured physical activity
796		differ for weekdays and weekends among Chinese children in Hong Kong. BMC Public Health.
797		2015;15(1):1310. doi:10.1186/s12889-015-2618-0

798	31.	Tanaka C, Tanaka M, Okuda M, Inoue S, Aoyama T, Tanaka S. Association between objectively
799		evaluated physical activity and sedentary behavior and screen time in primary school children.
800		BMC Res Notes. 2017;10(1):175. doi:10.1186/s13104-017-2495-y
801	32.	Lee E-Y, Spence JC, Tremblay MS, Carson V. Meeting 24-Hour Movement Guidelines for
802		Children and Youth and associations with psychological well-being among South Korean
803		adolescents. Ment Health Phys Act. 2018;14:66-73. doi:10.1016/J.MHPA.2018.02.001
804	33.	Sharara E, Akik C, Ghattas H, Makhlouf Obermeyer C. Physical inactivity, gender and culture in
805		Arab countries: a systematic assessment of the literature. BMC Public Health. 2018;18(1):639.
806		doi:10.1186/s12889-018-5472-z
807	34.	Haroun D, ElSaleh O, Wood L. Dietary and Activity Habits in Adolescents Living in the United
808		Arab Emirates: A Cross-Sectional Study. Vol 1. [s.n.]; 2017.
809		https://knepublishing.com/index.php/AJNE/article/view/1226/2672. Accessed May 24, 2018.
810	35.	Zaabi M Al, Shah SM, Sheek-Hussein M, Abdulle A, Junaibi A Al, Loney T. Results From the
811		United Arab Emirates' 2016 Report Card on Physical Activity for Children and Youth. J Phys Act
812		Heal. 2016;13(11 Suppl 2):S299-S306. doi:10.1123/jpah.2016-0312
813	36.	Cooper AR, Goodman A, Page AS, et al. Objectively measured physical activity and sedentary
814		time in youth: the International children's accelerometry database (ICAD). Int J Behav Nutr Phys
815		Act. 2015;12(1):113. doi:10.1186/s12966-015-0274-5
816	37.	Tremblay MS, Gray CE, Akinroye K, et al. Physical Activity of Children: A Global Matrix of
817		Grades Comparing 15 Countries. J Phys Act Heal. 2014;11(s1):S113-S125.
818		doi:10.1123/jpah.2014-0177
819	38.	Colley RC, Brownrigg M, Tremblay MS. A Model of Knowledge Translation in Health. Health

820 Promot Pract. 2012;13(3):320-330. doi:10.1177/1524839911432929

821	39.	Tremblay MS, Barnes JD, González SA, et al. Global Matrix 2.0: Report Card Grades on the
822		Physical Activity of Children and Youth Comparing 38 Countries. J Phys Act Heal. 2016;13(11
823		Suppl 2):S343-S366. doi:10.1123/jpah.2016-0594
824	40.	Active Healthy Kids Global Alliance. About Us » Active Healthy Kids Global Alliance.
825		https://www.activehealthykids.org/about-us/. Accessed May 27, 2018.
826	41.	Aubert S, Barnes JD, Adbeta C, Tremblay MS. Physical Activity Report Card Grades for Children
827		and Youth: Result and Analysis from 49 Countries. J Phys Act Heal. 2018.
828	42.	Wei T, Simko V, Levy M, Xie Y, Jin Y, Zemla J. Visualization of a Correlation Matrix: Corrplot.
829		2017. https://github.com/taiyun/corrplot.
830	43.	Wickham H. Ggplot2: Elegant Graphics for Data Analysis. Vol 77. Second. (Springer-Verlag,
831		ed.). New York; 2009.
832	44.	Conway JR, Lex A, Gehlenborg N. UpSetR: an R package for the visualization of intersecting sets
833		and their properties. Bioinformatics. 2017;33(18):2938-2940. doi:10.1093/bioinformatics/btx364
834	45.	Kowarik A, Templ M. Imputation with the R Package VIM. J Stat Softw. 2016;74(7):1-16.
835		doi:10.18637/jss.v074.i07
836	46.	Ibrahim I, Al Hammadi E, Sayegh S, et al. Results from Qatar's 2018 Report Card on Physical
837		Activity for Children and Youth. J Phys Act Heal. 2018.
838	47.	Evenson KR, Catellier DJ, Gill K, Ondrak KS, McMurray RG. Calibration of two objective
839		measures of physical activity for children. J Sports Sci. 2008;26(14):1557-1565.
840		doi:10.1080/02640410802334196
841	48.	Topič MD, Coakley J. Complicating the Relationship between Sport and National Identity: The
842		Case of Post-Socialist Slovenia. Sociol Sport J. 2010;27(4):371-389. doi:10.1123/ssj.27.4.371

- 843 49. SLOfit. What is SLOfit. http://en.slofit.org/. Accessed July 23, 2018.
- 50. Sember V, Starc G, Jurak G, et al. Results From the Republic of Slovenia's 2016 Report Card on
- Physical Activity for Children and Youth. *J Phys Act Heal*. 2016;13(11 Suppl 2):S256-S264.
 doi:10.1123/jpah.2016-0294
- Sember V, Morrison SA, Jurak G, et al. Results from Slovenia's 2018 Report Card on Physical
 Activity for Children and Youth. *J Phys Act Heal*. 2018.
- 52. The official website of Denmark. Sports for Everyone. http://denmark.dk/en/lifestyle/sport/sportsfor-everyone/. Accessed July 24, 2018.
- 53. Nørager Johansen DL, Neerfeldt Christensen BF, Fester M, et al. Results from Denmark's 2018
 Report Card on Physical Activity for Children and Youth. *J Phys Act Heal*. 2018.
- 853 54. Mori N, Armada F, Willcox DC. Walking to school in Japan and childhood obesity prevention:
- new lessons from an old policy. *Am J Public Health*. 2012;102(11):2068-2073.
- 855 doi:10.2105/AJPH.2012.300913
- 55. Tanaka C, Tanaka S, Inoue S, et al. Results From Japan's 2018 Report Card on Physical Activity
 for Children and Youth. *J Phys Act Heal*. 2018.
- 858 56. Tomkinson GR, Carver KD, Atkinson F, et al. European normative values for physical fitness in
- 859 children and adolescents aged 9-17 years: results from 2 779 165 Eurofit performances

860 representing 30 countries. Br J Sports Med. November 2017:bjsports-2017-098253.

861 doi:10.1136/bjsports-2017-098253

- Tanaka C, Tanaka M, Tanaka S. Objectively evaluated physical activity and sedentary time in
 primary school children by gender, grade and types of physical education lessons. *BMC Public Health.*
- 865 58. Aguilar-Farias N, Cortinez-O'Ryan A, Sadarangani KP, et al. Results From Chile's 2016 Report

866		Card on Physical Activity for Children and Youth. J Phys Act Heal. 2016;13(11 Suppl 2):S117-
867		S123. doi:10.1123/jpah.2016-0314
868	59.	Aguilar-Farias N, Miranda-Marquez S, Sadarangani KP, et al. Results from Chile's 2018 Report
869		Card on Physical Activity for Children and Youth. J Phys Act Heal. 2018.
870	60.	Dentro KN, Beals K, Crouter SE, et al. Results from the United States' 2014 Report Card on
871		Physical Activity for Children and Youth. J Phys Act Heal. 2014;11(s1):S105-S112.
872		doi:10.1123/jpah.2014-0184
873	61.	Katzmarzyk PT, Denstel KD, Beals K, et al. Results From the United States of America's 2016
874		Report Card on Physical Activity for Children and Youth. J Phys Act Heal. 2016;13(11 Suppl
875		2):S307-S313. doi:10.1123/jpah.2016-0321
876	62.	Katzmarzyk PT, Denstel KD, Beals K, et al. Results from the United States 2018 Report Card on
877		Physical Activity for Children and Youth. J Phys Act Heal. 2018.
878	63.	Takken T, de Jong N. Results from the Netherlands's 2018 Report Card on Physical Activity for
879		Children and Youth. J Phys Act Heal. 2018.
880	64.	Seghers J, De Baere S, Verloigne M, Cardon G. Results from Flanders' 2018 Report Card on
881		Physical Activity for Children and Youth. J Phys Act Heal. 2018.
882	65.	Hughes AR, Johnstone A, Bardid F, Reilly JJ. Results from Scotland's 2018 Report Card on
883		Physical Activity for Children and Youth. J Phys Act Heal. 2018.
884	66.	Oh J-W, Lim J, Lee S-H, Jin Y, Oh B, Chung Gun Lee, Deok Hwan Lee, Eun-Young Lee, Han
885		Joo Lee, Hyon Park, Hyun Joo Kang, Justin Y. Jeon, Mi-Seong Yu, Sang-Hoon Suh, SeJung Park,
886		So Jung Lee, Soo Jung Park, Wook Song, Yewon Yu, Yoonkyung Song, Youngwon Kim YSK.
887		Results from South Korea's 2018 Report Card on Physical Activity for Children and Youth. J
888		Phys Act Heal. 2018.

889	67.	Roman-Viñas B, Zazo F, Martínez-Martínez J, Aznar-Laín S, Serra-Majem L. Results from
890		Spain's 2018 Report Card on Physical Activity for Children and Youth. J Phys Act Heal. 2018.
891	68.	Aubert S, Aucouturier J, Ganière C, et al. Results from France's 2018 Report Card on Physical
892		Activity for Children and Youth. J Phys Act Heal. 2018.
893	69.	Standage M, Sherar L, Curran T, et al. Results from England's 2018 Report Card on Physical
894		Activity for Children and Youth. J Phys Act Heal. 2018.
895	70.	Gába A, Dygrýn J, Mitáš J, Jakubec L, Frömel K. Effect of Accelerometer Cut-Off Points on the
896		Recommended Level of Physical Activity for Obesity Prevention in Children. Buchowski M, ed.
897		PLoS One. 2016;11(10):e0164282. doi:10.1371/journal.pone.0164282
898	71.	Dowda M, Pate RR, Sallis J, Freedson PS. Accelerometer (CSA) count cut points for physical
899		activity intensity ranges in youth. Med Sci Sport Exerc. 1997;29(5):72.
900		https://journals.lww.com/acsm-
901		msse/pages/articleviewer.aspx?year=1997&issue=05001&article=00412&type=fulltext.
902	72.	Puyau MR, Adolph AL, Vohra FA, Zakeri I, Butte NF. Prediction of Activity Energy Expenditure
903		Using Accelerometers in Children. Med Sci Sport Exerc. 2004;36(9):1625-1631.
904		doi:10.1249/01.MSS.0000139898.30804.60
905	73.	Van Hecke L, Loyen A, Verloigne M, et al. Variation in population levels of physical activity in
906		European children and adolescents according to cross-European studies: a systematic literature
907		review within DEDIPAC. Int J Behav Nutr Phys Act. 2016;13(1):70. doi:10.1186/s12966-016-
908		0396-4
909	74.	Barnes JD, Cameron C, Carson V, et al. Results from Canada's 2018 Report Card on Physical
910		Activity for Children and Youth. J Phys Act Heal. 2018.
911	75.	Canadian Fitness and Lifestyle Research Institute. Bulletin 02: Participation in organized physical

912		activity and sport www.cflri.ca. http://cflri.ca/document/bulletin-02-participation-organized-
913		physical-activity-and-sport. Published 2016. Accessed July 26, 2018.
914	76.	Delisle Nyström C, Larsson C, Alexandrou C, et al. Results from Sweden's 2018 Report Card on
915		Physical Activity for Children and Youth. J Phys Act Heal. 2018.
916	77.	RiksidrottsFörbundet. Sport in Sweden.; 2012. www.rf.se. Accessed July 26, 2018.
917	78.	Truelove S, Vanderloo LM, Tucker P. Defining and Measuring Active Play Among Young
918		Children: A Systematic Review. J Phys Act Heal. 2017;14(2):155-166. doi:10.1123/jpah.2016-
919		0195
920	79.	Gába A, Rubín L, Badura P, et al. Results from the Czech Republic's 2018 Report Card on
921		Physical Activity for Children and Youth. J Phys Act Heal. 2018.
922	80.	Smith M, Ikeda E, Hinckson E, et al. Results from New Zealand's 2018 Report Card on Physical
923		Activity for Children and Youth. J Phys Act Heal. 2018.
924	81.	Huang WY, Wong SH-S, Wong MC-S, Sit CH-P, Sum RK-W, He G. Results From Hong Kong's
925		2016 Report Card on Physical Activity for Children and Youth. J Phys Act Heal. 2016;13(11
926		Suppl 2):S169-S175. doi:10.1123/jpah.2016-0302
927	82.	Larouche R, Saunders TJ, John Faulkner GE, Colley R, Tremblay M. Associations between Active
928		School Transport and Physical Activity, Body Composition, and Cardiovascular Fitness: A
929		Systematic Review of 68 Studies. J Phys Act Heal. 2014;11(1):206-227. doi:10.1123/jpah.2011-
930		0345
931	83.	Tremblay MSMS, Aubert S, Barnes JDJD, et al. Sedentary Behavior Research Network (SBRN) -
932		Terminology Consensus Project process and outcome. Int J Behav Nutr Phys Act. 2017;14(1):75.
933		doi:10.1186/s12966-017-0525-8
934	84.	Carson V, Hunter S, Kuzik N, et al. Systematic review of sedentary behaviour and health

935		indicators in school-aged children and youth: an update. Appl Physiol Nutr Metab. 2016;41(6
936		(Suppl. 3)):S240-S265. doi:10.1139/apnm-2015-0630
937	85.	Tremblay MS, LeBlanc AG, Janssen I, et al. Canadian Sedentary Behaviour Guidelines for
938		Children and Youth. Appl Physiol Nutr Metab. 2011;36(1):59-64. doi:10.1139/H11-012
939	86.	Mäestu E, Kull M, Mooses K, et al. Results from Estonian's 2018 Report Card on Physical
940		Activity for Children and Youth. J Phys Act Heal. 2018.
941	87.	Pate RR. The Evolving Definition of Physical Fitness. Quest. 1988;40(3):174-179.
942		doi:10.1080/00336297.1988.10483898
943	88.	Caspersen CJ, Powell KE, Christenson GM. Physical activity, exercise, and physical fitness:
944		definitions and distinctions for health-related research. Public Health Rep. 1985;100(2):126-131.
945		http://www.ncbi.nlm.nih.gov/pubmed/3920711. Accessed May 13, 2018.
946	89.	Lang JJ, Belanger K, Poitras V, Janssen I, Tomkinson GR, Tremblay MS. Systematic review of
947		the relationship between 20m shuttle run performance and health indicators among children and
948		youth. J Sci Med Sport. 2018;21(4):383-397. doi:10.1016/j.jsams.2017.08.002
949	90.	Huang WY, Wong SHS, Sit CHP, et al. Results from Hong Kong's 2018 Report Card on Physical
950		Activity for Children and Youth. J Phys Act Heal. 2018.
951	91.	Scriven J, Cabot J, Mitchell D, Kennedy D. Results from Jersey's 2018 Report Card on Physical
952		Activity for Children and Youth. J Phys Act Heal. 2018.
953	92.	Sterdt E, Liersch S, Walter U. Correlates of physical activity of children and adolescents: A
954		systematic review of reviews. Health Educ J. 2014;73(1):72-89. doi:10.1177/0017896912469578
955	93.	Zembura P, Korcz A, Cieśla E, Gołdys A, Nałęcz H. Results from Poland's 2018 Report Card on
956		Physical Activity for Children and Youth. J Phys Act Heal. 2018.

957	94.	Demetriou Y, Hebestreit A, Reimers AK, et al. Results from Germany's 2018 Report Card on
958		Physical Activity for Children and Youth. J Phys Act Heal. 2018.
959	95.	Kämppi K, Aira A, Halme N, et al. Results from Finland's 2018 Report Card on Physical Activity
960		for Children and Youth. J Phys Act Heal. 2018.
961	96.	Mota J, Santos R, Coelho-e-Silva MJ, Raimundo AM, Sardinha LB. Results from Portugal's 2018
962		Report Card on Physical Activity for Children and Youth. J Phys Act Heal. 2018.
963	97.	Trudeau F, Shephard RJ. Physical education, school physical activity, school sports and academic
964		performance. Int J Behav Nutr Phys Act. 2008;5(1):10. doi:10.1186/1479-5868-5-10
965	98.	Schranz N, Glennon V, Evans J, et al. Results from Australia's 2018 Report Card on Physical
966		Activity for Children and Youth. J Phys Act Heal. 2018.
967	99.	Chang C-K, Wu C-L. Results from Chinese Taipei (Taiwan)'s 2018 Report Card on Physical
968		Activity for Children and Youth. J Phys Act Heal. 2018.
969	100.	Edwards LC, Tyler R, Blain D, et al. Results from Wales' 2018 Report Card on Physical Activity
970		for Children and Youth. J Phys Act Heal. 2018.
971	101.	Paulo MS, Nauman J, Abdulle A, et al. Results from the United Arab Emirates' 2018 Report Card
972		on Physical Activity for Children and Youth. J Phys Act Heal. 2018.
973	102.	Williams A, Whitman L, Le Page Y, Le Page C, Chester G, Sebire SJ. Results from the Bailiwick
974		of Guernsey's 2018 Report Card on Physical Activity for Children and Youth. J Phys Act Heal.
975		2018.
976	103.	Aubert S, Barnes JD, Forse M, Turner E, Schranz N. International Impact of the Report Cards and
977		Global Matrices of Physical Activity Grades for Children and Youth. J Phys Act Heal. 2018.

978 104. The World Bank. GINI index (World Bank estimate) | Data.

979		https://data.worldbank.org/indicator/SI.POV.GINI?view=map. Accessed April 7, 2018.
980	105.	The World Bank. Population density (people per sq. km of land area) Data. 2016.
981		https://data.worldbank.org/indicator/EN.POP.DNST. Accessed June 27, 2018.
982	106.	The Economist Intelligence Unit. Global Food Security Index: Overview. 2017.
983		https://foodsecurityindex.eiu.com/Index. Accessed June 27, 2018.
984	107.	The Organisation for Economic Co-operation and Development. Poverty Rate.
985		https://data.oecd.org/inequality/poverty-rate.htm. Accessed June 27, 2018.
986	108.	United Nations Department of Economic and Social Affairs. Social Indicators/ Population growth
987		and distribution. https://unstats.un.org/unsd/demographic/products/socind/. Accessed June 27,
988		2018.
989	109.	Hastings DA. Filling Gaps in the Human Development Index: Findings for Asia and the Pacific.
990		Bangkok; 2009. https://www.unescap.org/sites/default/files/wp-09-02.pdf. Accessed July 17,
991		2018.
992	110.	The United States Central Intelligence Agency. The World Factbook, Guide to Country Profiles.
993		https://www.cia.gov/library/publications/resources/the-world-factbook/docs/profileguide.html.
994		Accessed July 17, 2018.
995	111.	State of Guernsey. Guernsey Household Income.; 2015.
996		https://www.gov.gg/CHttpHandler.ashx?id=110715&p=0. Accessed July 17, 2018.
997	112.	State of Jersey. Jersey Household Income Distribution 2014/15.; 2015.
998		https://www.gov.je/SiteCollectionDocuments/Government and administration/R Income
999		Distribution Survey Report 2014-15 20151112 SU.pdf. Accessed July 17, 2018.
1000	113.	National Statistics Republic of China (Taiwan). Report on The Survey of Family Income and
1001		Expenditure. https://eng.stat.gov.tw/ct.asp?xItem=3417&CtNode=1596∓=5. Accessed June 28,

1002	2018.
1003	
1004	
1005	
1006	
1007	
1008	
1009	
1010	
1011	
1012	
1013	
1014	
1015	
1016	
1017	
1018	
1019	
1020	
1021	

1022 Table 1: Global Matrix 3.0 indicators and benchmarks used to guide the grade assignment process

Indicator	Benchmark
Overall Physical Activity	% of children and youth who meet the Global Recommendations on Physical Activity for Health, which recommend that children and youth accumulate at least 60 minutes of moderate- to vigorous-intensity physical activity per day on average. Or % of children and youth meeting the guidelines on at least 4 days a week (when an average cannot be estimated).
Organized Sport and Physical Activity	% of children and youth who participate in organized sport and/or physical activity programs.
Active Play	% of children and youth who engage in unstructured/unorganized active play at any intensity for more than 2 hours a day. % of children and youth who report being outdoors for more than 2 hours a day.
Active Transportation	% of children and youth who use active transportation to get to and from places (e.g., school, park, mall, friend's house).
Sedentary Behaviors	% of children and youth who meet the Canadian Sedentary Behaviour Guidelines (5- to 17-year-olds: no more than 2 hours of recreational screen time per day). Note: the Guidelines currently provide a time limit recommendation for screen-related pursuits, but not for non-screen-related pursuits.
Physical Fitness	Average percentile achieved on certain physical fitness indicators based on the normative values published by Tomkinson et al. ⁵⁶
Family and Peers	% of family members (e.g., parents, guardians) who facilitate physical activity and sport opportunities for their children (e.g., volunteering, coaching, driving, paying for membership fees and equipment). % of parents who meet the Global Recommendations on Physical Activity for Health, which recommend that adults accumulate at least 150 minutes of moderate-intensity aerobic physical activity throughout the week or do at least 75 minutes of vigorous-intensity aerobic physical activity throughout the week or an equivalent combination of moderate- and vigorous-intensity physical activity. % of family members (e.g., parents, guardians) who are physically active with their kids. % of children and youth with friends and peers who encourage and support them to be physically active. % of children and youth who encourage and support their friends and peers to be physically active.

School	% of schools with active school policies (e.g., daily PE, daily physical activity, recess, "everyone plays" approach, bike racks at school, traffic calming on school property, outdoor time).
	% of schools where the majority (\geq 80%) of students are taught by a PE specialist
	% of schools where the majority (≥ 80%) of students are offered the mandated amount of PE (for the given state/territory/region/country). % of schools that offer physical activity opportunities (excluding PE) to the majority (> 80%) of their students. % of parents who report their children and youth have access to physical activity opportunities at school in addition to PE classes. % of schools with students who have regular access to facilities and equipment that support physical activity (e.g., gymnasium, outdoor playgrounds, sporting fields, multi-purpose space for physical activity, equipment in good condition).
Community and the Built Environment	% of children or parents who perceive their community/municipality is doing a good job at promoting physical activity (e.g., variety, location, cost, quality). % of communities/municipalities that report they have policies promoting physical activity.
	% of communities/municipalities that report they have infrastructure (e.g., sidewalks, trails, paths, bike lanes) specifically geared toward promoting physical activity.
	 % of children or parents who report having facilities, programs, parks and playgrounds available to them in their community. % of children or parents who report living in a safe neighbourhood where they can be physically active.
	% of children or parents who report having well-maintained facilities, parks and playgrounds in their community that are safe to use.
Government	Evidence of leadership and commitment in providing physical activity opportunities for all children and youth. Allocated funds and resources for the implementation of physical activity promotion strategies and initiatives for all children and youth. Demonstrated progress through the key stages of public policy making (i.e., policy agenda, policy formation, policy implementation, policy evaluation and decisions about the future).

Grade	Interpretation	Corresponding number for analysis
A+	94% - 100%	15
А	We are succeeding with a large majority of children and youth (87% - 93%)	14
A-	80% - 86%	13
B+	74% - 79%	12
В	We are succeeding with well over half of children and youth (67% - 73%)	11
B-	60% - 66%	10
C+	54% - 59%	9
С	We are succeeding with about half of children and youth (47% - 53%)	8
C-	40% - 46%	7
D+	34% - 39%	6
D	We are succeeding with less than half but some children and youth (27% - 33%)	5
D-	20% - 26%	4
F	We are succeeding with very few children and youth (<20%)	2
INC	Incomplete - insufficient or inadequate information to assign a grade	No Grade

1029 Table 2: Global Matrix 3.0 grading rubric

Country	HDIª	GNI per	Public	Gender	Life	Mean	Gini	Global	Child	Urban	Population
		capitaª	Health	Inequality	expectancy	years of	index ^b	Food	Poverty	Population	Density
			Expenditure	Index	at birth ^a	schooling ^a		Security	Rated	Percentagee	(people/
			(% of	(GII) ^a				Index ^c			km ²) ^f
			GDP) ^a								
Australia	0.939	42822	6.3	0.12	82.5	13.2	34.7	83.3	0.13	89.4	3
Belgium	0.896	41243	8.3	0.073	81	11.4	27.7	79.8	0.11	97.5	374
Canada	0.92	42582	7.4	0.098	82.2	13.1	34	82.2	0.171	80.8	4
Chile	0.847	21665	3.9	0.322	82	9.9	47.7	74.7	0.225	89.4	24
Czech Republic	0.878	28144	6.3	0.129	78.8	12.3	25.9	75.8	0.105	73.4	137
Denmark	0.925	44519	9.2	0.041	80.4	12.7	28.2	80.3	0.029	87.1	136
England	0.909	37931	7.6	0.131	80.8	13.3	33.2	84.2	0.112	79.7	271
Estonia	0.865	26362	5	0.131	77	12.5	32.7		0.121	69.5	31
Finland	0.895	38868	7.3	0.056	81	11.2	27.1	81	0.037	83.8	18
France	0.897	38085	9	0.102	82.4	11.6	32.7	82.3	0.113	86.4	122
Germany	0.926	45000	8.7	0.066	81.1	13.2	31.7	82.5	0.095	74.1	236
Guernsey*	0.975				82.6		40				850
Hong Kong	0.917	54265			84.2	11.6				100	6987
Japan	0.903	37268	8.6	0.116	83.7	12.5	32.1	79.5		91.9	348
Jersey**	0.985				81.9		41				845
Lithuania	0.848	26006	4.4	0.121	73.5	12.7	37.4		0.191	67.2	46
Netherlands	0.924	46326	9.5	0.044	81.7	11.9	29.3	82.8	0.102	83.6	506
New Zealand	0.915	32870	9.1	0.158	82	12.5		81	0.141	86.3	18
Poland	0.855	24117	4.5	0.137	77.6	11.9	31.8	74.1	0.134	60.8	124
Portugal	0.843	26104	6.2	0.091	81.2	8.9	35.5	79	0.155	61.6	113
Qatar	0.856	129916	1.9	0.542	78.3	9.8		73.3		98.9	221
Scotland	0.909	37931	7.6	0.131	80.8	13.3	33.2	84.2	0.112	79.7	271
Slovenia	0.89	28664	6.6	0.053	80.6	12.1	25.4			49.8	103
South Korea	0.901	34541	4	0.067	82.1	12.2	31.6		0.071	83.5	526
Spain	0.884	32779	6.4	0.081	82.8	9.8	36.2	78.1	0.221	77.6	93
Sweden	0.913	46251	10	0.048	82.3	12.3	29.2	81.7	0.091	85.4	24
Taiwan***	0.885	45582			80.2		33.6				
United Arab	0.84	66203	2.6	0.232	77.1	9.5		70.9		84.7	111
Emirates United States	0.92	53245	8.3	0.203	79.2	13.2	41.5	84.6	0.199	82.6	35
Wales	0.909	37931	7.6	0.131	80.8	13.3	33.2	84.2	0.112	79.7	271

1040 Table 3: Sociodemographic information of the 30 very high HDI countries in the Global Matrix 3.0

Note: HDI = Human Development Index, GNI = Gross National Income, GDP = Gross Domestic Product, GII = Gender Inequality Index. Sources of information: a., United Nations Development Programme;8 b. and f., the World Bank;104,105 c., the Economist Intelligence Unit;106 d., the Organisation for Economic Co-operation and Development Child (OECD) Well-Being Data Portal;¹⁰⁷ and e., United Nations, Department of Economic and Social Affairs.¹⁰⁸ * For Guernsey, the HDI sourced from the United Nations Economic and Social Commission for Asia and the Pacific,¹⁰⁹ the life expectancy at birth, population size, and the population density sourced from the United States Central Intelligence Agency,¹¹⁰ and the Gini index sourced from the State of Guernsey.¹¹¹ **For Jersey, the HDI sourced from¹⁰⁹, the life expectancy at birth, population size, and the population density sourced from the United States Central Intelligence Agency,¹¹⁰ and the Gini index sourced from the State of Jersey.¹¹² ***For Taiwan, the HDI, the GNI per Capita, the life expectancy at birth and the Gini index come from the National Statistics, Republic of China (Taiwan).¹¹³ For England, Scotland, and Wales, the official data for UK were reported.

1063 Table 4: Grades assigned to the 10 core physical activity indicators for the 30 very high HDI

1064 countries of the Global Matrix 3.0

	PA	SP	AP	AT	SB	PF	FAM	SCH	СОМ	GOV	AVG
Australia	D-	B-	INC	D+	D-	D+	C+	B+	A-	D	C-
Belgium	F	В	INC	C+	С	INC	C+	B-	В	В	С
(Flanders)											
Canada	D+	B+	D	D-	D+	D	C+	В-	B+	C+	C-
Chile	D-	D-	INC	F	C-	D	F	D	В	B-	D
Czech Republic	D	B-	D-	C+	D-	C+	C+	B+	В	C+	С
Denmark	D-	A-	INC	B+	D+	INC	INC	A-	B+	A-	B-
England	C-	D+	INC	C-	D+	C-	INC	B+	С	INC	C-
Estonia	D-	С	F	D	F	INC	D	C+	В	В	D+
Finland	D	C+	С	B+	D-	С	B-	Α	B+	A-	C+
France	D	C-	INC	C-	D-	B-	INC	В	INC	С	C-
Germany	D-	В	D-	C-	D-	INC	B-	B+	B+	INC	С
Guernsey	D	C+	INC	D	С	INC	INC	INC	INC	D	D+
Hong Kong	C-	С	INC	B+	C-	D	D-	С	В	С	C-
Japan	INC	B-	INC	A-	C-	Α	C-	B+	B-	В	B-
Jersey	D-	INC	INC	D+	С	D	C	B-	С	D	D+
Lithuania	C-	С	INC	C-	C-	C+	D	C+	С	С	C-
Netherlands	С	В	В	B-	C-	INC	INC	С	INC	INC	C+
New Zealand	D-	В	C+	C-	D	INC	С	B-	В	B+	С
Poland	D-	D	INC	С	D	C-	C-	В	С	C+	C-
Portugal	D	B-	INC	C-	C-	C	C	Α	В	В	C+
Qatar	D	D+	INC	N/A	D+	INC	INC	С	INC	B+	C-
Scotland	F	В	INC	С	F	INC	INC	INC	B-	С	D+
Slovenia	A-	C+	D	С	B+	A-	B+	А	В	А	В

South Korea	F	С	INC	B+	D	D+	INC	D+	INC	D	D+
Spain	D	В	C-	B-	B+	INC	INC	C+	INC	INC	C+
Sweden	D+	B+	INC	С	C+	INC	INC	C+	А	В	C+
Taiwan	F	D-	INC	C-	C-	B-	INC	B+	B+	B+	С
United Arab	F	INC	INC	INC	C-	INC	INC	D-	INC	B+	D+
Emirates											
United States	D-	С	INC	D-	D	C-	INC	D-	С	INC	D
Wales	D+	C+	C-	D+	F	INC	D	INC	INC	C+	D+

1065 Note: PA = Physical Activity, SP = Organized Sport and Physical Activity Participation, AP = Active

1066 Play, AT = Active Transportation, SB = Sedentary Behaviors, PF = Physical Fitness, FAM = Family and

1067 Peers, SCH = School, COM = Community and the Built Environment, GOV = Government, AVG =

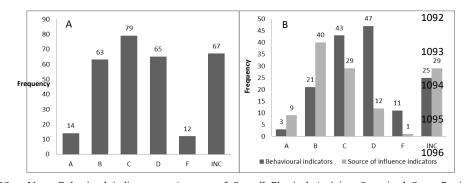
1068 Average, INC = incomplete grade, and N/A = not applicable.

1079 Table 5: Descriptive statistics of the grades by indicator and group of indicators for the very high

1080 HDI countries of the Global Matrix 3.0

	Grade	Incomplete	Mean	SD	Mean	Range
	count	grades	number		letter	
			grade		grade	
Overall physical activity	29	1	4.9	2.2	D-	F to A-
Organized sport and physical activity participation	28	2	9	2.4	C+	D- to A-
Active play	10	20	6.2	2.7	D+	F to B
Active transportation	28	2	7.8	2.7	C-	F to A-
Sedentary behaviors	30	0	6.1	2.4	D+	F to B+
Physical fitness	17	13	7.9	2.7	C-	D to A
Family and peers	17	13	7.5	2.6	C-	F to B+
School	27	3	9.9	2.9	C+	D- to A
Community and the Built Environment	22	8	10.7	1.7	B-	C to A
Government	25	5	9.6	2.7	C+	D to A
Behavioral indicators	30	0	6.8	1.6	D+	D- to B-
Sources of influence indicators	30	0	9.3	2	C+	D to A-
All indicators	30	0	7.9	1.5	C-	D+ to B

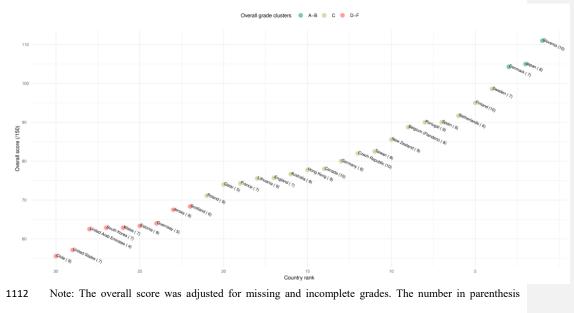
1081 Note: Behavioral indicators = Average of Overall Physical Activity, Organized Sport Participation,

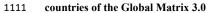

Active Play, Active Transportation, Sedentary Behavior indicator grades; Source of influence indicators =
Average of Family and Peers, School, Community and the Built Environment, and Government Strategies
and Investments indicator grades. Physical fitness was not included in the behavioral indicators cluster.
There are no missing grades for the bottom three rows because these scores are adjusted for missing
grades.

1087

1089 Figure 1: Frequency plot by letter grade among 30 very high-HDI countries in the Global Matrix

3.0. A: For the 10 core indicators. B: For the behavioral indicators and for the source of influence


1091 indicators.



1097 Note: Behavioral indicators = Average of Overall Physical Activity, Organized Sport Participation,
1098 Active Play, Active Transportation, Sedentary Behavior indicator grades; Source of influence indicators =
1099 Average of Family and Peers, School, Community and the Built Environment, and Government Strategies
1100 and Investments indicator grades. Physical fitness was not included in the behavioral indicators cluster.

- _00

1110 Figure 2: Plot of the overall score estimated for the 10 core indicators for the 30 very high HDI

D-F score (/75) Country rank

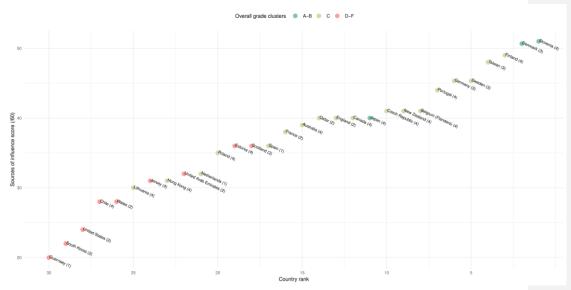
Figure 3: Plot of the behavioral score estimated for the very high HDI countries of the Global 1122

1123 Matrix 3.0

1124 Note: The overall score was adjusted for missing and incomplete grades. The number in parenthesis

1125 shows the number of grades available for the calculation of the score.

1126


1127

1128

1129

1131 Figure 4: Plot of the source of influence indicators score for the very high HDI countries of the

1132 Global Matrix 3.0

1133 Note: The overall score was adjusted for missing and incomplete grades. The number in parenthesis 1134 shows the number of grades available for the calculation of the score. These estimates of sources of 1135 influence score are interpreted with a high degree of caution as they are likely imprecise estimates of 1136 sources of influence due to the level of missing data used to determine this score.

1137